当前位置:文档之家› 灾备方案

灾备方案

灾备方案
灾备方案

1.数据中心容灾备份解决方案

随着社会的发展和科技的进步,政府日常工作越来越依赖于数据处理来进行,政务系统的连续性依赖于数据中心系统的稳定运行。然而,灾难就像灰尘一样伏击在运营环境周围,政务系统的数据中心可能正在一个充满风险和威胁的环境下运行。如果不能对这些风险采取有效治理,一旦数据由于某种原因丢失,就很有可能对政府的日常工作造成严重的影响。如果核心数据丢失,将会使得某些核心功能陷入瘫痪,造成不可估量的损失。因此,保证政务的连续性和数据的高可靠性和可用性,已经成为政府部门在数据中心建设中,必须要考虑的问题。

1.1灾备解决方案原则

首先,在制定容灾系统方案的过程中要考虑的就是容灾系统建设对原有业务系统带来的影响。比如,采用数据复制技术对系统I/O带来的延迟,应用数据同步对日常业务处理系统带来的压力等。因此,企业要通过周密的测试和分析来规避容灾系统建设时带来的这些风险,以保证业务系统不会因容灾系统的建设而出现在处理性能上下降的问题。

第二,数据状态要保持同步。为保证在灾难发生时,业务可以成功地切换到备份中心,就必须保证容灾系统数据同步机制的可靠性。因此,建立可靠的数据同步校验机制是必须的; 同时,还要考虑建立定时的、自动的数据同步核查对比机制,以检验两个中心数据的一致性,这是数据容灾工作中非常重要的一部分。

第三,容灾系统的日常维护工作要尽可能轻,并能承担部分业务处理和测试的工作。容灾系统的维护和管理是容灾切换成功的重要保证,在系统建设中,就必须要考虑系统的维护管理流程。生产中心任何业务处理过程的改变都必须完整地复制到备份中心; 所有新业务系统上线时,必须通知备份中心,并在备份中心配置好数据同步机制; 对原程序的改动也必须保证两个中心同时上线。

第四,系统恢复时间要尽可能短。容灾系统主要是为了实现在主中心系统发生灾难时,可以在规定时间切换到备份中心,保证数据不会丢失,并且继续向用户提供服务。但往往在灾难发生时,主要技术人员不能及时到达现场,为了顺利实现系统间的切换,应该让系统切换操作尽可能地简单; 并建立固定化的、标准化的切换流程,要求维护人员在切换演习时严格按照流程的指导步骤进行操作。

第五,可实现部分业务子系统的切换和回切。当人事变动、业务变化、IT设施变化以及其

他可能引起恢复规划文档失效的变化发生时,应及时更新各恢复规划文档,并在必要时启动模拟测试或演习,确保业务连续性系统的工作能力。

第六,技术方案选择要遵循成熟稳定、高可靠性、可扩展性、透明性的原则。目前,国际上比较成熟的容灾技术包括:SAN/NAS技术、远程镜像技术、虚拟存储、基于IP的SAN互连技术以及快照技术等。其中基于IP的SAN远程数据容灾备份技术应用比较广泛,其是利用基于IP的SAN的互连协议,将主数据中心SAN中的信息通过现有的TCP/IP网络,远程复制到备份中心的SAN中的。当备份中心存储的数据量过大时,可利用快照技术将其备份

到磁带库或光盘库。这种基于IP的SAN远程容灾备份,可以跨越LAN、MAN和WAN,成本低、可扩展性好。基于IP的互连协议主要包括FCIP、iFCP、InfiniBand、iSCSI等。

第七,构建系统方案可以选择多种技术组合方式。目前,业内应用较多的容灾方案是基于智能存储系统的远程数据复制技术,它是由智能存储系统自身实现的数据远程复制和同步,即智能存储系统将对该系统中的存储器I/O操作请求复制到远端的存储系统中并执行。由于在这种方式下,数据复制软件运行在存储系统内,因此较容易实现主中心和容灾备份中心的操作系统、数据库、系统库和目录的实时拷贝及维护能力,且不会影响主中心主机系统的性能。如果在系统恢复场具备了实时数据,那么就可以做到在灾难发生时,及时开始应用处理过程的恢复。但这种方案也有开放性差(不同厂家的存储设备系统一般不能配合使用)、对于主、备中心之间的网络条件(稳定性、带宽、链路空间距离)要求较苛刻等缺点。

1.2灾备解决方案设计需要考虑的因素

1.2.1 RTO和RPO

RTO(RecoveryTime Object):是指灾难发生后,从IT系统宕机导致业务停顿之刻开始,到IT系统恢复至可以支持各部门运作,业务恢复运营之时,此两点之间的时间段成为RTO。RTO是反映业务恢复及时性的指标,表示业务从中断到回复正常所需要的时间。RTO值越小,代表容灾系统的数据恢复能力越强。各种容灾解决方案的RTO有较大差别,基于光通道技术的同步数据复制,配合异地备用的业务系统和跨业务中心与备份中心的高可用管理,这种容灾解决方案具有最小的RTO。

RPO(Recovery Point Objective),是指从系统和应用数据而言,要实现能够恢复至可以支持各部门业务运作,系统及生产数据应恢复到怎样的更新程度。RPO是反映恢复数据完整性的指标,在同步数据复制方式下,RPO等于数据传输延迟的时间;在异步数据复制下,RPO基本为异步传输数据排队的时间。在实际应用中,考虑导数据传输的因素,业务数据库与容灾备份数据库的一致性(SCN)是不同的,RPO表示业务数据库与容灾备份数据库SCN的时间差。发生灾难后,启动容灾系统完成数据恢复,RPO就是新恢复业务系统的数据损失量。

设计容灾系统不能只看RTO和RPO,对于不同的业务系统和用户特殊的要求,其它一些指标有可能成为选择容灾解决方案的主要因素。例如,某些地区为了防范一些特定自然灾害的风险,要求容灾备份中心与业务中心保持足够的距离,在这种情况下,容灾备份中心与业务中心的距离要求就是容灾系统的重要指标。

1.2.2数据安全

数据的完整性,一致性是保证业务连续的关键。在本地,数据安全需要使用RAID技术来保证。在灾备方案的设计中,数据复制方案的设计是整个设计的基础。目前业界主流的数据复制技术有:基于数据库本身的复制技术,基于操作系统的数据复制,基于虚拟存储的复制技术和基于存储的复制技术。在方案所用技术的选择时,应当根据客户的预算,现场的条件,

综合来进行考量。后续在1.6.1数据同步章节,将会有这4类数据复制技术的综合对比,可以作为选择的参考。

1.2.3网络安全

通信网络是容灾系统的组成部分,通信线路的质量也是容灾系统的性能指标之一,其中包括网络的数据传输带宽、网络传输通道的冗余和网络服务商的服务水平(网络年中断率)。如果容灾系统使用的通信网络是确定的,为了比较不同容灾解决方案,可以用单位存储容量的数据库在同一通信网络上的数据完全恢复时间作为一项设计指标。

1.2.4业务连续性

业务连续性是灾备方案的最终目标,是方案的价值所在。为了保证业务的连续,首先需要数据的连续,之前我们讨论了数据安全相关的内容。其次,在数据连续的基础上,出现灾难时,系统需要能够满足(1)网络切换(2)应用切换。以此,来保证系统能够顺利切换到灾备地,继续安全运营,最大化保证客户利益。

1.3国标系统灾备等级划分及应对措施

国家《信息系统灾难恢复规范》(GB/T 20988-2007)规定了六个级别的容灾,下表分别针对每个级别给出了相应的应对措施。

1.4容灾技术分析

1.4.1备份方式

(1)冷备份

备份系统未安装或未配置成与当前使用的系统相同或相似的运行环境, 应用系统数据没有

及时装入备份系统。一旦发生灾难,需安装配置所需的运行环境,用数据备份介质(磁带或光盘)恢复应用数据,手工逐笔或自动批量追补孤立数据,将终端用户通过通讯线路切换到备份系统,恢复业务运行。优点:设备投资较少,节省通信费用,通信环境要求不高。缺点:恢复时间较长,一般要数天至1周,数据完整性与一致性较差。

(2)温备份

将备份系统已安装配置成与当前使用的系统相同或相似的系统和网络运行环境,安装了应用系统业务定期备份数据。一旦发生灾难,直接使用定期备份数据,手工逐笔或自动批量追补孤立数据或将终端用户通过通讯线路切换到备份系统,恢复业务运行。优点:设备投资较少,通信环境要求不高。缺点:恢复时间长,一般要十几个小时至数天,数据完整性与一致性较差。

