当前位置:文档之家› 第二章 空间向量与立体几何 章末小结

第二章 空间向量与立体几何 章末小结

第二章  空间向量与立体几何  章末小结
第二章  空间向量与立体几何  章末小结

第二章 空间向量与立体几何

第14课时 章末小结

问题1 直线与平面的夹角

例1. 如图1,在正三棱柱ABC-A 1B 1C 1中,AB=AA 1=2,点D 是CC 1的中点,求AA 1与平面AB 1D 所成的角的大小.

解:如图1建立直角坐标系,则),2,1,3(AB 1

=

)1,2,0(AD =,设平面AB 1

D 的法向量)z ,y ,x (n =,

由n AB 1⊥,得0z 2y x 3n AB 1=++=? ①

由⊥

,得0z y 2=+=? ②

令y=1,由①、②联立解得)2,1,3(,2z ,3x -=∴-==

∴,135,AA ,22

824

,AA cos 011>=<-=->=<故AA 1

与平面AB 1

D 所成的角为450.

即时突破1. 如图,已知正四棱柱ABCD —A 1B 1C 1D 1中,底面边长AB=2,侧棱BB 1的长为4,过点B 作B 1C 的垂线交侧棱CC 1于点E ,交B 1C 于点F 求A 1B 与平面BDE 所成的角的正弦值. 笔记:

即时突破2. 在60°的二面角的棱上,有A 、B 两点,线段AC 、BD 分别在二面角的两个面内,且都垂直于AB ,已知AB=4,AC=6,BD=8. ⑴求CD 的长度;⑵求CD 与平面α所成的角 笔记:

问题2 平面间的夹角

例2. 如图,在三棱锥P -ABC 中,AC =BC =2,∠ACB =90°,AP =BP =AB ,PC ⊥AC .

(Ⅰ)求证:PC ⊥AB ;(Ⅱ)求二面角B -AP -C 的大小.

(Ⅰ)∵AC =BC ,AP =BP ,∴△APC ≌△BPC . 又PC ⊥AC .∴PC ⊥BC.∵AC ∩BC =C , ∴PC ⊥平面ABC .∵AB ?平面ABC , ∴PC ⊥AB .

(Ⅱ)以C 为原点建立空间直角坐标系C-xyz .则C (0,0,0),A (0,2,0),B (2,0,0). 设P (0,0,t ),∵|PB |=|AB |=22, ∴t =2,P (0,0,2).取AP 中点E ,连结BE ,CE .

∵|AC |=|PC |,|AB |=|BP |,∴CE ⊥AP ,BE ⊥AP .

∴∠BEC 是二面角B-AP -C 的平面角.∵E (0,1,1),),1,1,2(),1,1,0(--=--=EB EC ∴cos ∠BEC .336

22

=?=

∴二面角B-AP-C 的大小为arccos .33

笔记:

点睛:如果与直线l 共线的非零向量与平面α的法向量所成的角为θ,那么直线l 与平面α所成的角则为|900

-θ|.

若00≤θ<900

,则直线l 与平面α所成的角为900

-θ;若900

≤θ≤1800

,则直线l 与平面α所成的角为θ-900

.这是因为直线与平面所成的角的范围是[0,900

].

点睛:如果二面角α-l -β中α、β的法向量所成的角为θ,那么二面角α-l -β的大小则为θ或1800

-θ.(取θ还是1800

-θ,要视问题中的二面角是“钝角”,还是“锐角”而定)

( 图1 )

A

D C

A 1

B 1

D 1

C 1

E

F

即时突破4. 如图所示,四棱锥P -ABCD 的底面ABCD 是边长为1的菱形,∠BCD =60°, E 是CD 的中点,P A ⊥底面ABCD ,P A =2. 求平面P AD 和平面PBE 所成二面角(锐角)的大小.

笔记:

问题3 距离的计算

例2如图3,在棱长为4的正方体ABCD —A 1B 1C 1D 1中,E 、F 分别是A 1B 1和B 1C 1的中点。

(1) 求点D 到BE 的距离; (2) 求点D 到面BEF 的距离;

解:(1)以点A 为原点建立如图3所示的空间直角坐标系,因E 、F 分别是A 1B 1和B 1C 1的中点,所以B (4,0,0),E (2,0,4),D (0,4,0),则BE =(-2,0,4),BD =(-4,4,0)

∴在

=

5

4

∴点D 到BE 的距离为

5512

= (2)设=(x,y,1)为平面BEF 的法向量,则⊥,⊥,=(0,2,4),

∴BE n ?=-2x+4=0,

BF n ?=2y+4=0∴x=2, y=-2∴n =(2,-2,1)

∴向量在

316

-

=∴点D 到面BEF 的距离为3

16

.

