当前位置:文档之家› XX电厂XX机组脱硫整套启动调试报告

XX电厂XX机组脱硫整套启动调试报告

XX电厂XX机组脱硫整套启动调试报告
XX电厂XX机组脱硫整套启动调试报告

目录

1. 设备系统概述

2. 调试报告编写依据

3. 调试范围

4. 组织及分工

5. 调试程序

6. FGD整套启动调试情况分析

7. 168小时满负荷运行

8. 调试结论

9. 调试质量的检验

10 问题与建议

附图:168h中典型的CRT上FGD系统画面。

公司1、2号机组

烟气脱硫工程整套启动调试报告

电厂位于广东省台山市铜鼓镇,电厂首期为23600MW燃煤火力发电机组,每台机组建设一套石灰石-石膏湿法烟气脱硫装置,用于处理该机组在BMCR工况下100%的烟气,脱硫率大于等于95%。锅炉引风机后的烟气经过脱硫增压风机和气—气换热器,进入鼓泡式吸收塔脱硫。净化后的烟气经过气—气换热器再热,然后从现有烟囱中排入大气。

该工程由北京博奇电力科技有限公司总承包,采用了日本EBARA荏原制作所的CT-121FGD技术。其中石灰石制浆系统、石膏脱水系统、事故罐、工艺水系统为两套共用;增压风机冷却水使用电厂闭冷水。2004年11月11日到11月18日完成1号机组烟气脱硫装置的整组调试,报告如下:

1.设备系统概述

1.1主要设计数据

1.1.1 原煤

电厂燃用神府东胜煤。锅炉设计使用的原煤资料如表1所示。

表1 锅炉设计使用的原煤资料

表2 煤质微量元素含量表

1.1.2 电厂主要设备参数

与脱硫系统有关的主设备参数见下表3。

表3 1、2

号国产机组主要设备参数

1.1.3 气象条件,见下表4。

表4 气象条件

1.1.4 锅炉排烟设计参数

FGD设计工况为锅炉BMCR工况,燃用设计煤种,FGD入口烟气参数见表5。

表5 FGD入口烟气参数

1.1.5 石灰石分析资料,见表6。

表6 石灰石样品参数

1.1.6 工业水分析资料,见表7。

表7 工业水分析参数

1.1.7 闭式循环水

闭式循环冷却水的水质为除盐水,水温≤38°C,水压约0.5~0.6MPa(g)。除盐水水质如下:

硬度:约0μmol/L

二氧化硅:≤20μg/L

电导率(25℃):≤0.2μS/cm

1.1.8 配电

电压等级

功率<185kW的电机电压为380V 功率>185kW的电机电压为6000V 高压电源(AC/交流)

电压:6000V±5% 频率:50Hz±1% 相:3相

低压电源(AC/交流)

电压:380V ±5% 频率:50Hz ±1% 相:3相 照明电源(AC/交流)

电压:220V 频率:50Hz 相:单相 控制电源(DC/直流)

电压:220V 相:单相

1.2 性能与保证值 1.

2.1 脱硫率

FGD 装置SO 2脱除率不低于95%。 SO 2脱除率由下式表示:

[]%%含氧)

,干基,浓度(装置入口%含氧)

,干基,浓度(装置出口-脱硫率(%)=

1006SO FGD 6SO FGD 122?ppm ppm

1.2.2 烟气温度

在烟囱入口的温度:不低于80℃。 1.2.3 烟雾浓度

在除雾器出口的烟气中水滴含量: 低于50mg/Nm 3(湿基) 1.2.4 石灰石消耗

不超过 11.8 t/h 。 1.2.5电耗

不超过 12600 kW/h 。 1.2.6水耗

不超过 150 t/h 。 1.2.7石膏品质

水蒸汽: 不高于10%。 石膏纯度: 不低于90%,

CaCO 3 含量: 低于3%(以无游离水分的石膏作为基准) CaSO 3﹒1/2H 2O 含量 低于0.35%(以无游离水分的石膏作为基准) 溶解于石膏中的Cl -含量: 低于100310-6(以无游离水分的石膏作为基准) 溶解于石膏中的F -含量: <100310-6(以无游离水分的石膏作为基准) Mg 含量: <450310-6(以无游离水分的石膏作为基准)

1.3 工艺说明 1.3.1 工艺系统原理

发电厂的烟气脱硫装置(FGD)主要由8个部分组成: 1)烟气部分; 2)SO 2吸收部

分;3)石灰石浆液制备部分;4)石膏脱水部分;5)公用部分;6)污水处理系统;

7)热控部分、8)电气部分等。

主要工艺原理说明如下。

1.3.1.1 烟气部分

来自锅炉引风机的烟气,经增压风机增压后进入烟气-烟气加热器(GGH)。在烟气-烟气加热器中,烟气(未经处理)与来自吸收塔的洁净的烟气进行热交换后被冷却。被冷却的烟气引入到烟道的烟气冷却区域。

来自吸收塔的洁净烟气进入烟气-烟气加热器。在烟气-烟气加热器中,洁净的烟气与来自锅炉的烟气进行热交换后,被加热到80℃以上。被加热的洁净的烟气通过烟道和烟囱排向大气。

在锅炉起动阶段和烟气脱硫设备(FGD)停止运行时,烟气通过旁路烟道进入烟囱。1.3.1.2 SO2吸收部分

来自烟气-烟气加热器的烟气通过烟道的烟气冷却区域进入吸收塔。

在烟气冷却区域中,喷入补给水和吸收塔内浆液,使得烟气被冷却到饱和状态后进入由上隔板和下隔板形成的封闭的吸收塔入口烟室。装在入口烟室下隔板的喷射管将烟气导入吸收塔鼓泡区(泡沫区)的石灰浆液面以下的区域。在鼓泡区域发生SO2的吸收、氧化、石膏结晶等所有反应。发生上述一系列反应后,烟气通过上升管流入位于入口烟室上方的出口烟室,然后流出吸收塔。烟气离开吸收塔后,进入水平布置的除雾器去除烟气所携带的雾滴,经GGH排出至烟囱。

吸收塔内浆液被吸收塔搅拌器适当地搅拌,使石膏晶体悬浮;由氧化风机送入吸收塔的氧化空气在吸收塔的反应区,使被吸收的SO2氧化。

另外脱硫用的石灰石浆液由石灰石浆液泵送入吸收塔, 石灰石浆液的加入量用调节门控制,以保持吸收液的pH值于4到6之间。

石膏浆液排出泵将含有10到20%固体的石膏浆液,从吸收塔排出到石膏脱水机。吸收塔石膏浆液中的Cl-浓度低于20g/l。

两座吸收塔公用一个事故罐,在检修期间,将石膏浆输送到事故罐储藏,在设备再起动之前,把浆液送回吸收塔。

1.3.1.3石灰石浆制备部分

用卡车把石灰石块(粒径小于20mm)送到现场。

将石灰石卸到石灰石卸料斗后,用斗式提升机和皮带式输送机送到石灰石储存仓。

石灰石储存仓的容积按能够储存在BMCR运行工况下两台锅炉运行4天所需消耗量设计。

石灰石储存仓给料机将石灰石排到湿式球磨机。用湿式球磨机将石灰石磨成石灰石浆液。磨成的石灰石浆液流入石灰石浆液循环箱,并用石灰石浆液循环泵送到石灰石旋流分离器进行粗颗粒的分离。

分离后的石灰石浆液中含有25%的固体颗粒。石灰石浆液储存在石灰石浆液储存箱,并用石灰石浆液泵送到吸收塔。

粒径超过要求的颗粒送回到湿式球磨机。

1.3.1.4石膏脱水部分

用石膏浆排出泵将石液膏浆送到石膏旋流分离器进行浓缩。

浓缩后的石膏浆液进入真空带式皮带机进行脱水,用工艺水冲洗石膏,来降低石膏中Cl-的含量。脱水后石膏的含水率低于10%。

脱水石膏储存在石膏储存仓内。石膏储存仓的容积按能够储存BMCR运行工况下两台锅炉运行7天所产生的石膏量设计。

滤液水收集在滤液水箱,并且由滤液水泵送到吸收塔和湿式球磨机及除雾器冲洗。

一部分石膏旋流分离器的溢流水进入废水水箱,并且由废水旋流分离器给水泵送到废水旋流分离器。

含有1.2%固体颗粒的废水旋流分离器溢流水被排放到废水处理系统。

废水水力旋风分离器下流水回到吸收塔。另一部分石膏水力旋风分离器的溢流水回到吸收塔。

1.3.1.5公用部分

FGD装置的工艺用水取自发电厂工业水系统,并且储存在工艺水箱,两套烟气脱硫系统公用一个工艺水箱,由工艺水泵自工艺水箱提供工艺水,经工艺水泵供水至FGD场地内所有需用工艺水的设备。

