当前位置:文档之家› 全概率公式贝叶斯公式推导过程

全概率公式贝叶斯公式推导过程

全概率公式贝叶斯公式推导过程
全概率公式贝叶斯公式推导过程

全概率公式贝叶斯公式

推导过程

Standardization of sany group #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

全概率公式、贝叶斯公式推导过程

(1)条件概率公式

设A,B是两个事件,且P(B)>0,则在事件B发生的条件下,事件A发生的条件概率(conditional probability)为:

P(A|B)=P(AB)/P(B)

(2)乘法公式

1.由条件概率公式得:

P(AB)=P(A|B)P(B)=P(B|A)P(A)

上式即为乘法公式;

2.乘法公式的推广:对于任何正整数n≥

(1)条件概率公式

设A,B是两个事件,且P(B)>0,则在事件B发生的条件下,事件A发生的条件概率(conditional probability)为:

P(A|B)=P(AB)/P(B)

(2)乘法公式

1.由条件概率公式得:

P(AB)=P(A|B)P(B)=P(B|A)P(A)

上式即为乘法公式;

2.乘法公式的推广:对于任何正整数n≥2,当P(A

1A

2

...A

n-1

) > 0 时,

有:

P(A

1A

2

...A

n-1

A

n

)=P(A

1

)P(A

2

|A

1

)P(A

3

|A

1

A

2

)...P(A

n

|A

1

A

2

...A

n-1

)

(3)全概率公式

1. 如果事件组B

1,B

2

,.... 满足

,B

2....两两互斥,即 B

i

∩ B

j

= ,i≠j , i,j=1,2,....,且

P(B

i

)>0,i=1,2,....;

∪B

2∪....=Ω,则称事件组 B

1

,B

2

,...是样本空间Ω的一个划分

设B

1,B

2

,...是样本空间Ω的一个划分,A为任一事件,则:

上式即为全概率公式(formula of total probability)

2.全概率公式的意义在于,当直接计算P(A)较为困难,而P(B

i ),P(A|B

i

)

(i=1,2,...)的计算较为简单时,可以利用全概率公式计算P(A)。思想就是,

将事件A分解成几个小事件,通过求小事件的概率,然后相加从而求得事件A 的概率,而将事件A进行分割的时候,不是直接对A进行分割,而是先找到样

本空间Ω的一个个划分B

1,B

2

,...B

n

,这样事件A就被事件AB

1

,AB

2

,...AB

n

分解

成了n部分,即A=AB

1+AB

2

+...+AB

n

, 每一B

i

发生都可能导致A发生相应的概率

是P(A|B

i

),由加法公式得

P(A)=P(AB

1)+P(AB

2

)+....+P(AB

n

)

=P(A|B

1)P(B

1

)+P(A|B

2

)P(B

2

)+...+P(A|B

n

)P(PB

n

)

3.实例:某车间用甲、乙、丙三台机床进行生产,各台机床次品率分别为5%,4%,2%,它们各自的产品分别占总量的25%,35%,40%,将它们的产品混在一起,求任取一个产品是次品的概率。

解:设..... P(A)=25%*5%+4%*35%+2%*40%=

(4)贝叶斯公式

1.与全概率公式解决的问题相反,贝叶斯公式是建立在条件概率的基础上寻找事件发生的原因(即大事件A已经发生的条件下,分割中的小事件Bi的概

率),设B

1,B

2

,...是样本空间Ω的一个划分,则对任一事件A(P(A)>0),有

上式即为贝叶斯公式(Bayes formula),B

i

常被视为导致试验结果A发生

的”原因“,P(B

i

)(i=1,2,...)表示各种原因发生的可能性大小,故称先验概

率;P(B

i

|A)(i=1,2...)则反映当试验产生了结果A之后,再对各种原因概率的新认识,故称后验概率

2,当P(A1A2...An-1) > 0 时,有:

P(A1A2...An-

1An)=P(A1)P(A2|A1)P(A3|A1A2)...P(An|A1A2...An-1)

(3)全概率公式

1. 如果事件组B1,B2,.... 满足

,B2....两两互斥,即 Bi ∩ Bj = ,i≠j , i,j=1,2,....,且P(Bi)>0,i=1,2,....;

∪B2∪....=Ω,则称事件组 B1,B2,...是样本空间Ω的一个

划分

设 B1,B2,...是样本空间Ω的一个划分,A为任一事件,则:

上式即为全概率公式(formula of total probability)

2.全概率公式的意义在于,当直接计算P(A)较为困难,而P(Bi),P(A|Bi) (i=1,2,...)的计算较为简单时,可以利用全概率公式计算P(A)。思想就是,

将事件A分解成几个小事件,通过求小事件的概率,然后相加从而求得事件A

的概率,而将事件A进行分割的时候,不是直接对A进行分割,而是先找到样

本空间Ω的一个个划分B1,B2,...Bn,这样事件A就被事件AB1,AB2,...ABn分

解成了n部分,即A=AB1+AB2+...+ABn, 每一Bi发生都可能导致A发生相应的

概率是P(A|Bi),由加法公式得

P(A)=P(AB1)+P(AB2)+....+P(ABn)

=P(A|B1)P(B1)+P(A|B2)P(B2)+...+P(A|Bn)P(PBn)

3.实例:某车间用甲、乙、丙三台机床进行生产,各台机床次品率分

别为5%,4%,2%,它们各自的产品分别占总量的25%,35%,40%,将它们的产

品混在一起,求任取一个产品是次品的概率。

解:设..... P(A)=25%*5%+4%*35%+2%*40%=

(4)贝叶斯公式

1.与全概率公式解决的问题相反,贝叶斯公式是建立在条件概率的基础

上寻找事件发生的原因(即大事件A已经发生的条件下,分割中的小事件Bi的

概率),设B1,B2,...是样本空间Ω的一个划分,则对任一事件A(P(A)>0),有

上式即为贝叶斯公式(Bayes formula),Bi 常被视为导致试验结果

A发生的”原因“,P(Bi)(i=1,2,...)表示各种原因发生的可能性大小,故称

先验概率;P(Bi|A)(i=1,2...)则反映当试验产生了结果A之后,再对各种原因

概率的新认识,故称后验概率

全概率公式和贝叶斯公式

单位代码:005 分类号:o1 西安创新学院本科毕业论文设计 题目:全概率公式和贝叶斯公式 专业名称:数学与应用数学 学生姓名:行一舟 学生学号:0703044138 指导教师:程值军 毕业时间:二0一一年六月

