MATLAB分支定界法求解例题
- 格式:doc
- 大小:32.50 KB
- 文档页数:3
一个调用例子:ifint=[0 1];f=[10 9];a=[1 0;0 1;-5 -3];b=[8 10 -45];[x,fval,exitflag] = linprogdis(ifint,f,a,b,[],[],[],[],[],[])function r=checkint(x)%算法:如果x(i)是整数,则返回r(i)=1;否则返回r(i)=0function r=ifrowinmat(arow,amat)%输入参数:% arow 向量,% amat 矩阵%%设计:如果 arow与矩阵amat中的某一行相等,则返回1,如果找不到现等的一行,则返回0可以使用ismember(arrow,amat,’rows’)替换ifrowinmat的调用,2005-10-28标注使用时,将下面的代码存入文件:linprogdis.mfunction [x,fval,exitflag,output,lambda]=... linprogdis(ifint,f,A,b,Aeq,beq,lb,ub,x0,options)%Title:% 分支定届法求解混合整数线性规划模型%%初步完成:2002年12月%最新修订: 2004-03-06%最新注释:2004-11-20%数据处理[t1,t2] = size(b);if t2~=1,b=b';%将b转置为列向量end%调用线性规划求解[x,fval,exitflag,output,lambda] =linprog(f,A,b,Aeq,beq,lb,ub,x0,options);if exitflag<=0,%如果线性规划失败,则本求解也失败returnend%得到有整数约束的决策变量的序号v1=find(ifint==1);%整数变量的indextmp=x(v1);%【整数约束之决策变量】的当前值if isempty(tmp),%无整数约束,则是一般的线性规划,直接返回即可returnendv2=find(checkint(tmp)==0);%寻找不是整数的index if isempty(v2),%如果整数约束决策变量确实均为整数,则调用结束returnend%第k个决策变量还不是整数解%注意先处理第1个不满足整数约束的决策变量k=v1(v2(1));%分支1:左分支tmp1=zeros(1,length(f));%线性约束之系数向量tmp1(k)=1;low=floor(x(k));%thisA 分支后实际调用线性规划的不等式约束的系数矩阵A%thisb 分支后实际调用线性规划的不等式约束向量b if ifrowinmat([tmp1,low],[A,b])==1%如果分支的约束已经存在旧的A,b中,则不改变约束thisA= A;thisb= b;elsethisA=[A;tmp1];thisb=b;thisb(end+1)=low;end%disp('fenzhi1'),thisA,thisb%递归调用[x1,fval1,exitflag1,output1,lambda1]= ...linprogdis(ifint,f,thisA,thisb,Aeq,beq,lb,ub,x0,o ptions);%分支2:右分支tmp2=zeros(1,length(f));%tmp1;tmp2(k)=-1;high= - ceil(x(k));if ifrowinmat([tmp2,high],[A,b])==1thisA= A;thisb= b;elsethisA=[A;tmp2];thisb=b;thisb(end+1)=high;end%disp('fenzhi2'),thisA,thisb[x2,fval2,exitflag2,output2,lambda2]= ...linprogdis(ifint,f,thisA,thisb,Aeq,beq,lb,ub,x0,o ptions);if isempty(v2) & ((exitflag1>0 & exitflag2<=0 & fval<=fval1 ) ...| (exitflag2>0 & exitflag1<=0 &fval<=fval2 )...| (exitflag1>0 & exitflag2>0 &fval<=fval1 & fval<=fval2 )),disp('error call')return %isempty(v2) 表示都是整数 2002-12-7非常重要end%下面分别根据返回标志exitflag确定最终的最优解%case 1if exitflag1>0 & exitflag2<=0 %【左分支有】最优解,右分支无最优解x = x1;fval = fval1;exitflag = exitflag1;output = output1;lambda = lambda1;%case 2elseif exitflag2>0 & exitflag1<=0 %【右分支有】最优解,左分支无最优解x = x2;fval = fval2;exitflag = exitflag2;output = output2;lambda = lambda2;%case 3elseif exitflag1>0 & exitflag2>0 %【左、右分支均有】最优解,则比较选优if fval1<fval2,%【左】分支最优(min)x = x1;fval = fval1;exitflag = exitflag1;output = output1;lambda = lambda1;else x = x2;,%【右】分支最优(min)fval = fval2;exitflag = exitflag2;output = output2;lambda = lambda2;end%fval1<fval2endfunction r=checkint(x)%算法:如果x(i)是整数,则返回r(i)=1;否则返回r(i)=0%输入参数:x 向量%输出参数:r 向量for i=1:length(x),ifmin(abs(x(i)-floor(x(i))),abs(x(i)-ceil(x(i))))<1 e-03%这里用于判定是否为0的参数可以调整,如改为1e-6r(i)=1;elser(i)=0;endendfunction r=ifrowinmat(arow,amat)%输入参数:% arow 向量,% amat 矩阵%%设计:如果 arow与矩阵amat中的某一行相等,则返回1,如果找不到现等的一行,则返回0r = 0;rows = size(amat,1);for i=1:rows,temp = (amat(i,:)==arow);%利用 Matlab的==操作,如果相等,则为1向量;if length(find(temp==0))==0,%没有为0的,即temp元素全部是1r=1;return end%end %for。
Python分支定界算法解决问题范例一、概述分支定界算法是一种用于解决组合优化问题的算法。
它通过不断地分解问题和减少搜索空间来找到最优解。
Python是一种广泛应用的编程语言,其简洁、灵活的特性使其成为实现分支定界算法的理想工具。
本文将以一个例子来展示如何使用Python实现分支定界算法解决问题,以帮助读者更好地理解和运用这一算法。
二、问题描述假设有一个物品清单,每个物品有其对应的价值和重量。
同时有一个背包,其最大承重为W。
现需要将物品放入背包,使得背包中的物品总价值最大,但总重量不能超过背包的承重。
如何选择物品并放置到背包中才能使得总价值最大化呢?三、分支定界算法解决方案1. 定义问题我们需要明确问题的定义和目标。
通过对问题进行数学建模,可以将其表示为一个0-1背包问题。
具体而言,我们可以定义以下几个参数:- n:物品的数量- weight[i]:第i个物品的重量- value[i]:第i个物品的价值- W:背包的最大承重通过以上定义,我们可以将问题表述为,在给定n个物品、其对应的重量和价值以及背包的最大承重情况下,如何选择物品并放置到背包中,使得背包中的物品总价值最大,但总重量不能超过背包的承重。
2. 分支定界算法实现接下来,我们将使用Python实现分支定界算法来解决上述问题。
具体步骤如下:我们定义一个Node类来表示搜索树的节点,其中包括以下几个属性:level、value、weight、bound和include。
- level表示当前节点所处的层级;- value表示当前节点已获得的总价值;- weight表示当前节点已获得的总重量;- bound表示当前节点的价值上界;- include表示一个列表,记录了每个物品是否被选择放入背包中。
```pythonclass Node:def __init__(self, level, value, weight, bound, include):self.level = levelself.value = valueself.weight = weightself.bound = boundself.include = include```我们定义一个bound函数来计算当前节点的价值上界。
一个调用例子:ifint=[0 1];f=[10 9];a=[1 0;0 1;-5 -3];b=[8 10 -45];[x,fval,exitflag] = linprogdis(ifint,f,a,b,[],[],[],[],[],[])function r=checkint(x)%算法:如果x(i)是整数,则返回r(i)=1;否则返回r(i)=0function r=ifrowinmat(arow,amat)%输入参数:% arow 向量,% amat 矩阵%%设计:如果 arow与矩阵amat中的某一行相等,则返回1,如果找不到现等的一行,则返回0可以使用ismember(arrow,amat,’rows’)替换ifrowinmat的调用,2005-10-28标注使用时,将下面的代码存入文件:linprogdis.mfunction [x,fval,exitflag,output,lambda]=... linprogdis(ifint,f,A,b,Aeq,beq,lb,ub,x0,options)%Title:% 分支定届法求解混合整数线性规划模型%%初步完成:2002年12月%最新修订: 2004-03-06%最新注释:2004-11-20%数据处理[t1,t2] = size(b);if t2~=1,b=b';%将b转置为列向量end%调用线性规划求解[x,fval,exitflag,output,lambda] =linprog(f,A,b,Aeq,beq,lb,ub,x0,options);if exitflag<=0,%如果线性规划失败,则本求解也失败returnend%得到有整数约束的决策变量的序号v1=find(ifint==1);%整数变量的indextmp=x(v1);%【整数约束之决策变量】的当前值if isempty(tmp),%无整数约束,则是一般的线性规划,直接返回即可returnendv2=find(checkint(tmp)==0);%寻找不是整数的index if