当前位置:文档之家› CRH2型动车组铁路综合移动通信系统GSM-R

CRH2型动车组铁路综合移动通信系统GSM-R

CRH2型动车组铁路综合移动通信系统GSM-R
CRH2型动车组铁路综合移动通信系统GSM-R

CRH2型动车组铁路综合移动通信系统GSM-R

16.4.1概述

GSM-R是欧盟、国际铁路联盟、欧洲各国铁路经过10多年开发完善的铁路综合业务移动通信系统,是根据铁路需要,在公用移动通信的基础上专门开发的铁路应用标准,GSM-R 增加了调度通信功能适合高速环境下使用的要素,能满足国际铁路联盟提出的铁路专用调度通信的要求。

GSM-R系统是话音和数据同传,并能实现综合业务的数字移动无线通信平台,可把铁路各种无线话音、数据通信业务综合于一体,并能传输信号系统的安全信息,如机车信号、列车自动控制系统的信息。所以GSM-R不仅是铁路各种专门用途的无线通信平台,也是构成上述CTCS3级、4级设备的技术基础。

GSM-R通信网具有适应铁路运输的功能优势,我国铁路已制定对GSM-R进行统一规划、全路组网、分步实施、持续发展的总方针。随着我国铁路GSM-R的建成,将形成集调度通信、列车控制、客运服务、养护维修、调车作业和信息数据传输等多项业务为一体的综合移动维修通信系统,为运输生产和管理人员提供现代化的通信手段。

16.4.2GSM-R系统组成原理

GSM-R是以移动业务交换中心(MSC)为平台的移动通信

网络和以固定用户接入交换机(FAS)为平台的有线通信网络互连互通,是移动通信网络和有线通信网络的结合体,是有线调度通信与无线调度通信的融合,实现站车通信一体化,从而形成现代化的调度通信、公务移动、信息传输、列车控制一体化的通信系统。

GSM-R由3大部分组成:GSM-R陆地移动网络、FAS固定网络、移动终端和固定终端,如图16.52所示。

GSM-R系统应用组网原理如图16.53。铁路沿线采用无线覆盖,机车上采用无线终端,即机车综合通信设备,而车

站台和调度台都是有线终端。采用有线/无线组网方式。在铁道部、铁路局设置FAS,就近与MSC连接;沿线车站根据需要设置FAS,接入局FAS,既有线干调网、数字区段调度应改造升级后接入GSM-R网络,其中车站台和调度台通过FAS 连接到GSM-R的MSC上,从而实现有线和无线用户的通信。

16.4.2.1GSM-R基站无线电波覆盖

(1)GSM-R基站无线电波单层交织覆盖(图16.54)

(2)GSMR基站无线电波同址双基站冗余覆盖(图16.55)

16.4.2.2GSM-R系统技术的厘用

(1)GSM-R业务模型

GSM-R是专门为铁路通信设计的综合专用数字移动通信系统,它基于GSM的基础设施及其提供的高级语音呼叫业务(ASCI),其中包含增强多优先级与强拆(eMLPP)、语音组呼(VGCS)和语音广播(VBS),并提供铁路特有的调度业务,包括:功能寻址、功能号表示、接入矩阵和基于位置的寻址,并以此作为信息化平台,使铁路部门用户可以在此信息平台上开发各种铁路应用。图16.56为GSMR系统的业务模型层次结构图,因此,GSM-R的业务模型可以概括为:

GSM-R业务=GSM业务+语音调度业务+铁路应用GSM-R 系统业务模型的3个部分:基础通信网、调度语音业务以及铁路应用将在后面分别介绍。

移动终端和固定终端

GsM-R应用的用户终端类型包括移动终端和固定终端,适应于铁路运输指挥通信、铁路运输管理通信及数据传输通信的不同用户终端类型,见表16.11。

表16.11GSM-R系统终端及用户类型

(2)GSM-R系统技术的应用功能

①调度通信功能

调度通信系统业务包括列车调度通信、货运调度通信、牵引变电调度通信、其他调度及专用通信、站场通信、应急通信、施工养护通信和道口通信等。

②车次号传输与列车停稳信息的传送

车次号传输与列车停稳信息对铁路运输管理和行车安全具有重要的意义,它可通过基于GSM-R电路交换技术的数据采集传输应用系统来实现数据传输,也可以采用GPRS方式来实现。

③调度命令传送

铁路调度命令是调度所里的调度员向司机下达的书面命令,它是列车行车安全的重要保障。采用GSM-R系统传输通道传输调度命令无疑将加速调度命令的传递过程,提高工作效率。

④列尾装置信息传送

将尾部风压数据反馈传输通道纳入GSMR通信系统,可以方便地解决尾部风压数据传输问题。

⑤调车机车信号和监控信息系统传输

提供调车机车信号和监控信息传输通道,实现地面设备和多台车载设备间的数据传输,并能够存储进入和退出调车模式的有关信息。

⑥列车控制数据传输功能

采用GSM-R通信系统实现车地间双向无线数据传输,提供车地之间双向安全数据传输通道。

⑦区间移动公务通信

在区间作业的水电、工务、信号、通信、供电、桥梁守护等部门内部的通信,均可以使用GSM-R作业手持台,作业人员在需要时可与车站值班员、各部门调度员或自动电话用户联系。紧急情况下,作业人员还可以呼叫司机,与司机建立通话联络。

⑧应急指挥通信话音和数据业务

应急通信系统是当发生自然灾害或突发事件等影响铁

路运输的紧急情况时,在突发事件现场与救援中心之间,以及现场内部采用GSM-R通信系统,建立语音、图像、数据通信系统。

⑨旅客列车移动信息服务通道

旅客列车移动信息服务可包括移动售票、列车时刻表和移动互联网等服务。可靠车地数据传输系统(基于GSM-R电路交换)的出现,使在列车上完成的移动售票成为可能。在列车上乘客可以通过售票终端完成客票查询、订票、购票或者补票业务,在通过车地数据传输系统将客票信息实时传送到地面票务中心,以及时更新客票信息。列车旅客信息服务系统是为列车上具有一定接入条件(如笔记本电脑、PDA、手机等)的旅客提供互联网的业务。当今互联网的业务日新月异,千变万化,而列车是一个高速的移动体,所以在此前提下,应该优先开展如下业务:

电子邮件;

浏览新闻网页;

铁路相关信息服务(如列车运行时刻表查询);

旅客移动位置业务;

在线电影;

网络游戏;

网上聊天。

⑩列车自动控制CTCS3级/CTCS4级

中国列车控制系统(CTCS)是在采用传统的闭塞系统或移动闭塞系统的条件下,增强列车自动控制功能的超速防护系统。根据国情路情实际出发,CTCS共划分为5级。其中CTCS3级(基于轨道电路和无线通信的固定闭塞系统)和CTCS4级(完全基于无线通信的移动闭塞系统)与GSM-R有着密切关联。

CTCS3级系统是一个基于轨道电路和无线通信系统(GSM-R)的列车运行控制系统。在CTCS3级系统中,车载设备应与地面设备配合工作,列车按固定闭塞方式运行,由无线闭塞中心(RBC)控制,利用无线通信系统(GSM-R)在车地之间双向传输信息,车载设备配备无线通信模块,应答器作为定标设备。机车信号为主体信号,可以取消地面信号。另外,利用轨道电路或计轴设备进行轨道占用及列车完整性检查,但它们不属于CTCS3级的设备。

CTCS4级是一个完全基于无线通信(GSM-R)的列车运行控制系统。该系统具有移动自动闭塞的特征。区间占用靠GPS 和GSM-R实时数据传输解决(站内仍需轨道电路)。列车完整性检查、定位校核分别靠车载设备和点式设备实现.使得室外设备减少到最低程度。

16.4.3无线列调通信原理

16.4.3.1GSM-R调度语音业务

列车调度通信是重要的铁路行车通信系统,负责列车的

位置和运行方向,其主要用户包括列车调度员、车站(场)值班员、机车司机、运转车长、助理值班员、机务段(折返段)调度员、列车段(车务段、客运段)值班员、机车调度员、电力牵引变电所值班员、救援列车主任以及其他相关人员。