全概率公式和贝叶斯公式 摘要:对全概率公式和贝叶斯公式,探讨了寻找完备事件组的两个常用方法,和一些实际的应用.全概率公式是概率论中的一个重要的公式,它提供了计算复杂事件概率的一条有效的途径,使一个复杂事件的概率计算问题化繁就简.而贝叶斯公式则是在乘法公式和全概率公式的基础上得到的一个著名的公式. 关键词:全概率公式;贝叶斯公式;完备事件组

The Full Probability Formula and Bayes Formula Abstract:To the full probability formula and bayes formula for complete,discusses the two commonly used methods of events,and some practical applications.Full probability formula is one of the important full probability formula of calculation,it provides an effective complex events of the way the full probability of a complex events,full probability calculation problem change numerous will Jane.And the bayes formula is in full probability formula multiplication formula and the basis of a famous formula obtained. Key words:Full probability formula;Bayes formula;Complete event group;

贝叶斯定理

贝叶斯定理 (重定向自后验概率) 贝叶斯定理(Bayes theorem),是概率论中的一个结果,它跟随机变量的条件概率以及边缘概率分布有关。在有些关于概率的解说中,贝叶斯定理(贝叶斯更新)能够告知我们如何利用新证据修改已有的看法。 通常,事件A在事件B(发生)的条件下的概率,与事件B在事件A的条件下的概率是不一样的;然而,这两者是有确定的关系,贝叶斯定理就是这种关系的陈述。 作为一个规范的原理,贝叶斯定理对于所有概率的解释是有效的;然而,频率主义者和贝叶斯主义者对于在应用中,概率如何被赋值,有着不同的看法:频率主义者根据随机事件发生的频率,或者总体样本里面的个数来赋值概率;贝叶斯主义者要根据未知的命题来赋值概率。一个结果就是,贝叶斯主义者有更多的机会使用贝叶斯定理。本文深度讨论了这些争论。 贝叶斯定理的陈述 贝叶斯定理是关于随机事件A和B的条件概率和边缘概率的一则定理。

其中P(A|B)是在B发生的情况下A发生的可能性。 在贝叶斯定理中,每个名词都有约定俗成的名称: 按这些术语,Bayes定理可表述为: 后验概率= (相似度* 先验概率)/标准化常量 也就是说,后验概率与先验概率和相似度的乘积成正比。 另外,比例P(B|A)/P(B)也有时被称作标准相似度(standardised likelihood),Bayes定理可表述为: 后验概率= 标准相似度* 先验概率 从条件概率推导贝叶斯定理 根据条件概率的定义 . 在事件B发生的条件下事件A发生的概率是

同样地, 在事件A发生的条件下事件B发生的概率 整理与合并这两个方程式, 我们可以找到 这个引理有时称作概率乘法规则.上式两边同除以P(B), 若P(B)是非零的, 我们可以得到贝叶斯定理: 二中择一的形式 贝叶斯定理通常可以再写成下面的形式: 在更一般化的情况,假设{A i}是事件集合里的部份集合,对于任意的A i,贝叶斯定理可用下式表示:

浅谈贝叶斯方法

浅谈贝叶斯方法 随着MCMC(马尔可夫链蒙特卡尔理论Markov chain Monte Carlo)的深入研究,贝叶斯(T.Bayes(1702~1761))统计已成为当今国际统计科学研究的热点。翻阅近几年国内外统计学方面的杂志,特别是美国统计学会的JASA(Journal of the American Statistical Association) 、英国皇家学会的统计杂志JRSS(Journal of the Royal Statistical Society)[1]等,几乎每期都有“贝叶斯统计”的论文。贝叶斯统计的应用范围很广,如计算机科学中的“统计模式识别”、勘探专家所采用的概率推理、计量经济中的贝叶斯推断、经济理论中的贝叶斯模型等。托马斯·贝叶斯在18世纪上半叶群雄争霸的欧洲学术界可谓是个重要人物,他首先将归纳推理法应用于概率论,并创立了贝叶斯统计理论,对于统计决策函数、统计推理、统计估算等作出了贡献。贝叶斯所采用的许多概率术语被沿用至今。他的两篇遗作于逝世前4个月,寄给好友普莱斯(R.Price,1723~1791)分别于1764年、1765年刊于英国皇家学会的《哲学学报》。正是在第一篇题为“机会学说中的一个问题的解”(An essay towards solving a problem in the doctrine of chance)的论文中,贝叶斯创立了逆概率思想。统计学家巴纳德赞誉其为“科学史上最著名的论文之一”。 一、第一部分中给出了7个定义。 定义1 给定事件组,若其中一个事件发生,而其他事件不发生,则称这些事件互不相容。 定义2若两个事件不能同时发生,且每次试验必有一个发生,则称这些事件相互对立。