isempty(v2),%如果整数约束决策变量确实均为整数,则调用结束returnend%第k个决策变量还不是整数解%注意先处理第1个不满足整数约束的决策变量k=v1(v2(1));%分支1:左分支tmp1=zeros(1,length(f));%线性约束之系数向量tmp1(k)=1;low=floor(x(k));%thisA 分支后实际调用线性规划的不等式约束的系数矩阵A%thisb 分支后实际调用线性规划的不等式约束向量b if ifrowinmat([tmp1,low],[A,b])==1%如果分支的约束已经存在旧的A,b中,则不改变约束thisA= A;thisb= b;elsethisA=[A;tmp1];thisb=b;thisb(end+1)=low;end%disp('fenzhi1'),thisA,thisb%递归调用[x1,fval1,exitflag1,output1,lambda1]= ...linprogdis(ifint,f,thisA,thisb,Aeq,beq,lb,ub,x0,o ptions);%分支2:右分支tmp2=zeros(1,length(f));%tmp1;tmp2(k)=-1;high= - ceil(x(k));if ifrowinmat([tmp2,high],[A,b])==1thisA= A;thisb= b;elsethisA=[A;tmp2];thisb=b;thisb(end+1)=high;end%disp('fenzhi2'),thisA,thisb[x2,fval2,exitflag2,output2,lambda2]= ...linprogdis(ifint,f,thisA,thisb,Aeq,beq,lb,ub,x0,o ptions);if isempty(v2) & ((exitflag1>0 & exitflag2<=0 & fval<=fval1 ) ...| (exitflag2>0 & exitflag1<=0 &fval<=fval2 )...| (exitflag1>0 & exitflag2>0 &fval<=fval1 & fval<=fval2 )),disp('error call')return %isempty(v2) 表示都是整数 2002-12-7非常重要end%下面分别根据返回标志exitflag确定最终的最优解%case 1if exitflag1>0 & exitflag2<=0 %【左分支有】最优解,右分支无最优解x = x1;fval = fval1;exitflag = exitflag1;output = output1;lambda = lambda1;%case 2elseif exitflag2>0 & exitflag1<=0 %【右分支有】最优解,左分支无最优解x = x2;fval = fval2;exitflag = exitflag2;output = output2;lambda = lambda2;%case 3elseif exitflag1>0 & exitflag2>0 %【左、右分支均有】最优解,则比较选优if fval1<fval2,%【左】分支最优(min)x = x1;fval = fval1;exitflag = exitflag1;output = output1;lambda = lambda1;else x = x2;,%【右】分支最优(min)fval = fval2;exitflag = exitflag2;output = output2;lambda = lambda2;end%fval1<fval2endfunction r=checkint(x)%算法:如果x(i)是整数,则返回r(i)=1;否则返回r(i)=0%输入参数:x 向量%输出参数:r 向量for i=1:length(x),ifmin(abs(x(i)-floor(x(i))),abs(x(i)-ceil(x(i))))<1 e-03%这里用于判定是否为0的参数可以调整,如改为1e-6r(i)=1;elser(i)=0;endendfunction r=ifrowinmat(arow,amat)%输入参数:% arow 向量,% amat 矩阵%%设计:如果 arow与矩阵amat中的某一行相等,则返回1,如果找不到现等的一行,则返回0r = 0;rows = size(amat,1);for i=1:rows,temp = (amat(i,:)==arow);%利用 Matlab的==操作,如果相等,则为1向量;if length(find(temp==0))==0,%没有为0的,即temp元素全部是1r=1;return end%end %for。
Matlab中的最优化问题求解方法近年来,最优化问题在各个领域中都扮演着重要的角色。
无论是在工程、经济学还是科学研究中,我们都需要找到最优解来满足特定的需求。
而Matlab作为一种强大的数值计算软件,在解决最优化问题方面有着广泛的应用。
本文将介绍一些Matlab中常用的最优化问题求解方法,并探讨其优缺点以及适用范围。
一. 无约束问题求解方法1. 最速下降法最速下降法是最简单且直观的无约束问题求解方法之一。
其基本思想是沿着梯度的反方向迭代求解,直到达到所需的精度要求。
然而,最速下降法的收敛速度通常很慢,特别是在局部极小值点附近。
2. 共轭梯度法共轭梯度法是一种改进的最速下降法。
它利用了无约束问题的二次函数特性,通过选择一组相互共轭的搜索方向来提高收敛速度。
相比于最速下降法,共轭梯度法的收敛速度更快,尤其适用于大规模优化问题。