即时突破5. 如图,在四棱锥O ABCD -中,底面ABCD 四边长为1的菱形,4

ABC

π

∠=

,

OA ABCD ⊥底面, 2OA =,M 为OA 的中点,

N 为BC 的中点(Ⅰ)求异面直线AB 与MD 所成角的大小;

(Ⅱ)求点B 到平面OCD 的距离。 笔记:

即时突破6. 如图4,直三棱柱ABC —A 1B 1C 1中,底面是等腰直角三角形,∠ACB=90°,侧棱AA 1=2, D 、E 分别是CC 1与A 1B 的中点,点E 在平面ABD 上的射影是△ABD 的重心G. (Ⅰ)求A 1B 与平面ABD 所成角的大小(结果用反三角函数值表示); (Ⅱ)求点A 1到平面AED 的距离. 笔记:

点睛:如果平面α的法向量为n ,

点B 是平面α上的任一点, 则点A 到平面α的距离

||

n ||

d ?=.

|

n |

平面α的单位法向量)

【反馈测评】

1.正方体ABCD —A 1B 1C 1D 1中,E 、F 分别是AA 1与CC 1的

中点,则直线ED 与D 1F 所成角的大小是 (

A .51

arccos B .31arccos C .

3π D .

6

π 2.设a 、b 是平面α内的两个非零向量,则n ·a =0,n ·b =0是n 为平面α的法向量的( )

A .充分条件

B .充要条件

C .必要条件

D .既非充分又非必要条件

3.如图,以等腰直角三角形斜边BC 上的高AD 为折痕,把△

ABD 和△ACD 折成互相垂直的两个平面后,某学生得出 ①?AC

BD ②∠BAC = ③三棱锥D —ABC 是正三棱锥;

④平面ADC 的法向量和平面ABC 的法向量互相垂直. 其中正确的是

( )

A .①②

B .②③

C .③④

D .①④

4.在空间直角坐标系O —xyz 中,有一个平面多边形,它在x O y

平面的正射影的面积为8,在y O z 平面和z O x 平面的正射影的面积都为6,则这个多边形的面积为

( ) A .46

B .2

46

C .

34 D .2

34

5.若A(-1,2,3)、B(2,-4,1)、C(x ,-1,-3)是直角三角形的三个顶点,则x = .

6.若a =(3x ,-5,4)与b =(x ,2x ,-2)之间夹角为钝角,则x 的取值范围为 .

7.设向量a =(1,-2,2),b =(-3,x ,4),已知a 在b 上的射影是1,则x = .

8.设A(1,2,-1),B(0,3,1),C(-2,1,2)是平行四边形的三个顶点,则此平行四边形的面积为 9. 如图,在长方体

1111

ABCD A B C D -,中,

11,2A D A A

A B =

==,点

E 在棱AD 上移动 (1)当E 为AB 的中点时,求点E 到面1ACD 的距离;

(2)AE 等于何值时,二面角1D EC D --4

π

10. 如图,在棱长为1的正方体ABCD A B C D ''''-中,

AP=BQ=b (0

11. 如图,正四棱柱1111ABCD A B C D -

中,

124AA AB ==,点E 在1CC 上且求二面角

1A DE B --的大小

12. 四棱锥A BCDE -中,底面BCDE 为矩形,侧面

ABC ⊥底面BCDE ,2BC =,CD =AB AC =.设CE 与平面ABE 所成的角为45,求二面角C AD E --的大小.

C

D

E A

B

C

答案

即时突破1

630 2.(1) 172||.682

1

862846||2222==???-++=所以 (2) 34

51

3arcsin

.3451317233sin =∠===

∠CDE CD CE CDE 所以 (3)

arcsin

3. (4)

arccos 5(5) (Ⅰ)3π

Ⅱ)

23

(6) (Ⅰ)37arccos

Ⅱ3

6

2 【反馈测评】1.A2.C3.D4.D5. 163或-11 6.2

43

x -<< 7.0

8.