全概率公式、贝叶斯公式推导过程

全概率公式、贝叶斯公式推导过程 (1)条件概率公式 设A,B是两个事件,且P(B)>0,则在事件B发生的条件下,事件A发生的条件概率(conditional probability)为: P(A|B)=P(AB)/P(B) (2)乘法公式 1.由条件概率公式得: P(AB)=P(A|B)P(B)=P(B|A)P(A) 上式即为乘法公式; 2.乘法公式的推广:对于任何正整数n≥全概率公式、贝叶斯公式推导过程 (1)条件概率公式 设A,B是两个事件,且P(B)>0,则在事件B发生的条件下,事件A发生的条件概率(conditional probability)为: P(A|B)=P(AB)/P(B) (2)乘法公式 1.由条件概率公式得: P(AB)=P(A|B)P(B)=P(B|A)P(A) 上式即为乘法公式; 2.乘法公式的推广:对于任何正整数n≥2,当P(A1A2...A n-1) > 0 时,有: P(A1A2...A n-1A n)=P(A1)P(A2|A1)P(A3|A1A2)...P(A n|A1A2...A n-1) (3)全概率公式 1. 如果事件组B1,B2,.... 满足 1.B1,B 2....两两互斥,即B i ∩ B j = ?,i≠j ,i,j=1,2,....,且P(B i)>0,i=1,2,....; 2.B1∪B2∪....=Ω ,则称事件组B1,B2,...是样本空间Ω的一个划分 设 B1,B2,...是样本空间Ω的一个划分,A为任一事件,则: 上式即为全概率公式(formula of total probability) 2.全概率公式的意义在于,当直接计算P(A)较为困难,而P(B i),P(A|B i) (i=1,2,...)的计算较为简单时,可以利用全概率公式计算P(A)。思想就是,将事件A分解成几个小事件,通过求小事件的概率,然后相加从而求得事件A的概率,而将事件A进行分割的时候,不是直接对A进行分割,而是先找到样本空间Ω的一个个划分B1,B2,...B n,这样事件A就被事

比较简单的贝叶斯网络总结

贝叶斯网络 贝叶斯网络是一系列变量的联合概率分布的图形表示。 一般包含两个部分,一个就是贝叶斯网络结构图,这是一个有向无环图(DAG),其中图中的每个节点代表相应的变量,节点之间的连接关系代表了贝叶斯网络的条件独立语义。另一部分,就是节点和节点之间的条件概率表(CPT),也就是一系列的概率值。如果一个贝叶斯网络提供了足够的条件概率值,足以计算任何给定的联合概率,我们就称,它是可计算的,即可推理的。 3.5.1 贝叶斯网络基础 首先从一个具体的实例(医疗诊断的例子)来说明贝叶斯网络的构造。 假设: 命题S(moker):该患者是一个吸烟者 命题C(oal Miner):该患者是一个煤矿矿井工人 命题L(ung Cancer):他患了肺癌 命题E(mphysema):他患了肺气肿 命题S对命题L和命题E有因果影响,而C对E也有因果影响。 命题之间的关系可以描绘成如右图所示的因果关系网。 因此,贝叶斯网有时也叫因果网,因为可以将连接结点的弧认为是表达了直接的因果关系。 图3-5 贝叶斯网络的实例 图中表达了贝叶斯网的两个要素:其一为贝叶斯网的结构,也就是各节点的继承关系,其二就是条件概率表CPT。若一个贝叶斯网可计算,则这两个条件缺一不可。 贝叶斯网由一个有向无环图(DAG)及描述顶点之间的概率表组成。其中每个顶点对应一个随机变量。这个图表达了分布的一系列有条件独立属性:在给定了父亲节点的状态后,每个变量与它在图中的非继承节点在概率上是独立的。该图抓住了概率分布的定性结构,并被开发来做高效推理和决策。 贝叶斯网络能表示任意概率分布的同时,它们为这些能用简单结构表示的分布提供了可计算优势。 假设对于顶点xi,其双亲节点集为Pai,每个变量xi的条件概率P(xi|Pai)。则顶点集合X={x1,x2,…,xn}的联合概率分布可如下计算: 。 双亲结点。该结点得上一代结点。

浅谈风险决策中的贝叶斯方法.

科技信息2008年第33期 SCIENCE &TECHNOLOGY INFORMATION 所谓决策, 就是决策者为了解决当前或未来可能遇到的各种问题,在若干可供选择的行动方案中,选择一个在某种意义下的最佳方案的过程。决策的正确与否会给企业带来收益或损失。因此,决策者应学会合理的决策分析,避免产生重大损失。由于决策环境中存在大量不确定因素和统计信息的不充分,决策必然带有某种程度的风险。可利用的信息是减少风险的有力手段。一般而言,信息越充分,决策环境的不确定性越小,风险也越小。 贝叶斯统计方法的基本思想就是要充分利用模型信息(假设的数学模型)、数据信息(抽样信息)和先验信息(经验资料),将先验分布和抽样分布整合成后验分布,以后验分布为决策的出发点。如果有新的信息(数据),则更新后验分布,实现递归决策方案。本研究通过实例,详细讨论了风险决策中如何利用贝叶斯公式有效整合相关信息,选择最优策略,并就最优决策进行解释。 1. 贝叶斯决策模型 每个风险决策问题都包括三个要素:自然状态(各种自然状态形成状态集)、决策者采取的行动(构成行动集)、决策者采取某个行动的后果(用收益或损失函数描述)。从这三个要素出发,可以得到不同的风险情景空间。 在通常决策问题中,决策者对自然界(或社会)会积累很多的经验和资料,这些先验信息虽不足以确定自然界(或社会)会出现什么状态,但在很多场合可以在状态集上给出一个先验分布。从中得知各种状态出现的概率估计。这种先验信息在做决策时可以使用,即依据先验概率分布及期望值准则进行最优方案的选择。由于先验概率有较强的主观色彩,不能完全反映客观规律,为了更好地进行决策,就必须进一步补充新信息,取得新数据,从而修正先验概率,得到后验概率。后验概率是根据概率论中贝叶斯公式进行计算,所以称这种决策为贝叶斯决策模型。 2. 实例

全概率公式与贝叶斯公式解题归纳

全概率公式与贝叶斯公式解题归纳 来源:文都教育 在数学一、数学三的概率论与数理统计部分,需要用到全概率公式及其贝叶斯公式来解题. 这类题目首先要区分清楚是“由因导果”,还是“由果索因”,因为全概率公式是计算由若干“原因”引起的复杂事件概率的公式,而贝叶斯公式是用来计算复杂事件已发生的条件下,某一“原因”发生的条件概率. 它们的定义如下: 全概率公式:设n B B B ,,,21 为样本空间Ω的一个划分,如果()0,i P B > 1,2,,i n =L ,则对任一事件A 有 )|()()(1 i n i i B A P B P A P ∑==. 贝叶斯公式 :设n ,B ,,B B 21 是样本空间Ω的一个划分,则 .,,2,1,)|()() |()()|(1n i B A P B P B A P B P A B P n j j j i i i ==∑= 例1 从数字1, 2, 3, 4中任取一个数,记为X ,再从1,…,X 中任取一个数,记为Y ,则(2)P Y == . 解 由离散型随机变量的概率分布有: (1)(2)(3)(4)14P X P X P X P X ========. 由题意,得 (21)0,(22)12,P Y X P Y X ====== (23)13,(24)14P Y X P Y X ======,则根据全概率公式得到