1.3.1.6增压风机冷却用水部分

FGD装置的闭式冷却水取自电厂的闭式冷却水系统,为增压风机提供冷却水源。

2 调试报告编写依据

2.1 电建[1996]159号,《火力发电厂基本建设工程启动及竣工验收规程》。

2.2 建质[1996]40号, 《火电工程启动调试工作规定》。

2.3 电建[1996]868号, 《电力建设工程调试定额》。

2.4 DL/T 5047-95, 《电力建设施工及验收技术规范--锅炉机组篇》

2.5 DL5009.1-2002《电力建设安全工作规程》(火力发电厂部分)

2.7 电力部建质[1996]111号《火电工程调整试运质量检验及评定标准》

2.8 国电电源[2001]218号《火电机组达标投产考核标准》

2.9 国电发[2000]589号《防止电力生产重大事故的二十五项重大要求》

2.10 电综[1998]179号《火电机组启动验收性能试验导则》

2.11 国华台电公司2002年11月修订《台电工程总体质量目标及控制措施》

2.12 设备制造厂的技术标准及相关资料。

3 调试范围

在完成各分系统调试后,进行整个FGD系统的调试,包括各分系统的投运和整套启动调整试验。

4 组织及分工

4.1 调试单位负责编写调试方案,检查整套系统启动试运应具备的条件,负责组织

实施启动调试方案,审查整套启动试运的有关记录,负责整套启动试运阶段的现场指挥工作。

4.2 调试督导负责对调试的全过程进行技术指导,解决在调试中的技术问题,并指

导对设备参数的调整。在调试期间,督导有义务提供设备相关技术参数,指导调试单位对设备进行优化调整。荏原公司负责整套启动调试过程中各种定值的设定,顺控的检查,逻辑修改及自动的投入等。

4.3 生产单位参与设备系统的命名挂牌及设备运行和巡检。

4.4 安装施工单位负责设备的安装、维护、检修、挂临时标识牌、负责制作管道标

识、巡检及消缺工作。

4.5 监理单位负责调试事前、事中、事后质量控制,整套启动验收。

4.6 现场有关协调工作由北京博奇电力科技有限公司负责。

5 调试程序

5.1 FGD系统首次进烟气启动

5.1.1 启动前的检查

在FGD系统启动前应组织专门人员全面检查FGD系统各部分,确保系统内无

人工作,各设备启动条件满足。检查内容包括:

●各辅机的油位正常;

●烟道的严密性(尤其是膨胀节、人孔门等);

●挡板和阀门的开关位置准确,反馈正确;

●仪表及控制设备校验完毕、动作可靠,热工信号正确;

●报警装置投入使用;

●FGD系统范围内干净整洁;

●电源供给可靠;

●所需化学药品数量足够;

●消防等各项安全措施合格;

对烟道及吸收塔内部检查时要确保烟气不会进入,各烟气挡板不进行操作。对各种罐体内部进行检查要确保内部含氧量足够。检查完必须关好人孔门。

5.2 设备的维护

试运期间需对以下设备根据设备说明书进行维护:

●GGH及其辅助系统,包括密封风系统和吹灰系统;

●增压风机,包括油站及密封风机;

●FGD进、出口烟气挡板,旁通挡板及挡板密封风机系统;

●工艺水泵;

●烟气冷却泵;

●氧化风机;

●石膏排浆泵;

●脱水设备;

●球磨机及其辅助设备,石灰石浆液泵;

●石灰石供给设备;

●FGD范围内各水坑系统;

●事故罐系统,包括事故返回泵

●空压机;

●各搅拌器;

●废水处理设备;

●各测量仪表,包括PH计、密度计、液位计等。

5.3 首次进烟气启动

当锅炉运行稳定,未投油且电除尘正常运行,FGD系统可投入运行。首次启动或长时间停运后(大于1星期)的启动步骤如下:

5.3.1 公用系统启动

2启动空压机;

3启动两台工艺水泵,另一台泵备用;

4闭式循环水畅通;

5.3.2 JBR启动

●打开FGD出口挡板;

●关闭JBR底部至滤液罐和废水罐阀门;

●停止滤液冲洗顺控;

●启动两台烟气冷却泵;

●启动一台氧化风机;

●启动JBR四台搅拌器;

●JBR液位控制投自动;

5.3.3 GGH启动

5GGH密封风系统启动;

6GGH主马达启动,辅助马达投备用;

5.3.4 制粉、制浆系统启动

7启动石灰石浆液罐搅拌器;

8启动制粉系统,包括石灰石输送系统,球磨机及其辅助设备等;

9启动石灰石浆液泵;

5.3.5烟气系统启动

10增压风机密封风系统启动;

11增压风机油站启动;

12增压风机启动;

13开FGD入口挡板;

14调节增压风机动叶;

15根据情况看是否关闭旁路烟气挡板;

5.3.6 石膏脱水系统启动

16启动滤布冲洗水泵;

17启动滤饼冲洗水泵;

18启动真空泵;

19启动真空皮带脱水机;

20启动石膏排放泵;

21启动滤液罐搅拌器和滤液泵;

5.3.7 废水系统启动

至此整套FGD系统投入运行。

5.4 FGD系统的正常运行

5.4.1 稳定运行

5.4.1.1 总的注意事项

22运行人员必须注意运行中的设备以预防设备故障,注意各运行参数并与设计值比较,发现偏差及时查明原因。要做好数据的记录以积累经验。

23FGD系统的备用设备必须保证其处于备用状态,运行设备故障后能正常启动。24浆液传输设备停用后必须进行清洗。

25试运期间的各项记录需完备。

5.4.1.2 吸收塔

运行中要保证吸收塔水位、PH值和浆液浓度的正常。保持吸收塔水位在正常范围内。通过调整石灰石浆液供给量使吸收塔浆液的PH值应保持在4.0~6.0范围内。

5.4.2 系统运行中的检查和维护

5.4.2.1 概述

对各系统运行中常规检查和维护包括以下内容:

26FGD系统的清洁

运行中应保持系统的清洁性,对管道的泄漏、固体的沉积、管道结垢及管道污染等现象及时检查,发现后应进行清洁。

27转动设备的润滑

绝不允许没有必需的润滑剂而启动转动设备,运行后应常检查润滑油位,注意设备的压力、振动、噪音、温度及严密性。

28转动设备的冷却

对电动马达、风机、空压机等设备的空冷状况经常检查以防过热;对水冷设备应确保冷却水的流量。

29所有泵和风机的马达、轴承温度的检查

应经常检查以防超温。

30罐体、管道

应经常检查法兰、人孔等处的泄漏情况,及时处理。

31搅拌器

启动前必须使浆液浸过搅拌器叶片以上一定高度,叶片在液面上转动易受大的机械力而遭损坏,或造成轴承的过大磨损。

32离心泵

启动前必须有足够的液位,其吸入阀应全开。另外泵出口阀未开而长时间运行是不允许的。

33泵的循环回路

大多数输送浆液的泵在连续运行时形成一个回路,根据经验,最主要的是要防止固体沉积于管底,发生沉积时可从以下现象得到反映:即浆液流量随时间而减小;泵的出口压力随时间而增加,但短期内压力增加不明显。

若不能维持正常运行的压力或流量时,必须对管道进行冲洗;冲洗无效时只能移出管子进行机械除去沉积物了。

5.4.2.2 烟气系统

FGD的入口烟道和旁路烟道可能严重结灰,这取决于电除尘器的运行情况。一般的结灰不影响FGD的正常运行,当在挡板的运动部件上发生严重结灰时对挡板的正常开关有影响,因此应当定期如每个星期开关这些挡板以除灰,当FGD和锅炉停运时,要检查这些挡板并清理积灰。

GGH的原烟气侧可能结灰而洁净烟气侧可能发生液滴和酸的凝结。如发生,就应加大GGH的冲洗频度。

5.4.2.3 吸收塔

氧化空气管路如需要清洗,不必关闭FGD系统。除雾器可能被石膏浆粒堵塞,这可从压降增大反映出来,此时须加大冲洗力度。

5.4.2.4 氧化空压机

运行时注意检查油压、油位及滤网清洁。

5.4.2.5 石膏脱水系统

如水力旋流器积垢影响运行,则需停运石膏浆泵来清洗旋流器及管道;清洗无效时则需就地清理,干净后方可启动石膏排浆泵。

5.4.2.6 化学测量及分析

试运期间,吸收塔中的PH值、吸收塔和水力旋流器底流的浆液密度、吸收塔浆液和石膏浆液中的CaCO3含量、吸收塔浆液中的CaSO321/2H2O含量每天至少测量一次。

6 FGD整套启动调试情况分析

2004年10月25日,#1机组脱硫工程进入整套启动调试。因在烟气系统冷态调试中出现了增压风机失速现象,因此,热态调试首要的任务仍是防止失速,使烟气系统能够正常运行,因此热态调试主要关注烟气系统。

整套启动调试前准备的项目有:

34球磨机带负荷调试,制浆完成;制浆系统可以满足整套启动调试期间对石灰石浆液的要求;

35JBR内部检查完成,吸收塔区设备完整好用,可以投入运行;

36除雾器冲洗完成,符合整套启动调试要求;

37完成JBR注水,JBR内部加注石膏晶种;

38GGH吹灰器压缩空气吹扫调试完成,整套启动调试期间能够投入运行;

39烟气系统、吸收塔系统、制浆系统热工表计检查完成,可以满足整套启动调试要求;

40工艺系统检查完成,逻辑检查完成并讨论通过;

41按首次整套启动通烟气调试方案进行启动前的准备;

42按调试程序对启动过程进行模拟演练。

2004年10月25日,脱硫系统整套启动准备完成,整套启动开始;