(3)热备份

备份处于联机状态,当前应用系统通过高速通信线路将数据实时传送到备份系统,保持备份系统与当前应用系统数据的同步;也可定时在备份系统上恢复应用系统的数据。一旦发生灾难,不用追补或只需追补很少的孤立数据,备份系统可快速接替生产系统运行,恢复营业。优点:恢复时间短,一般几十分钟到数小时,数据完整性与一致性最好,数据丢失可能性最小。缺点:设备投资大,通信费用高,通信环境要求高,平时运行管理较复杂。

在计算机服务器备份和恢复中,冷备份服务器(cold server)是在主服务器丢失的情况下才使用的备份服务器。冷备份服务器基本上只在软件安装和配置的情况下打开,然后关闭直到需要时再打开。

温备份服务器(warm server)一般都是周期性开机,根据主服务器内容进行更新,然后关机。经常用温备份服务器来进行复制和镜像操作。

热备份服务器(hot server)时刻处于开机状态,同主机保持同步。当主机失灵时,可以随时启用热备份服务器来代替。

对于关键的业务,Primeton建议采用同城热备+异地热备的方式进行部署,对于一般性的业务,建议采用同城热备+异地温备(应用不启动,数据保持异步复制)的方式进行部署。

1.4.2数据复制技术

目前数据复制技术主要有如下表所列4种,基于红色字体部分的要求,结合客户的需要,Primeton推荐采用基于存储或者基于应用程序的数据复制技术来进行数据同步。

1.4.3重复数据删除技术

重复数据删除技术是指将存储系统中存在的大量内容相同的数据删除,只保留其中一份,从而缩减存储空间的技术。在云灾备中,该技术既能大幅减少灾备中心存储的数据量,降低灾

备中心的建设和运维成本,又能大幅减少数据备份和恢复过程中用户和灾备提供商间的数据传输量,提高备份和恢复的性能,是一项十分重要的技术。

随着灾备中心的规模不断增大,存储的数据量和访问量不断增加,单一节点上的重复数据删除方法已不能满足性能和容量的需求。除上述基本重复数据删除技术外,一些优化和改进技术对云灾备是至关重要的,包括高性能、可扩展的、分布式的重复数据删除技术,以及为提高灾备中心数据可靠性的高可靠重复数据删除技术。

1.4.4操作系统虚拟化技术

除了数据级的灾备,还应提供系统级的灾备。即在将数据复制到云端的同时,也将受保护的应用程序的状态复制到云端,当灾难发生时可以立即切换到云端的应用程序运行,保证业务连续性。系统级灾备是通过操作系统虚拟化和检查点实现的。检查点用来捕获进程某一时刻的运行状态,从而实现进程迁移。进程迁移既可以是用户应用程序进程到云灾备中心的迁移,也可以是云灾备中心内部的虚拟机池间进程迁移,以实现根据前端用户的需求自动地调节灾备服务提供商有限的硬件与软件资源,动态地、弹性的反应前端业务对灾备的需求。

当程序因故障中断,如果不能保留其中间运行状态,恢复后从头运行将会带来极大的消耗。检查点技术能够解决这个问题。通过保留各个进程的运行状态,恢复时能够复原到最近一次保留的数据映像。

传统的检查员机制是基于库的检查点机制。例如以静态库的形式实现,或通过加载动态链接库来追踪程序运行过程中的数据变化。也有一些检查点机制实现于内核级别甚至硬件级别。例如通过在文件系统层之上引入一个中间层来实现保留文件系统状态的检查点机制;或者借助Fuse内核模块实现的支持检查点机制的文件系统,通过Fuse侦测、拦截内核级别的文件系统操作并将控制权传递给用户,从而能够在用户空间对文件系统状态进行保留。

随着操作系统虚拟化技术的发展,基于虚拟容器的检查点技术也得到了很好的应用。虚拟容器是通过系统虚拟化技术构建出来的一个进程运行的较独立的上下文环境。虚拟容器检查点技术能够有效保护容器内运行的应用程序和服务而不需要对应用进行修改。

1.5总体架构设计

1.5.1Primeton“两地三中心”容灾解决方案架构设计

结合近年国内出现的大范围自然灾害,以同城双中心加异地灾备中心的“两地三中心”的灾备模式也随之出现,这一方案兼具高可用性和灾难备份的能力。

1.5.1.1“两地三中心”本地高可用和容灾保护策略

(1)本地保护策略:

? 本地高可用

? 本地clone

? 持续数据保护

? B2D/BVTL

? 磁带备份

? Archive Log备份

(2)容灾保护策略

? 应用级或者数据级容灾

? 同级容灾、降级容灾

? 同步数据保护/异步数据保护

? 容灾数据复制技术

? 主备中心运营方式/双主中心运营方式/多中心运营方式

? 短、中、远期容灾策略

1.5.1.2“两地三中心”功能定位

同城双中心是指在同城或邻近城市建立两个可独立承担关键系统运行的数据中心,双中心具备基本等同的业务处理能力并通过高速链路实时同步数据,日常情况下可同时分担业务及管理系统的运行,并可切换运行;灾难情况下可在基本不丢失数据的情况下进行灾备应急切换,保持业务连续运行。与异地灾备模式相比较,同城双中心具有投资成本低、建设速度快、运维管理相对简单、可靠性更高等优点。

异地灾备中心是指在异地的城市建立一个备份的灾备中心,用于双中心的数据备份,当双中心出现自然灾害等原因而发生故障时,异地灾备中心可以用备份数据进行业务的恢复。

1.5.1.3“两地三中心”容灾架构设计

逻辑架构模型设计:

物理架构设计:

方案特点:

? 同城范围有效保证了数据的安全性和业务连续性;

? 异地复制数据根据灾难情形,尽可能降低数据丢失机率;

? 同城双中心为同步复制,数据实时同步,RPO=0;

? 异地无距离限制,保证数据一致性,保证了数据的有效保护;

? 异地容灾带宽要求低,先进的复制机制提高带宽利用率。

对于本地本级备份,应建立在线、近线、离线等多级存储备份系统,充分利用先进的备份手段和备份策略,形成完整的本地备份管理解决方案;备份的数据包括操作系统、数据文件以及应用服务环境等多个方面;日常访问的重要数据采用磁盘或者虚拟带库方式备份,归档数据和非重要数据采用磁带库方式备份;重要数据应至少保证每周做一个全量备份,平时做增量备份。

对于数据级异地灾备中心,选址上,应进行风险分析,避免异地备份中心与主中心同时遭受同类风险;网络备用系统上,必须在核心网络层面实现热备,保证灾备中心区域内通信的可靠性;数据备份系统上,主中心与备份中心的备份链路应有冗余,并确保2小时内将主中心的增量数据复制或备份到灾备中心;数据处理备用系统上,配备灾难恢复所需的全部数据处理设备,并处于就绪状态或运行状态,与主中心共同承担部分核心应用的查询服务功能。

对于同城应用级灾备中心,选址上,主中心与同城灾备中心距离应小于100KM;网络备用系统上,在核心网络层面实现热备,主中心与应用级灾备中心间通过裸光纤互联或VPLS互联,部署TRILL构建大二层网络,满足虚拟化需求;网络负载均衡上,主中心网络与灾备中心网络的负载均衡,提高灾备网络利用率与灾备网络可用性,正常情况下数据流同时使用两个中心的网络,主中心网络出现故障时,则全部数据流向灾备网络;应用集群切换上,关键业务系统集群实现手动切换,主中心与同城灾备中心之间建立高可用性监控技术,实现灾备中心应用服务器集群与主中心生产服务器集群之间的高可用性切换;云计算技术采用上,采用虚拟化技术对同城灾备中心进行规划建设,同时,根据业务关键程度、对性能的要求,系统平台选择不同档次和不同平台的主机资源池、存储资源池。

1.5.2基于不同服务需求选择不同可靠性“两地三中心”架构

1.5.

2.1服务等级划分的可靠性

1.5.

2.2 Primeton通用的基于服务的“两地三中心”架构

1.5.