列车调度通信系统的主要问题是解决“大三角”和“小三角”通信,“大三角”通信是指列车调度员、车站值班员和机车司机之间的通信;“小三角”通信是指车站值班员、机车司机和运转车长之间的通信。

利用GSM-R进行调度通信系统组网,既可以完全利用无线方式,也可以同有线方式结合起来,共同完成调度通信任务。

(1)GSM-R增加的铁路特有功能

GSMR除支持所有的GSM电信业务和承载业务外,为了满足铁路指挥调度的需求,增加了集群通信功能,在GSM标准中定义为高级语音呼叫项目,

即ASCI(AdvancedSpeechCallItem)功能。它包括3种业务:

优先级业务

eMLPP(enhancedMulti-LevelPrecedenceandPre-erupt ion);

语音组呼业务

VGCS(VoiceGroupCallService);

语音广播业务

VBS(VoiceBroadcastService)。

除了包含这3种业务外,为了实现铁路运营应用,GSM-R 还包含另外一些铁路所特有的功能,即功能寻址、基于位置的寻址等。

①优先级业务

eMLPP业务规定了在呼叫建立或越区切换时呼叫接续的不同优先级,以及资源不足时的资源抢占能力。这种业务提供一种强制能力,符合列车调度通信的调度特点。

②语音组呼业务(VGCS)

语音组呼业务(VGCS)是指一种由多方参加(GSM-R移动台或固网电话)的语音通信方式,其中一人讲话、多方聆听,工作于半双工模式下。发起VGCS呼叫时,可用一个组功能码(组ID)来呼叫所有该组成员。一个特定的VGCS通信由组功能码(简称组ID)和组呼区域唯一确定。组ID标识该组的功能,即由哪些身份的成员参加;组呼区域是指VGCS通信所覆盖的地理范围,以无线蜂窝小区为基本单位。组ID与组呼区域的结合称作组呼参考,即组呼参考唯一确定的一个VGCS通信。呼叫建立之后,讲话人可以改变,一旦VGCS发起人停止讲话,系统示意其释放上行信道,所有的组内成员都能接到通知,如果其他人想成为下一个讲话人,可使用PTT 功能来申请上行信道。VGCS业务突破了GSM网络点对点通信.

的局限性,能够以简捷的方式建立组呼叫,实现调度指挥、紧急通知等特定功能,尤其适用于铁路的行车指挥调度部门。

③语音广播呼叫(VBS)

语音广播呼叫允许一个业务用户将话音或者其他用话音编码传输的信号发送到某一个预先定义的地理区域内的所有用户或者用户组。它工作于单工模式下。

VBS中的讲话者没有像VGCS中的角色转换,就是说讲话者(发起者)只能讲,听话者(接收者)只能听,因而可以看作是VGCS的最简单形式。它也是用组功能码(组ID)来呼叫有该组成员。同VGCS一样,语音广播呼叫也提供了点对多点呼叫的能力,适用于铁路的行车调度。

④功能寻址(FA)

功能寻址是指用户可以由它们当时所担当的功能角色,而不是它们所使用的终端设备的号码寻址。在同一时刻,至少可以为一个用户分配若干功能地址,但只能将一个功能地址分配给一个用户。用户可以向网络注册和注销功能地址。

例如,可以给每列正在运行的列车司机分配一个功能号,结构为车次号+司机功能代码(设为01)。于是,T13次列车司机的功能号为T1301。当某位司机驾驶T13次列车从起点站出发时,他都必须向网络注册该功能号,网络负责将该功能号与他当时所使用的机车电台的真实号码对应起来。当调度员或是车站值班员要呼叫T13次列车的司机时,可以不必

知道该司机姓名,也不必知道该司机使用的机车台的号码,只要向网络请求“我要呼叫T1301”,网络查询其数据库,将T1301对应到一个真实的电话号码,并建立该呼叫。这种功能简化了呼叫的操作,能够提高铁路工作人员的工作效率。

⑤基于位置的寻址(LDA)

基于位置的寻址是指网络将移动用户发起的用于特定功能的呼叫,路由到一个与该用户当前所处位置相关的目的地址,正确的调度员或车站值班员由主叫移动用户当时所处的位置来确定。如列车调度中的“大三角”通信,移动台要呼叫的调度员取决于移动用户当前所处的位置。以北京调度所为例,当列车运行到北京调度所管辖车站范围内的时候,司机需要呼叫北京站调度员时,他并不需要知道调度员完整的电话号码,只需要呼叫代表调度员身份的短号码如1200向网络发起呼叫请求。网络识别该短号码,并将其路由到北京调度所的调度员。这种功能用于移动用户呼叫特定的固定用户(调度员和车站值班员)。

列车调度的语音通信需求可以归结为:点对点通信,多方通信,语音组呼,语音广播呼叫。点对点通信,移动台呼叫固定台,即从移动台到固定台的寻址。由于固定台位置是不动的,故可以采用基于位置的寻址;固定台到移动台,移动台处于不断移动的状态,故不能采用基于位置的寻址,而采用功能寻址。表16.12中是所有语音通信应用到的GSM-R

业务功能,具体细节需要结合我国铁路实际功能定义和编号方式。

表16.12GSM-R列车调度系统语音通信功能

对于数据通信,采用ISDN的电路数据交换。ISDN和GSM-R网络都具有数据传输的能力,ISDN终端可以提供低于

128kbit/s的传输能力,GSM-R可以提供 2.4kbit/s、4.8kbit/s和9.6kbit/s能力,可以用在调度所、车站和机车三者之间传送数据;ISDN的UUSI补充业务也能够在呼叫建立之前提供一定能力的数据传输功能。另外也可以利用GPRS实现分组数据传输。

对于基于位置的寻址,涉及到一个小区规划的问题。由于GSM-R网络的最小定位范围是小区,即当列车呼叫车站值班员的时候,如果一个小区覆盖多个车站,那么呼叫将被路由到多个车站值班员,因此,GSM-R小区最大设置为覆盖一个车站。

而对于车次功能号,由于GSM-R的标准中,只包含有0~9数字车次号,而中国的车次号中包含字母,所以,需要建立一个从字母到数字的映射表,使得移动台的MMI可以将用户输入的含有字母的车次号转换为只包含数字的车次功能号,反之也是如此。

(2)GSM-R调度通信网络的通信过程

有线调度网络内的调度通信业务和要求,如调度员对辖区范围内的调度分机进行单呼、组呼、全呼、会议呼(临时组呼);调度分机呼叫调度员及组织辖区范围内的组呼;调度分机之间不允许呼叫;区段调度网络为一个相对独立的封闭网络,其他用户不能呼入网络,调度分机不能呼出网络,以确保行车调度指挥的安全畅通。这些由网络特性和操作台

的操作过程来保证实施。

GSM-R调度通信网络内的用户,除原有的有线用户之外,还包含了移动终端,具体的用户有机车台、运转车长手持台、车站助理值班员手持台等,而移动终端处于不断移动状态,除了车站助理值班员之外其他移动终端的位置随时变更,不仅地理位置变化,由一个调度区段到另一个调度区段,接受调度指挥的对象也发生变化,因此对移动终端的电话号码,除了用户的真实号码MSISDN号之外,还要赋予一个功能号。所谓功能号就是能表明用户身份特征的号码,有车次功能号、机车功能号、车号功能号之分,每个功能号都有统一规定的号码结构。例如车次功能号,除了表明某趟列车的车次之外,还要表明使用者的身份(职务),车次功能号的号码结构为“CTCH××××××FC”,举例如表16.13所示。

表16.13车次功能号码结构举例

用户呼叫Z19次列车司机,可直接拨打车次功能码221901,由终端(或FAS)翻译成11位的车次功能号为29000001901。

列车调度通信系统主要用户包括列车调度员、车站值班员、机车司机、运转车长、助理值班员、机务段(折返段)运转值班员、列车段(车务段、客运段)值班员、电力牵引变电所值班员、救援列车主任及其他相关人员。

通信方式为:

①列车调度员能按车次号功能寻址方式个别呼叫辖区内的机车司机并通话。

②列车调度员可以向辖区内所有机车司机发布语音广播。

③列车调度员能组呼辖区内的机车司机并通话。

④列车调度员组呼辖区内某个车站的车站值班员、助理值班员及该车站管辖范内的所有机车司机并通话。

⑤列车调度员可以个别呼叫辖区内车站值班员并通话。

⑥列车调度员可以组呼辖区范围内的所有车站值班员并通话。

⑦机车司机可以按位置寻址方式个别呼叫当前所在调度区段的列车调度员并通话。

⑧机车司机可以紧急呼叫当前所在调度区段的调度员并通话。

⑨邻近的机车司机、运转车长和工务人员之间可以紧急呼叫并通话。

⑩机车司机可以按位置寻址方式个别呼叫本站、后方及前方车站值班员并通话。

11车站值班员个别呼叫任意级别列车调度员并通话。

12车站值班员可以按车次号功能寻址方式个别呼叫辖区内的机车司机并通话。

13车站值班员可以个别呼叫所属的列车调度员并通话。

14车站值班员可以个别呼叫相邻车站值班员并通话。

15车站值班员、助理值班员、车站管辖范围内机车司机和运转车长之间可以按组呼方式通话。

16列车调度员可以组呼辖区范围内的机务段(折返段)运转值班员、列车段(车务段、客运段)值班员、电力牵引变电所值班员并通话。

17列车调度员、车站值班员、助理值班员、救援列车主任之间可以按组呼方式通话。

18列车调度通信系统具有记录功能。

16.4.3.2调度通信业务通信过程

按调度通信业务流程,可归纳为4类通信过程,即点对点个别呼叫、组呼、会议呼(临时组呼)、广播呼叫。

(1)点对点个别呼叫

①固定终端呼叫移动终端

方式一:按MSISDN号码呼叫,FAS收到MSISDN号码,进行号码分析后,判断是移动终端MSISDN号码,把呼叫路由到GSM-R网络,并把MSISDN号码发给GSM-R网络;GSM-R 网络根据MSISDN号码呼叫移动终端,双方建立通信;通话完毕,任意一方挂机,呼叫拆除。

方式二:基于功能寻址呼叫移动终端,用户直接拨打功能码(如221901),由终端(或FAS)翻译成ll位的车次功能号29000001901,FAS收到呼叫,进行号码分析(翻译),判断是移动终端功能号,会把呼叫路由到GSM-R网络;GSM-R 网络将移动终端功能号转换成被叫移动终端的MSISDN号,并以MSISDN号呼叫移动终端,双方建立通信;通话完毕,任一方挂机,呼叫拆除。

②移动终端呼叫固定终端

方式一:按ISDN号码呼叫,GSM-R网络收到ISDN号码,进行号码分析后,把呼叫路由到相应的FAS,并向FAS发送被叫固定终端ISDN号码;FAS根据ISDN号码呼叫固定终端,双方建立通信;通话完毕,任意一方挂机,呼叫拆除。

方式二:基于位置寻址呼叫固定终端,移动终端使用标准短号码发起呼叫,短号码由4位数组成,并有统一的定义,例如1200为连接到最适当的列车调度员、1300为连接到最适当的车站值班员等等,GSM-R网络收到呼叫,对短号码进行分析,根据移动终端所在位置把短号码转换为被叫固定终

端的ISDN号码,并将呼叫路由到相应的FAS;FAS根据ISDN 号码呼叫固定终端,双方建立通信;通话完毕,任意一方挂机,呼叫拆除。

(2)组呼(VGCS)和广播呼叫(VBS)

有线调度通信的组呼是在工程开局时,根据调度台(车站台)组呼通信业务的要求,编制数据时事先设定好组呼群,操作者只要按组呼键,便可完成组呼通信过程。如果需要临时组织组呼群,操作者先按会议键,再按组呼成员的呼叫键,最后按确认键,便可完成会议呼的通信过程。

在GSMR调度通信网络内的组呼,由于移动用户的位置随时处于动态范围,在操作台上没有固定的键位,所以必须以组地址发起组呼。

组地址包括了业务区号SA和功能代码FC(或组ID)。

业务区号SA(5位数字)用以确定组呼和广播的有效区域,各个服务区域按调度区号、车站位置号全路统一分配。

功能代码FC(又称为组ID),由3位数字组成,在编号方案中全路统一规定,每个组ID代码都表示了呼叫优先级别、组呼区域、组呼发起方和组呼成员。

①移动终端发起组呼

移动终端根据组呼区域和组呼成员,选择组ID的代码,以组ID向GSM-R网络发起组呼;GSM-R网络根据主叫移动终端所在小区选择相应的组呼区域,并按组ID定义好的组呼

高速铁路移动通信系统关键技术发展分析

摘要:移动通信系统参与高速铁路的运营对提升运营效率和服务水平具有十分重要的意义。本文笔者结合移动通信系统在高速铁路中的发展现状,分析高铁中移动通信技术的关键技术要点,为移动通信系统更好地服务高速铁路提出一定的技术参考。 关键词:高速铁路;移动通信系统;关键技术;发展 一、高速铁路移动通信系统概述 高速铁路移动通信系统是以高速列车计算机系统为主要载体,通过无线设备以及有线的接入,从而形成列车内部信息有效接收与发送的网络。高速铁路移动通信系统本身既可以用于对列车的控制,又可以作为一种现代化的服务手段服务于大众。就实际应用来说,针对目前的高铁移动通信系统的运行现况,加强高铁移动通信是改善高铁通信系统的主要内容。 二、高速铁路移动通信系统技术发展国内外现状对比 1、国外高铁移动通信系统技术发展现状 相比国内高铁移动通信系统技术的发展,国际高速铁路移动通信系统技术发展相对较成熟。比如,国际高速铁路除了能实现移动通信系统控制列车运营之外,还具备了面向提供旅客的无线网络服务,实现列车内部无线网的全面覆盖。不少国家已经可以运用周围环境中的无线网络来支持运营与服务。在实际中,许多国家利用一些先进技术,降低列车运行环境对无线信号的磨损,完善列车的网络服务。当列车内部缺乏良好的网络支持环境时,往往还可以利用卫星技术达到网络覆盖,弥补列车网络运行的不足。当卫星技术可以协助无线网络覆盖之后,就可以充分地满足列车运行和旅客的需求,保证数据传递的全面性和完整性。还有一些在高铁行业发展较为先进的国家,例如日本,为了完善列车的网络服务,还使用了泄露电缆实现网络传递,可以使无线网络进行良好的覆盖,充分做到列车运营的交流工作。总的来看,国际高速铁路的移动通信系统技术的发展因为起步早,相关科技也较为先进,因此在高铁运行过程中实现了良好的网络服务,为旅客提供了更为优质的现代化服务。 2、国内高铁移动通信系统技术发展现状 新型的移动通信技术在国内高铁行业正处于不断研发的阶段。为了更好满足高铁旅客的现代化需求,提升高铁的整体服务水平,积极更新移动通信技术在高铁运营中的使用水平已经成为高铁行业未来发展的重要目标和趋势。 三、高铁专用移动通信系统的发展 为了满足高铁移动通信系统网络的需求,专业移动通信系统(简称gsm-r)程序应运而生。作为专业的应用程序,gsm-r系统可以有效地为高速铁路提供较为稳定的移动通信技术。gsm-r在经历了长期检验和试用之后,已经投入实际使用,有效地降低了高铁移动通信系统的成本投入,同时成功地提升了旅客服务水平以及工作人员的工作效率。 随着高铁移动通信技术要求越来越高,传统的网络服务已经难以满足高铁发展的要求,gsm-r已经落后于当下的发展环境。无线网络技术支持成为高铁移动通信系统技术发展的新理念。拓展无线网络技术支持,实现对现代科技的改革。这样才能够成功的解决历史遗留的数据狭隘问题,将原本低效率的数据传导工作升级,达成网络传递操作的目标。随着现代化生活人们对生活品质的追求越来越高,高速列车在运营过程中的业务也越来越多样化,传统的网络服务已经难以满足实际的需求,新型的网络移动通信服务,终将取代传统的gsm-r系统以供高速铁路长久使用。 当前为了满足越来越多的网络需求,为了使新的移动通信系统得到更好的应用,在实际中,需要加强对该系统技术的要点控制,主要技术要点包括: (1)完善无线网络支持平台。为了满足通信系统的需求,无线平台必须拥有良好的信息传递通道,能够有效地实现对环境的无差别传递和对待,降低环境对网络信号的影响。因为高速铁路可能经过的道路环境非常复杂,充斥着各种导致信号网络中断的因素,保证信号的