按要求进行启动条件的确认:

43烟气冷却泵启动条件满足;

44GGH启动条件满足;

45氧化风机启动条件满足;

46启动增压风机辅机,增压风机启动条件满足;

按设计方要求,本次启动的条件顺满足短期停运的条件,但由于脱水区设备尚未完成调试,启动条件始终无法满足。

10月25日14时,经各方同意,整套启动调试采用手动方式启动,依次启动吸收塔区设备,增压风机辅机,开FGD出入口挡板,启动GGH,此时机组负荷稳定在600MW左右。

增压风机启动前烟气系统参数如下:

旁路挡板差压:9Pa;FGD入口压力:299Pa;

增压风机出口烟道压力:-62Pa;FGD出口压力:40Pa;

吸收塔液位:-103mm;

14时56分,启动增压风机,动叶开度为零,参数如下:

旁路挡板差压:9Pa;FGD入口压力:282Pa;

增压风机出口烟道压力:-62Pa;FGD出口压力:36Pa;

吸收塔液位:-103mm;增压风机电流:200A;

14时59分,启动增压风机,动叶开度为5%,参数如下:

旁路挡板差压:-12Pa;FGD入口压力:262Pa;

增压风机出口烟道压力:-62Pa;FGD出口压力:63Pa;

吸收塔液位:-103mm;增压风机电流:199A;

增压风机动叶开度至20%时,稳定了5分钟后,将动叶调至25%;未见失速现象发生,运行稳定后参数如下:

旁路挡板差压:9Pa;FGD入口压力:162Pa;

增压风机出口烟道压力:453Pa;FGD出口压力:146Pa;

吸收塔液位:-103mm;增压风机电流:220A;

经验证,在吸收塔液位在鼓泡孔以下时,系统阻力较小,整套启动启动不会有失速现象发生。

15:15,开大增压风机动叶至36%,按锅炉30%负荷烟气量运行FGD系统,烟气量约800kNm3/h(CRT显示值),运行稳定、正常。

在确保增压风机不会失速后,稳定调节吸收塔PH值,使其保持在4.2~5之间,吸收塔液位控制在120mm~180mm。

调整JBR液位后增压风机运行稳定,动叶开度稳定在37%,运行至26日继续升负荷。

26日16时,按锅炉50%负荷烟气量调节增压力风机动叶,将动叶调节至45%,

烟气量约1019 kNm3/h(CRT显示值),运行稳定、正常。

27日16时,按锅炉75%负荷烟气量调节增压力风机动叶,将动叶调节至61%,烟气量约1500 kNm3/h(CRT显示值),运行稳定、正常。

28日14时,按锅炉100%负荷烟气量调节增压力风机动叶,按要求将动叶调节至71%,烟气量约1800 kNm3/h(CRT显示值),运行稳定、正常。风机在此动叶开度下运行为非正常工况,动叶开度过大、系统阻力较小、非设计工况点,净烟气有较大回流。

运行期间,逐步调节石灰石浆液供给量,维持PH值在4.5,并调节DCS的控制参数。

按要求,风机连续运行96小时后再继续运行48小时,至达到出成品石膏浆液为止。

30日20时,当石膏排出泵固含量达到16%时,启动真空脱水机,运行良好,至22时结束真空脱水机运行,其它系统正常运行。

10月31日8时10分,机组快速减负荷(RB),根据增压风机运行情况及系统情况,要求减小增压风机动叶开度,经同意后每次动叶开度减小2%,至45%为止。经运行调整、观查,增压风机动叶调节速度不宜过快,否则对运行不稳定的锅炉会有影响。

机组锅炉侧稳定后,逐步升负荷;增压风机在机组负荷500MW以上时,开始调整动叶开度,调整到63%(此时的风量接近锅炉B-MCR出力时风量),中试建议并经同意,增压风机在此工况点运行。

10月31日14时,增压风机进行控制系统前馈调节试验;计算前馈量为动叶开度60%,将动叶开度降至60%后投入前馈自动控制,运行稳定。

10月31日14:58,停FGD系统。在关小动叶至25%以后,每次依次关小1%,增压风机动叶关小至19%后未发现失速现象发生,关小至动叶开度为0%后停增压风机。

停增压风机后按要求进行短期停运,顺控停吸收塔、烟气系统;18时,吸收塔冲洗完毕,降低吸收塔水位。

11月1日,按要求进行系统检查、消缺工作。

整个第一次通烟气的参数见以下各图3~5。

图3 第1次启动时动叶开度及对锅炉负压的影响

图图4 第1次启动6天动叶开度、脱硫率、PH(0~10)、SO 2(0~2500mg/m 3)的变

图5 第1次启动6天内动叶开度(0~100%)、JBR 液位(80~500mm)、压差的变化

7 168小时满负荷运行

2004年11月8日17:32启动1号增压风机,经过3天的运行调整,到11月11日20:00,FGD 系统进入168小时运行,到11月18日20:00,168小时顺利结束。在168小时运行期间,对吸收塔、脱水区的水平衡进行了调试,168小时期间吸收塔液位的变化见图6,吸收塔液位控制较好。脱硫效率维持在较高的水平上,168小时期间FGD 系统脱硫效率的变化见图7;期间,对系统的DCS 控制参数进行了调整,至11月16日,吸收塔水平衡基本建立,脱水区水平衡建立,至废水区的废水流量稳定在16m 3/h ,石膏排出量比较稳定。

图6 168h 脱硫效率、JBR 差压(0~5000Pa)、吸收塔液位(80~500mm)

168

FGD

系统运行PH 值与脱硫效率如下图

7所示。

图7 168h 3~8)与液位(50~250mm )

168小时运行期间,FGD 出入口温度及JBR 入口温度较稳定,JBR 入口温度(49~50FGD 出口温度(~78℃)

略低,如图8所示;FGD入口温度(140~150℃)较设计值高,如图8所示。

FGD出口温度

FGD入口温度

JBR入口温度

图8 168hFGD入口温度(0~200℃)、出口温度与JBR入口温度(0~100℃)

168小时运行期间,FGD脱硫效率与入口SO2的关系如下图9所示。

图9 168h#1FGD脱硫效率与入口SO2(0~1000mg/Nm3)关系

168小时运行主要参数的平均值如下:

锅炉侧空气总量:1247kNm3/h;

脱硫效率:96.0 %;

FGD入口含硫量:748.525mg/Nm3;

FGD出口含硫量:30.788mg/Nm3;

增压风机电流:467A;

增压风机出口压力;4286Pa;

吸收塔液位:167mm;

吸收塔差压:2750 Pa;

吸收塔PH值:4.673

石膏排出泵出口含固量:12.537%;

石灰石至吸收塔流量:13.187 m3/h;

在#1FGD系统168运行期间,水耗、电耗、石灰石耗量如下:

11月11日晚8时石灰石、工艺水及用电消耗总量为:

A称重给料机:591.25t;

电气专业调试报告定稿版

电气专业调试报告 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

编号:汇能电厂1#机组/电气 陕西神木汇能化工有限公司 发电工程1×30MW+1×150T/h发电机组 调试报告 江苏华能建设集团有限公司 编制时间:2014年6月 科技档案审批单 报告名称:陕西神木汇能化工有限公司发电工程1×30MW+1×150T/h发电机组调试报告编号:汇能电厂1#机组/电气报告日期: 2014年5月 保管年限:长期密级:一般 调试负责人:王琨调试地点:汇能化工有限公司 调试人员:胡小兰董博 调试单位:江苏华能建设集团有限公司 编写:胡小兰 审核:王琨 目录

1.概述 (3) 2.分系统调试 (3) 3.开机前及升速时的测试 (10) 4.短路状态时的测试 (11) 5.空载状态时的测试 (13) 6.带负荷及72小时满负荷试运中的测试 (17) 7.调试中发现问题及改进意见 (18) 8.调试结论 (18) 1、概述: 陕西神木汇能化工有限公司发电工程,发电机、主变压器及厂用电系统的单体试验、分系统及整套启动调试,由江苏华能建设集团有限公司负责。在业主、安装、监理等有关各方的大力协作配合下,于2014年3月15日完成发电系统倒送电,经5月1日至8日发电系统空负荷测试,于2014年5月9日 1 时 52 分并网发电,于 6月10 日完成满负荷连续72小时试运,又接着完成了24小时试运,后即转入商业运行。 在本报告中,列举出各项分系统、整套调试、检验的详细数据,并作了逐项分析、判断,得出明确结论。凡有出厂数据可供对比者(如发电机空载、短路特性)均一一对比分析。各测试、检验项目(如极性、绝缘电阻、相序、电压、电流、差流、残压、轴压、灭磁、同期、励磁、联锁、传动、保护、信号、手自切换等)均达到了合格,良好的要求。

余热发电工程7.5MW汽轮机机组整套启动调试方案

珠江水泥有限公司余热发电工程 7.5MW汽轮机机组整套启动调试方案 1简要概述 1.1工程简要概述 珠江水泥余热电厂,设备简介 2整套启动调试的目的和任务 2.1调试目的 整套启动调试是汽轮发电机组安装工程的最后一道工序。通过机组整套启动试运行,可以检验、考核电厂各设备及系统的制造、设计、安装质量以及各设备及系统的运转情况。通过试运过程中对设备的静态、动态特性参数的调整、试验以及让各种可能的缺陷、故障和隐患得到充分暴露并消除之,使主、辅机及至整套发电设备满足设计要求,以安全、可靠、稳发、满发的优良性能将设备由基建移交生产。 2.2启动调试的任务