2.3 Primeton基于不同的服务质量,达到不同级别的整体可靠性(tier)(1)场景1

主环境如图中A所示,包含了数据库,应用,Web三层服务结构,本地高可用环境P作为同城备份站点,复制100%A中的Web服务,100%的A中的应用在线服务,100%的A中的OLTP事务,异地在数据库/应用/Web层均复制75%A中的服务。那么这套方案整体的可靠性将会达到99.999%。

(2)场景2

主环境如图中A所示,本地高可用环境P复制100%的A中的Web服务,100%的A中的应用在线服务,异地在数据库/应用/Web层均复制75%的A。那么这套方案整体的可靠性将会达到99.99%。

(3)场景3

主环境如图中A所示,本地高可用环境没有即没有同城备份站点,异地在数据库/应用/Web 层均有一个可以接受的备份(非和A环境100%相同)。那么这套方案整体的可靠性将会达到99.70%。

(4)场景4

主环境如图中A所示,本地高可用环境没有即没有同城备份站点,异地采用冷备的方式,仅仅在发生灾难的时候采取措施。那么这套方案整体的可靠性只有99.00%。

1.6数据级容灾设计

数据的复制是应用接管的基础,保障数据复制的完整性和实时有效性才能使得应用的接管有意义。数据复制主要分为4大类(1.4.2已有说明),综合性价比和客户自身情况,Primeton 推荐可以使用如下两类的数据复制技术:

第一类,是基于磁盘阵列的复制软件实现,比如EMC SDRF、HDS 的TureCopy、IBM的Flash 等;

第二类,是基于服务器或者应用软件(应用层)实现,比如Oracle DataGuard组件、GoldenGate数据库复制软件、DSG的RealSync软件等。

A)磁盘阵列同步有以下主要特点:

? 可以实现对所有数据的灾备,支持所有的数据类型,是最全面的灾备保护方式;

? 基于存储设备进行灾备,可以有效的解决对数据库服务器和各种应用服务器的计算资源的占用问题;

? 部署简单,无需更改原来的文件系统。维护也更加简单,维护好存储灾备系统就可以。

B)基于服务器或应用软件的灾备,有以下特点:

? 支持异构平台,开放的硬件选择;

? 极短时间切换的热容灾;

? 容灾侧数据库也处于打开状态,可以做主地数据库的负载均衡,提升系统的可用性;? 对网络要求不高,低带宽下能够传输数据;

1.7应用级容灾设计

应用级灾备包括两个方面:数据同步和应用接管。数据同步是应用接管的前提。在保证数据同步基础上,要实现应用接管,还要能实现灾难发生时的网络切换和应用切换。

1.7.1网络切换设计

应用级灾备要求提供冗余的网络线路和设备。正常情况下,客户端通过生产中心的业务网络访问生产中心的应用服务器;在发生灾难时,通过网络切换,客户端能够访问到灾备中心的备用服务器。

目前,网络切换主要有以下三种:

(1)基于IP地址的切换

生产中心和灾备中心主备应用服务器的IP地址空间相同,客户端通过唯一的IP地址访问应用服务器。在正常情况下,只有生产中心应用服务器的IP地址处于可用状态,灾备中心的备用服务器IP地址处于禁用状态。一旦发生灾难,管理员手工或通过脚本将灾备中心服务器的IP地址设置为可用,实现网络访问路径切换。

(2)基于DNS服务器的切换

在这种方式下,所有应用需要根据主机名来访问,而不是直接根据主机的IP地址来访问,从而通过域名实现网络切换。

(3)基于负载均衡设备的切换

通过在服务器集群前端部署一台负载均衡设备,根据已配置的均衡策略将用户请求在服务器集群中分发,为用户提供服务,并对服务器可用性进行维护。负载均衡能够按照一定的策略分发到指定的服务器群中的服务器或指定链路组的某条链路上,调度算法以用户连接为粒度,并且可以采取静态设置或动态调配的方式。负载均衡设备能够针对各种应用服务状态进行探

测,收集相应信息作为选择服务器或链路的依据,包括ICMP、TCP、HTTP、FTP、DNS等。通过对应用协议的深度识别,能够对不同业务在主生产中心和灾备中心之间进行切换。

这三种网络切换方式比较如下:

在以上三种网络切换方式中,基于IP地址的切换方式较简单,实现成本低,但是对于拥有较多服务器的灾备中心而言,手工更改大量IP地址和网络配置需要比较长时间,因此这种方式适合于只有少数应用服务器的场合;基于DNS的切换方案,从技术上讲较成熟,应用也较多,而且能够实现网络切换的全自动,但是需要增加两台DNS服务器的投资;而基于负载均衡的切换,需要增加负载均衡板卡,但是切换能够精细到业务和服务内容,因此,在大型数据中心情况下,Primeton建议采用负载均衡的方式进行网络之间的切换。

1.7.2应用切换设计

应用切换是指生产中心由于发生灾难而瘫痪时,可由灾备中心的备用服务器提供业务接管,确保业务运行的高连续性。

实现应用切换的前提条件是:

? 数据已经从生产中心同步到灾备中心;

? 灾备中心配置与生产中心对应的应用软件服务器、数据库服务器和中间件服务器等,且运行正常;

? 灾备中心网络运行正常或能够实现正常切换。

应用切换技术主要有以下几种:

(1)双活数据库技术

部分数据库复制容灾软件,能够实现生产中心和灾备中心数据库双活,即灾备中心的备份数据库也处于Open状态,客户端可对灾备数据库进行只读访问(例如GoldenGate、DSG等数据库复制软件)。生产中心和灾备中心数据库保持双活,可提高灾备中心的资源利用率,分担生产中心的业务负担,在发生灾难时,自然也可以实现应用和业务的接管。

这种方式的缺点之一是只适合于特定的数据库应用,不适合文件系统等应用,有一定的局限性。

(2)远程集群技术

远程集群是指通过在生产中心和灾备中心的应用服务器上安装远程集群软件(例如Veritas Storage Foundation中的GCO组件),实现跨广域的多服务器状态的监控,当发生灾难时,实现应用服务器的自动切换。主要是由厂家提供的一些容灾软件实现自动切换,拉起异地的应用和数据库。例如,赛门铁克的VCS,IBM的PowerHA等。

(3)手动切换方式

手动切换方式实现较简单,总体成本低,适用范围广,而且较可靠。采用这种方式时,灾备中心部署与生产中心相对应的应用服务器和数据库服务器,安装相应软件。在正常情况下,灾备中心服务器可选择不运行或者处于就绪状态但对外不可访问;发生灾难时,可在人为决策后,将灾备中心服务器启动或恢复对外访问,实现业务的快速切换。

1.8网络层设计

在每一个节点,为了提高可靠性,避免单点故障,建议在网络层采用双网双平面的设计,即在交换机/路由器层均采用冗余设计。

在同城高可用环境下,在预算允许的情况下,建议数据复制采用光纤(FC)传输,能够大大提升同步数据复制的效率和可靠性。

在异地灾备情况下,由于数据传输线路较长,采用FC传输代价太高,并且灾难发生也是偶然事件。综合考虑性价比,建议采用IP传输。

1.9 Primeton容灾方案推荐软/硬件配置选型清单

灾备技术分析

1.1.1灾备技术分析 1.1.1.1灾备等级建议 设计一个灾备系统,需要考虑数据安全保障、网络带宽、数据备份/恢复可用,关系到备份/恢复数据量大小、数据中心和灾备中心间的距离和数据传输方式、灾难发生时要求的恢复速度等。根据这些因素,通常将灾备分为四个等级。 第0级,无灾备中心:这一级灾备,实际上没有灾难恢复能力,它只在本地进行数据备份,并且被备份的数据只在本地保存,没有送往异地。 第1级,本地磁带备份,异地保存:在本地将关键数据进行备份,然后送到异地保存。灾难发生后,按照预定数据恢复程序恢复系统和数据。 第2级,主备站点备份:在异地建立一个热备份点,通过网络以同步或异步方式把主站点的数据备份到备份站点,备份站点一般只备份数据,不承担业务。当出现灾难时,备份站点将接替主站点的业务,从而维护业务的连续性。 第3级,活动灾备中心:在相隔较远的地方分别建立两个数据中心,它们都处于工作状态,并进行相互数据备份。当某个数据中心发生灾难时,另一个数据中心接替其工作任务。这种级别的备份需要配置专用的硬件设备和复杂的管理软件,需要的投资相对而言是最大的,但恢复速度也是最快的。 通过比较分析,本项目拟采用灾备第2级进行数据灾备系统的建

设。 1.1.1.2灾备类型分析 灾备系统可以分为业务级灾备、数据级灾备、应用级灾备共三种类型。 (1).业务级灾备:主要在应用软件开发阶段,对数据进行主用数据库和灾备数据库的提交,这种方式需消耗10%左右的主机资源,对网络的要求也很高,因为其数据几乎是实时传递的,此外这种方式对系统开发人员要求极高,要注意每个模块跟数据相关的代码,否则极容易出现数据不一致的情况。 (2).数据级灾备:有基于存储阵列的数据镜像和基于管理软件的数据镜像两种方式。前者跟主机以及现有的IP网络没有关系,它通过FC(或FC-IP-FC)来实现阵列一级的数据同步,整体投资大,但数据安全性最有保障,且应用系统较多时实施较方便;后者需消耗10%~30%的处理器资源,对网络环境依赖较大。传统的数据备份可以认为是初级的数据级灾备方式,只是实效性差。 (3).应用级灾备:主要用于基于数据库的灾备,这种方式的系统变更的数据可以通过数据库本身的功能,通过IP网络从数据中心复制到灾备中心,这种方式不用兼顾应用层面和存储层面,整体成本是比较低的。传统的应用级灾备是通过主机一级的卷复制来实现数据灾备,对网络、主机的资源消耗较大。 根据业务需求并通过比较分析,本项目拟采用应用级的数据灾备方案。