9.(1) .313212|

|1=-+=

=

n h (2) 4π

(10)

|cos |3

D E A D -''<>

=

,(11) arccos 42.(12) πarccos -??

2020高中数学第2章平面向量章末复习学案苏教版必修4

第2章平面向量 章末复习 学习目标 1.回顾梳理向量的有关概念,进一步体会向量的有关概念的特征.2.系统整理向量线性运算、数量积运算及相应的运算律和运算性质.3.体会应用向量解决问题的基本思想和基本方法.4.进一步理解向量的“工具”性作用. 1.向量的运算:设a=(x1,y1),b=(x2,y2). 向量运算法则(或几何意义)坐标运算 向量的线性运算加法a+b=(x1+x2,y1+y2) 减法a-b=(x1-x2,y1-y2) 数乘 (1)|λa|=|λ||a|; (2)当λ>0时,λa的方向与a的方向相 同;当λ<0时,λa的方向与a的方向相 反;当λ=0时,λa=0 λa=(λx1,λy1) 向量的数量积运算a·b=|a||b|cosθ(θ为a与b的夹角)规 定0·a=0, 数量积的几何意义是a的模与b在a方向上 的投影的积 a·b=x1x2+y1y2 2.两个定理 (1)平面向量基本定理 ①定理:如果e1,e2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a,

有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2. ②基底:把不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组基底. (2)向量共线定理 如果有一个实数λ,使b =λa (a ≠0),那么b 与a 是共线向量;反之,如果b 与a (a ≠0)是共线向量,那么有且只有一个实数λ,使b =λa . 3.向量的平行与垂直 a , b 为非零向量,设a =(x 1,y 1),b =(x 2,y 2), a ∥ b 有唯一实数λ使得 b =λa (a ≠0) x 1y 2-x 2y 1=0 a ⊥b a · b =0 x 1x 2+y 1y 2=0 1.平面内的任何两个向量都可以作为一组基底.( × ) 提示 平面内不共线的两个向量才可以作为一组基底. 2.若向量AB →和向量CD → 共线,则A ,B ,C ,D 四点在同一直线上.( × ) 提示 也可能AB ∥CD . 3.若a·b =0,则a =0或b =0.( × ) 4.若a·b >0,则a 和b 的夹角为锐角;若a·b <0,则a 和b 的夹角为钝角.( × ) 提示 当a ,b 同向共线时,a·b >0,但a 和b 的夹角为0.当a ,b 反向共线时,a·b <0,但a 和b 的夹角为π. 类型一 向量的线性运算 例1 如图所示,在△ABC 中,AN →=13NC →,P 是BN 上的一点,若AP →=mAB →+211AC → ,则实数m 的 值为________. 答案 3 11 解析 设BP →=λBN → ,

高中数学第二章平面向量章末小结导学案无答案新人教A版必修

第二章平面向量章末小结 【本章知识体系】 - 1 -

2 【题型归纳】 专题一、平面向量的概念及运算 包含向量的有关概念、加法、减法、数乘。向量的加法遵循三角形法则和平行四边形法则,减法可以转化为加法进行运算。利用向量证明三点共线时,应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得出三点共线. 1、1.AB →+AC →-BC →+BA →化简后等于( ) A .3A B → B.AB → C.BA → D.CA → 2、在平行四边形ABCD 中,OA →=a ,OB →=b ,OC →=c ,OD →=d ,则下列运算正确的是( ) A .a +b +c +d =0 B .a -b +c -d =0 C .a +b -c -d =0 D .a -b -c +d =0 3、已知圆O 的半径为3,直径AB 上一点D 使AB →=3AD →,E 、F 为另一直径的两个端点, 则DE →·DF →=( ) A .-3 B .-4 C .-8 D .-6 4、如图,在正方形ABCD 中,设AB →=a ,AD →=b ,BD →=c ,则在以a , b 为基底时,AC →可表示为________,在以a , c 为基底时,AC →可表示为 ________. 5、下列说法正确的是( ) A .两个单位向量的数量积为1 B .若a ·b =a ·c ,且a ≠0,则b =c C .AB →=OA →-OB → D .若b⊥c ,则(a +c )·b =a ·b 专题二、平面向量的坐标表示及坐标运算 向量的坐标表示及运算强化了向量的代数意义。若已知有向线段两端点的坐标,则应先求向量的坐标,解题过程中,常利用向量相等,则其坐标相同这一原则。 6、已知向量a =(1,n ),b =(-1,n ),若2a -b 与b 垂直,则|a |等于( ) A .1 B. 2 C .2 D .4 7、设向量a =(1,-3),b =(-2,4),c =(-1,-2),若表示向量4a,4b -2c,2(a -c ),d 的有向线段首尾相接能构成四边形,则d =( ) A .(2,6) B .(-2,6) C .(2,-6) D .(-2,-6) 8、已知a =(1,1),b =(1,0),c 满足a ·c =0,且|a |=|c |,b ·c >0,则c =________. 专题三、平面向量的基本定理 平面向量的基本定理解决了所有向量之间的相互关系,为我们研究向量提供了依据。 9、已知AD 、BE 分别为△ABC 的边BC 、AC 上的中线,设AD →=a ,BE →=b ,则BC →等于( ) A.43a +23b B.23a +43 b C.23a -43b D .-23a +43 b