2.2.1进行机组整套启动、调整、试验、并网带负荷,通过72+24小时满负荷试运行。 222检测、调试和考验汽轮机各项控制系统的静态、动态特性,使其满足要求。2.2.3监测与考验汽轮发电机组在各种工况下的运行状况,使其满足设计要求。2.2.4考验机组辅机及各子系统与主机在各种运行工况下的协调性。 2.2.5记录、采集机组所有设备和系统在各种工况下试运的原始数据,积累有关原始技术资料,为以后机组安全经济运行和检修提供依据。 2.2.6试验并确认主机、辅机和系统的最佳运行方式和最佳投用时机与条件。 2.2.7投用和考验机组各项自控装置、联锁保护及仪表,考核投入率、精度及工作状况。 2.2.8进行50 %及100 % B-MCR甩负荷试验,考查汽轮机调速系统动态性能可靠及安全性; 3主要设备技术范围 3.1汽轮机 型号:NZ7.5-1.05/0.2 型式:双压、单缸、冲动冷凝式汽轮机。 额定出力:7.5 MW 调节方式DEH控制系统 主蒸汽压力:1.05 MPa 主蒸汽温度:320 C

脱硫系统运行操作手册 docx资料

*****************安装脱硫设施工程石灰石_石膏法湿法脱硫工程 操 作 手 册 ***************** 2017年10月

前言 制定本操作手册的目的是为了加强本工程脱硫装置的标准化管理,保证脱硫装置的正常安全运行,使脱硫装置的运行维护操作程序化、规范化。本手册只对操作和维护起指导作用。 如果在长时间运行后,由于脱硫操作人员经验的不断积累,最终发现操作程序与目前的手册不同,应向承包商报告此情况以修改操作手册,承包商保留修改和添加的权利。为保证系统的正常运行,装置必须置于有效的监督之下,且操作人员必须明确自己应承担的责任。

1.烟气脱硫系统工艺介绍 1.1设计原则 (1)认真贯彻执行国家关于环境保护的方针政策,严格遵守国家有关法规、规范和标准进行设计,能够适应锅炉运行时的负荷波动,在满足供热的同时,达到设计的排放参数; (2)选用先进可靠的脱硫技术工艺,确保脱硫效率高的前提下,强调系统的安全、稳定性能,并减少系统运行费用。 (3)充分结合厂方现有的客观条件,因地制宜,制定具有针对性的技术方案。 (4)系统平面布置要求紧凑、合理、美观,实现功能分区,方便运行管理。 (5)设计采用石灰石—石膏湿法脱硫工艺,该方法技术成熟、脱硫效率高达98%以上、运行安全可靠、操作简便。 (6)烟气系统不设增压风机,设置烟气旁路,不设置烟气—烟气换热器,脱硫后的烟气排入厂里现有大烟囱。 (7)采用烟气在线自动监测系统,对脱硫后的烟气排放进行实时监控,严格执行环保要求排放标准。 1.2工艺原理及工艺流程 1.2.1工艺化学反应机理 石灰石—石膏湿法脱硫工艺的主要原理是:送入吸收塔的脱硫吸收剂石灰石浆液,与进入吸收塔的烟气接触混合,烟气中的二氧化硫与浆液中的碳酸钙以及鼓入的空气中的氧气发生化学反应,生成二水

火力发电厂机组AVC调试报告通用模版

XXX公司标志 XXX-0X-2013 XXXXXXX电厂#1机组 自动电压控制(AVC)装置试验报告 XXXXXXXX公司 201X年X月

XXXXXXXXXXXXXXX公司科技档案审批单报告名称:XXXXXXXXXXX后自动电压控制(AVC)装置试验报告报告编号:出报告日期: 保管年限:长期密级:一般 试验负责人:试验地点: 参加试验人员: 参加试验单位: 试验日期:打印份数:份 拟稿:校阅: 审核:生产技术部: 批准: 目录 1.概述 2.引用标准 3.试验基本条件 4.AVC装置相关安全性能试验 5.本地控制调节性能试验 6.远方控制调节性能试验 7.试验结论 8.附录

1、概述 。 为了检验X号机组自动电压控制系统(AVC)的功能是否正常,进行X号机组AVC 试验,主要内容有:1)验证AVC装置调节的安全性能。2)本地控制下AVC装置的调节性能。3)远方控制下AVC装置的调节性能。 2、引用标准 继电保护和安全自动装置技术规程GB 14285-2006 静态继电保护及安全自动装置通用技术条件DL/T 478-2001 电力系统实时数据通信应用层协议 DL476-1992 国调电网自动电压控制技术规范(试行) 自动电压控制AVC系统技术协议书 发电厂自动电压控制(AVC)装置在线调试的有关要求 3、试验基本条件 在进行X号机组AVC相关试验前,满足以下条件: 1)X号机组已完成AVC静态调试。 2)完成AVC装置参数整定。 3)完成AVC装置程序组态。 4)X号机组并网运行。 5)确认调度主站端量测数据与电厂端基本一致。 6)A VC中控单元与RTU通讯无误。 7)调度主站下发指令值和AVC中控单元显示值一致。 4、AVC装置相关安全性能试验 在进行X号机组AVC安全性能试验前确认AVC装置处于远方控制,退出AVC装置执行终端增/减磁出口压板,X号机组对应执行终端电源上电。 4.1 母线电压越高闭锁功能检查 在AVC装置中,设置母线电压高闭锁值低于当前运行电压,投入X号机组相对应

变电站电气整套启动调试措施

编号:QY-DQ-002-2011 陕西奥维乾元化工有限公司热电工程 2×50MW#1机组 电气整套启动调试措施 西北电力建设第一工程公司 调试试验中心 编制时间:2011年6月

科技档案审批单 报告名称: #1机组电气整套启动调试措施 编号:QY-DQ-002-2011 出报告日期:2011年6月 保管年限:长期密级:一般 试验负责人:张纪峰试验地点:奥维乾元化工有限公司热电车间参加试验人员:张纪峰、杨剑锋、李进京 参加试验单位:西北电力建设第一工程公司(调试试验中心)、陕西奥维乾元化工有限公司热电车间、北京华旭监理有限公司、江苏华能建设工程集团有限公司等 拟稿:张纪峰 审核:魏远 批准:周国强 目录 1. 编制目的 2. 编制依据 3.调试质量目标 4.系统及主要设备技术规范 5.调试范围 6.启动调试前应具备的条件 7.调试工作程序 8.调试步骤 9.组织分工 10.安全注意事项

1.编制目的 电气整套启动调试是电气设备投运前对设备性能及接线的一次全面检查,为使工作顺利进行,防止遗漏试验项目,使调试工作有序、有计划、有目的地进行,同时也为了提前做好各项准备工作,保证系统安全顺利投入运行,特编制此措施。 2.编制依据 2.1《火力发电建设工程启动试运及验收规程(2009年版)》 2.2《火电工程启动调试工作规定》电力部建设协调司建质[1996]40号 2.3《火电工程调整试运质量检验及评定标准》电力部建设协调司建质[1996]111号 2.4《火电施工质量检验及评定标准》(电气专业篇) 2.5《火电机组达标投产考核标准(2001年版)》电力工业部 2.6《电力建设安全工作规程》(火力发电厂部分) 2.7《电力安全工作规程》(发电厂和变电所电气部分) 2.8《火电、送变电工程重点项目质量监督检查典型大纲》 2.9《电力建设基本工程整套满负荷试运质量监督检查典型大纲》 2.10《电气装置安装工程·电力设备交接试验标准GB50150》 2.11《防止电力生产重大事故的二十五项重点要求(2000年版)》 2.12 相关厂家产品说明书及设计院资料 3.调试质量目标 符合部颁《火电工程调整试运质量检验及评定标准(1996年版)》中有关系统及设备的各项质量标准要求,在机组的整个整套启动试运过程中不发生任何一起恶性事故,确保#1、#2机组安全、可靠投运。 4.系统及主要设备技术规范 4.1 电气部分配置 陕西奥维乾元化工有限公司热电工程2×50MW机组新建工程由华陆工程科技有限责任公司设计、江苏华能建设工程集团有限公司负责安装、西北电力建设第一工程公司调试试验中心负责调试。 本工程电气一次部分包括2台50MW发电机组、2台63MVA变压器组、构成发电机—变压器单元接线,在110KV系统中并入电网。3段10kV工作母线段、1段10kV备用段、其中10KVⅠ、Ⅲ段经过电抗器分别与2台发电机组出口支接。10kV备用段电源引自110KV 变电所内10KVⅡ段成为其他3段10kV工作母线的备用电源。2台母联开关将3段10kV