灾备系统技术方案

目录 第1章灾备系统技术方案 (3) 1.1异地灾备项目概述 (3) 1.1.1项目目标 (3) 1.1.2项目范围 (3) 1.1.3项目建设原则 (3) 1.2项目建设整体集成工作需求分析 (4) 1.2.1XX图书馆异地灾备系统的总体要求分析 (4) 1.2.2XX图书馆存储设备现状分析 (6) 1.2.3异地灾备存储系统的技术要求分析 (8) 1.2.4项目建设重点工作分析汇总 (8) 1.2.5项目建设工作难点分析 (10) 1.3灾备系统技术方案 (13) 1.3.1方案的总体设计 (13) 1.3.2灾备建设的总体方案 (14) 1.3.3数据级灾备平台设计 (31) 1.3.4灾备链路及SAN网络设计 (33) 1.3.5核心业务数据同步复制技术方案 (38) 1.3.6非核心业务数据异步复制技术方案 (47) 1.3.7长期保存数据的灾备技术方案 (55) 1.4我方投标灾备技术方案优势 (59) 1.4.1与现有存储系统整合最好的灾备方案 (59) 1.4.2提供业界最先进存储灾备技术 (60) 1.4.3最合理的SAN网络设计及灾备链路方案 (60)

1.4.4采用业界评价最高的存储 (61) 1.4.5业内唯一可提供100%数据可用性承诺的存储 (62) 1.4.6业界公测性能排名第一的存储 (63) 1.4.7业界第一款支持双活存储集群的存储 (67) 1.4.8内置存储虚拟化功能 (72) 1.4.9扩展能力极其出色 (82)

第1章灾备系统技术方案 1.1异地灾备项目概述 1.1.1项目目标 通过建立XX图书馆异地灾备系统,提高XX图书馆核心业务系统的风险抵御能力,避免或减少灾难打击和重大事故对XX图书馆及XX图书馆核心业务系统和重要系统造成的损失,确保核心业务系统的数据安全和作业持续性,实现核心业务数据异地实时同步复制、非核心业务数据以及各类数字资源异地保存。 1.1.2项目范围 1、异地灾备系统的建设:包括存储设备、配套设备及软件的安装、调试和集成,机房综合布线实施等。 2、异地灾备系统的培训:提供异地灾备系统使用及运维培训,确保用户能够熟练掌握、使用和维护异地灾备系统。 1.1.3项目建设原则 XX图书馆异地灾备系统建设须遵循以下原则: 1、可靠和实用性原则 异地灾备系统的设备选型、设计规划和实施方案、运维方案等方面均需考虑可靠性,实用性。 2、可扩展性原则 异地灾备系统的设备选型和软件应充分考虑可扩展性,能满足由于业务增长和业务需求带来的扩展要求。 3、成本效益原则 根据灾难恢复目标,按照灾难恢复资源的成本与风险可能造成的损失之间取得平衡的原

虚拟化技术灾备解决方案原理分析

虚拟化技术灾备解决方案原理分析 虚拟化技术灾备解决方案的核心思想是双向复制,数据在其他地方实时产生一份可用的副本,此副本不需要做数据恢复,即可投入使用,当中断恢复后再还原回去。 当主服务器突然发生故障或者因其他损坏而停止工作时,和主服务器同步并做备份的虚拟主机开始启动,它将临时客串成为主服务器,同时向管理员发送邮件或者直接发送通知到管理员的移动终端上。当主服务器恢复后,虚拟机上包括操作系统、数据库、应用程序和其他相关数据都被无缝地迁移回原来的主服务器。完成这些操作只需要轻松地点击几下鼠标,用户根本感觉不到曾有业务中断。“这一切都是利用虚拟化技术灾备解决方案所带来的方便。”Novell公司工程师杨英宏说。 用户大量的业务系统依靠IT作为支撑,如果IT系统环境出现问题,将很难保证业务的正常运行,同时带来较大损失。市场上流行着各种各样的灾备技术和系统,但是,由于传统灾备系统的安装、配置和复杂度比较高,价格也比较昂贵,用户80%的投入只保护了20%的服务器,而且并不能真正保证业务运行。 灾备的目的是当灾难发生后,要立即恢复系统,尽快投入使用,所以灾备采用的各种技术,无论是数据备份、数据复制还是其他技术,都将围绕着业务的连续来进行。衡量这些灾备技术的指标主要是RPO(Recovery Point Object,恢复点目标)和RTO(Recovery Time Object,恢复时间目标)。 在虚拟化技术的灾备解决方案中,把要备份的目标定义为工作负载,这是指独立于硬件平台之上的一些应用运行环境,包括操作系统、数据和应用。 虚拟化技术灾备解决方案的核心思想是双向复制,数据在其他地方实时产生一份可用的副本,此副本不需要做数据恢复,即可投入使用,当中断恢复后再还原回去。数据复制的最大好处是副本数据立即可用,没有数据恢复时间,RTO 非常好。因为是实时复制,RPO也非常好,几乎不会丢失多少数据。

服务器灾备方案

服务器灾备方案 一、服务器灾备的目的 服务器灾备计划就是在平时对服务器的重要数据、数据库、配置文件、应用服务等做备份,为了在发生重大灾难或者事故后,能尽快将原服务器中重要的数据、数据库或者应用服务等恢复出来继续给客户提供服务。 ※本方案适用于基于Windows操作平台下的服务器。 二、主要的服务器备份方式 按备份系统的准备程度,可将其分为冷备份、温备份和热备份三大类。 冷备份备份系统未安装或未配置成与当前使用的系统相同或相似的运行环境, 应用系统数据没有及时装入备份系统。一旦发生灾难,需安装配置所需的运行环境,用数据备份介质(磁带或光盘)恢复应用数据,手工逐笔或自动批量追补孤立数据,将终端用户通过通讯线路切换到备份系统,恢复业务运行。优点:设备投资较少,节省通信费用,通信环境要求不高。缺点:恢复时间较长,一般要数天至1周,数据完整性与一致性较差。 温备份将备份系统已安装配置成与当前使用的系统相同或相似的系统和网络运行环境,安装了应用系统业务定期备份数据。一旦发生灾难,直接使用定期备份数据,手工逐笔或自动批量追补孤立数据或将终端用户通过通讯线路切换到备份系统,恢复业务运行。优点:设备投资较少,通信环境要求不高。缺点:恢复时间长,一般要十几个小时至数天,数据完整性与一致性较差。 热备份备份处于联机状态,当前应用系统通过高速通信线路将数据实时传送到备份系统,保持备份系统与当前应用系统数据的同步;也可定时在备份系统上恢复应用系统的数据。一旦发生灾难,不用追补或只需追补很少的孤立数据,备份系统可快速接替生产系统运行,恢复营业。优点:恢复时间短,一般几十分钟到数小时,数据完整性与一致性最好,数据丢失可能性最小。缺点:设备投资大,通信费用高,通信环境要求高,平时运行管理较复杂。 在计算机服务器备份和恢复中,冷备份服务器(cold server)是在主服务器丢失的情况下才使用的备份服务器。冷备份服务器基本上只在软件安装和配置的情况下打开,然后关闭直到需要时再打开。 温备份服务器(warm server)一般都是周期性开机,根据主服务器内容进行更新,然后关机。经常用温备份服务器来进行复制和镜像操作。 热备份服务器(hot server)时刻处于开机状态,同主机保持同步。当主机失灵时,可以随时启用热备份服务器来代替。

DR容灾网关--技术方案(本地灾备 简要)

为满足核心业务、数据的保护,本次灾备建设方案主要对多台Windows、Linux服务器及虚拟机服务器镜像保护。采用基于柏科DR容灾网关系统实现数据灾备解决方案:使用DR容灾网关对核心数据进行镜像,采用快照实现数据的逻辑错误恢复,采用一键式P2V启动功能实现操作系统的快速恢复;在本地信息中心,使用数据容灾网关特有的备份、归档功能对数据进行离线保护,最大程度对数据进行全方位的保护。 数据镜像 FC-SAN 数据镜像 部署说明 在生产中心部署一套DR3300容灾网关,利用DR3300容灾网关的数据镜像、智能快照、CDP持续数据保护、远程复制等技术实现本地应用级灾难接管。 ●架构规划 在生产中心增配一台DR容灾网关系统,DR容灾网关采用旁路非侵入式部署,只需加入FCSAN存储网络,即可以对生产中心多台服务器本地硬盘的操作系统、应用及核心存储数据进行保护,实现本地数据容灾保护。 在生产中心配备用虚拟化平台,可在本地系统出现故障时,5分钟内实现P2V 应用级业务接管。 ●业务及数据保护 客户端代理:在生产中心受保护服务器上安装客户端磁盘Agent映像代理软