铁路GSM-R数字移动通信系统解析

---附 --- 铁路 GSM-R 数字移动通信系统(以下简称 GSM-R 是铁路专用移动通信网,是直接为铁路运输生产和铁路信息化服务的综合通信平台。是无线铁路通讯经济全面的解决方案。 作为一个安全的平台, GSM-R 为铁路公司的工作人员之间,包括司机、调度员、调车员、机车工程师和站台人员,提供了语音和数据通讯技术。 GSM-R 是众多欧洲铁路公司 10年来精诚合作的结果。为了使用单一通讯平台达到互操作性的目的, GSM-R 标准结合了此前在欧洲使用的 35个模拟系统的所有核心功能及丰富经验。 作为一个安全的平台, GSM-R 为铁路公司的工作人员之间,包括司机、调度员、调车员、机车工程师和站台人员, 提供了语音和数据通讯技术。 GSM-R 推出了一系列先进功能, 如语音组呼、语音广播、基于位置的寻址、以及紧急抢占通话权等,从而大幅改善了工作人员间的通讯、协作和安全管理。 GSM-R 符合新的欧洲铁路运输管理系统(ERTMS 标准, 可将信号直接发送给列车司机, 从而提高了列车速度, 增加了运输密度, 同时增强了行驶的安全性。 选择基于 GSM 的 GSM-R 技术是这个标准大获成功的原因之一。 GSM-R 继承了 GSM 经济性的规模,经证明是基于铁路运营商级平台的、最经济有效的数字无线通讯网络。 GSM-R 超越了语音和信号服务的范围。一些新兴的应用服务,货物追踪、车厢和站台的视频监测、以及乘客信息服务等,都将使用 GSM-R 技术。 GSM-R 是一项目前在全球 15个国家成功运营的技术。尽管 GSM-R 技术规范在 2000年才制订完成,但已经广泛用于世界 35个国家,包括欧盟所有成员国,而且亚洲、亚欧大陆和北非使用该技术规范的国家数量也在逐月增加, 从而使 GSM-R 成为发展最快的无线网络市场。 GSM-R 通信系统简介

高速铁路移动通信发展现状分析解析

高速铁路移动通信发展现状分析 从2010中国(长春)国际轨道交通与城市发展高峰论坛上了解到,中国将不断加大对高速铁路的投入建设力度,今年计划投入7000亿元加快高速铁路的建设进度。据铁道部总工程师、中国工程院院士何华武介绍,目前中国在建的高速铁路有1万公里,包括京哈、哈大、合福、京武、沪宁等多条线路。今年准备投入7000亿元到高速铁路的建设中来,计划新线投产4613公里。目前中国投入运营的高速铁路已经达到6552公里,高铁技术已经在国际上处于领先地位,建设了一批在世界上具有影响的高铁项目。中国今年将进一步扩大并完善铁路网布局,扩大西部路网规模,完善中东部路网结构,规划新建1万公里铁路。 中国高速铁路的飞速发展是世界其他国家无法比拟的,随着信息时代的到来,铁路旅客乘车时信息传输的畅通与否,关系到移动运营商的服务质量及铁路旅客乘车环境的好坏,因此公众移动通信系统在铁路范围内的无线覆盖更加突出。根据《关于印发〈铁道部与中国移动通信集团公司战略合作框架协议〉的通知》文件,在铁路建设尤其是客运专线、城际铁路等高等级铁路建设中,公众移动通信系统需实现对铁路沿线的无线覆盖,为铁路旅客提供移动语音和数据通信服务的移动通信,进一步提升铁路服务水平,构建和谐铁路。 目前高速铁路专网GSM-R移动通信系统为了保证列车行车安全已进行了无缝隙的全线无线信号覆盖,在空阔地带采用基站、天线覆

盖,而在隧道环境下全部采用了漏泄同轴电缆进行覆盖。对于公网移动通信系统(移动、联通、电信)的无线信号,由于牵涉到不同部门、不同的移动运营商及铁路建设的特殊性,目前还没有形成一个统一的方案来实现公网移动通信系统的无缝隙覆盖。但不久的将来,高速铁路公众移动通信也将覆盖整个铁路,为旅客的出行时进行信息沟通带来方便。 面对中国高速铁路移动通信的飞速发展,美国Commscope公司,德国RFS公司利用各自的技术优势第一时间抢占了中国的高铁通信市场。目前,350公里以上高速铁路的移动通信专网用漏缆仍有两公司独占市场,而250公里以下的高速铁路专网移动通信用漏缆,两公司将逐步退出中国市场,逐步由国内企业生产制造。目前进入高速铁路的国内企业仅有焦作铁路电缆有限责任公司,后续企业有珠海汉胜科技股份有限公司、江苏中天科技股份有限公司、上海23研究所等国内一批企业将蜂拥而来投入设备生产漏泄同轴电缆。而铁路公众移动通信系统用漏缆将主要由上述国内企业生产制造。 通过上述对我国高速铁路移动通信发展现状和发展趋势分析,未来几年,高速铁路用漏泄同轴电缆的需求量将会急剧增加,而国内生产漏缆的厂家也会蜂拥而来,对于漏缆产品的竞争也会日趋激烈,对铁道部来说无疑是件好事,带来了价格的降低,国内企业的蜂拥而来也无疑对产品技术、质量缺少安全保证,应加大对产品的抽检检验力度,保证我国高速铁路移动通信的平稳运行。

移动通信在铁路通信系统中应用

移动通信在铁路通信系统中应用 铁路运输是国家的经济大动脉,铁路通信系统是直接保证铁路运输的重要工具,它的质量的好坏直接影响铁路运输的效率以及运输速度和安全。随着科技的进步和发展,各种高新技术被广泛地应用在铁路通信系统中,使得铁路通信系统得到逐步提高和完善,并提高了铁路运输的运输速度、效率以及安全可靠性,本文主要讨论移动通信在铁路通信系统中的相关应用。 一、通信的作用 通信,指人与人或人与自然之间通过某种行为或媒介进行的信息交流与传递。铁路通信就是指利用有线通信、无线通信、光纤通信等现代化技术和设备,将铁路运输生产和建设过程中的各种信息进行传输和处理交换。随着我国高速铁路的建设和运行,对铁路通信技术提出了更高的要求,只有不断地发展和完善铁路通信系统,才能为现代化铁路的建设与运行提供重要技术支持和安全保障。 二、集群通信系统 集群通信系统是一种功能强大的专用移动通信系统,是通信与微处理机技术、程控交换技术、计算机网络技术紧密结合的产物。由于它具有群呼、组呼、强插、强拆等功能,特别适合于调度指挥以及应急、抢险等场合,并较好地解决了通信频率合理分配的问题,因而倍受专业运营管理部门的青睐,被确定为现行铁路移动通信方式的首选类型。但是这一系统还具有一定的缺点,主要包括采用动态的频率分配,没有考虑与周围公用网的有效融合问题,没有先进的路由合理选择功能,并且在建立通路和自动过网时存在信息丢失现象,保密性不强,容易受干扰等,这些缺点对于话音通信的影响不大,但是会对列车与调度指挥中心之间的实时双向数据通信造成较大的误码。因而对于要求较高数据通信误码率的场合并不适合。 三、GSM-R技术