吹灰器调试报告

1设备系统简介 华润电力唐山丰润有限公司工程安装两台350MW超临界燃煤供热机组,同步建设烟气脱硫、脱硝装置。锅炉型号为B&WB-1140/25.4-M,是北京巴布科克?威尔科克斯有限公司生产的超临界参数、螺旋炉膛、一次中间再热、平衡通风、固态排渣、全钢构架、紧身封闭的型锅炉,锅炉设有大气扩容式的内置式启动系统。配套汽轮机是哈尔滨汽轮机厂有限责任公司制造的CC300/N350-24.2/566/566型,超临界、单轴、三缸两排汽、一次中间再热、抽汽凝汽式汽轮机,配套发电机是哈尔滨电机厂有限责任公司制造的QFSN-350-2型,水-氢-氢冷却、静态励磁发电机。 本锅炉采用美国B&W公司SWUP超临界直流燃煤锅炉的典型布置。汽水分离器及贮水箱布置在炉前,炉膛由下部的螺旋膜式水冷壁和上部的垂直膜式水冷壁构成。炉膛出口布置屏式过热器,炉膛折焰角上方布置后屏过热器和末级过热器,高温再热器布置在水平烟道处。尾部竖井由隔墙分隔成前后两个烟道,前烟道布置低温再热器,后烟道布置低温过热器和省煤器。来自高加的给水首先进入省煤器进口集箱,然后经过省煤器管组和悬吊管进入省煤器出口集箱。水从省煤器出口集箱经一根炉膛下降管被引入位于炉膛下部的水冷壁进口集箱,然后沿炉膛向上经螺旋水冷壁进入水冷壁中间集箱。从水冷壁中间集箱出来的工质再进入上部的垂直水冷壁,由水冷壁出口集箱经连接管进入出口混合集箱,充分混合后进入锅炉前部的汽水分离器。在本生点以下负荷,给水经炉膛加热后,工质流入汽水分离器,分离后的热态水通过341管道排入疏水扩容器,通过疏水泵进入冷凝器。分离出的蒸汽进入锅炉顶棚、对流烟道侧包墙和尾部竖井包墙,然后依次流经低温过热器、屏式过热器、后屏过热器和末级过热器,最后由主汽管道引出。当机组负荷达到本生点以上时,启动系统将被关闭进入热备用状态,锅炉处于直流运行状态。 过热汽温度采用煤/水比作为主要调节手段,并配合二级喷水减温作为主汽温度的细调节,过热器共设二级(左右两侧共4个)减温器,分别布置在低温过热器至屏式过热器、屏式过热器至后屏过热器之间。同时为消除汽温偏差,屏式过热器至后屏过热器汽水管路左右交叉布置。再热器

励磁系统调试报告

. 发电机励磁系统试验报告 使用单位: 机组编号: 励磁装置型号: 设备出厂编号: 设备出厂日期: 现场投运日期: 电器科学研究院 擎天电气控制实业

励磁系统调试报告 使用单位:机组号:设备型号:设备编号:出厂日期:发电机容量:额定发电机电压/电流: 额定励磁电压/电流: 励磁变压器:KVA三相环氧干式变压器 励磁变额定电压: 励磁调节器型号:型调节器 一、操作回路检查 1.励磁柜端子接线检查 检查过柜接线是否与设计图纸相符,确认接线正确。 检查励磁系统对外接线是否正确,确认符合要求。 2.电源回路检查: 厂用AC380V工作电源。 DC-220V电源 检查励磁系统DC24V工作电源。 检查调节器A、B套工控机工作电源。 3.风机开停及转向检查: 4.灭磁开关操作回路检查 5.励磁系统信号回路检查

6.串行通讯口检查 二、开环试验 试验目的:检查励磁调节器工作是否正常,功率整流器是否正常。 试验方法:断开励磁装置与励磁变压器及发电机转子的连接,用三相调压器模拟PT电压以及整流桥交流输入电源,以电阻或滑线变阻器作为负载,用小电流方法检查励磁装置。 1.检查励磁系统试验接线,确认接线无误。 2.将调压器电压升到100V,按增磁、减磁按钮,观察负载上的电压波形是否按照调节规律变化。 功率柜上桥的输出波形正常,无脉冲缺相。 功率柜下桥的输出波形正常,无脉冲缺相。 3.调节器通道切换试验: 人工切换调节器工作通道,切换正常。 模拟A套调节器故障,调节器自动切换到备用通道。 模拟B套调节器故障,调节器自动切换到C通道。 4.励磁系统故障模拟试验 调节器故障

电气专业调试报告.

编号:汇能电厂1#机组/电气 陕西神木汇能化工有限公司发电工程1×30MW+1×150T/h发电机组 调试报告 江苏华能建设集团有限公司 编制时间:2014年6月

科技档案审批单 报告名称:陕西神木汇能化工有限公司发电工程1×30MW+1×150T/h发电机组调试报告 编号:汇能电厂1#机组/电气报告日期:2014年5月 保管年限:长期密级:一般 调试负责人:王琨调试地点:汇能化工有限公司调试人员:胡小兰董博 调试单位:江苏华能建设集团有限公司 编写:胡小兰 审核:王琨

目录 1.概述 (3) 2.分系统调试 (3) 3.开机前及升速时的测试 (10) 4.短路状态时的测试 (11) 5.空载状态时的测试 (13) 6.带负荷及72小时满负荷试运中的测试 (17) 7.调试中发现问题及改进意见 (18) 8.调试结论 (18)

1、概述: 陕西神木汇能化工有限公司发电工程,发电机、主变压器及厂用电系统的单体试验、分系统及整套启动调试,由江苏华能建设集团有限公司负责。在业主、安装、监理等有关各方的大力协作配合下,于2014年3月15日完成发电系统倒送电,经5月1日至8日发电系统空负荷测试,于2014年5月9日 1 时 52 分并网发电,于 6月10 日完成满负荷连续72小时试运,又接着完成了24小时试运,后即转入商业运行。 在本报告中,列举出各项分系统、整套调试、检验的详细数据,并作了逐项分析、判断,得出明确结论。凡有出厂数据可供对比者(如发电机空载、短路特性)均一一对比分析。各测试、检验项目(如极性、绝缘电阻、相序、电压、电流、差流、残压、轴压、灭磁、同期、励磁、联锁、传动、保护、信号、手自切换等)均达到了合格,良好的要求。 通过满负荷的连续考验,几次开停、并网,各一、二次设备及其保护、信号、仪表等均良好,无异、未出现放电、过热、误动、拒动、错发信号等。达到了机组投入商业运行要求。 2、分系统调试 2.1发电机控制、保护、信号回路传动试验 2.1.1控制及信号回路传动试验: (1)发电机出口开关动作分、合闸,指示灯指示正确,后备保护装置显示正常,综合控制系统能发出与之对应的信号。 (2)在同期屏动作合闸时,各同期开关位置正确,并且合闸回路闭锁可靠。(3)发电机出口开关柜隔离刀控制可靠,信号正确。 2.1.2保护及信号回路传动试验 (1)差动保护(整定值:纵差 4In )纵差保护:模拟差动保护动作,装置参数显示正确,保护动作能可靠跳开主开关及灭磁开关,综合控制系统能发出与之对应的信号。 (2)后备保护(整定值:过流 4.7A 过负荷:3.78A 过压 137V)过电流保护、过电压保护、过负荷保护:模拟各保护动作,装置参数显示正确,保护动作可靠,并且过流及过压保护动作跳开主开关及灭磁开关,综合控制系统能发出与

5. 烟气脱硫综合实验

实验五烟气脱硫除尘综合性实验 一、实验目的 大气污染的主要来源是工业污染源排出的废气,其中烟道气造成的危害极为严重。因此,烟道气(简称烟气)的测试是大气污染源检测的主要内容之一。从烟道排出的废气中,引起人们注意的污染物之一是SO2,其排放数量多,腐蚀性强、危害大,故监测SO2对检验其是否符合国家现行排放标准、净化设备效果,控制大气污染等有重要的实验意义。通过本实验应达到以下目的: (1)掌握烟气测试的原则和各种测定仪器的使用方法; (2)掌握从烟道气中采集SO2气的方法。 (3)熟练操作用吸收法净化废气中SO2的实验方法。 二、实验原理 (一)烟气中SO2的采样及测定 从烟道排出的废气中,引起人们注意的污染物之一是SO2,其排放量多、腐蚀性强、危害大,故监测SO2对检验其是否将合国家现行排放标准、净化设备效果、控制大气污染等有重要的实际意义。 用抽气泵从烟道气中排出的SO2气体被甲醛吸收液吸收后,用比色法测定出SO2浓度。 1、采样系统 (1)采样管 用耐腐浊材料〔不锈钢、石英)制成,其长度以能达到烟道中心部位为标准,其周围有加热元件(加热丝)。采样前需预热采样管,因热烟气遇冷的采样管易冷凝而积水,积水吸收SO2造成测定结果偏低,若长时间吸收SO2冷凝液流进吸收瓶又会造成测定结果偏高。加热采样管则可避免测值不准,在采样管的进口处装有滤料一般为无硫玻璃棉或石棉以防止尘粒或未燃尽物质吸入吸收瓶引起干扰。 (2)采样系统与装置 采样系统通常由采样管、颗粒物捕集器干燥器、流量计、和控制装置组成。用两个75 mL 的多孔玻璃板吸收瓶串联,内装30 mL已配好的甲醛吸收液,以0.5 L/min流量采样。 (3)采样时间