件,将中心服务器硬盘数据或磁盘阵列数据镜像到DR容灾网关中。DR容灾网关通过磁盘Agent代理软件与这些应用程序集成或被直接调用,有相关的代理程序驱动数据库进入静止状态来做快照,来保证数据的一致性。 数据镜像:将DR容灾网关分别与应用服务器连接并分配相应的保护数据卷,满足各应用服务器数据的保护需求。平时对核心服务器的系统卷和数据卷均做镜像(MIRROR),通过磁盘镜像技术可以防止核心磁盘存储系统或服务器磁盘故障,发生故障时可以直接用DR容灾网关接替工作,对外提供服务,数据零丢失快照保护:通过对镜像的数据快照保护,保证了一体化保护设备上面保存了各应用服务器关键数据的多个历史副本,从而在发生逻辑错误(人为误删除、病毒感染、软件故障等)时可以快速恢复数据,重新起用应用。 数据的一致性保证: Oracle、MSSQL等都是结构化数据库,DR容灾网关快照与这些应用程序集成或被直接调用,有相关的代理程序驱动数据库进入静止状态来做快照,来保证数据的一致性。 持续I/O数据保护:对每个I/O操作进行持续“录像”保护,如果发生的是误删除、数据文件病毒感染、数据库损坏、数据不一致等情况,可恢复最近任意时间点的数据,数据丢失量(RPO)达到秒级。 远程数据复制:可以通过IP网络采用加密压缩和精简复制技术,将本地生产中心数据完整地复制到异地的DR容灾网关设备上,实现真正的异地容灾系统,使用精简灾备和数据压缩等传输技术,数据传输带宽只需要传统灾备1/8-1/32,传输成本大为降低。(后期可升级建设灾备站点) 灾难恢复 对数据存储的保护:如果本地生产中心核心磁盘存储系统故障,可以直接用DR容灾网关接替工作,对外提供服务,在数据“零”丢失的同时保证业务的连续性,避免了原有存储系统的单点故障。 远程启动功能:如果本地服务器操作系统故障,可用通过DR容灾网关SAN BOOT功能实现远程启动恢复操作系统和应用系统,防止操作系统和应用系统的故障。

Nutanix超融合平台双活与灾备技术介绍

Nutanix 超融合平台双活与灾备技术介绍

1Replication and DR 关于视频解说,你可以查看以下链接:https://youtu.be/AoKwKI7CXIM Nutanix提供原生的容灾(DR)和复制功能,它们构建于“快照”&“克隆”等功能之上。Cerebro是在分布式存储(DSF)中负责管理DR和复制的组件。Cerebro 运行于每个节点之中,通过内部选举产生Master(类似于NFS Master),并由此节点管理复制任务。如果当Cerebro Master所在的CVM发生故障,剩余的节点将选举出新的Master。通过:2020,即可打开Cerebro的相关界面。DR功能可以分解为以下关键要点: ●.Replication Topologies ●Implementation Constructs ●Replication Lifecycle ●Global Deduplication Replication Topologies 一直以来,有几种主要的复制网络拓扑:点对点(Site to site),菊花链(hub and spoke),全网状/部分网状(full and/or partial mesh)。相对于传统的方案,它们仅提供“点到点”或“菊花链”的方式,Nutanix提供“全网状”或更加灵活的“多到多”的拓扑方式。 Figure 11-36. Example Replication Topologies

这将让管理员能够灵活的配置复制功能,从而更好的满足公司需求。 Implementation Constructs 在Nutanix的DR,包含以下主要的功能组件: 远程站点(Remote Site) ●主要角色:远程站点的Nutanix群集 ●描述:远程站点的Nutanix群集,用于充当备份或DR的目标端。 专家提示: 请确保容灾端有足够的资源(计算/存储)用于接管生产端的业务虚机。 保护域(PD/Protection Domain) ●主要角色:同时保护的多个“虚拟机/文件”的逻辑组 ●描述:一组多个虚拟机或文件基于某个相同的保护策进行复制保护。一个PD可以 保护一整个容器(Container)或你所选中的多个虚拟机或文件。 专家提示: 你可以针对不同的RPO/RTO需求,创建都个不同的PD。例如你可以针 一致性组(CG/Consistency Group) ●主要角色:PD中多个相关联的VM或文件构成的一个子集,以实现故障时一致性。 ●描述:PD中多台相关联的VM或文件需要在“同一时刻”发起快照。从而确保在虚 拟机或文件回滚时的数据一致性。一个PD中可包含多个CG。

容灾备份技术

容灾备份技术 从广义上讲,任何提高系统可用性的方法,都可称之为容灾。由于容灾主要是保护数据安全,或者说对数据进行维护。因此,以前常规采用的数据备份容易造成“备份的数据”与“数据库中的数据”不一致,使数据库很难恢复;而且,通过磁带备份恢复数据需要很长时间,恢复阶段中业务将处在停滞状态。同时,由于备份介质与生产系统之间的在线交易在物理上不好分开,所以当机房发生危险,如火灾、水灾以及其他的灾难性事件发生时,企业对数据的依赖性变强。数据丢失将导致企业的业务瘫痪,以至破产。 因而对业界来说,迫切需要解决的问题是:对那些关键应用来说,如何能保证书数据的安全性,以便能抵御灾难性的能力。 1.基于存储级的数据复制容灾软件: 这种容灾技术是实现基于智能存储系统的远程数据复制,大多都有开放性差的特点(不同厂家的存储设备系统一般不能配合使用)、对于主备中心之间的网络条件(稳定性、带宽、链路空间距离)要求较苛刻等缺点。 A.IBM PPRC IBM的PPRC(Point to Point Remote Copy,点对点远程复制)复制技术是基于ESS企业级数据存储服务器,通过ESCON(Enterprise Systems Connection,企业管理系统连接,是一种光纤通道)通道建立配对的逻辑卷容灾技术。这是IBM的最高级别容灾方案,主要适用于大、中型和电信、金融企业选用。 B.HP Continuous Access XP 一般而言,关键任务系统可以根据应用种类、恢复时间、丢失数据大小、连接方式以及距离的远近来选择容灾的方式。其中,应用种类包括数据库-裸盘系统、数据库-文件系统、文件(数据、媒体等)。在此基础之上,企业可以实施容灾的层次包括主机、SAN-SAN以及磁盘阵列到磁盘阵列三种方式。为此,HP提供了OpenView存储镜像软件(主机层次容灾)、CASA(SAN层次容灾)、XP CA以及EV A CA(磁盘阵列层次容灾)等方案来帮助用户实现不同的容灾方式,保证业务连续性。

系统容灾技术方案大全

系统容灾技术方案大全

目录 一、数据中心灾备系统的分类 (3) 二、数据库远程复制和异地容灾方案相关分析 (11) 三、数据备份与数据容灾 (14) 四、重复数据删除成就异地容灾 (15) 五、金税工程三期背景下省级容灾备份建设探索 (22) 六、安徽中烟数据集中容灾系统建设实践与探索 (36) 七、推荐九个容灾解决方案 (42) 八、推荐九个容灾解决方案 (42) 九、GDS灾难恢复解决方案 (62) 十、多级企业数据容灾解决方案对比 (65)

一、数据中心灾备系统的分类 摘要:本文为大家讲述数据中心的一些技术知识,具体为您讲述数据中心灾备系统的 分类情况。 1.数据级容灾和应用级容灾 按照容灾系统对应用系统的保护程度可以分为数据级容灾和应用级容灾,业务级容灾的大部分内容是非IT系统。 数据级容灾系统只保证数据的完整性、可靠性和安全性,但提供实时服务的请求在灾难中会中断。应用级容灾系统能够提供不间断的应用服务,让服务请求能够透明(在灾难发生时毫无觉察)地继续运行,保证数据中心提供的服务完整、可靠、安全。因此对服务中断不太敏感的部分可以选择数据级容灾,以便节省成本,在数据级容灾的基础上构建应用级容灾系统,保证实时服务不间断运行,为用户提供更好的服务。 (1)数据级容灾。通过在异地建立一份数据复制的方式保证数据的安全性,当本地工作系统出现不可恢复的物理故障时,容灾系统提供可用的数据。数据级容灾是容灾的基础形式,由于只需要考虑数据的复制和存放,不需要考虑备用系统,实现起来相对简单,投资也较少。数据级容灾需要考虑三方面问题:在线模式与离线模式问题;远程数据复制技术问题;同步与异步容灾问题。 (2)应用级容灾。应用级容灾能保证业务的连续性。在数据级容灾的基础上,建立备份的应用系统环境,当本地工作系统出现不可恢复的物理故障时,容灾系统提供可用的数据和应用系统。