铁路专用通信设备

铁路专用通信设备 1.GSM-R GSM-R机车综合无线通信设备 GSM-R是专门为铁路通信设计的综合专用数字移动通信系统,它基于GSM的基础设施及其提供的语音调度业务(ASCI),其中包含增强的多优先级预占和强拆(eMLPP)、语音组呼(VGCS)和语音广播(VBS),并提供铁路特有的调度业务,包括:功能寻址、功能号表示、接入矩阵和基于位置的寻址;并以此作为信息化平台,使铁路部门用户可以在此信息平台上开发各种铁路应用,GSM-R的业务模型可以概括为: GSM-R业务 = GSM业务 + 语音调度业务 + 铁路应用 HY-473库检电台 HY-473库检电台用于机车出入库时对机车综合无线通信设备(简称CIR)进行功能定性检测,以保证机车上线运行时CIR正常工作。机车综合无线通信库检设备可以工作在GPRS或450MHz工作模式,可对450MHz机车台、GSM-R功能、800MHz预警进行功能检测。系统由计算机、打印机、测试模块集、天馈线、测试控制软件组成。其中测试模块集可由GSM-R模块、录音单元、控制单元、450M模块、800M模块组成。 2.无线列调系统 调度总机 调度总机是列车无线调度通信系统中的地面固定设备,设置在调度所,通过四线制有线线路与车站台连接。 车站电台 B制式车站台是专门为铁路车站设计的通信设备。该设备采用了最新技术,操作简便,具有很多的专用功能。 便携式车站电台

便携式车站设备,主要用于与机车电台、车站电台及手持台进行通话。便携台可通过内置电池供电(电池容量为12安时),在无外接电源的情况下,可保证正常工作8小时以上,电池电量不足时有声光提示;便携台可用专用的外接充电电源对内置电池充电,电池充满后充电器有相应提示。此外,便携台还设有按键及指示灯,便于测试和使用。 通用机车台 本电台是通用式无线列调机车电台,它兼容B、C制式机车台的所有工作模式。安装在列车机车上,供司机使用。可用于机车与调度、车站、其它机车、车长之间通信联系。利用GPS全球卫星定位系统,按机车的运行位置,适时控制机车电台的通信方式的变更,使之改变到与地面通信设备一致的工作模式上,从而实现与地面通信设备正常通信的目的。当机车在GPS的弱场区(如山区或隧道内)运行时,不能通过GPS定位来进行工作模式的切换,该电台可以通过人工选择通信模式,保证机车可以与地面通信设备进行正常通信。 3.列调系统测试设备 调度命令出入库检测设备 调度命令出入库检测设备是用于铁路列车无线调度系统中对机车调度命令进行出/入库检测的装置。安装在机车入库点的附近,对机车的调度命令进行地面检测和车上检测,将检测的结果反馈给计算机在屏幕上显示出来,并存储该结果。管理人员可以按时间、机车号查询或统计数据,并可以打印、导出数据。 HY464-2型监测总机 该设备用于铁路无线列调系统,通过有线线路对调度区段内的车站台、中继器和调度总机进行监测,并将监测结果显示在CRT屏幕上或通过打印机进行打印。该设备可对四个区段内的车站台、中继器和调度总机进行监测,分为人工监测和自动监测两种方式。

移动通信G技术概述

移动通信3G技术概述 2004-3-14 中国移动与中国联通在移动通信市场的竞争日趋激烈,竞争领域从原先的话音业务发展到增值业务。伴随着移动增值业务的不断发展,迈向3G(3rd Generation,第三代移动通信)则是两大移动运营商的必然选择。与前两代系统相比,第三代移动通信系统的主要特征是可提供丰富多彩的移动多媒体业务,其传输速率在高速移动环境中支持144kb/s,步行慢速移动环境中支持384kb/s,静止状态下支持2Mb/s。其设计目标是为了提供比第二代系统更大的系统容量、更好的通信质量,而且要能在全球范围内更好地实现无缝漫游及为用户提供包括话音、数据及多媒体等在内的多种业务,同时也要考虑与已有第二代系统的良好兼容性。 目前国际电联接受的3G标准主要有以下三种:WCDMA、CDMA2000与TD-SCDMA。CDMA是Code Division Multiple Access(码分多址)的缩写,是第三代移动通信系统的技术基础。第一代移动通信系统采用频分多址(FDMA)的模拟调制方式,这种系统的主要缺点是频谱利用率低,信令干扰话音业务。第二代移动通信系统主要采用时分多址(TDMA)的数字调制方式,提高了系统容量,并采用独立信道传送信令,使系统性能大为改善,但TDMA 的系统容量仍然有限,越区切换性能仍不完善。CDMA系统以其频率规划简单、系统容量大、频率复用系数高、抗多径能力强、通信质量好、软容量、软切换等特点显示出巨大的发展潜力。 1、WCDMA 全称为Wideband CDMA,这是基于GSM网发展出来的3G技术规范,是欧洲提出的宽带CDMA技术,它与日本提出的宽带CDMA技术基本相同,目前正在进一步融合。该标准提出了GSM(2G)—GPRS—EDGE—WCDMA(3G)的演进策略。GPRS是General Packet Radio Service(通用分组无线业务)的简称,EDGE是Enhanced Data rate for GSM Evolution (增强数据速率的GSM演进)的简称,这两种技术被称为代移动通信技术。目前中国移动正在采用这一方案向3G过渡,并已将原有的GSM网络升级为GPRS网络。 2、CDMA2000 CDMA2000是由窄带CDMA(CDMA IS95)技术发展而来的宽带CDMA技术,由美国主推,该标准提出了从CDMA IS95(2G)—CDMA20001x—CDMA20003x(3G)的演进策略。CDMA20001x被称为代移动通信技术。CDMA20003x与CDMA20001x的主要区别在于应用了多路载波技术,通过采用三载波使带宽提高。目前中国联通正在采用这一方案向3G过渡,并已建成了CDMA IS95网络。 3、TD-SCDMA 全称为Time Division-Synchronous CDMA(时分同步CDMA),是由我国大唐电信公司提出的3G标准,该标准提出不经过代的中间环节,直接向3G过渡,非常适用于GSM系统向3G升级。但目前大唐电信公司还没有基于这一标准的可供商用的产品推出。 三个技术标准的比较

浅谈铁路通信系统中移动通信技术的有效应用

浅谈铁路通信系统中移动通信技术的有效 应用 近些年来,移动通信系统快速发展,先后从2G、3G到现在的4G网络,给人们的生活带来了极大的便利,同时我们看到,这项技术在工业、农业、交通运输业等方面也得到了广泛的应用,例如在铁路上的应用,GSM移动通信应用在铁路,称作GSM-R网络。 1 GSM-R在铁路的主要应用 GSM-R目前在铁路主要应用有10个方面:机车同步操作控制系统信息传输、列车控制系统安全信息传输、调度通信、列车尾部风压信息传送、旅客列车移動信息综合接入、机车移动信息综合接入、编组站移动信息综合接入、CTCS 级/CTCS级移动信息传输、应急指挥通信话音和数据业务、区间移动信息接入及公务移动通信。下面我们主要通过调度系统方面的应用,来认识这项技术。 调度通信系统功能 无线有线一体化是调度通信系统功能实现的基础。调度通信系统的主要客户为行车调度员、车站值班员、司机、运转车长、助理值班员、机务段调度员、列车段值班员、机车调度员、电力牵引变电所值班员、救援列车主任等相关人员。调度员呼叫司机、运转车长等移动终端这种调度电话业务的

实现就是通过调度通信系统与GSM-R系统的有机结合。调度系统的语音通信需求主要有以下有4种。 智能呼叫:行车调度员通过车次功能号寻址方式对调度辖区内的机车司机进行呼叫并通话;机车司机通过位置寻址方式对本站/前方站/后方站的车站值班员进行呼叫并通话,此方法中的位置寻址是通过GSM-R小区信息实现的;车站值班员按车次号通过功能号寻址方式对机车司机进行呼叫并通话;行车调度员对调度管辖区内车站值班员进行呼叫并通话;机车司机按位置寻址方式对当前所在调度管辖区的行车调度员进行呼叫并通话;车站值班员用移动终端号码对行车调度员进行呼叫并通话;车站值班员以单键方式对相邻车站值班员进行呼叫并通话。 语音组呼:该话音通信方式可以使各被叫均可加入通话过程中,在通信的过程中所有参与者都可进行讲话,包括行车调度员对调度管辖区内的所有机车司机进行呼叫并通话;行车调度员对调度管辖区内的所有车站或某些车站值班员进行呼叫并通话;行车调度员对调度管辖区内指定车站的车站值班员、助理值班员以及该车站基站范围内的所有机车司机进行呼叫并通话;行车调度员对调度管联盟辖区内的列车段、机务段运转、电力牵引变电所值班员等进行呼叫并通话;行车调度员、车站值班员、救援列车主任、助理值班员之间通过组呼方式进行通话;车站基站范围内机车司机和运转车