3. 牛顿法牛顿法是一种基于二阶导数信息的优化方法。
它通过构建并求解特定的二次逼近模型来求解无约束问题。
然而,牛顿法在高维问题中的计算复杂度较高,并且需要矩阵求逆运算,可能导致数值不稳定。
二. 线性规划问题求解方法1. 单纯形法单纯形法是一种经典的线性规划问题求解方法。
它通过在可行域内进行边界移动来寻找最优解。
然而,当问题规模较大时,单纯形法的计算复杂度会大幅增加,导致求解效率低下。
2. 内点法内点法是一种改进的线性规划问题求解方法。
与单纯形法不同,内点法通过将问题转化为一系列等价的非线性问题来求解。
内点法的优势在于其计算复杂度相对较低,尤其适用于大规模线性规划问题。
三. 非线性规划问题求解方法1. 信赖域算法信赖域算法是一种常用的非线性规划问题求解方法。
它通过构建局部模型,并通过逐步调整信赖域半径来寻找最优解。
信赖域算法既考虑了收敛速度,又保持了数值稳定性。
2. 遗传算法遗传算法是一种基于自然进化过程的优化算法。
它模拟遗传操作,并通过选择、交叉和变异等操作来搜索最优解。
遗传算法的优势在于其适用于复杂的非线性规划问题,但可能需要较长的计算时间。
现代计算方法Matlab 作业答案1.绘出函数f(x)=sin x x ,在[0,4]上的图形解:在M 文件输入:x=0:pi/100:4;y=x.*sin(x);plot(y)运行2. 求3x +2x +5 = 0的根解:在命令窗口输入:>> solve('x^3+2*x+5=0')ans =((108^(1/2)*707^(1/2))/108 - 5/2)^(1/3) - 2/(3*((108^(1/2)*707^(1/2))/108 - 5/2)^(1/3))1/(3*((108^(1/2)*707^(1/2))/108 - 5/2)^(1/3)) - ((108^(1/2)*707^(1/2))/108 - 5/2)^(1/3)/2 -(3^(1/2)*i*(2/(3*((108^(1/2)*707^(1/2))/108 - 5/2)^(1/3)) + ((108^(1/2)*707^(1/2))/108 -5/2)^(1/3)))/21/(3*((108^(1/2)*707^(1/2))/108 - 5/2)^(1/3)) - ((108^(1/2)*707^(1/2))/108 - 5/2)^(1/3)/2 +(3^(1/2)*i*(2/(3*((108^(1/2)*707^(1/2))/108 - 5/2)^(1/3)) + ((108^(1/2)*707^(1/2))/108 -5/2)^(1/3)))/23.321436min x x x z ++=120..321=++x x x t s301≥x5002≤≤x203≥x解:运用单纯形法计算此题,首先把约束条件化成标准形式:,,,,,205030120654321635241321≥=-=+=-=++x x x x x x x x x x x x x x x(1)在M 文件输入SimpleMthd 函数:function [x,minf] = SimpleMthd(A,c,b,baseVector)sz = size(A);nVia = sz(2);n = sz(1);xx = 1:nVia;nobase = zeros(1,1);m = 1;for i=1:nViaif (isempty(find(baseVector == xx(i),1)))nobase(m) = i;m = m + 1;else;endendbCon = 1;M = 0;while bConnB = A(:,nobase);ncb = c(nobase);B = A(:,baseVector);cb = c(baseVector);xb = inv(B)*b;f = cb*xb;w = cb*inv(B);for i=1:length(nobase)sigma(i) = w*nB(:,i)-ncb(i);end[maxs,ind] = max(sigma);if maxs <= 0minf = cb*xb;vr = find(c~=0 ,1,'last');for l=1:vrele = find(baseVector == l,1);if (isempty(ele))x(l) = 0;elsex(l)=xb(ele);endendbCon = 0;elsey = inv(B)*A(:,nobase(ind));if y <= 0disp('不存在最优解!');x = NaN;minf = NaN;return;elseminb = inf;chagB = 0;for j=1:length(y)if y(j)>0bz = xb(j)/y(j);if bz<minbminb = bz;chagB = j;endendendtmp = baseVector(chagB);baseVector(chagB) = nobase(ind);nobase(ind) = tmp;endendM = M + 1;if (M == 1000000)disp('找不到最优解!');x = NaN;minf = NaN;return;endend(2)在命令窗口输入:clear allA=[1 1 1 0 0 0;1 0 0 -1 0 0;0 1 0 0 1 0;0 0 1 0 0 -1];c=[6 3 4 0 0 0];b=[120;30;50;20];[xm,mf]=SimpleMthd(A,c,b,[3 4 5 6])xm =0 50 70mf =4304.计算下面函数在区间(0,1)内的最小值。