容灾备份解决方案

容灾备份系统简介 2010-8-11 项目背景

随着计算机技术的快速发展,每个企业都在大量的使用计算机处理自己的核心数据, 这些数据往往是企业生产经营必不可少的部分。依赖这些数据的计算机系统的停机往往会造 成企业生产经营活动的停顿,给企业造成巨大的损失。所以,可以说,这些数据是企业的生 命核心。企业的IT管理员为了保证生产经营活动的持续运行,不断的加强对系统和数据的保护,如使用基于双机的高可用技术,磁盘阵列系统的RAID技术等。然而,人们依然无法 回避由于磁盘故障,人为失误,应用程序的逻辑错误,自然灾害等原因带来的系统停机或者数据丢失。所以,数据备份作为数据保护的最后一道屏障,必不可少。 、功能介绍 ■实时保护:连续捕获、实时备份数据变化,全过程保护数据安全。实现真正的持续性数据保护(CDP,无需设置任何备份时间点,居国内外同类产品领先地位。 ' 完善备份:同一软件可实现“数据库双机热备+接管”、“本地实时灾备”、“异地实时灾备”,全方位保证数据库安全。 E 任意回退:可按任意操作步数或时间点进行数据回退。主数据库遭到破坏时,备份数据库可将主数 据库回退到损坏前最后时刻的状态,且能保证事件的完整性。 ■ 快速恢复:主数据库或表损坏,从站自动检测,提示回退的步数。恢复1个G数据库在3 -5分钟。 ' 增量备份:只备份变化部分,在保障备份数据安全的同时减少备份的工作量。 ' 错峰机制:在系统负荷极大时暂停备份以免系统瘫痪,当系统负荷下降时备份暂停期间的数据,并重新开始实时备份。 ' 低耗资源:对主数据库压力小,系统采用消息机制,只有灾数据库发生变化时才触发,只传数据库的变化部分,不同于文件拷贝,和数据表的轮询。 ' 操作简单:自主开发设计,着重考虑国内用户使用习惯,安装、设置非常简单。 丄维护方便:启动或连接中断后重连时,自动校验主从站数据,保证数据准确。 ' 加密传输:底层通讯采用自主研发的通讯平台,所有数据都是用加密数据包进行数据交换,充分保证数据安全。 ' 高性价比:在各项性能领先的同时,价格远远优于国外软件。当选择不接管的热容灾备份方式时,从站可采用低档Server或高稳定性的PC (有足够的存储空间即 可),从而实现极低的总体成本。 ' 通用性好:不对数据库中的应用做任何修改。与数据库中表的结构无关,且无任 何限制。对数据库备份完整:如TABLES(表)、DIAGRAMS关系图)、VIEWS(视图)、 USERS(用户)、ROLES RULE等。

灾备方案

1.数据中心容灾备份解决方案 随着社会的发展和科技的进步,政府日常工作越来越依赖于数据处理来进行,政务系统的连续性依赖于数据中心系统的稳定运行。然而,灾难就像灰尘一样伏击在运营环境周围,政务系统的数据中心可能正在一个充满风险和威胁的环境下运行。如果不能对这些风险采取有效治理,一旦数据由于某种原因丢失,就很有可能对政府的日常工作造成严重的影响。如果核心数据丢失,将会使得某些核心功能陷入瘫痪,造成不可估量的损失。因此,保证政务的连续性和数据的高可靠性和可用性,已经成为政府部门在数据中心建设中,必须要考虑的问题。 1.1灾备解决方案原则 首先,在制定容灾系统方案的过程中要考虑的就是容灾系统建设对原有业务系统带来的影响。比如,采用数据复制技术对系统I/O带来的延迟,应用数据同步对日常业务处理系统带来的压力等。因此,企业要通过周密的测试和分析来规避容灾系统建设时带来的这些风险,以保证业务系统不会因容灾系统的建设而出现在处理性能上下降的问题。 第二,数据状态要保持同步。为保证在灾难发生时,业务可以成功地切换到备份中心,就必须保证容灾系统数据同步机制的可靠性。因此,建立可靠的数据同步校验机制是必须的; 同时,还要考虑建立定时的、自动的数据同步核查对比机制,以检验两个中心数据的一致性,这是数据容灾工作中非常重要的一部分。 第三,容灾系统的日常维护工作要尽可能轻,并能承担部分业务处理和测试的工作。容灾系统的维护和管理是容灾切换成功的重要保证,在系统建设中,就必须要考虑系统的维护管理流程。生产中心任何业务处理过程的改变都必须完整地复制到备份中心; 所有新业务系统上线时,必须通知备份中心,并在备份中心配置好数据同步机制; 对原程序的改动也必须保证两个中心同时上线。 第四,系统恢复时间要尽可能短。容灾系统主要是为了实现在主中心系统发生灾难时,可以在规定时间切换到备份中心,保证数据不会丢失,并且继续向用户提供服务。但往往在灾难发生时,主要技术人员不能及时到达现场,为了顺利实现系统间的切换,应该让系统切换操作尽可能地简单; 并建立固定化的、标准化的切换流程,要求维护人员在切换演习时严格按照流程的指导步骤进行操作。 第五,可实现部分业务子系统的切换和回切。当人事变动、业务变化、IT设施变化以及其 他可能引起恢复规划文档失效的变化发生时,应及时更新各恢复规划文档,并在必要时启动模拟测试或演习,确保业务连续性系统的工作能力。 第六,技术方案选择要遵循成熟稳定、高可靠性、可扩展性、透明性的原则。目前,国际上比较成熟的容灾技术包括:SAN/NAS技术、远程镜像技术、虚拟存储、基于IP的SAN互连技术以及快照技术等。其中基于IP的SAN远程数据容灾备份技术应用比较广泛,其是利用基于IP的SAN的互连协议,将主数据中心SAN中的信息通过现有的TCP/IP网络,远程复制到备份中心的SAN中的。当备份中心存储的数据量过大时,可利用快照技术将其备份

公司灾备方案

公司灾备方案 The latest revision on November 22, 2020

企业灾备需求 某企业众多的业务系统中,由于前期都是分批进行搭建,每年产品选型也都有变化,业务系统的主机包括windows、linux、unix系统,存储产品也包括了IBM、EMC、HDS等,在面临众多产品及不同的生产环境时,灾备的需求需要进行细致的分析,其中包括以下几个步骤: 1、灾备咨询 2、容灾技术选型 3、生产系统整合 4、灾备系统投产 5、演练 1.1.1 灾备咨询 建设初期需要对生产系统进行全面的调研,不仅仅包括硬件信息的收集,更包括业务风险分析,业务关联性分析等。 通过对现有系统数据的收集,充分分析现有生产系统面临的挑战,以及生产中心所处位置的地理、天气、社会环境进行充分的分析,最终对同城灾备中心及异地灾备中心的选址给出合理的咨询交付物。 业务关联性分析方面需要跟业务部门进行沟通,梳理出关联业务的数据流向和数据依赖性,用来确认容灾最终的范围及重要程度,避免因为某些特定关联业务的梳理不到位,导致核心应用因为关联性问题,容灾级别降低或灾备项目建设失败情况的发生。 1.1.2 关键技术的选型 近几年来,容灾已经成为信息数据中心建设的热门课题。很多容灾技术也快速发展起来,对用户来说也有很广阔的选择余地。由于容灾方案的技术复杂性和多样性,一般用户很难搞清其中的优劣以确定如何选择最适合自己状况的容灾解决方案。下面就容灾建设中的备份及复制技术做一个深入探讨,最终为本次容灾中的各系统选择适合的容灾方式。

容灾系统要求生产中心和灾备中心同时工作,生产中心和灾备中心之间有传输链路连接。数据自生产中心实时复制传送到灾备中心。在此基础上,可以在应用层进行集群管理,当生产中心遭受灾难出现故障时可由灾备中心接管并继续提供服务。 和数据备份相比,数据复制技术具有实时性高、数据丢失少或零丢失、容灾恢复快、投资较高等特点。 但是数据复制技术不能代替数据备份技术,因为数据复制技术保证的是两地的数据一致及完整,但是他不能避免因为人员误操作、病毒或其他方式带来的数据丢失或破坏,所以就算有了完整的数据复制技术,也不能放弃数据备份。 根据数据复制的层次,数据复制技术的实现可以分为三种:存储系统层数据复制、操作系统数据复制和数据库数据复制。 数据复制技术的比较 下面对数据复制的三种技术做一个简单比较:

容灾系统方案及数据备份技术

随着社会信息化步伐的不断加快,人们对信息系统的容灾备份能 JJ提出更高的要求。容灾技术冈此也日新月异。研究容灾技术,建立容灾系统的体系架构,提高容灾系统性能,都是重要的研究方向。 近几年,大量数据灾难如911事件,黑客服务器攻击等,使得数据安全问题更加迫切。容灾已经成为信息数据中心建设的热门课题,很多容灾技术也快速地发展起来。在容灾行业,有一个常识是,灾难一旦发生,如何尽量降低灾难给企业带来的负面影响是需要高度重视的一个问题。同样,企业在遭受来自互联网的“灾难”时,首先需要做的就是迅速建立起事故响应机制,尽早恢复日常的信息服务。不过,这需要企业在进行信息化的过程中做好未雨绸缪的容灾备份工作,做好了准备,才能有事情发生时的从容应对。 在容灾技术中通过容灾备份可以很好地解决系统的安全稳定运 行要求。容灾备份是通过特定的容灾机制,在各种灾难损害发生后,仍然能够最大限度地保障提供正常应用服务的信息系统。容灾备份可以分为数据备份和应用备份。数据备份需要保证用户数据的完整性、可靠性和一致性。对于提供实时服务的信息系统,在用户的服务请求在灾难中中断时,应用备份可以提供不问断的应用服务,让客户的服务请求能够继续运行,保证信息系统提供的服务完整、可靠、一致。数据备份是容灾系统的基础,也足容灾系统能够正常工作的保障;应用备份则是容灾系统的建设目标,它必须建立在可靠的数据备份的基础之上,通过应用系统、网络系统等各种资源之间的良好协调来实现。

根据IBM公司SHARE78标准,容灾技术可以分为7个层次,从无任何容灾备份措施,到将备份的磁带存储在异地,再刮建立应用系统实时切换的异地容灾备份中心,数据和应用的恢复时间从数天到几个小时甚至几秒。一个完整的容灾备份系统包括本地数据备份、远程数据复制和异地备份中心。当然,并不是所有的企业都需要这样一个系统,只有对不可中断的关键业务才有必要建立容灾备份中心。而小型企业通过建立NAS或SAN的离线数据备份和人为的数据转移就可以达到很好的容灾备份效果。 1、容灾方案的分类 目前有很多种容灾技术,分类也比较复杂。但总体上可以区分为离线式容灾(冷容灾)和在线容灾(热容灾)两种类型。 所谓的离线式容灾主要依靠备份技术来实现。其重要步骤是将数据通过备份系统备份到磁带上面,而后将磁带运送到异地保存管理。这种方式主要由备份软件来实现备份和磁带的管理,除了磁带的运送和存放外,其他步骤可实现自动化管理。整个方案的部署和管理比较简单,相应的投资也较少。但缺点也比较明显:由于采用磁带存放数据,所以数据恢复较慢,而且备份窗口内的数据都会丢失,实时性比较差。对于资金受限、对数据恢复的RTO和RPO要求较低的用户可以选择这种方式。

公司灾备方案

企业灾备需求 某企业众多的业务系统中,由于前期都是分批进行搭建,每年产品选型也都有变化,业务系统的主机包括windows、linux、unix系统,存储产品也包括了IBM、EMC、HDS等,在面临众多产品及不同的生产环境时,灾备的需求需要进行细致的分析,其中包括以下几个步骤: 1、灾备咨询 2、容灾技术选型 3、生产系统整合 4、灾备系统投产 5、演练 1.1.1 灾备咨询 建设初期需要对生产系统进行全面的调研,不仅仅包括硬件信息的收集,更包括业务风险分析,业务关联性分析等。 通过对现有系统数据的收集,充分分析现有生产系统面临的挑战,以及生产中心所处位置的地理、天气、社会环境进行充分的分析,最终对同城灾备中心及异地灾备中心的选址给出合理的咨询交付物。 业务关联性分析方面需要跟业务部门进行沟通,梳理出关联业务的数据流向和数据依赖性,用来确认容灾最终的范围及重要程度,避免因为某些特定关联业务的梳理不到位,导致核心应用因为关联性问题,容灾级别降低或灾备项目建设失败情况的发生。 1.1.2 关键技术的选型 近几年来,容灾已经成为信息数据中心建设的热门课题。很多容灾技术也快速发展起来,对用户来说也有很广阔的选择余地。由于容灾方案的技术复杂性和多样性,一般用户很难搞清其中的优劣以确定如何选择最适合自己状况的容灾解决方案。下面就容灾建设中的备份及复制技术做一个深入探讨,最终为本次容灾中的各系统选择适合的容灾方式。

容灾系统要求生产中心和灾备中心同时工作,生产中心和灾备中心之间有传输链路连接。数据自生产中心实时复制传送到灾备中心。在此基础上,可以在应用层进行集群管理,当生产中心遭受灾难出现故障时可由灾备中心接管并继续提供服务。 和数据备份相比,数据复制技术具有实时性高、数据丢失少或零丢失、容灾恢复快、投资较高等特点。 但是数据复制技术不能代替数据备份技术,因为数据复制技术保证的是两地的数据一致及完整,但是他不能避免因为人员误操作、病毒或其他方式带来的数据丢失或破坏,所以就算有了完整的数据复制技术,也不能放弃数据备份。 根据数据复制的层次,数据复制技术的实现可以分为三种:存储系统层数据复制、操作系统数据复制和数据库数据复制。 数据复制技术的比较 下面对数据复制的三种技术做一个简单比较:

数据中心灾备系统建设方案大全

数据中心灾备系统的分类 来源:机房360 作者:林小村更新时间:2010/11/19 11:50:11 摘要:本文为大家讲述数据中心的一些技术知识,具体为您讲述数据中心灾备系统的分类情况。 根据数据中心的安全要求,应对灾难恢复系统采用的技术路线做出全面的考虑。 1.数据级容灾和应用级容灾 按照容灾系统对应用系统的保护程度可以分为数据级容灾和应用级容灾,业务级容灾的大部分内容是非IT系统。 数据级容灾系统只保证数据的完整性、可靠性和安全性,但提供实时服务的请求在灾难中会中断。应用级容灾系统能够提供不间断的应用服务,让服务请求能够透明(在灾难发生时毫无觉察)地继续运行,保证数据中心提供的服务完整、可靠、安全。因此对服务中断不太敏感的部分可以选择数据级容灾,以便节省成本,在数据级容灾的基础上构建应用级容灾系统,保证实时服务不间断运行,为用户提供更好的服务。 (1)数据级容灾。通过在异地建立一份数据复制的方式保证数据的安全性,当本地工作系统出现不可恢复的物理故障时,容灾系统提供可用的数据。数据级容灾是容灾的基础形式,由于只需要考虑数据的复制和存放,不需要考虑备用系统,实现起来相对简单,投资也较少。数据级容灾需要考虑三方面问题:在线模式与离线模式问题;远程数据复制技术问题;同步与异步容灾问题。 (2)应用级容灾。应用级容灾能保证业务的连续性。在数据级容灾的基础上,建立备份的应用系统环境,当本地工作系统出现不可恢复的物理故障时,容灾系统提供可用的数据和应用系统。 应用级容灾系统是建立在数据级容灾系统基础上的,同时能完成数据和应用系统环境的复制存放和管理。为实现发生灾难时的应用切换,容灾中心需要配置与工作系统同构和相同功能的业务网络、应用服务器、应用软件等。 应用级容灾还需要考虑数据复制的完全性、数据的一致性、数据的完整性、网络的通畅性、容灾切换的性能影响、应用软件的适应性改造等问题,以及为保证业务运行的所需设备、环境、人员及其相应的管理。 2.灾难恢复系统的在线/离线模式 (l)在线模式。在线灾难恢复系统要求工作系统与灾难备份系统通过网络线路连接,数据通过网络实时或定时从工作系统传输到灾难备份系统。对数据保护的实时性高,对业务连续性要求高,就需要采用在线模式。 (2)离线模式。离线灾难备份系统的数据通过存储介质(磁带、光盘等,搬运到异地保存起来实现数据的保护。离线模式适合于对数据保护的实时性要求不高的场合,离线模式设备比较简单,投资较少。 3.数据备份技术 正常情况下系统的各种应用在数据中心运行,数据存放在数据中心和灾难备份中心两地保存。当灾难发生时,使用备份数据对工作系统进行恢复或将应用切换到备份中心。灾难备份系统中数据备份技术的选择应符合数据恢复时间或系统切换时间满足业务连续性的要求。目前数据备份技术主要有如下几种: (1)磁带备份。 (2)基于应用程序的备份。通过应用程序或者中间件产品,将数据中心的数据复制到灾难备份中心。在正常情况下,数据中心的应用程序在将数据写入本地存储系统的同时将数据发送到灾难备份中心,灾难备份中心只在后台处理数据,当数据中心瘫痪时,由于灾难备份中心也存有生产数据,所以可以迅速接管业务。这种备份方式往往需要应用程序的修改,工作量比较大。另外,由应用程序本身来处理数据的复制任务,对应用系统的性能影响较大。 (3)数据库的远程数据复制。基本原理是将数据中心的数据库日志传送到远程灾难备份中心的数据库中,通过日志同步两端的数据库。这种方式需要数据库软件的支持。由于数据库方式只是传送数据库日志,与应用没有直接关系,因此无须对应用程序做大量修改。这种灾难备份方式比较适合于只对数据库有远程灾难备份需求,传输距离较长且网络传输带宽不大的用户环境。 (4)服务器逻辑卷的远程数据复制。这种方式在服务器操作系统逻辑卷管理软件基础上实现,通过IP网络将逻辑卷操作传输到异地主机,在异地主机执行同样的逻辑卷操作,保证本地和远端逻辑卷的一致性。这种灾难备份方式适合文件、数据库等多种数据的远程复制要求,并且对应用系统和数据库是透明的,但需要数据中心和灾难备份中心主机同构。 (5)基于存储备份软件实现的远程数据复制。数据的复制和同步通过存储备份软件实现,系统的灵活性很强,完全不依赖主机系统和存储系统,也不影响本地应用的响应速度,数据可以从任何存储设备上镜像到任何地点的任何存储设备上。 (6)基于智能存储设备的远程数据复制。由智能存储设备自身管理软件实现数据的远程复制,即智能存储设备将系统中的存储操作指