移动通信3G技术三个技术标准的比较

移动通信3G技术三个技术标准的比较- - 2004-3-14 中国移动与中国联通在移动通信市场的竞争日趋激烈,竞争领域从原先的话音业务发展到增值业务。伴随着移动增值业务的不断发展,迈向3G(3rd Gener ation,第三代移动通信)则是两大移动运营商的必然选择。与前两代系统相比,第三代移动通信系统的主要特征是可提供丰富多彩的移动多媒体业务,其传输速率在高速移动环境中支持144kb/s,步行慢速移动环境中支持384kb/s,静止状态下支持2Mb/s。其设计目标是为了提供比第二代系统更大的系统容量、更好的通信质量,而且要能在全球范围内更好地实现无缝漫游及为用户提供包括话音、数据及多媒体等在内的多种业务,同时也要考虑与已有第二代系统的良好兼容性。 目前国际电联接受的3G标准主要有以下三种:WCDMA、CDMA2000与TD-SCD MA。CDMA是Code Division Multiple Access(码分多址)的缩写,是第三代移动通信系统的技术基础。第一代移动通信系统采用频分多址(FDMA)的模拟调制方式,这种系统的主要缺点是频谱利用率低,信令干扰话音业务。第二代移动通信系统主要采用时分多址(TDMA)的数字调制方式,提高了系统容量,并采用独立信道传送信令,使系统性能大为改善,但TDMA的系统容量仍然有限,越区切换性能仍不完善。CDMA系统以其频率规划简单、系统容量大、频率复用系数高、抗多径能力强、通信质量好、软容量、软切换等特点显示出巨大的发展潜力。 1、 WCDMA 全称为Wideband CDMA,这是基于GSM网发展出来的3G技术规范,是欧洲提出的宽带CDMA技术,它与日本提出的宽带CDMA技术基本相同,目前正在进一步融合。该标准提出了GSM(2G)—GPRS—EDGE—WCDMA(3G)的演进策略。GPR S是General Packet Radio Service(通用分组无线业务)的简称,EDGE是En hanced Data rate for GSM Evolution(增强数据速率的GSM演进)的简称,这两种技术被称为2.5代移动通信技术。目前中国移动正在采用这一方案向3G过渡,并已将原有的GSM网络升级为GPRS网络。 2、 CDMA2000 CDMA2000是由窄带CDMA(CDMA IS95)技术发展而来的宽带CDMA技术,由美国主推,该标准提出了从CDMA IS95(2G)—CDMA20001x—CDMA20003x(3G)

CRH2型动车组铁路综合移动通信系统GSM-R

CRH2型动车组铁路综合移动通信系统GSM-R 16.4.1概述 GSM-R是欧盟、国际铁路联盟、欧洲各国铁路经过10多年开发完善的铁路综合业务移动通信系统,是根据铁路需要,在公用移动通信的基础上专门开发的铁路应用标准,GSM-R 增加了调度通信功能适合高速环境下使用的要素,能满足国际铁路联盟提出的铁路专用调度通信的要求。 GSM-R系统是话音和数据同传,并能实现综合业务的数字移动无线通信平台,可把铁路各种无线话音、数据通信业务综合于一体,并能传输信号系统的安全信息,如机车信号、列车自动控制系统的信息。所以GSM-R不仅是铁路各种专门用途的无线通信平台,也是构成上述CTCS3级、4级设备的技术基础。 GSM-R通信网具有适应铁路运输的功能优势,我国铁路已制定对GSM-R进行统一规划、全路组网、分步实施、持续发展的总方针。随着我国铁路GSM-R的建成,将形成集调度通信、列车控制、客运服务、养护维修、调车作业和信息数据传输等多项业务为一体的综合移动维修通信系统,为运输生产和管理人员提供现代化的通信手段。 16.4.2GSM-R系统组成原理 GSM-R是以移动业务交换中心(MSC)为平台的移动通信

网络和以固定用户接入交换机(FAS)为平台的有线通信网络互连互通,是移动通信网络和有线通信网络的结合体,是有线调度通信与无线调度通信的融合,实现站车通信一体化,从而形成现代化的调度通信、公务移动、信息传输、列车控制一体化的通信系统。 GSM-R由3大部分组成:GSM-R陆地移动网络、FAS固定网络、移动终端和固定终端,如图16.52所示。 GSM-R系统应用组网原理如图16.53。铁路沿线采用无线覆盖,机车上采用无线终端,即机车综合通信设备,而车

铁路GSM-R数字移动通信施工工法

铁路GSM-R数字移动通信施工工法 中铁二十局电气化工程有限公司 1.前言 铁路GSM-R数字移动通信技术是一种具有强大调度功能、综合业务的、经济高效的综合数字移动通信技术。根据中国铁路行车密度高、运输组织复杂等特点,解决了大量的非列控数据传输,尤其是采用通用分组无线业务子系统(GPRS),与既有有线调度通信系统相结合,实现了有线与无线调度的两网有机结合。铁路GSM-R数字移动通信施工工法是一种新型的、先进的施工工艺,其中漏缆施工方法、子系统调试施工方法、综合系统调试施工方法、光缆检测施工方法等应用于沈阳北环铁路、西康铁路、黄韩侯铁路等工程,并于2013年12月通过中铁二十局集团工程有限公司科技成果鉴定,经专家评审为国内领先水平,对类似工程施工具有积极的借鉴作用。 2.工法特点 安全性高、技术先进 采取环形组网方式,极大地增强了铁路GSM-R信号信号覆盖的稳定性,从而保证了铁路通信的正常运行。该工法是一种安全性能高、技术先进的施工技术,有效地解决了有线与无线的结合、模拟与数字的结合,提高了铁路信息传输效率,增强了列车运行的安全性。 施工标准化、工艺程序化 基站施工、光电缆接续、子系统调试、系统调试等施工工艺,已在多条铁路线上应用,形成了很成熟的施工工艺,具有施工工艺程序化、施工技术标准化,人员安排合理形成流水线作业、工艺简单、节约材料、提高效率等

特点。 应用广泛具有推广价值 随着铁路GSM-R数字移动通信技术在时速 200公里以上线路上成功应用后,新建铁路通信系统已全部采用该通信技术,该通信制式逐渐替代传统的无线列调制式,成为全国通用的通信技术,该技术具有应用广泛,极具推广价值等特点。 3.使用范围 本工法适用于铁路专用线、客货共线、高铁、地铁、城市轻轨等工程项目的施工。 4.工艺原理 GSM-R是一种专门为铁路设计的专业无线数字通信系统,基于GSM系统技术平台,针对铁路通信列车调度、列车控制、支持高速列车等特点,为铁路运营提供定制的附加功能的一种经济高效的综合无线通信系统,并将铁路移动通信所具有的特色(群呼、组呼、优先级别、强插、强拆等功能)加进去,构成GSMR用于铁路的全球移动通信系统的解决方案。从集群通信的角度来看,GSM-R是一种数字式的集群系统,能提供无线列调、编组调车通信、应急通信、养护维修组通信等语音通信功能。GSM-R能满足列车运行速度为0-500km/小时的无线通信要求,安全性好。 GSM-R通信系统主要由BSS(基站子系统)、NSS(交换子系统)、OSS(管理子系统)三大部分组成,根据我国的铁路现状增加了智能业务和GPRS分组数据业务功能单元,现开发的 GSM-R系统基本上可以满足铁路运输信息业务十大功能:机车同步操作控制系统的信息传输;列车控制系统的信息传输;