电气专业调试报告

电气专业调试报告公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

编号:汇能电厂1#机组/电气 陕西神木汇能化工有限公司 发电工程1×30MW+1×150T/h发电机组 调试报告 江苏华能建设集团有限公司 编制时间:2014年6月 科技档案审批单 报告名称:陕西神木汇能化工有限公司发电工程1×30MW+1×150T/h发电机组调试报告编号:汇能电厂1#机组/电气报告日期: 2014年5月 保管年限:长期密级:一般 调试负责人:王琨调试地点:汇能化工有限公司 调试人员:胡小兰董博 调试单位:江苏华能建设集团有限公司 编写:胡小兰 审核:王琨 目录

1.概述 (3) 2.分系统调试 (3) 3.开机前及升速时的测试 (10) 4.短路状态时的测试 (11) 5.空载状态时的测试 (13) 6.带负荷及72小时满负荷试运中的测试 (17) 7.调试中发现问题及改进意见 (18) 8.调试结论 (18) 1、概述: 陕西神木汇能化工有限公司发电工程,发电机、主变压器及厂用电系统的单体试验、分系统及整套启动调试,由江苏华能建设集团有限公司负责。在业主、安装、监理等有关各方的大力协作配合下,于2014年3月15日完成发电系统倒送电,经5月1日至8日发电系统空负荷测试,于2014年5月9日 1 时 52 分并网发电,于 6月10 日完成满负荷连续72小时试运,又接着完成了24小时试运,后即转入商业运行。 在本报告中,列举出各项分系统、整套调试、检验的详细数据,并作了逐项分析、判断,得出明确结论。凡有出厂数据可供对比者(如发电机空载、短路特性)均一一对比分析。各测试、检验项目(如极性、绝缘电阻、相序、电压、电流、差流、残压、轴压、灭磁、同期、励磁、联锁、传动、保护、信号、手自切换等)均达到了合格,良好的要求。

电厂网络设备调试报告

XXXX电厂网络设备调试报告 一、网关加密设备 根据国网公司《全国电力二次系统安全防护总体方案》要求,在山东省电力公司安排部署下,山东XXX有限公司于2012年6月在XXXX电厂部署纵向加密认证装置及调试。在完成本阶段的工作后现将工程实施情况做出说明。一、工程介绍 根据国网公司《全国电力二次系统安全防护总体方案》要求,计划在XXX 电厂部署纵向加密认证装置,保证实时业务的加密传输,非实时、保护业务的明文传输。根据现场环境及客户的要求本次装置部署在路由器与交换机之间,保证所有业务VPN都通过纵向加密装置传输。具体网络拓扑结构请参见下图: XXXX电厂节点网络拓扑图 实现在部署完成的节点对纵向加密装置进行远程监控、配置、管理。二、本阶段实施情况

本阶段工程于XXXX电厂部署百兆RJ45电口纵向加密设备一台。 完成XXX电厂两台百兆RJ45电口纵向加密设备的部署,实现实时业务加密通信;非实时、保护业务明文通信。转发给公司的业务数据传输正常。并在配置中考虑了在未来非实时、保护业务接入密通的需要,能够较快的实现业务的明密通转换。在设备接入的情况下充分考虑到现有网络中交换机与路由器的互连,中心节点网管机对交换机、路由器的远程管理。在设备的配置中保证厂站端交换机的网管正常。通过现场测试与阶段性运行,设备接入后厂站端交换机、路由器网管功能全部正常。 完成一台纵向加密的安装调试,设备运行状况正常。 三、调试报告 首先通过网线连接设备的eth4接口,打开纵向加密管理工 1对设备的基本参数进行配置 2配置vlan

3配置路由 4配置隧道

5配置策略 6将隧道对应的证书导入 至此,纵向加密配置完成。 XXXXXXXXXXX(安装)调试工程师;XXX XXXXXXXXXXXXX(记录)人员;XXXXX

推荐-2×350MW机组整套启动方案 精品

2×350MW机组整套启动方案 1. 机组启动原则 1.1 汽轮机启动状态的规定 汽轮机的启动状态划分是以高压内缸上半调节级处内壁金属温度为依据的,具体可分为: a) 冷态启动:金属温度≤121℃; b) 温态启动:金属温度在121~250℃; c) 金属温度在250~450℃之间; d) 极热态启动:金属温度≥450℃。 1.2 汽轮机启动规定 1.2.1 汽轮机在冷态启动时,进入汽机的主蒸汽过热度符合规定要求,即高压主汽阀入口处的蒸汽温度应具有56℃的过热度,但最高汽温不得超过427℃,主汽阀入口蒸汽温度和压力应在“启动时的主蒸汽参数曲线”所示区域内,同时,根据哈尔滨汽轮机厂的“汽轮机转速保持推荐值表”将转子升速到允许的加热转速范围内的一个转速进行暖机,在任何情况下不得减少中速暖机时间,以防转子发生脆性断裂; 1.2.2 汽轮机在热态启动时,蒸汽进入汽轮机至少有56℃的过热度,并满足“主汽阀前启动蒸汽参数曲线”的要求,根据哈尔滨汽轮机厂的“热态启动曲线”决定升速率和5%负荷暖机时间。 1.3 机组首次冷态启动程序 整套启动前的条件确认→辅机分系统投入→机组冲动→盘车脱扣检查→摩擦及低速检查(400r/min)→中速暖机(1000r/min)→高速暖机(2040r/min)→阀切换→定速(3000r/min)→打闸试验→安全装置在线试验→机械飞锤压出试验→油泵切换试验→DEH参数点调整→电气试验。 机组并网→带18~35MW运行3~4小时→机组解列→做汽门严密性试验→做超速试验。 机组并网→负荷70MW、投高加→负荷175MW、洗硅运行、启动汽泵,

机组甩50%负荷试验。 机组并网→负荷210MW,做进汽阀门试验→负荷265MW、锅炉洗硅、真空系统严密性试验、试投CCS协调控制系统→负荷350MW、RB试验、做机组甩100%负荷试验。 冷态、温态、热态和极热态启动试验→机组带负荷350MW连续168小时运行→进入试生产阶段。 2. 整套启动前应具备的条件 2.1 汽轮发电机组安装工作全部完毕,辅机单体和分系统试运工作已完成,热工调节控 制、联锁保护、报警信号及运行监视系统静态调试完; 2.2 厂房内地面平整,道路畅通,照明充足,通讯联络可靠; 2.3 主要系统管道的吊架和支架完整、牢固,弹簧吊架的固定销钉应拆除; 2.4 调整试验用的临时堵板,手脚架,接地线,短路线,工作牌等临时安全设施已拆除, 恢复常设的警告牌和护栏; 2.5 设备、管道、阀门的标牌经确认无误,工质流向标示正确; 2.6 消防设施齐全,消防水系统压力充足处于备用状态; 2.7 不停电电源切换试验做完,投入备用; 2.8 机组各系统的控制电源、动力电源、信号电源已送上,且无异常; 2.9 确认厂用计算机工作正常,供电电源可靠并完成电源切换工作,DCS 显示与设备实 际状态相符; 2.10 启动用的工具、离线监测仪器、运行记录已准备好; 2.11 整套启动电气试验方案已经报调度审批完毕; 2.12 建立整套启动电气试验检查确认单,并确认完成; 2.13 编制试验程序,绘制系统图; 2.14 准备好设计、设备图纸及定值单,以备查看; 2.15 按照组织机构,通知有关人员到岗;

吸收塔系统调试措施

山西国际能源集团宏光发电有限公司联盛2×300MW煤矸石发电项目 烟气脱硫工程 吸收塔系统调试措施 编制: 审核: 批准: 山东三融环保工程有限公司 2012 年8月

目录 1、系统概述 (1) 1、编制依据 (3) 2、调试范围及相关项目 (3) 3、组织与分工 (4) 4.1施工单位 (4) 4.2生产单位 (4) 4.3调试单位 (4) 4、调试前应具备的条件 (5) 5、调试项目和程序 (6) 5.1吸收塔系统启动调试工作流程图 (6) 5.2调试步骤 (6) 6、调试质量的检验标准 (11) 7、安全注意事项 (11) 8、调试项目的记录内容 (12) 附录1 吸收塔系统启动前试验项目检查清单 (13) 附录2. 试运参数记录表 (14) 附录3 FGD装置分系统试运质量检验评定表 (15)