Oracle GoldenGate容灾技术方案介绍

Oracle GoldenGate 容灾技术方案

甲骨文公司声明 本文件是由北京甲骨文软件系统有限公司(以下简称:Oracle 公司)提供,其内容专供用于评估Oracle公司提供产品及服务的能 力,仅供参考。 本文件所包含的信息所有权属于Oracle公司。由于本文件包含Oracle公司保密资料,因此要求贵公司在收到本文件后三年内应为 Oracle公司保密;除非根据法律要求,不得出于除本项目评估之外 的任何目的,以任何形式向任何第三方提供本文件内容;并同意采 取所有合理的步骤,保证其接触本文件的人员不对外披露或散布本 文件内容。 本文件的内容将可能且应该根据具体实施情况及阶段的变化而变化。本文件对硬件规格、型号、性能的分析与估计并没有考虑操作系统、网络资源或任何其它在同一服务器上运转的应用软件对硬 件的消耗。具体的硬件配备必须根据硬件厂商的推荐来决定。对本 项目硬件最终选择的决定权应由客户掌握。本文件中对硬件规格的 估计也不对客户形成任何具有约束性质的陈述或担保。 请注意:如果您不同意上述声明,请不要阅读本文件,并立即将其返还给Oracle公司;否则,Oracle公司将视为您接受并同意遵 守上述声明。

目录 1Oracle GoldenGate介绍 (4) 2Oracle GoldenGate技术原理 (6) 3Oracle GoldenGate复制模式 (7) 3.1单向数据复制 (7) 3.2双向数据复制 (7) 3.3广播复制 (9) 3.4集中复制 (9) 3.5多层复制 (9) 4Oracle GoldenGate应用方式 (9) 4.1建立报表系统 (9) 4.2实现高可用性 (10) 4.3多数据源配置 (10) 4.4数据分布和数据集中 (10) 4.5层次化企业数据分布 (11) 5Oracle GoldenGate技术方案 (11) 5.1系统架构与灾备切换实现方式 (12) 5.2网络带宽估算 (13) 5.3典型的一次切换过程与存储空间估算 (14) 6Oracle GoldenGate关键特性 (16)

公司灾备方案

公司灾备方案标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]

企业灾备需求 某企业众多的业务系统中,由于前期都是分批进行搭建,每年产品选型也都有变化,业务系统的主机包括windows、linux、unix系统,存储产品也包括了IBM、EMC、HDS 等,在面临众多产品及不同的生产环境时,灾备的需求需要进行细致的分析,其中包括以下几个步骤: 1、灾备咨询 2、容灾技术选型 3、生产系统整合 4、灾备系统投产 5、演练 灾备咨询 建设初期需要对生产系统进行全面的调研,不仅仅包括硬件信息的收集,更包括业务风险分析,业务关联性分析等。 通过对现有系统数据的收集,充分分析现有生产系统面临的挑战,以及生产中心所处位置的地理、天气、社会环境进行充分的分析,最终对同城灾备中心及异地灾备中心的选址给出合理的咨询交付物。 业务关联性分析方面需要跟业务部门进行沟通,梳理出关联业务的数据流向和数据依赖性,用来确认容灾最终的范围及重要程度,避免因为某些特定关联业务的梳理不到位,导致核心应用因为关联性问题,容灾级别降低或灾备项目建设失败情况的发生。 关键技术的选型

近几年来,容灾已经成为信息数据中心建设的热门课题。很多容灾技术也快速发展起来,对用户来说也有很广阔的选择余地。由于容灾方案的技术复杂性和多样性,一般用户很难搞清其中的优劣以确定如何选择最适合自己状况的容灾解决方案。下面就容灾建设中的备份及复制技术做一个深入探讨,最终为本次容灾中的各系统选择适合的容灾方式。 容灾系统要求生产中心和灾备中心同时工作,生产中心和灾备中心之间有传输链路连接。数据自生产中心实时复制传送到灾备中心。在此基础上,可以在应用层进行集群管理,当生产中心遭受灾难出现故障时可由灾备中心接管并继续提供服务。 和数据备份相比,数据复制技术具有实时性高、数据丢失少或零丢失、容灾恢复快、投资较高等特点。 但是数据复制技术不能代替数据备份技术,因为数据复制技术保证的是两地的数据一致及完整,但是他不能避免因为人员误操作、病毒或其他方式带来的数据丢失或破坏,所以就算有了完整的数据复制技术,也不能放弃数据备份。 根据数据复制的层次,数据复制技术的实现可以分为三种:存储系统层数据复制、操作系统数据复制和数据库数据复制。 数据复制技术的比较 下面对数据复制的三种技术做一个简单比较:

主流灾备方案介绍

9.11后,无论计算机用户还是IT业者谈论系统灾难备援的都比较多。由于以前少有涉及,很多人即使是资深的技术人员对DRP或者BCP均只知道个大概,难有详细了解的机会。本文将常用的几种灾备方式的比较,抛砖引玉,帮助对灾备方式进行正确的理解与决策。 随着计算机系统越来越多的使用,系统的复杂度与关键性也与日俱增。企业灾备方案也越来越多地提上议事日程。在确定方案的过程中,如何选择一套最适合自已的灾备方式,对灾备效果,资金投入有着至关重要的意义。本文对业界常用的几种灾备方式进行比较,希望在确定备份方案时能对你有所帮助。 1.主流的灾备方式 1)基于存储。目前主流的存储设备厂商在其存储产品上均有基于存储设备的灾备解决方案,如EMC的SRDF,IBM的PPRC。这种解决方案是一种数据存储的物理镜像,它将数据在物理层面上,在两套存储设备中通过SAN制作或生成两套数据镜像。这两套存储设备可以是本地的,也可以是远程的。当本地的生产系统发生故障时,备份系统主机可以连接上备份存储系统,开启业务。 2)基于操作系统。有些操作系统如AIX他本身就具有数据跨存储设备的镜像功能。与本机硬盘单镜像设置的不同,这种灾备方式可以由操作系统通过SAN发起在两个存储设备间保存两份相同的数据。当本地的生产系统发生故障时,备份系统主机可以连接上备份存储系统,开启业务。

3)基于应用软件。大多数系统或者数据库均有基于应用层的软件灾备解决方案。在AS/400上有MIMIX,OMS,在AIX上有HAGEO, 在WINDOWS平台上有Veritas,还有针对不同的数据管理系统本身一般均有数据同步复制模块,均是实现软件灾备的解决方案。这种解决方案一般通过日志功能,将数据的更新动作通过网络如实地复制到本地或者远程的备份系统。当本地的生产系统发生故障时,备份系统主机无须重新启动,直接可以开启业务。 4)磁带冷备份。将生产系统的每日备份磁带定期送到安全的地方或者远程的备份机房。当本地的生产系统发生故障时,备份系统主机恢复磁带,然后开启业务。 2.灾备效果的衡量指标 企业灾备系统的建设是一种专业性很强的工作。灾备系统往往是在关键时刻起着牵系企业生存命脉的救命稻草似的作用,所以灾备系统的完善程度也有一套科学的衡量指标。 2.1.指标一:RTO (Recovery Time Objective) RTO,Recovery Time Objective,是指灾难发生后,从I/T系统当机导致业务停顿之刻开始,到IT系统恢复至可以支持各部门运作,业务恢复运营之时,此两点之间的时间段称为RTO。 一般而言,RTO时间越短,即意味要求在更短的时间内恢复至可使用状态。虽然从管理的角度而言,RTO时间越短越好,但是,这同

相关主题
文本预览
相关文档 最新文档