(2)(1)(21)(2)(22)P Y P X P Y X P X P Y X =====+=== (3)(23)(4)(24)P X P Y X P X P Y X +===+=== 111113(0).423448 =?+++= 例2 12件产品中有4件次品,在先取1件的情况下,任取2件产品皆为正品,求先取1件为次品的概率. 解 令A={先取的1件为次品},则,A A 为完备事件组,12(),(),33 P A P A = =令B={后取的2件皆为正品},则2821128(),55C P B A C ==2721121(),55C P B A C == 由贝叶斯公式得 128()()()2355().128221()()()()()5 355355 P A P B A P AB P A B P B P A P B A P A P B A ?====+?+? 若随机试验可以看成分两个阶段进行,且第一阶段的各试验结果具体结果怎样未知,那么:(1)如果要求的是第二阶段某一个结果发生的概率,则用全概率公式;(2)如果第二个阶段的某一个结果是已知的,要求的是此结果为第一阶段某一个结果所引起的概率,一般用贝叶斯公式,类似于求条件概率. 熟记这个特征,在遇到相关的题目时,可以准确地选择方法进行计算,保证解题的正确高效.

贝叶斯公式浅析

说起贝叶斯公式,学过概率论的人肯定学过(如果没学过,那就去了解下"条件概率”),一个条件概率的转换公式,如下: P(A|E)=[ P(E|A)P(A)] / P(E),稍微变形下就是最简单的等式了P(A|E)P(E)= [P(E|A)P(A) 这么一个简单的公式为什么能引起科学上的革命? 这是一个统计学上的公式,但是却被证明是人类唯一能够运用自如的东西。伯克利大学心理学家早在2004年就证明,Bayesian统计法是儿童运用的唯一思考方法,其他方法他们似乎完全不会。 废话不多说,举个例子来说明就很明白了:假设在住所门口看到自己“女朋友or男朋友”(没有的自己找去,这里不负责介绍,还假设她or他在外地)你会产生三种假设(很多人都会这么想): A1=男朋友or女朋友没告诉你就跑来你的城市 A2=自己看模糊了 A3=那个人跟自己男朋友or女朋友确实长得很像 那么这三种假想哪个更有可能? 更准确地说就是,在“事实”(看到了男朋友or女朋友的情况)那种假设更有可能呢?解释成数学语言就是 P(A1|E), P(A2|E), P(A3|E)。哪个更大些? 于是脑子就开始启动贝叶斯程序, 计算比较这三个的概率到底哪个更大: 因为P(E)对于三个式子来说都是一样的,所以贝叶斯公式可以看成P(A|E)正相关于P(E|A)P(A),先看看P(A)是什么? P(h)在这个公式里描述的是你对某个假想h的可信程度。(不用考虑当前的事实是什么) P( A1)=男朋友or女朋友没告诉你就跑来你的城市,可能性比较低 P( A2)=自己看模糊了,可能性比较高 P( A3)=那个人跟自己男朋友or女朋友确实长得很像,可能性比较高 P(E|A)表示的就是假想产生对应的这个事实的可能性多大 P(E| A1)=男朋友or女朋友想给你惊喜,来找你的,当然很高的概率出现在你住所门

贝叶斯公式的经验之谈

贝叶斯公式的经验之谈 一、综述 在日常生活中,我们会遇到许多由因求果的问题,也会遇到许多由果溯因的问题。比如某种传染疾病已经出现.寻找传染源;机械发生了故障,寻找故障源就是典型的南果溯因问题等。在一定条件下,这类由果溯因问题可通过贝叶斯公式来求解。以下从几个的例子来说明贝叶斯公式的应用。 文【1】主要应用贝叶斯公式的简单情形,从“疾病诊断”,“说谎了吗”,“企业资质评判”,“诉讼”四个方面讨论其具体应用。文【2】用市场预测的实例,介绍了贝叶斯公式在市场预测中的应用。贝叶斯市场预测能对信息的价值是否需要采集新的信息做出科学的判断。文【3】、文【4】介绍贝叶斯过滤技术的工作原理及技术原理,讨论了邮件过滤模块,通过分析研究该模块中垃圾邮件关键词的统计概率分布,提出了基于贝叶斯概率模型的邮件过滤算法,并对该算法的合理性和复杂度进行了分析。可以根据垃圾邮件内容的特征,建立贝叶斯概率模型,计算出一封邮件是垃圾邮件的概率,从而判断其是否为垃圾邮件。文【5】基于贝叶斯公式中概率统计的重要性与在日常生活中应用的广泛性,概述了贝叶斯统计的基本思想及其与其他统计学派的争论,并对作为贝叶斯统计基石的贝叶斯公式进行了归纳。 二.内容 1.疾病诊断. 资料显示, 某项艾滋病血液检测的灵敏度( 即真有病的人检查为阳性) 为95%, 而对没有得病的人,种检测的准确率( 即没有病的人检查为阴性) 为99%. 美国是一个艾滋病比较流行的国家, 估计大约有千分之一的人患有这种病. 为了能有效地控制、减缓艾滋病的传播, 几年前有人建议对申请新婚登记的新婚夫妇进行这种血液检查. 该计划提出后, 征询专家意见, 遭到专家的强烈反对, 计划

浅谈贝叶斯公式及其应用.