(完整版)用空间向量解立体几何问题方法归纳

用空间向量解立体几何题型与方法 平行垂直问题基础知识 (1) 线面平行: l ∥α? a ⊥u? a ·u =0? a 1a 3+ b 1b 3+c 1c 3= 0 (2) 线面垂直: l ⊥α? a ∥u? a =ku? a 1=ka 3,b 1= kb 3,c 1=kc 3 (3) 面面平行: α∥β? u ∥v? u =kv? a 3=ka 4,b 3=kb 4,c 3=kc 4 (4) 面面垂直: α⊥β? u ⊥v? u ·v = 0? a 3a 4+b 3b 4+c 3c 4=0 例 1、如图所示,在底面是矩形的四棱锥 P-ABCD 中, PA ⊥底面 ABCD , 的中点, PA =AB =1, BC =2. (1) 求证: EF ∥平面 PAB ; (2) 求证:平面 PAD ⊥平面 PDC. [证明] 以 A 为原点, AB ,AD ,AP 所在直线分别为 x 轴,y 轴,z 轴,建立 空 A(0,0,0),B(1,0,0),C(1,2,0), D(0,2,0),P(0,0,1),所以 E 12,1,12 , uuur uuur uuur 1),PD =(0,2,-1),AP =(0,0,1),AD =(0,2,0), uuur ∥AB ,即 EF ∥AB. 又 AB? 平面 PAB , EF? 平面 PAB ,所以 EF ∥平面 PAB. uuur uuur uuur uuur (2)因为 AP ·DC =(0,0,1) (1,0·,0)= 0, AD ·DC =(0,2,0) (1,0·,0)=0, uuur uuur uuur uuur 所以 AP ⊥ DC , AD ⊥ DC ,即 AP ⊥DC ,AD ⊥DC. 又 AP ∩ AD = A ,AP? 平面 PAD ,AD? 平面 PAD ,所以 DC ⊥平面 PAD.因为 DC? 平面 PDC , 直线 l 的方向向量为 a =(a 1,b 1,c 1).平面 α, β的法向量 u = (a 3,b 3,c 3), v =(a 4,b 4,c 4) 1 uuur 1 uuur F 0 , 1, 2 ,EF = -2, 0, 0 ,PB = (1,0, uuur uuur E , F 分别是 PC , PD 间直角坐标系如图所示,则 DC =(1,0,0), AB =(1,0,0). uuur 1uuur uuur (1)因为 EF =- 2AB ,所以 EF

利用空间向量解立体几何 完整版

向量法解立体几何 立体几何的计算和证明常常涉及到二大问题:一是位置关系,它主要包括线线垂直,线面垂直,线线平行,线面平行;二是度量问题,它主要包括点到线、点到面的距离,线线、线面所成角,面面所成角等。 一、基本工具 1.数量积: cos a b a b θ?= 2.射影公式:向量a 在b 上的射影为 a b b ? 3.直线0Ax By C ++=的法向量为 (),A B ,方向向量为 (),B A - 4.平面的法向量(略) 二、用向量法解空间位置关系 1.平行关系 线线平行?两线的方向向量平行 线面平行?线的方向向量与面的法向量垂直 面面平行?两面的法向量平行 2.垂直关系 线线垂直(共面与异面)?两线的方向向量垂直 线面垂直?线与面的法向量平行 面面垂直?两面的法向量垂直 三、用向量法解空间距离 1.点点距离