铁路GSMR简介

GSM-R资料 目录 一、GSM-R的现状3 1.SM-R在世界发展现状 4 2.GSM-R在我国的技术发展现状 5 ⑴欧洲GSM-R技术规范的现状 5 ⑵我国GSM-R技术标准与规范的现状及必要性 5 ⑶我国GSM-R标准、规范的范围和主要内容 6 二、GSM-R的应用情况8 1、SM-R与话音通信8 1.1GSM-R与无线调度通信9 1.2 站场无线通信与无线调车机车信号和监控信息传送9 1.3 区间通信与应急通信9 1.4 GSM-R与有线调度9 1.5 GSM-R与普通话音通信9 2、GSM-R与列车控制10 2.1 列控信息传送10 2.2 机车同步操控信息传送10 3、GSM-R与铁路信息化12 3.1 列车无线车次号校核系统信息传送12 3.2 列车尾部风压装置信息传送12 三、大秦线GSM-R系统的网络结构 13

1.交换系统14 2.GPRS系统14 3.基站系统15 ⑴BTS基站设备15 a公共子系统16 b载频子系统17 c天馈子系统17 ⑵天馈线 17 a天线17 b馈线18 c漏泄同轴电缆18 ⑶直放站 18 ⑷频率配置19 ⑸大秦线BTS连接图19 四、GSM-R工程硬件安装21 1、接地规程 21 1.1接地系统的作用21 1.2接地系统的组成21 1.3建筑物的地下接地网22 1.4接地系统的室内部分22 1.5接地系统室外部分24 1. 馈线接地夹接地位置25

2. 馈线接地夹的固定25 3. 馈线避雷器的接地26 2.机柜的安装26 2.1机柜安装介绍26 2.2不靠墙安装26 26 27 27 29 2.3在防静电地板上安装31 1、支架形式 32 2、支架组件 32 3、支架安装方式32 4、支架数量 32 5、安装流程 34 6、机柜定位 34 7、支架定位 35 8、固定支架 36 9、机柜安装 36 10、绝缘测试36 2.4安装单板和模块时的防静电要求36 2.5安装开关盒、风扇盒和插框等37

浅谈GMS-R铁路移动通信系统

浅谈GMS-R铁路移动通信系统 摘要:本文对GSM-R铁路移动通信系统的基本原理、网络结构、业务与应用进行了简单的介绍,明确GSM-R系统是我国铁路移动通信发展的方向。 关键词:GSM-R;基本原理;网络结构;业务与应用 1、GMS-R在中国的发展 我国GSM-R发展的目标:在全路建立一张移动通信网络,利用通信的手段实现铁路移动设施和固定设施的无缝连接,确保列车安全、高速地运行。GSM-R 技术顺应时代的发展,是铁路信息化和自动化发展的基础。 2、GSM-R基本原理 2.1区域覆盖 2.1.1小区制 小区制是将整改服务区划分成为若干个无线小区,每个无线小区设一基站负责小区内所有移动通信的联络和控制,在网络中设置一个移动交换中心,统一控制这些基站协调的工作,保证移动用户只要在服务区内,不论在哪个基站的辐射区都能正常通信。 小区制分为:面状服务覆盖和线状服务覆盖。根据铁路沿线的情况,GSM-R 系统可以在铁路线采用线状覆盖,在车站及枢纽地区采用面状覆盖。 2.1.2GSM-R系统无线覆盖 GSM-R系统无线覆盖是指沿着铁路线实现场强无线连续覆盖并达到系统QoS(业务质量)要求。 GSM-R系统沿着路轨方向安装定向天线,以形成沿轨的椭圆形小区,在话务量较大但对速度的要求较低的编组站内采用扇形小区覆盖;在人口密度不高的低速路段和轨道交织处一般是采用全向覆盖。每个小区有一个或几个收发信机,数目的多少由话务量决定。 2.2多址技术 蜂窝系统中是以信道来区分通信对象的,一个信道只容纳一个用户进行通话,许多用户同时通话时,就要相互以信道来区分,这就产生多址问题。解决多址问题的方法叫做多址技术。多址技术分为频分多址(FDMA)、时分多址(TDMA)、码分多址(CDMA)三种。在GSM-R系统中大多采用TDMA。TDMA 是通过时隙划分使用户共享无线资源。每个时隙仅允许一个用户使用,每个用户

高速铁路移动通信系统技术探讨

高速铁路移动通信系统技术探讨 摘要:近年来,移动通信已经逐渐被运用到人们生活的各个方面。高速铁路是我国重要的交通运输渠道,在高速铁路中运用移动通信技术能够有效提升铁路运营效率,为乘客提供更加便利的服务,从而促进高速铁路的发展。因此,在高速铁路发展中,移动通信系统技术意义重大。文中分析了当前的高速铁路移动通信技术的发展现状,探究了高速铁路移动通信系统关键技术,最后对高速铁路移动通信技术的发展进行了分析。 关键词:高速铁路;移动通信;系统技术 高速铁路在我国拥有十分重要地位,在高速铁路发展中,移动通讯技术属于关键技术之一。但是,我国高速铁路移动通信技术相较于国际高速铁路移动通信技术而言起步比较晚,效率不高。随着国家对高速铁路移动通讯技术的重视程度越来越高,在其中投入的精力与资金也越来越多。我国高速铁路移动通讯技术也在不断发展提升,分析探究高速铁路移动通讯技术能够为我国未来高速铁路移动通讯技术的发展提供更多实践性的帮助。 1高速铁路移动通信技术的发展现状 1.1国外的高速铁路移动通信发展情况。国外高速铁路移动通讯技术发展比较早,也相对比较成熟。其主要体现在移动通讯系统对列车的运营控制与乘客享受无限网服务方面[1]。通过将附近的无线网络利用起来,能够有效提升列车上无线网络信号,为乘客提供更加优质的服务。同时在执行过程中,为了降低无线网络的信号损失,为乘客提供更加完善的网络服务,还需要进行相关处理。近年来,卫星覆盖技术越来越成熟,由于国外移动通讯网络技术的成熟,其网络信号与速度也更快更稳定,乘客能够获取更好的网络体验。1.2国内的高速铁路移动通信发展情况。我国高速铁路移动通信技术起步比较晚,但我国高速铁路移动网络技术越来越完善,发展速度也越来越快。在移动网络技术的运用中,GSM-R技术使用范围最为广泛,具有效率高、技术成熟等优势[2]。但是,在我国高速铁路移动通信技术不断发展的时代,GSM-R技术的缺点也逐渐显露出来,因此,为了更好地保证高速铁路移动通信技术的发展,应该根据实际需求选择合适的技术。

青藏铁路将开通全国第一个铁路移动通信系统

青藏铁路将开通全国第一个铁路移动通信系统 7月1日,举世瞩目的青藏铁路即将全线通车,这将标志着我国第一个铁路移 动通信系统――GSM-R(Global System for Mobile Communications for Railway)系统全面投入使用。青藏铁路东起格尔木西至拉萨,全长1142公里,平均海拔4500米左右,是世界上海拔最高、线路最长、穿越冻土里程最长的高原铁路。据悉,GSM-R系统是专门为铁路通信设计的综合专用数字移动通信系统。它基于GSM的基础设施及其提供的高级语音呼叫业务,提供铁路特有的调度业务,并以此为信息化平台,使铁路部门可以在这个平台上实现铁路管理信息的共享。 青藏铁路GSM-R系统除了具有语音传送功能外,更重要的是具有数据传送功能,它与GPS卫星定位系统、机车车载计算机结合后,能够实现机车和地面之间列车控制信息的实时传送,达到控制列车运行的目的,确保列车安全运行。据了解,GSM-R 将成为今后我国铁路移动通信崭新的通信方式。第四届大连软交会22日开幕国际展区比例上升至3成 罗强 6月22日,第四届中国国际软件和信息服务交易会(简称软交会)在大连拉开 帷幕。今年的软交会创下参加国家最多、规格最高、内容最丰富、参展团体最踊跃、涉及面最广、高价值观众最多、人气最旺等各项之最。 从第一届中国软件交易会迎来开门红到第三届确立“国际合作、应用对接、 人才交流”三大主题并达成300 个项目意向,大连软交会完成了三年三大步的飞跃,最集中的体现就是,参展单位从最初的300家一跃为上一届的800家,省市组团数也达到近50个;国际化色彩也更浓厚,国际展区的比例从10%已上升到33%。