习题:1, 计算⎥⎦⎤⎢⎣⎡=572396a 与⎥⎦⎤⎢⎣⎡=864142b 的数组乘积。
2, 对于B AX =,如果⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=753467294A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=282637B ,求解X 。
3, 已知:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=987654321a ,分别计算a 的数组平方和矩阵平方,并观察其结果。
4, 角度[]604530=x ,求x 的正弦、余弦、正切和余切。
(应用sin,cos,tan.cot)5, 将矩阵⎥⎦⎤⎢⎣⎡=7524a 、⎥⎦⎤⎢⎣⎡=3817b 和⎥⎦⎤⎢⎣⎡=2695c 组合成两个新矩阵: (1)组合成一个4⨯3的矩阵,第一列为按列顺序排列的a 矩阵元素,第二列为按列顺序排列的b 矩阵元素,第三列为按列顺序排列的c 矩阵元素,即 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡237912685574(2)按照a 、b 、c 的列顺序组合成一个行矢量,即 []2965318772546, 将(x -6)(x -3)(x -8)展开为系数多项式的形式。
(应用poly,polyvalm)7, 求解多项式x 3-7x 2+2x +40的根。
(应用roots)8, 求解在x =8时多项式(x -1)(x -2) (x -3)(x -4)的值。
(应用poly,polyvalm)9, 计算多项式9514124234++--x x x x 的微分和积分。
(应用polyder,polyint ,poly2sym)10, 解方程组⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡66136221143092x 。
(应用x=a\b)11, 求欠定方程组⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡5865394742x 的最小范数解。
(应用pinv) 12, 矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=943457624a ,计算a 的行列式和逆矩阵。
(应用det,inv)13, y =sin(x ),x 从0到2π,∆x =0.02π,求y 的最大值、最小值、均值和标准差。
关于MATLAB整数规划分支定界法一、编程利用Matlab的线性规划指令:[x,fval]=linprog(f,A,b,Aeq,beq,lb,ub)编写计算整数规划函数,输入与输出与上述指令相同分枝定界法(递归实现)function [x,fval,status] = intprog(f,A,B,I,Aeq,Beq,lb,ub,e)%整数规划求解函数 intprog()% 其中 f为目标函数向量% A和B为不等式约束 Aeq与Beq为等式约束 % I为整数约束% lb与ub分别为变量下界与上界% x为最优解,fval为最优值%例子:% maximize 20 x1 + 10 x2 % S.T.% 5 x1 + 4 x2 <=24 % 2 x1 + 5 x2 <=13 % x1, x2 >=0 % x1, x2是整数 % f=[-20, -10];% A=[ 5 4; 2 5];% B=[24; 13];% lb=[0 0];% ub=[inf inf];% I=[1,2];% e=0.000001;% [x v s]= IP(f,A,B,I,[],[],lb,ub,,e) % x = 4 1 v = -90.0000 s = 1% 控制输入参数if nargin < 9, e = 0.00001;if nargin < 8, ub = [];if nargin < 7, lb = [];if nargin < 6, Beq = [];if nargin < 5, Aeq = [];if nargin < 4, I = [1:length(f)];end, end, end, end, end, end%求解整数规划对应的线性规划,判断是否有解 options = optimset('display','off'); [x0,fval0,exitflag] = linprog(f,A,B,Aeq,Beq,lb,ub,[],options);if exitflag < 0disp('没有合适整数解');x = x0;fval = fval0;status = exitflag;return;else%采用分支定界法求解bound = inf;[x,fval,status] =branchbound(f,A,B,I,x0,fval0,bound,Aeq,Beq,lb,ub,e);end子函数function [newx,newfval,status,newbound] =branchbound(f,A,B,I,x,fval,bound,Aeq,Beq,lb,ub,e)% 分支定界法求解整数规划% f,A,B,Aeq,Beq,lb,ub与线性规划相同 % I为整数限制变量的向量% x为初始解,fval为初始值options = optimset('display','off');[x0,fval0,status0]=linprog(f,A,B,Aeq,Beq,lb,ub,[],options);%递归中的最终退出条件%无解或者解比现有上界大则返回原解 