浅谈贝叶斯公式及其应用 摘要 贝叶斯公式是概率论中很重要的公式,在概率论的计算中起到很重要的作用。本文通过对贝叶斯公式进行分析研究,同时也探讨贝叶斯公式在医学、市场预测、信号估计、概率推理以及工厂产品检查等方面的一些实例,阐述了贝叶斯公式在医学、市场、信号估计、推理以及产品检查中的应用。为了解决更多的实际问题,我们对贝叶斯公式进行了推广,举例说明了推广后的公式在实际应用中所适用的概型比原来的公式更广。从而使我们更好地了解到贝叶斯公式存在于我们生活的各个方面、贝叶斯公式在我们的日常生活中非常重要。 关键词:贝叶斯公式应用概率推广

第一章引言 贝叶斯公式是概率论中重要的公式,主要用于计算比较复杂事件的概率,它实质上是加法公式和乘法公式的综合运用。贝叶斯公式出现于17世纪,从发现到现在,已经深入到科学与社会的许多个方面。它是在观察到事件B已发生的条件下,寻找导致B发生的每个原因的概率.贝叶斯公式在实际中生活中有广泛的应用,它可以帮助人们确定某结果(事件B)发生的最可能原因。 目前,社会在飞速发展,市场竞争日趋激烈,决策者必须综合考察已往的信息及现状从而作出综合判断,决策概率分析越来越显示其重要性。其中贝叶斯公式主要用于处理先验概率与后验概率,是进行决策的重要工具。 贝叶斯公式可以用来解决医学、市场预测、信号估计、概率推理以及产品检查等一系列不确定的问题。本文首先分析了贝叶斯公式的概念,再用贝叶斯公式来解决实际中的一些问题。然后将贝叶斯公式推广,举例说明推广后的贝叶斯公式在实际应用中所适用的概型。

第二章 叶斯公式的定义及其应用 2.1贝叶斯公式的定义 给出了事件B 随着两两互斥的事件12,,...,n A A A 中某一个出现而出现的概率。如果反 过来知道事件B 已出现,但不知道它由于12,,...,n A A A 中那一个事件出现而与之同时出现, 这样,便产生了在事件B 已经出现出现的条件下,求事件(1,2,...)i A i n =出现的条件概率的问题,解决这类问题有如下公式: 2.1.1定义 设12,...,n B B B 为Ω 的一个分割,即12,...,n B B B 互不相容,且 1n i i B ==Ω,如果 P( A ) > 0 ,()0i P B = (1,2,...,)i n = ,则1()(/) (/),1,2,...,()(/)i i i n j j j P B P A B P B A i n P B P A B ===∑。 证明 由条件概率的定义(所谓条件概率,它是指在某事件B 发生的条件下,求另一事件A 的概率,记为(/)P A B ) ()(/)() i i P AB P B A P A = 对上式的分子用乘法公式、分母用全概率公式, ()()(/)i i i P AB P B P A B = 1()()(/)n i i j P A P B P A B ==∑ 1()(/) (/),1,2,...,()(/)i i i n j j j P B P A B P B A i n P B P A B ===∑ 结论的证。

最新全概率公式和贝叶斯公式练习题

1.设某工厂有两个车间生产同型号家用电器,第一车间的次品率为0.15,第二车间的次品率为0.12,两个车间的成品都混合堆放在一个仓库,假设第1,2车间生产的成品比例为2:3,今有一客户从成品仓库中随机提一台产品,求该产品合格的概率。 解:设B={从仓库中随机提出的一台是合格品} A i ={提出的一台是第i 车间生产的},i=1,2 则有分解B=A 1B ∪A 2B 由题意P(A1)=2/5,P(A2)=3/5,P(B|A1)=0.85,P(B|A2)=0.88 由全概率公式P(B)= P(A 1) P(B|A 1)+ P(A 2) P(B|A 2)=0.4*0.85+0.6*0.88=0.868. 2. 盒中有a 个红球,b 个黑球,今随机地从中取出一个,观察其颜色后放回,并加上同色球c 个,再从盒中第二次抽取一球,求第二次抽出的是黑球的概率。 解:设A={第一次抽出的是黑球},B={第二次抽出的是黑球},则B AB AB =+, 由全概率公式()()()()()P B P A P B A P A P B A =+, 由题意(),(|),(),(|)b b c a b P A P B A P A P B A a b a b c a b a b c +====++++++ 所以()()()()()()b b c ab b P B a b a b c a b a b c a b +=+=+++++++ 3. 设某公路上经过的货车与客车的数量之比为2:1,货车中途停车修理的概率为0.02,客车为0.01,今有一辆汽车中途停车修理,求该汽车是货车的概率。 解:设B={中途停车修理},A1={经过的是货车},A2={经过的是客车},则B=A 1B ∪A 2B ,由贝叶斯公式有 111112220.02()()3()0.80.21()()()()0.020.0133P A P B A P A B P A P B A P A P B A ?===+?+? 4.已知甲袋中有6只红球,4只白球;乙袋中有8只红球,6只白球。求下列事件的概率: (1) 随机取一只袋,再从该袋中随机取一球,该球是红球; (2) 合并两只袋,从中随机取一球,该球是红球。 解 (1) 记=B {该球是红球},=1A {取自甲袋},=2A {取自乙袋},已知10/6)|(1=A B P ,14/8)|(2=A B P ,所以

全概率公式、贝叶斯公式推导过程

全概率公式、贝叶斯公式推导过程 (1)条件概率公式 设A,B是两个事件,且P(B)>0则在事件B发生的条件下,事件A发生的条件概率(conditional probability) 为: P(A|B)=P(AB)/P(B) (2 )乘法公式 1. 由条件概率公式得: P(AB)=P(A|B)P(B)=P(B|A)P(A) 上式即为乘法公式; 2?乘法公式的推广:对于任何正整数n》全概率公式、贝叶斯公式推导过程 (1)条件概率公式 设A,B是两个事件,且P(B)>0,则在事件B发生的条件下,事件A发生的条件概率 (con diti onal probability) 为: P(A|B)=P(AB)/P(B) (2 )乘法公式 1. 由条件概率公式得: P(AB)=P(A|B)P(B)=P(B|A)P(A) 上式即为乘法公式; 2. 乘法公式的推广:对于任何正整数n》2,当P(A1A2...A n-1) > 0时,有: P(A 1A2...A n-1A n)=P(A 1)P(A2|A1)P(A3|A1A2)...P(A n|A1A2...A n-1) (3)全概率公式 1. 如果事件组B1 , B2,....满足 1. B1, B 2....两两互斥,即B i Q B = ? , i i,j=1 , 2 ,....,且P(B i)>0,i=1,2,....; 2. B1U B2U ....= 傢则称事件组B1,B2,...是样本空间Q的一个划分 设B1,B2,...是样本空间Q的一个划分,A为任一事件,则: A =y 忖》F(W) P(A) 上式即为全概率公式(formula of total probability) 2. 全概率公式的意义在于,当直接计算P(A)较为困难,而P(B i),P(A|B i) (i=1,2,...)的计