关于铁路移动通信的几点思考

关于铁路移动通信的几点思考 【摘要】本文在高速铁路特征方面着手,指出了对于高速铁路移动通信网络的需求,将列车当作主体的移动通信系统,是综合语音与数据,管理与检测为一体的集成信息传播网络,是将无线和有线相配合,管理和计算机与通信相配合的高水平、高信赖性的高速铁路集成业务通信网络的主要构成结构。 【关键词】铁路;移动通信;通信系统 本文主要介绍了国外高速列车移动通信网络情况,并且依据国家形势,指出了我国高速列车移动通信网络制度,包含两个方面,一个是对于列车公务人员与对于游客的铁路网络系统,另一个是供给调度员和列车司机之间互向数据传播制度与铁路定位制度,探讨了网络的特征与系统组成和要求处理的相关重要技术难题。 一、前言 高速传输被大家公认为新的吸引人的旅行方法,而高速列车便是重要的发展目标之一。因为高速列车具备能源使用少、安全高效等优点外,还能够客货互用,减少货运网络的压力,还可以舒缓空中走廊和机场超载的难题,所以,国外和国内高速铁路网络的建设已经变成现在的需要。 高速铁路列车行驶速度高,列车运行间隔密度高,为了保证高效率、高依赖性、得安装一个功能完好的移动通信网络。高速铁路移动通信网络具备以下特征: 1.对于铁路运行控制要求传输很多的数据和管理指示,所以数据输送占了很多内容。 2.输送信息太多,信息种类很多,包含电话、管理、监控、图形与网络集成为一体。 3.为了确保设施安全、可行,除了对设施自己要有高水平的条件外,还得有热备用设施,并且强化监视、检测体系,实行综合治理与控制。 4.因为高速与自动化作业要求,对于可信赖性与及时性要求严格,所以对于无线通道的差错管理与设施累积,输送通道备份,都应该纳入考虑。 5.本网应该是无线和有线相配合,管理计算机与通信相配合的高水平、高依赖性的集成业务信息传输网络。 二、国外高速列车移动通信体系的介绍 日本列车新干线的列车无线体系的容量扩大很快,主要作用是让调节中心实

铁路数字移动通信系统的传输干扰性能分析与改善

第33卷第7期铁 道 学 报Vol.33 No.7 2 0 1 1年7月JOURNAL OF THE CHINA RAILWAY SOCIETY July 2011 文章编号:1001-8360(2011)07-0038-06 铁路数字移动通信系统的传输干扰性能分析与改善 林思雨, 钟章队, 艾 渤 (北京交通大学轨道交通控制与安全国家重点实验室,北京 100044) 摘 要:传输干扰率是铁路数字移动通信系统的服务质量指标中重要的一项,其描述铁路数字移动通信系统误 码性能对列车控制信息传输的影响程度。在介绍铁路数字移动通信系统传输干扰基本概念的基础上,分析影响 铁路数字移动通信系统传输干扰性能的重要因素,包括列车控制系统信息传输特性、列车控制系统链路层数据传 输协议、通信系统越区切换等。基于列车运行速度与传输干扰间的关系,提出采用分布式天线扩大小区覆盖范围 的方案,降低数据传输与越区切换发生的碰撞概率,以改善传输干扰性能。通过对分布式天线系统覆盖范围以及 对其同频干扰、载波干扰比等性能指标的理论分析,证明了分布式天线覆盖方案可以有效地扩大广义小区的覆盖 面积以改善铁路数字移动通信系统传输干扰性能。 关键词:高速铁路;铁路数字移动通信系统;服务质量;传输干扰;分布式天线 中图分类号:TN929.5;U285.21 文献标志码:A doi:10.3969/j.issn.1001-8360.2011.07.007 Analysis and Improvement of on Transmission Interference Performance of Railway Digital Mobile Communication System LIN Si-yu, ZHONG Zhang-dui, AI Bo (State Key Laboratory of Rail Traffic Control and Safety,Beijing Jiaotong University,Beijing 100044,China) Abstract:Transmission interference is the important one of the quality of service(QoS)of the railway digitalmobile communication system indice,which describes the influence of the bit error of the GSM-R system ontrain control message transmission.The concept of transmission interference of the railway digital mobile com-munication system is introduced.Then,the factors that influence transmission interference of the railway dig-ital mobile communication system are analyzed,which include the characteristics of train control messagetransmission,data transmission protocol in the MAC layer and handover of the the communication system.The scheme of the cell coverage area expanded by the distributed antennas system is proposed on the basis ofthe relationship between the train movement speed and transmission interference performance.This scheme canreduce the collision probability between data transmission and handover improve performance of the co-channelinterference and carrier interference ratio.Effectiveness of the proposed scheme is verified by theoretical analy-sis. Key words:high-speed railway;railway digital mobile communication system;QoS;transmission interference;distributed antennas system 随着列车运行速度的提高,无线通信信号多普勒频移将增大、相干时间减少、电平交叉率变快、越区切换发生频繁,这些变化将对承载列车运行控制信息(简 收稿日期:2009-06-10;修回日期:2009-12-30 基金项目:国家自然科学基金资助项目(60830001);国家重点实验室重点课题(RCS2008ZZ006)北京交通大学优秀博士 生科技创新基金资助项目(141059522)。 作者简介:林思雨(1984—),男,北京人,博士研究生。 E-mail:07111017@bjtu.edu.cn称列控信息)传输的铁路数字移动通信系统GSM-R产生不利影响。服务质量是GSM-R系统性能在业务上的具体体现,直接影响用户满意程度。 目前对GSM-R系统用于列控信息传输业务的服务质量(QoS)研究还停留在测试方法以及应用分析上[1-2],QoS指标要求也是根据工程经验结合一定理论分析而制定[3]。随着列车运行速度的提高,当前我国GSM-R系统如何满足列控信息高效可靠传输的要求

铁路通信工程施工系统调试GSM-R数字移动通信系统作业指导书

铁路通信工程施工系统调试GSM-R数字移动通信系统作业指导书 5.4.1中继器调试 (1)正向输出电平+27±2 dBm 车站台处于发射状态,将通过式功率计串接在中继器正向输出端与馈线之间,调整衰减器,使输出达到指标。 (2)反向输出电平-3±2 dBm 车站台处于发射状态,将通过式功率计串接在中继器反向输出端与馈线之间,调整衰减器,使输出达到指标。 (3)中继器产生自激时分析原因。若为输入、输出线相互干扰或布线不当引起,则应将输入、输出分开,重新布线或调整间距,若输入电平过高,则应加大衰减器衰减值。 (4)中继器输入电平过低,则应调节天线方向达到最佳位置,并检查漏缆有无开路。 天线驻波比测试 1)将驻波比表串接在电台与天馈线系统之间; 2)将FUNC拨到CAL位置,CALIBRATION旋钮反时针方向旋转到底; 3)按下无线电台的发射键,调整CALIBRATION旋钮使指针达到满刻度;

4)将FUNC拨到SWR位置,由表头的SWR刻度读出驻波比的读值。 电台测试 将无线综合测试仪按无线电台测试示意图连接,对车站电台的发射功率、额定频偏、非线性失真、接收灵敏度、不失真音频输出功率、非线性失真系数等进行测试,测试数据均应符合有关产品标准或设备出厂技术文件的规定。 5.4.2场强测试 (1)有漏缆区段:隧道内每隔5m测一次,每次测五个数据取平均值。隧道外每隔10m测一次,每次测五个数据取平均值。在调相头、固定头、终端头地点必须测试。 (2)无漏缆区段:每隔100m测一次,兼顾天线对天线间场强,天线对区间的场强,调整天线方向,使接收的信号满足设计的要求。 5.4.3系统联网调试: (1)大三角通话呼叫试验:机车─车站─调度相互呼叫通话,每个车站均要试验。 (2)小三角通话呼叫试验:车长台─车站─机车相互呼叫通话,每个车站均要试验。 (3)机车─车站─调度转接外线电话试验:调度所自

相关主题
文本预览
相关文档 最新文档