1、系统概述 本工程厂址位于山西省中部西缘柳林县的薛村镇,地处联盛能源有限公司规划的工业集中区内,东北距柳林县约11km,西北距军渡约5km,黄河在厂址西面约12km处。本工程规划建设两台300MW循环流化床锅炉机组,汽机直接空冷,脱硫系统同步建设。本期脱硫岛整体布置在烟囱后,两炉一塔方式,采用石灰石—石膏湿法脱硫工艺,副产物为二水石膏。整套脱硫系统中吸收剂制备系统、石膏脱水系统、废水处理系统以及工艺水系统、GGH系统、吸收塔系统为公用,每台机组设置单独的增压风机系统。 吸收塔系统主要功能将引入的原烟气在喷雾吸收塔内通过吸收塔浆液的喷雾洗涤去除大量的SO2,脱硫反应生成的脱硫产物在吸收塔浆池中被通入的氧化空气强制反应生成硫酸钙并在浆池中结晶生成二水石膏。石膏浆液通过石膏浆液排出泵送入石膏脱水系统,脱硫效率可达85%以上。 进入吸收塔的石灰石浆液在吸收塔浆池中溶解,通过调节进入吸收塔的石灰石浆液量或吸收塔排出浆液浓度,使吸收塔浆池pH值维持在4.5~5.5之间以保证石灰石的溶解及SO2的吸收。烟气在吸收塔内经过吸收塔浆液循环洗涤冷却并除去SO2。脱硫后净烟气由装设于吸收塔上部的2级除雾器除雾使烟气中液滴浓度不大于75mg/Nm3。除去雾滴后的净烟气接入主烟道,并经烟囱排入大气。脱硫反应生成的反应产物经吸收塔氧化风机鼓入吸收塔浆液的氧化空气强制氧化,生成硫酸钙并结晶生成二水石膏,主要成分为二水石膏的吸收塔浆液由石膏浆液排出泵排出吸收塔。SO2吸收系统可细分为吸收塔本体、浆液循环系统、脉冲悬浮系统、氧化空气系统及石膏浆液排出系统。 根据BMCR工况下烟气量以及烟气中SO2含量,本FGD装置每台吸收塔设置3台浆液循环泵,采用3层浆液雾化喷淋方式。 吸收塔除雾器布置于吸收塔上部,烟气穿过循环浆液喷淋层后,再连续流经两级除雾器除去所含浆液雾滴。在一级除雾器的上面和下面各布置一层清洗喷嘴。清洗水从喷嘴强力喷向除雾器元件,带走除雾器顺流面和逆流面上的固体颗粒。二级除雾器下面也布置一层清洗喷淋层。烟气通过两级除雾后,其烟气携带水滴含量不大于75mg/Nm3(干基)。除雾器清洗系统间断运行,采用自动控制。

励磁系统调试报告(互联网+)

发电机励磁系统试验报告 使用单位: 机组编号: 励磁装置型号: 设备出厂编号: 设备出厂日期: 现场投运日期: 广州电器科学研究院 广州擎天电气控制实业有限公司

励磁系统调试报告 使用单位:机组号: 设备型号:设备编号:出厂日期: 发电机容量:额定发电机电压/电流: 额定励磁电压/电流: 励磁变压器:KV A三相环氧干式变压器 励磁变额定电压: 励磁调节器型号:型调节器 一、操作回路检查 1.励磁柜端子接线检查 检查过柜接线是否与设计图纸相符,确认接线正确。 检查励磁系统对外接线是否正确,确认符合要求。 2.电源回路检查: 厂用AC380V工作电源。 DC-220V电源 检查励磁系统DC24V工作电源。 检查调节器A、B套工控机工作电源。 3.风机开停及转向检查: 4.灭磁开关操作回路检查 5.励磁系统信号回路检查 6.串行通讯口检查 二、开环试验 试验目的:检查励磁调节器工作是否正常,功率整流器是否正常。 试验方法:断开励磁装置与励磁变压器及发电机转子的连接,用三相调压器模拟PT电压以及整流桥交流输入电源,以电阻或滑线变阻器作为负载,用小电流方法检查励磁装置。 1.检查励磁系统试验接线,确认接线无误。 2.将调压器电压升到100V,按增磁、减磁按钮,观察负载上的电压波形是否按照调节规律变化。 功率柜上桥的输出波形正常,无脉冲缺相。 功率柜下桥的输出波形正常,无脉冲缺相。

3.调节器通道切换试验: 人工切换调节器工作通道,切换正常。 模拟A套调节器故障,调节器自动切换到备用通道。 模拟B套调节器故障,调节器自动切换到C通道。 4.励磁系统故障模拟试验 调节器故障 PT故障 起励失败 逆变灭磁失败 功率柜故障 快熔熔断 风机故障 交流电源消失 直流电源消失 三、空载闭环试验 励磁系统无故障情况下,将发电机转速升到额定转速,将励磁系统投入,进行相关试验。 1、零起升压试验 将调节器置于“零升”方式,按起励按钮,励磁系统将发电机电压升到额定电压的20%以下。 注意: ●第一次起励前,应测量PT残压三相是否对称,整流柜不同整流桥、同步变 压器输入端对应相电压是否一致。 ●第一次升压,且励磁系统在零升方式起励时,若起励瞬间机端电压超过额定 电压的40%,应立即关闭调节器24V工作电源或跳开灭磁开关。 PT电压20 30 40 50 60 70 80 90 100 105 120 I L 上升 U L 上升 I L 下降 U L 下降 3、A通道空载电压整定范围 下限预置上限 U F(V) I L(A) U L(V)

汇能电厂调度自动化系统调试报告

汇能电厂调度自动化系统调试报告 甲方:神木县汇能化工有限公司乙方:陕西扬子电力有限公司 - 1 - 榆林汇能清洁能源电厂调度自动化系统工程调试报告 2014年5月 目录 工程调试报告. . . . . . . . . . . 3 一、数据网络方面. . . . . . . . . . . 5 一)、网络连接方案及地址分配 图.. . . . . 5 二)、5040路由器与3600交换机使用说明与配置文 档. . . . . . 9 二、纵向加密认证网关. . . . . . . . 30 1、一平面纵向加密网关I区配置. . . . . . . . 30 2、一平面纵向加密网关II区配置. . . . . . . . 34 3、二平面I区加密配置. . . . . . . . 40 4、二平面I区加密配置. . . . . . . . 44 三、远动RTU方面. . . . . . . .

一)、实时数据采集测 试. . . . . . 二)、数据转发测 试. . . . . . . . 50 四、电能量计费方面. . . . . . . 52 五、调度自动化设备一览表. . . . . . 52 - 2 - . 48 . . 48 工程调试报告 根据设计方案及调度中心对并网电厂电力调度自动化的要求,实现电厂远动信息“直调直采”的原则,保证远动信息和电能量数据信息采集的完整性和可靠性,甲、乙双方经过友好协商签定合同,根据合同要求乙方负责完成调度自动化系统设备的供货和安装调试工作,保证所需信息的准确性与可靠性,负责光纤通道的畅通,负责电厂与省调及地调所需信息的可靠传输所需的协议、地址码、信息表的建立并协助电厂与省调地调各专业联调配合的协调、联络工作,完成调度自动化系统联调工作。乙方现已于2014年5月结束调试,陕西调度双平面网调度自动化系统均已调试完毕,完成合同要求工作,具体如下: 一、乙方已完成网络设备路由器、交换机的安装及与相关设备厂家的网络连接,完成网络设备的设置及功能测试,第一平面网通过省调榆林汇聚路由器接入陕西省电力数据调度网,第二平面网直接接入榆林地调核心路由器,完成与省调、地调联调。厂站调度自动化设备与网调、省调、地调数据传输正常,达到三级调度要求。

脱硫系统调试、启动方案

脱硫系统调试、启动方案 一、目的 烟气脱硫工程的整套启动试运是全面检验脱硫工程主体及其配套的附属设备质量的重要环节,是保证脱硫设备能安全、可靠、经济、有效地投入生产、发挥投资效益的关键性程序,为了优质高效、积极稳妥、有条不紊地做好脱硫工程整套启动调试的各项工作,保证安全生产,降低调试过程中物资消耗,特编制本方案。 二、精心策划,认真组织,做好前期生产准备工作 成立运行准备小组 职责分工: 1) 领导小组组长是本次启动的总指挥,其余成员负责各项试验、启动操作的协调和技术指导工作。 2) 当班值长负责启动的总体指挥。 3) 当班运行人员负责具体运行操作,并按规程规定进行突发性事故处理。 4) 检修部门对所辖范围设备按照启动试运应具备的条件进行全面检查,并分工明确,落实到责任人。 主动介入,着眼未来,加强机组启动调试全过程管理 为了机组投产后的安全经济运行,生产准备人员全面参与基建全过程,运行和设备管理人员参与设备选型、设计审查、系统优化;参与设备的安装与验收;做好机组调试、试运行操作、设备代保管等各项工作。 2.1 优化设计方案,提高设备的安全经济运行水平在机组安装调试及试运行时期,生产准备人员主动介入,参与设备安装与调试工作,理解消化设计意图,熟悉了解设备性能,为以后的设备系统验收、运行操作等做好准备。由于介入程度较深,能够察觉一些问题症结,提出优化设备系统建议,从而及时消除设计、安装、设备缺陷,提高了设备的可靠性。 2.2 做好设备验收,保证健康的设备移交生产 #2炉脱硫系统改造调试启动预案 一、#2脱硫系统启动前准备工作(建议此项工作在启机三天前 结束) 1.检查#2脱硫所有系统设备工作票已终结、所有措施已恢复,并做到工完料尽场地清,现场照明完好。 2.检查#1.2脱硫系统电气系统运行方式正确,#2脱硫系统所有电气设备绝缘合格备用;#1.2脱硫直流系统投入正确。 3.检查#1.2脱硫公用设备、阀门运行状态正确,并对#2塔所属箱、池、管道进行彻底冲洗,确认管道通畅无杂物。检查#2吸收塔工艺水总阀开

XX电厂XX机组脱硫整套启动调试报告

目录 1. 设备系统概述 2. 调试报告编写依据 3. 调试范围 4. 组织及分工 5. 调试程序 6. FGD整套启动调试情况分析 7. 168小时满负荷运行 8. 调试结论 9. 调试质量的检验 10 问题与建议 附图:168h中典型的CRT上FGD系统画面。