全概率公式和贝叶斯公式练习题

例题讲解: 例题 1.市场上某产品由三家厂家提供,根据以往的记录,这三个厂家的次品率分别为,0.020.,0.01,0.03,三个厂家生产的产品所占的市场份额分别0.15,0.8,0.05.产品出厂后运到仓库,见面后再进入市场,设这三个厂家的产品在仓库是均匀混合 (1)在仓库中随机的取一个产品,求它的次品的概率。 (2)在仓库中随机的取一个产品,发现为次品,如果你是管理者,该如何追究三个厂家的责任? 例题2 保险公司把被保险人分成三类”谨慎的”,”一般的”和”冒险的”,统计资料表明,上述三种人在一年内发生事故的概率依次为,0. 5. 0.15. 和0.30. 如果”谨慎的”被保险人占20%”一般的”,被保险人占50%,”冒失的”被保险人占30%,确认一个被保险人在一年内出事故的概率。

练习: 1.设某工厂有两个车间生产同型号家用电器,第一车间的次品率为0.15,第二车间的次品率为0.12,两个车间的成品都混合堆放在一个仓库,假设第1,2车间生产的成品比例为2:3,今有一客户从成品仓库中随机提一台产品,求该产品合格的概率。 解:设B={从仓库中随机提出的一台是合格品} A i ={提出的一台是第i 车间生产的},i=1,2 则有分解B=A 1B ∪A 2B 由题意P(A1)=2/5,P(A2)=3/5,P(B|A1)=0.85,P(B|A2)=0.88 由全概率公式P(B)= P(A 1) P(B|A 1)+ P(A 2) P(B|A 2)=0.4*0.85+0.6*0.88=0.868. 2. 盒中有a 个红球,b 个黑球,今随机地从中取出一个,观察其颜色后放回,并加上同色球c 个,再从盒中第二次抽取一球,求第二次抽出的是黑球的概率。 解:设A={第一次抽出的是黑球},B={第二次抽出的是黑球},则B AB AB =+, 由全概率公式()()()()()P B P A P B A P A P B A =+, 由题意(),(|),(),(|)b b c a b P A P B A P A P B A a b a b c a b a b c +====++++++ 所以()()()()()()b b c ab b P B a b a b c a b a b c a b +=+=+++++++ 3. 设某公路上经过的货车与客车的数量之比为2:1,货车中途停车修理的概率为0.02,客车为0.01,今有一辆汽车中途停车修理,求该汽车是货车的概率。 解:设B={中途停车修理},A1={经过的是货车},A2={经过的是客车},则B=A 1B ∪A 2B ,由贝叶斯公式有 111112220.02()()3()0.80.21()()()()0.020.0133 P A P B A P A B P A P B A P A P B A ?===+?+? 4.已知甲袋中有6只红球,4只白球;乙袋中有8只红球,6只白球。求下列事件的概率: (1) 随机取一只袋,再从该袋中随机取一球,该球是红球; (2) 合并两只袋,从中随机取一球,该球是红球。 解 (1) 记=B {该球是红球},=1A {取自甲袋},=2A {取自乙袋},已知10/6)|(1=A B P ,14/8)|(2=A B P ,所以 70411482110621)|()()|()()(2211=?+?= +=A B P A P A B P A P B P (2) 12 72414)(== B P

全概率公式贝叶斯公式推导过程

全概率公式贝叶斯公式 推导过程 Standardization of sany group #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

全概率公式、贝叶斯公式推导过程 (1)条件概率公式 设A,B是两个事件,且P(B)>0,则在事件B发生的条件下,事件A发生的条件概率(conditional probability)为: P(A|B)=P(AB)/P(B) (2)乘法公式 1.由条件概率公式得: P(AB)=P(A|B)P(B)=P(B|A)P(A) 上式即为乘法公式; 2.乘法公式的推广:对于任何正整数n≥ (1)条件概率公式 设A,B是两个事件,且P(B)>0,则在事件B发生的条件下,事件A发生的条件概率(conditional probability)为: P(A|B)=P(AB)/P(B) (2)乘法公式 1.由条件概率公式得: P(AB)=P(A|B)P(B)=P(B|A)P(A) 上式即为乘法公式; 2.乘法公式的推广:对于任何正整数n≥2,当P(A 1A 2 ...A n-1 ) > 0 时, 有: P(A 1A 2 ...A n-1 A n )=P(A 1 )P(A 2 |A 1 )P(A 3 |A 1 A 2 )...P(A n |A 1 A 2 ...A n-1 ) (3)全概率公式 1. 如果事件组B 1,B 2 ,.... 满足 ,B 2....两两互斥,即 B i ∩ B j = ,i≠j , i,j=1,2,....,且 P(B i )>0,i=1,2,....; ∪B 2∪....=Ω,则称事件组 B 1 ,B 2 ,...是样本空间Ω的一个划分 设B 1,B 2 ,...是样本空间Ω的一个划分,A为任一事件,则: 上式即为全概率公式(formula of total probability) 2.全概率公式的意义在于,当直接计算P(A)较为困难,而P(B i ),P(A|B i ) (i=1,2,...)的计算较为简单时,可以利用全概率公式计算P(A)。思想就是,