点()111,,P x y z 与()222,,Q x y z 的 距离为PQ =u u u r 2.点线距离 求点()00,P x y 到直线:l 0Ax By C ++=的距离: 方法:在直线上取一点(),Q x y , 则向量PQ u u u r 在法向量(),n A B =上的射影 PQ n n ?u u u r = 即为点P 到l 的距离. 3.点面距离 求点()00,P x y 到平面α的距离: 方法:在平面α上去一点(),Q x y ,得向量PQ u u u r , 计算平面α的法向量n , 计算PQ u u u r 在α上的射影,即为点P 到面α的距离. 四、用向量法解空间角 1.线线夹角(共面与异面) 线线夹角?两线的方向向量的夹角或夹角的补角 2.线面夹角 求线面夹角的步骤: ① 先求线的方向向量与面的法向量的夹角,若为锐角角即可,若为钝角,则取其补角; ②再求其余角,即是线面的夹角. 3.面面夹角(二面角) 若两面的法向量一进一出,则二面角等于两法向量的夹角;法

职高 第8章 平面向量知识点小结

平面向量知识点小结 1. 有向线段:具有 叫做有向线段,通常在有向线段的终点处画上箭头表示它的方向.以A 为始点,B 为终点的有向线段记作AB ,应注意:始点一定要写在终点的前面, 2. 已知AB ,线段AB 的 叫做有向AB 线段AB 的长(或模),的长度记作: .有向线段包含三个要素: 、 、 . 3. 向量:具有 和 的量叫做向量,只有大小和没有方向的向量叫做 .有向线段的长度表示向量的 ,有向线段的方向表示向量的方向.用有向线段 AB 表示向量时,我们就说向量AB .另外,在印刷时常用黑体小写字母a 、b 、c 、… 等表示向量;手写时可写作带箭头的小写字母a 、b 、c 、…等. 4. 相等向量: 的有向线段表示同一向量或相等的向量.向量a 和b 同向且等长,即a 和b 相等,记作 5. 零向量:长度等于零的向量叫做 ,记作 .零向量的方向 . 6. 平行向量(共线向量):两个向量的方向 则称两个向量平行,平行向量也称 (另一种理解:如果表示两个向量的有向线段所在的直线互相平行或重合为共线向量.向量a 平行于向量b ,记作a ∥b . 与任一个向量共线(平行). 7. 相反向量:与向量a 等长且 的向量叫做向量a 的相反向量,记作 .显然, ()0a a +-=. 8. 单位向量:长度等于1的向量,叫做 .与向量a 同方向的单位向量通常记作 . 9. 已知向量a 、b ,在平面上任取一点A,作AB a =,BC b =,作向 量AC ,则向量 叫做向量a 与b 的和(或和向量),记作a +b ,即a +b = = .这种求两个向量和的作图法则,叫做向量求和的三角形法则. 10. 已知向量a 、b ,在平面上任取一点A,作AB a =,AD b =,如果A 、B 、D 不共线,则以AB 、AD 为邻边作平行四边形ABCD,则对角线上的向量AC = = .这种求两个向量和的作图法则,叫做向量求和的平行四边形法则. 11. 已知向量a 、b ,在平面上任取一点O,作OA a =,OB b =,则b +BA =a ,向量BA 叫做向量a 与b 的差,并记作a -b ,即BA = = . 12. 由向量的减法推知: (1) 如果把两个向量的始点放在一起,则这两个向量的差是减向量的终点到 的向量; (2) 一个向量BA 等于它的终点相对于点O 的位置向量OA 减去它的始点相对于点O 的位置向量OB ; (3) 一个向量减去另一个向量,等于加上这个向量的 . 13. 向量加法满足如下运算律: (1) ; (2) 14. 数乘向量的一般定义:实数λ和向量a 的乘积是一个向量,记作a λ. 当0λ>时,a λ与a 同方向,a a λλ││ =│ ∣│ │ ; 当0λ <时,a λ与a 反方向, a a λλ││ =│ ∣│ │ ; 当0λ=或0a =时,000a λ?=?=. ; 15. 数乘向量满足以下运算律:(1)1a =a ,(-1)a =a -; (2)()()a a λμλμ= ()a a a λμλμ+= + ; (4)()a b a b λλλ+=+.