if status0 <= 0 || fval0 >= bound newx = x;newfval = fval;newbound = bound;status = status0;return;end%是否为整数解,如果是整数解则返回 intindex = find(abs(x0(I) -round(x0(I))) > e);if isempty(intindex)newx(I) = round(x0(I));newfval = fval0;newbound = fval0;status = 1;return;end%当有非整可行解时,则进行分支求解 %此时必定会有整数解或空解%找到第一个不满足整数要求的变量n = I(intindex(1));addA = zeros(1,length(f));addA(n) = 1;%构造第一个分支 x<=floor(x(n))A = [A;addA];B = [B,floor(x(n))];[x1,fval1,status1,bound1] =branchbound(f,A,B,I,x0,fval0,bound,Aeq,Beq,lb,ub,e);A(end,:) = [];B(:,end) = [];%解得第一个分支,若为更优解则替换,若不是则保持原状status = status1;if status1 > 0 && bound1 < boundnewx = x1;newfval = fval1;bound = fval1;newbound = bound1;elsenewx = x0;newfval = fval0;newbound = bound;end%构造第二分支A = [A;-addA];B = [B,-ceil(x(n))];[x2,fval2,status2,bound2] =branchbound(f,A,B,I,x0,fval0,bound,Aeq,Beq,lb,ub,e);A(end,:) = [];B(:,end) = [];%解得第二分支,并与第一分支做比较,如果更优则替换 if status2 > 0 && bound2 < boundstatus = status2;newx = x2;newfval = fval2;newbound = bound2;end二、求解利用上述指令求解下列问题:汽车厂生产三种类型的汽车,已知各类型每辆车对钢材、劳动时间的需求,利润及工厂每月的现有量小型中型大型现有量钢材(吨) 1 2 5 1000劳动时间(小时) 250 125 150 120000利润(万元) 3 5 121、若每月生产的汽车必须为整车,试制订月生产计划,使工厂的利润最大2、如果生产某一类型汽车,则至少要生产50辆,那么最优的生产计划应作何改变, 解:1f = [-3 -5 -12];A = [1 2 5;250 125 150];B = [1000 120000];I = [1:length(f)];lb = [0 0 0];[x,fval,status] = intprog(f,A,B,I,[],[],lb)答案为 x =307 344 1 fval = -2653 status =12lb = [50 50 50]答案为 x =350 200 50 fval =-2.6500e+003 status =1用分枝定界法求解整数线性规划问题%%问题的标准形式:%% min c'*x%% s.t. A*x<=b%% Aeq*x=beq%% 要求是整数%%function [y,fval]=BranchBound(c,A,b,Aeq,beq)%NL=length(c);UB=inf;LB=-inf;FN=[0];AA(1)={A};BB(1)={b};k=0;flag=0;while flag==0;[x,fval,exitFlag]=linprog(c,A,b,Aeq,beq); if (exitFlag == -2) | (fval >= UB)FN(1)=[];if isempty(FN)==1flag=1;elsek=FN(1);A=AA{k};b=BB{k};endelsefor i=1:NLif abs(x(i)-round(x(i)))>1e-7kk=FN(end);FN=[FN,kk+1,kk+2];temp_A=zeros(1,NL);temp_A(i)=1;temp_A1=[A;temp_A];AA(kk+1)={temp_A1};b1=[b;fix(x(i))];BB(kk+1)={b1};temp_A2=[A;-temp_A];AA(kk+2)={temp_A2};b2=[b;-(fix(x(i))+1)];BB(kk+2)={b2};FN(1)=[];k=FN(1);A=AA{k};b=BB{k};break;endendif (i==NL) & (abs(x(i)-round(x(i)))<=1e-7) UB=fval;y=x;FN(1)=[];if isempty(FN)==1flag=1;elsek=FN(1);A=AA{k};b=BB{k};endendendendy=round(y);fval=c*y;。
matlab求边值问题例题
【最新版】
目录
1.MATLAB 求边值问题的基本概念
2.边值问题的例题解析
3.MATLAB 求解边值问题的步骤
4.总结
正文
一、MATLAB 求边值问题的基本概念
边值问题是数学物理中常见的一种问题,它是指在给定的边界条件下,求解偏微分方程的数值解。