浅谈机器学习中的贝叶斯算法

浅谈机器学习中的贝叶斯分类器 王贤举 摘 要:学习是人工智能研究中非常活跃且范围甚广的一个领域。而机器学习所关注的是:计算机程序如何随着经验积累自动提高性能,让机器完成某些任务,从而使其在某些方面为人类服务。贝叶斯分类器作为机器学习中的一种,在有些方面有着其优越的一面,本文通过对机器学习中贝叶斯分类器的解析,指出了贝叶斯分类器在机器学习中的适用方面和不足之处。 关键词:机器学习 贝叶斯算法 适用 1. 引言 机器学习是计算机问世以来,兴起的一门新兴学科。所谓机器学习是指研究如何使用计算机来模拟人类学习活动的一门学科,研究计算机获得新知识和新技能,识别现有知识,不断改善性能,实现自我完善的方法,从而使计算机能更大性能的为人类服务。 机器学习所适用的范围广阔,在医疗、军事、教育等各个领域都有着广泛的应用,并发挥了积极的作用。而分类是机器学习中的基本问题之一,目前针对不同的分类技术,分类方法有很多,如决策树分类、支持向量机分类、神经网络分类等。贝叶斯分类器作为机器学习分类中的一种,近年来在许多领域也受到了很大的关注,本文对贝叶斯分类器进行总结分析和比较,提出一些针对不同应用对象挑选贝叶斯分类器的方法。 2. 贝叶斯公式与贝叶斯分类器: 2.1 贝叶斯公式: 在概率论方面的贝叶斯公式是在乘法公式和全概率公式的基础上推导出来的,它是指设n B B B ,...,,21是样本空间Ω的一个分割,即n B B B ,...,,21互不相容,且 n i i B 1=Ω=,如果0)(>A P ,0)(>i B P ,n i ,...,2,1=,则 ∑== n j j j i i i B A P B P B A P B P A B p 1)|()() |()()|( ,n i ,...,2,1= 这就是贝叶斯公式,)|(A B p i 称为后验概率,)|(i B A P 为先验概率,一般是已知先验概率来求后验概率,贝叶斯定理提供了“预测”的实用模型,即已知某事实,预测另一个事实发生的可能性大小。

对贝叶斯估计的理解

对贝叶斯定理及其在信号处理中的应用的理解 信号估计中的贝叶斯方法是对贝叶斯定理的应用,要理解贝叶斯估计首先要理解贝叶斯定理。 一、 贝叶斯定理: 1. 贝叶斯定理的简单推导过程 贝叶斯定理就是条件概率公式(贝叶斯公式),所谓条件概率就是在事件A 发生的条件下事件B 发生的概率,常用(/)P B A 表示。一般情况下(/)P B A 与 (/)P A B 是不相等的。容易得到: (/)P B A = ()()P A B P A ,(/)P A B =() () P A B P B 所以 (/)P B A ()P A =(/)P A B ()P B , 对上式变形得贝叶斯公式: (/) P A B =(/)() () P B A P A P B (1) 若',A A 为样本空间的一个划分,可得全概率公式: ()P B =''(/)()(/)()P B A P A P B A P A + 所以(1)式可以改写为: '' (/)() (/)(/)()(/)() P B A P A P A B P B A P A P B A P A = + (2) 如果12n A A A ,,...,为样本空间的一个划分,由(2)式可得条件概率(/)j P A B 1 (/)() (/)(/)() j j j n i i i P B A P A P A B P B A P A == ∑ (3) (3)式就是当样本空间的划分为n 时的贝叶斯公式即贝叶斯定理。我们把其中的()(1,...)i P A i n =称为先验概率,即在B 事件发生之前我们对i A 事件概率的一个判断。(/)j P A B 称为后验概率,即在B 事件发生之后我们对i A 事件概率的重新评估。 2. 贝叶斯公式的事件形式

对全概率公式和贝叶斯公式的理解

对全概率公式和贝叶斯公式的理解 我该怎么来理解这2个公式呢?打个比方,假设学校的奖学金都采取申请制度,只有满足一定的条件你才能拿到这比奖学金。那么有哪些原因能够使你有可能拿到奖学金呢?1、三好学生,拿到奖学金的概率是p(A1)=0.3。 2、四好学生,拿到奖学金的概率是p(A2)=0.4。3、五好学生,拿到奖学金的概率是p(A3)=0.5。4、六好学生,拿到奖学金的概率是p(A4)=0.6。这些学生只能是三好四好五好六好学生种的一种,不能跨种类。这个学校学生是三好学生的概率是p(B1)=0.4,四好学生的概率是p(B2)=0.3,五好学生的概率是p(B3)=0.2,六好学生的概率是p(B4)=0.1。现在问题出来了,一个学生能够拿到奖学金的概率是多少? 慢慢来分析,导致一个学生拿到奖学金的方式有哪些?这个学生是三好学生,刚好他又凭借三好学生的身份申请到了奖学金 p1=p(A1)*p(B1|A1)=0.4*0.3=0.12;这个学生是四好学生,刚好凭借他四好学生的身份拿到了奖学金,p2=p(A2)*p(B2|A2)=0.3*0.4=0.12;这个学生是五好学生,刚好凭借他五好学生的身份拿到奖学金,p3=p(A3)*p(B3|A3)=0.2*0.5=0.10;这个学生是六好学生,刚好凭借他六好学生的身份拿到了奖学金, p4=p(A4)*p(B4|A4)=0.1*0.6=0.06。四种方式都能导致一个学生拿到奖学金,那么拿到奖学金的概率为p=p1+p2+p3+p4=0.4.所以这么理解全概率公式:导致一个事件发生的原因有很多种(各种原因互斥),那么这个事件发生的概率就是每种原因引起该事件发生的概率的总和。 一个学生已经拿到了奖学金,这个学生是三好学生的概率是多少? p=p1/(p1+p2+p3+p4)=0.3。怎么理解呢?一个事件已经发生了,有很多原因都能导致这个事件发生。那么其中的一种原因导致该事件发生的概率是多少?这就是贝叶斯概率公式解决的问题。就正如一本书现在已经被别人借走了(事件已经发生),已知只有可能是张三,李四,王五这3个人借走(事件发生的所有原因)。那么这本书被张三借走的概率会是多大呢? 现在是不是已经理解了这2个公式呢。