公司1、2号机组 烟气脱硫工程整套启动调试报告 电厂位于广东省台山市铜鼓镇,电厂首期为23600MW燃煤火力发电机组,每台机组建设一套石灰石-石膏湿法烟气脱硫装置,用于处理该机组在BMCR工况下100%的烟气,脱硫率大于等于95%。锅炉引风机后的烟气经过脱硫增压风机和气—气换热器,进入鼓泡式吸收塔脱硫。净化后的烟气经过气—气换热器再热,然后从现有烟囱中排入大气。 该工程由北京博奇电力科技有限公司总承包,采用了日本EBARA荏原制作所的CT-121FGD技术。其中石灰石制浆系统、石膏脱水系统、事故罐、工艺水系统为两套共用;增压风机冷却水使用电厂闭冷水。2004年11月11日到11月18日完成1号机组烟气脱硫装置的整组调试,报告如下: 1.设备系统概述 1.1主要设计数据 1.1.1 原煤 电厂燃用神府东胜煤。锅炉设计使用的原煤资料如表1所示。 表1 锅炉设计使用的原煤资料

表2 煤质微量元素含量表 1.1.2 电厂主要设备参数 与脱硫系统有关的主设备参数见下表3。 表3 1、2 号国产机组主要设备参数

1.1.3 气象条件,见下表4。 表4 气象条件 1.1.4 锅炉排烟设计参数

FGD设计工况为锅炉BMCR工况,燃用设计煤种,FGD入口烟气参数见表5。 表5 FGD入口烟气参数

湿法脱硫调试大纲

湿法烟气脱硫工程 调试大纲 (通用) 批准 审核 编制 武汉森源蓝天环境科技工程有限公司 2017年8月

目录 前言: (3) 1. 工程设备概况 (4) 2. 启动试运的组织及职责 (12) 3. 启动调试工作分工 (13) 4. 启动调试范围及项目 (15) 5. 主要调试工作程序 (17) 6. FGD启动调试阶段主要控制节点及原则性调试方案 (20) 7. 调试管理目标和调试管理措施 (21) 8. 调试进度计划 (23) 9. 附表 (25)

前言: 为确保脱硫项目的调试工作能优质、有序、准点、安全、文明、高效地进行,并使参加调试工作的各方对调试过程及要求有较全面的了解,特制定本调试大纲。 编制依据: 《火力发电厂基本建设工程启动及竣工验收规程》 《火电工程启动调试工作规定》 《电力建设施工及验收技术规范》 《火电工程调整试运质量检验及评定标准》 《电力建设安全工作规程》 《火电厂大气污染物排放标准》 《火电厂烟气排放连续监测技术规范》 《火电厂烟气脱硫工程技术规范石灰石/石灰—石膏法》

1. 工程设备概况 本调试大纲适用于石灰石-石膏湿法脱硫技术,主要工艺系统流程及构成:FGD 装置运行时,烟气通过位于吸收塔中部的入口烟道进入塔内。烟气进入塔内后向上流 被石灰石浆液吸过喷淋段,以逆流方式与喷淋下来的石灰石浆液接触。烟气中的SO 2 收并发生化学反应,在吸收塔下部反应池内被鼓入的空气强制氧化,最终生成石膏晶体。在吸收塔上部,脱硫后的烟气通过除雾器除去夹带的液滴后,从顶部净烟道离开吸收塔,并经烟囱最后排入大气中。 FGD装置所需石灰石吸收剂浆液由泵车将石灰石粉送至石灰石仓储存,然后通过给料机输送到石灰石浆液箱进行制浆,并将制好的浆液送入吸收塔后进行吸收反应。脱硫反应后所产生的石膏浆液由泵送至石膏浆液旋流站进行初步脱水,初步脱水后的浆液送至真空皮带机脱水,生成含水率小于10%的石膏。 1.1工程主要性能参数如下: 1.1.1烟气参数(单台炉) 1.1.2设计煤种数据表

浅谈火电厂DCS系统调试的质量控制

浅谈火电厂D C S系统调试的质量控制 集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-

浅谈火电厂D C S系统调试的质量控制1 引言 火电厂分散控制系统(DCS)是以微机为基础,根据系统控制的概念,融合了计算机技术、控制技术、通信技术和图形显示技术,实现集中管理,分散控制。它根据火电厂工艺特性,将控制系统分成若干独立子系统,由相应的分布式处理单元独立完成,分布式处理单元可根据功能和地理位置分散布置。DCS的各子系统分工协作,并行工作,得用系统通信网络进行数据交换,共享系统资源。特别是电气控制系统纳入DCS后,DCS已成为火电厂完整的控制系统。 由于DCS系统已成为火电厂控制、监视的主要设备,因此DCS安装完毕后进行的调试就成为火电厂建设的一项重要工作,监理人员对DCS 系统的调试质量必须进行有效的控制。系统调试是对工程质量进行系统检验、并使其的功能得以正常发挥的过程。调试不但能及时发现问题进行改进,而且正式运行后的效果往往较好。反之,如调试效果不好,对存在的质量问题不及时改进,既会浪费能源又影响机组出力。所以,在系统工程调试阶段对DCS的质量控制十分重要。 监理人员在调试阶段首先要审查工程承包商提出的调试方案和调试报告,并报业主审批通过。具体调试过程要在监理的监控下完成,并填好相应的记录及调试结果,报业主签证认可。监理审查调试报告是控制工程调试质量的重点和关键。一个合理、可行、完整的调试报告是整个

系统顺利调试的前提;掌握准确、真实的调试数据和结果是系统调试的真实反映,同时也是竣工验收和将来系统运行中检查故障的重要依据。审查完调试报告后,即可按报告中的步骤控制系统调试。 2 DCS系统调试 DCS调试的具体过程根据其调试的阶段,应包括硬件、仪表的测定和调试;系统指标及软件调试;系统调试。 调试前审查的施工单位调试报告应包括以下几部分:工程概况;调试依据;调试前准备工作;调试方法及步骤;调试的具体时间安排和使用的仪器、仪表清单;人员的组织安排。调试报告后应附带填表形式。对于调试报告,应审查其合理性、可行性、完整性。对各个阶段的调试周期应统筹规划,确保调试时间的连续性。经监理审查后的调试报告,应上交业主审核通过后,才着手下一步的调试工作。 调试前的准备工作,作为质量控制的一部分,首先要检查DCS系统是否施工完毕,是否符合设计、有关文件、国家标准和规范要求。如DCS 系统是否按合同要求配置、屏柜安装是否正确、电缆敷设是否正确、接地系统是否正确等等。最好在正式调试前,进行调试培训,明确各人职责,做到岗岗有人。 2.1硬件、仪表的测定和调试

电厂整套启动方案

机组整套启动方案

目录 1.整套启动方案编写说明 2.#1机组整套启动原则方案 3.#1机组整套启动必备条件 3.1总体 3.2锅炉 3.3汽机 3.4电气 3.5热控 3.6化学 3.7输煤、制粉、除灰系统 4.#1机组整套启动准备工作 5.#1机组整套启动调试内容及时间安排5.1空负荷调试阶段 5.2带负荷调试阶段 5.3 满负荷168h试运阶段 6.#1机组整套启动调试质量目标

#1机组整套启动方案 1.整套启动方案编写说明 1.1按国家电力公司2001年版《火电机组达标投产考核标准》300MW以上机组从首 次点火吹管至机组完成168h满负荷试运的工期≤90天为标准,因此,计划从点火冲管至机组完成168h满负荷试运共计90天的时间分配如下:冲管5天; 整套启动条件具备时间15天;整套启动准备时间5天;空负荷启动时间5天;汽轮机翻瓦及消缺15天;带负荷调试30天;168试运行15天;共计90天。 1.2整套启动方案所提出的调试项目、内容及质量目标,是按电力工业部96版 《火力发电厂基本建设工程启动及竣工验收规程》,电力工业部建设协调司96版《火电工程启动调试工作规定》, , 《建设国际一流电厂工作规划及实施大纲》的规定所决定。 1.3本整套启动方案主要说明#1机组在整套启动的原则方案及整套启动时的必备条 件、调试项目、调试时间安排,以便现场各方人员对机组整套启动的情况心中有底,做好各自责任范围内的工作,顺利完成整套启动任务。 1.4 与本整套启动方案相配套的措施有“#1机组锅炉整套启动调试措施” ,“#1机组 汽机整套启动调试措施” ,“#1机组电气整套启动调试措施” ,“#1机组整套启动期间水汽质量监督措施”,“机、电、炉横向大联锁试验措施”。相关专业调试内容可见这些措施。 2.#1机组整套启动原则方案 按1996年版《火力发电厂基本建设工程启动及竣工验收规程》,整套启动试运分空负荷调试、带负荷调试和满负荷试运三个阶段进行。并按排在满负荷调试168小时前完成甩负荷试验。 2.1空负荷调试 2.1.1机组空负荷调试是在机组分系统经分部试转转合格后进行,空负荷调试主要包括:按启动曲线开机;机组轴系振动监测;调节保安系统有关参数的调试和整

相关主题
文本预览
相关文档 最新文档