(物理必修一)第二章知识点总结

(物理必修一)第二章知识点总结

点通传奇专用第二章知识点总结 2.2匀变速直线运动的速度与时间的关系 一、匀变速直线运动 1.定义:沿着一条直线,且不变的运动. 2.匀变速直线运动的v t图象是一条. 分类:(1)速度随着时间的匀变速直线运动,叫匀加速直线运动. (2)速度随着时间的匀变速直线运动,叫做匀减速直线运动. 二、速度与时间的关系式 1.速度公式: 2.对公式的理解:做匀变速直线运动的物体,由于加速度a在数值上等于速度的变化量,所以at就是t时间内;再加上运动开始时物体的,就可以得到t时刻物体的. 一、对匀变速直线运动的认识 1.匀变速直线运动的特点 (1)加速度a恒定不变; (2)v t图象是一条倾斜的直线.

2.分类 匀加速直线运动:速度随着时间均匀增大,加速度a与速度v同向. 匀减速直线运动:速度随着时间均匀减小,加速度a与速度v同向. 二、对速度公式的理解 1.公式v=v0+at中各量的物理意义 v0是开始计时时的瞬时速度,称为初速度;v是经时间t后的瞬时速度,称为末速度;at是在时间t内的速度变化量,即Δv=at. 2.公式的适用条件:做匀变速直线运动的物体 3.注意公式的矢量性 公式中的v0、v、a均为矢量,应用公式解题时,一般取v0的方向为正方向,若物体做匀加速直线运动,a取正值;若物体做匀减速直线运动,a取负值. 4.特殊情况 (1)当v0=0时,v=at,即v∝t(由静止开始的匀加速直线运动). (2)当a=0时,v=v0(匀速直线运动). 针对训练质点在直线上做匀变速直线运动,如图222所示,若在A点时的速度是5 m/s,经过3 s 到达B点时的速度是14 m/s,若再经4 s到达C点,则在C点时的速度多大? 答案26 m/s 对速度公式的理解 1.一辆以12 m/s的速度沿平直公路行驶的汽车,因发现前方有险情而紧急刹车,刹车后获得大小为4 m/s2的加速度,汽车刹车后5 s末的速度为() A.8 m/s B.14 m/s C.0 D.32 m/s 答案 C 2.火车机车原来的速度是36 km/h,在一段下坡路上加速度为0.2 m/s2.机车行驶到下坡末端,速度增加到54 km/h.求机车通过这段下坡路所用的时间. 答案25 s 12.卡车原来以10 m/s的速度在平直公路上匀速行驶,因为路口出现红灯,司机从较远的地方立即开始刹车,使卡车匀减速前进.当车减速到2 m/s时,交通灯恰好转为绿灯,司机当即放开刹车,并且只用了减速过程一半的时间卡车就加速到原来的速度.从刹车开始到恢复原速的过程用了12 s.求: (1)卡车在减速与加速过程中的加速度; (2)开始刹车后2 s末及10 s末的瞬时速度. 12、(1)-1 m/s2 2 m/s2(2)8 m/s 6 m/s 2.3匀变速直线运动的位移与时间的关系 一、匀速直线运动的位移 做匀速直线运动的物体在时间t内的位移x=v t,在速度图象中,位移在数值上等于v t图象与对应的时间轴所围的矩形面积. 二、匀变速直线运动的位移 1.由v t图象求位移: (1)物体运动的速度时间图象如图232甲所示,把物体的运动分成几个小段,如图乙,每段位移≈每段起始时刻速度×每段时间=对应矩形面积.所以整个过程的位移≈各个小矩形.