贝叶斯定理及应用

贝叶斯定理及应用 中央民族大学 孙媛

一贝叶斯定理 一、贝叶斯定理 贝叶斯定理(Bayes‘ theorem)由英国数学家托马斯贝叶斯(Thomas Bayes) ·Thomas Bayes 在1763年发表的一篇论文中,首先提出了这个定理。用来描述两个条件概率之间的这个定理 关系,比如P(A|B) 和P(B|A)。

一、贝叶斯定理 一贝叶斯定理 所谓的贝叶斯定理源于他生前为解决一个“逆概”问题写的一篇文章,而这篇文章是在他死后才由他的一位朋友发表出来的。 在贝叶斯写这篇文章之前,人们已经能够计算“正向概率”,如假设袋子里面有N 个白球,M 个黑球,你伸手进去摸一如“假设袋子里面有N个白球M个黑球你伸手进去摸一把,摸出黑球的概率是多大”。而一个自然而然的问题是反过来:“如果我们事先并不知道袋子里面黑白球的比例,而是闭着眼睛摸出一个(或好几个)球,观察这些取出来的球的颜色之后,那么我们可以就此对袋子里面的黑白球的比例作出什么样的推测。这个问题,就是所谓的逆向概率问题。 样的推测”。这个问题就是所谓的逆向概率问题。

一、贝叶斯定理 一贝叶斯定理 ←实际上就是计算"条件概率"的公式。 p y, ←所谓"条件概率"(Conditional probability),就是指在事件B发生的情况下,事件A发生的概率,用P(A|B)来表示。 的先验概率之所以称为先验是因为它不考虑任何←P(A)是A的先验概率,之所以称为先验是因为它不考虑任何B 的因素。 ←P(A|B)是在B发生时A发生的条件概率,称作A的后验概率。←P(B)是B的先验概率。 ←P(B|A)是在A发生时B发生的条件概率,称作B的后验概率。

全概率公式和贝叶斯公式

单位代码: 005 分类号: o1 西安创新学院本科毕业论文设计 题目:全概率公式和贝叶斯公式 专业名称:数学与应用数学 学生姓名:行一舟 学生学号: 0703044138 指导教师:程值军 毕业时间:二0一一年六月

全概率公式和贝叶斯公式 摘要:对全概率公式和贝叶斯公式,探讨了寻找完备事件组的两个常用方法,和一些实际的应用.全概率公式是概率论中的一个重要的公式,它提供了计算复杂事件概率的一条有效的途径,使一个复杂事件的概率计算问题化繁就简.而贝叶斯公式则是在乘法公式和全概率公式的基础上得到的一个著名的公式. 关键词:全概率公式;贝叶斯公式;完备事件组

The Full Probability Formula and Bayes Formula Abstract:To the full probability formula and bayes formula for complete, discusses the two commonly used methods of events, and some practical applications. Full probability formula is one of the important full probability formula of calculation, it provides an effective complex events of the way the full probability of a complex events, full probability calculation problem change numerous will Jane. And the bayes formula is in full probability formula multiplication formula and the basis of a famous formula obtained. Key words:Full probability formula; Bayes formula; Complete event group;

贝叶斯定理

贝叶斯定理有条件概率和全概率组成: 条件概率 如果两个事件A 和B 不是互相独立的,并且知道事件B 中的一个事件已经发生,我们就能得到关于P(A)的信息。这反映为A 在B 中的条件概率,记为P(A︱B) : 无条件概率P(A)通常称为先验概率,而条件概率通常称为后验概率。 注意:条件可以在任何一个中发生: 贝叶斯定理 假设样本空间S 被分成一个含有n 个互斥事件的集合,每个事件称为S 的一个划分: 考虑S 中的一个任意事件B,如下图所示: 事件B 可以写成由n 个不相交(互斥)事件BA1,,BA2,..., BA n 组成,记为: 这隐含了全概率定理: 用全概率定理和条件概率的定义可以得到贝叶斯定理: 例子: 考虑一个由10 个水样组成的集合。3 个水样已被污染。定义事件如下: P(C)=0.3(基于10 个样本中有3 个被污染)

假设样本分析技术不完美。通过校准检验: P(D︱C)=0.9 成功检测出 P(D︱C’)=0.4 错误警报 贝斯定理(用C 代替A1,用C’代替A2,用D 代替B): 贝叶斯定理用于投资决策分析是在已知相关项目B的资料,而缺乏论证项目A的直接资料时, 通过对B项目的有关状态及发生概率分析推导A项目的状态及发生概率。 如果我们用数学语言描绘,即当已知事件Bi的概率P(Bi)和事件Bi已发生条件下事件A的概率P(A│Bi), 则可运用贝叶斯定理计算出在事件A发生条件下事件Bi的概率P(Bi│A)。 按贝叶斯定理进行投资决策的基本步骤是: 1 列出在已知项目B条件下项目A的发生概率,即将P(A│B)转换为P(B│A); 2 绘制树型图; 3 求各状态结点的期望收益值,并将结果填入树型图; 4 根据对树型图的分析,进行投资项目决策; 搜索巨人Google和Autonomy,一家出售信息恢复工具的公司,都使用了贝叶斯定理(Bayesian principles)为数据搜索提供近似的(但是技术上不确切)结果。 研究人员还使用贝叶斯模型来判断症状和疾病之间的相互关系,创建个人机器人,开发能够根据数据和经验来决定行动的人工智能设备。 贝叶斯定理是机器学习的核心。 question1:如果袋子里有M个白球,N个黑球,则伸手拿到黑球的概率是多大? question2:如果我们事先不知道袋子里黑球和白球的个数,而是闭着眼睛摸出一个(或几个)球,观察这些取出来的球的颜色后,来判断黑白球的比例。 具体地说,我们需要做两件事情: 1. 算出各种不同猜测的可能性大小。 2. 算出最靠谱的猜测是什么。 第一个就是计算特定猜测的后验概率,对于连续的猜测空间则是计算猜测的概率密度函数。第二个则是所谓的模型比较,模型比较如果不考虑先验概率的话就是最大似然方法。

相关主题
文本预览
相关文档 最新文档