在 MATLAB 中,我们可以通过边界元方法或者有限元方法来求解这类问题。
二、边值问题的例题解析
假设我们有一个二维的 Laplace 方程,给定边界条件为:x=0 时,y"=0;x=1 时,y"=0;y=0 时,x"=0;y=1 时,x"=0。
我们可以通过以下步骤在 MATLAB 中求解该问题。
1.定义边界和区域:在 MATLAB 中,我们首先需要定义问题的边界和区域。
我们可以使用边界元方法,将边界和区域定义为一个二维矩阵。
2.定义方程:然后,我们需要定义 Laplace 方程。
在 MATLAB 中,我们可以使用 PDE 工具箱中的函数来定义方程。
3.定义边界条件:接下来,我们需要定义边界条件。
在 MATLAB 中,我们可以使用边界元方法中的函数来定义边界条件。
4.求解:最后,我们可以使用 MATLAB 中的函数来求解该问题。
我们可以使用 PDE 工具箱中的函数,或者使用我们自己编写的函数来求解。
三、MATLAB 求解边值问题的步骤
1.定义边界和区域
2.定义方程
3.定义边界条件
4.求解
四、总结
MATLAB 是一个强大的数学软件,它可以帮助我们求解各种各样的数学问题,包括边值问题。
MATLAB分支定界法求解例题
题目:min (4*x1+4*x2); 约束条件:2*x1+5*x2<=15,2*x1-2*x2<=5,x1,x2>=0,且都为整数.
把以下程序存为ILP.m,
%============================
function [x,y]=ILp(f,G,h,Geq,heq,lb,ub,x,id,options)
%整数线性规划分支定界法,可求解纯整数规划和混合整数规划。
%y=minf’*x s.t. G*x<=h Geq*x=heq x为全整数或混合整数列向量
%用法
%[x,y]=ILp(f,G,h,Geq,heq,lb,ub,x,id,options)
%参数说明
%lb:解的下界列向量(Default:-int)
%ub:解的上界列向量(Default:int)
%x:迭代初值列向量
%id:整数变量指标列向量,1-整数,0-实数(Default:1)
global upper opt c x0 A b Aeq beq ID options;
if nargin<10,options=optimset({});options.Display='off';
rgeScale='off';end
if nargin<9,id=ones(size(f));end
if nargin<8,x=[];end
if nargin<7 |isempty(ub),ub=inf*ones(size(f));end
if nargin<6 |isempty(lb),lb=zeros(size(f));end
if nargin<5,heq=[];end
if nargin<4,Geq=[];end
upper=inf;c=f;x0=x;A=G;b=h;Aeq=Geq;beq=heq;ID=id;
ftemp=ILP(lb(:),ub(:));
x=opt;y=upper;
%下面是子函数
function ftemp=ILP(vlb,vub)
global upper opt c x0 A b Aeq beq ID options;
[x,ftemp,how]=linprog(c,A,b,Aeq,beq,vlb,vub,x0,options);
if how <=0
return;
end;
if ftemp-upper>0.00005 %in order to avoid error
return;
end;
if max(abs(x.*ID-round(x.*ID)))<0.00005
if upper-ftemp>0.00005 %in order to avoid error
opt=x';upper=ftemp;
return;
else
opt=[opt;x'];
return;
end;
end;
notintx=find(abs(x-round(x))>=0.00005); %in order to avoid error
intx=fix(x);tempvlb=vlb;tempvub=vub;
if vub(notintx(1,1),1)>=intx(notintx(1,1),1)+1;
tempvlb(notintx(1,1),1)=intx(notintx(1,1),1)+1;
ftemp=IntLP(tempvlb,vub);
end;
if vlb(notintx(1,1),1)<=intx(notintx(1,1),1)
tempvub(notintx(1,1),1)=intx(notintx(1,1),1);
ftemp=IntLP(vlb,tempvub);
end;
%====================================
然后:
clc;clear
f=[4 4]
A=[2 5;2 -2]
b=[15;5]
Aeq=[];beq=[];
LB=[0 0];UB=[];
[xn,yn]=ILp(f,A,b,Aeq,beq,LB,UB,[1 1],1,[])
[x,fval,exitflag]=linprog(f,A,b,Aeq,beq,LB,UB)
结果:
xn =
0 0
yn =
Optimization terminated.
x =
1.0e-013 *
0.299004078674759
0.503948216933779
fval =
3.211809182434153e-013 exitflag =
1。