空间向量与立体几何(整章教案)

空间向量与立体几何 一、知识网络: 二.考纲要求: (1)空间向量及其运算 ① 经历向量及其运算由平面向空间推广的过程; ② 了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示; ③ 掌握空间向量的线性运算及其坐标表示; ④ 掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线与垂直。 (2)空间向量的应用 ① 理解直线的方向向量与平面的法向量; ② 能用向量语言表述线线、线面、面面的垂直、平行关系; ③ 能用向量方法证明有关线、面位置关系的一些定理(包括三垂线定理); ④ 能用向量方法解决线线、线面、面面的夹角的计算问题,体会向量方法在研究几何问题中的作用。 三、命题走向 本章内容主要涉及空间向量的坐标及运算、空间向量的应用。本章是立体几何的核心内容,高考对本章的考查形式为:以客观题形式考查空间向量的概念和运算,结合主观题借助空间向量求夹角和距离。 预测10年高考对本章内容的考查将侧重于向量的应用,尤其是求夹角、求距离,教

材上淡化了利用空间关系找角、找距离这方面的讲解,加大了向量的应用,因此作为立体几何解答题,用向量法处理角和距离将是主要方法,在复习时应加大这方面的训练力度。 第一课时 空间向量及其运算 一、复习目标:1.理解空间向量的概念;掌握空间向量的加法、减法和数乘; 2.了解空间向量的基本定理; 3.掌握空间向量的数量积的定义及其性质;理解空间向量的夹角的概念;掌握空间向量的数量积的概念、性质和运算律;了解空间向量的数量积的几何意义;能用向量的数量积判断向量的共线与垂直。 二、重难点:理解空间向量的概念;掌握空间向量的运算方法 三、教学方法:探析类比归纳,讲练结合 四、教学过程 (一)、谈最新考纲要求及新课标高考命题考查情况,促使积极参与。 学生阅读复资P128页,教师点评,增强目标和参与意识。 (二)、知识梳理,方法定位。(学生完成复资P128页填空题,教师准对问题讲评)。 1.空间向量的概念 向量:在空间,我们把具有大小和方向的量叫做向量。如位移、速度、力等。 相等向量:长度相等且方向相同的向量叫做相等向量。 表示方法:用有向线段表示,并且同向且等长的有向线段表示同一向量或相等的向量。 说明:①由相等向量的概念可知,一个向量在空间平移到任何位置,仍与原来的向量相等,用同向且等长的有向线段表示;②平面向量仅限于研究同一平面内的平移,而空间向量研究的是空间的平移。 ②向量加法的平行四边形法则在空间仍成立。 3.平行向量(共线向量):如果表示空间向量的有向线段所在的直线互相平行或重合, 则这些向量叫做共线向量或平行向量。a 平行于b 记作a ∥b 。 注意:当我们说a 、b 共线时,对应的有向线段所在直线可能是同一直线,也可能是平 行直线;当我们说a 、b 平行时,也具有同样的意义。 共线向量定理:对空间任意两个向量a (a ≠)、b ,a ∥b 的充要条件是存在实数λ使b =λa (1)对于确定的λ和a ,b =λa 表示空间与a 平行或共线,长度为 |λa |,当λ>0时与

空间向量与立体几何知识总结

已知两异面直线 b a,,,,, A B a C D b ∈∈,则异面直线所成的角θ为:cos AB CD AB CD θ? = u u u r u u u r u u u r u u u r 例题 【空间向量基本定理】 例1.已知矩形ABCD,P为平面ABCD外一点,且PA⊥平面ABCD,M、N分别为PC、PD上的点,且M分成定比2,N分PD成定比1,求满足的实数x、y、z的值。 分析;结合图形,从向量出发,利用向量运算法则不断进行分解,直到全部向量都用、、表示出来,即可求出x、y、z的值。 如图所示,取PC的中点E,连接NE,则。 点评:选定空间不共面的三个向量作基向量,并用它们表示出指定的向量,是用向量解决立体几何问题的一项基本功,要结合已知和所求,观察图形,联想相关的运算法则和公式等,就近表示所需向量。再对照目标,将不符合目标要求的向量当作新的所需向量,如此继续下去,直到所有向量都符合目标要求为止,这就是向量的分解。有分解才有组合,组合是分解的表现形式。空间向量基本定理恰好说明,用空间三个不共面的向量组可以表示出空间任意一个向量,而且a,b,c的系数是惟一的。 【利用空间向量证明平行、垂直问题】 例2.如图,在四棱锥P—ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,作EF⊥PB于点F。 (1)证明:PA方形ABCD—中,E、F分别是,的中点,求:(1)异面直线AE与CF所成角的余弦值; (2)二面角C—AE—F的余弦值的大小。

点评:(1)两条异面直线所成的角可以借助这两条直线的方向向量的夹角求得,即。 (2)直线与平面所成的角主要可以通过直线的方向向量与平面的法向量的夹角求得,即 或 (3)二面角的大小可以通过该二面角的两个面的法向量的夹角求得,它等于两法向量的夹角或其补角。 【用空间向量求距离】 例4.长方体ABCD —中,AB=4,AD=6,,M 是A 1C 1的中点,P 在线段BC 上,且|CP|=2,Q 是DD 1的中点, 求: (1)异面直线AM 与PQ 所成角的余弦值; (2)M 到直线PQ 的距离; (3)M 到平面AB 1P 的距离。 本题用纯几何方法求解有一定难度,因此考虑建立空间直角坐标系,运用向量坐标法来解决。利用向量的模和夹角求空间的线段长和两直线的夹角,在新高考试题中已多次出现,但是利用向量的数量积来求空间的线与线之间的夹角和距离,线与面、面与面之间所成的角和距离还涉及不深,随着新教材的推广使用,这一系列问题必将成为高考命题的一个新的热点。现列出几类问题的解决方法。 (1)平面的法向量的求法:设,利用n 与平面内的两个向量a ,b 垂直,其数量积为零,列出两个三元 一次方程,联立后取其一组解。 (2)线面角的求法:设n 是平面的一个法向量,AB 是平面 的斜线l 的一个方向向量,则直线与平面 所成 角为n AB n AB ??= θθsin 则 (3)二面角的求法:①AB,CD 分别是二面角 的两个面内与棱l 垂直的异面直线,则二面角的大小为

(完整版)空间向量与立体几何题型归纳

空间向量与立体几何 1, 如图,在四棱锥V-ABCD中,底面ABCD是正方形,侧面VAD是正三角形,平面VAD⊥底面ABCD (1)证明AB⊥平面VAD; (2)求面VAD与面VDB所成的二面角的大小 2, 如图所示,在四棱锥P—ABCD中,底面ABCD为矩形,侧棱PA⊥底面ABCD,AB=, BC=1,PA=2,E为PD的中点. (1)求直线AC与PB所成角的余弦值; (2)在侧面PAB内找一点N,使NE⊥平面PAC,并求出N点到AB和AP的距离.(易错点,建系后,关于N点的坐标的设法,也是自己的弱项)

3. 如图,在长方体ABCD ―A 1B 1C 1D 1中,AD=AA 1=1,AB=2,点E 在棱AB 上移动. (1)证明:D 1E ⊥A 1D ; (2)当E 为AB 的中点时,求点A 到面ECD 1的距离; (3)AE 等于何值时,二面角 D 1―EC ―D 的大小为(易错点:在找平面DEC 的法向量的时候,本来法向量就己经存在了,就不必要再去找,但是我认为去找应该没有错吧,但法向量找出来了 ,和那个己经存在的法向量有很大的差别,而且,计算结果很得杂,到底问题出在哪里 ?) 4.如图,直四棱柱ABCD -A 1B 1C 1D 1中,底面ABCD 是等腰梯形,AB ∥CD ,AB =2DC =2,E 为BD 1的中点,F 为AB 的中点,∠DAB =60°. (1)求证:EF ∥平面ADD 1A 1; (2)若2 21BB ,求A 1F 与平面DEF 所成角的正弦值.

N:5题到11题都是运用基底思想解题 5.空间四边形ABCD中,AB=BC=CD,AB⊥BC,BC⊥CD,AB与CD成60度角,求AD与BC所成角的大小。 6.三棱柱ABC-A1B1C1中,底面是边长为2的正三角形,∠A1AB=45°, ∠A1AC=60°,求二面角B-AA1-C的平面角的余弦值。 7.如图,60°的二面角的棱上有A,B两点,直线AC,BD分别在这个二面角的两个半平面内, 且都垂直于AB,已知AB=4,AC=6,BD=8,求CD的长 8.如图,已知空间四边形OABC中,OB=0C, ∠AOB=∠AOC=Θ,求证OA⊥BC。 9.如图,空间四边形OABC各边以及AC,BO的长都是1,点D,E分别是边OA,BC的中点,连接DE。 (1)计算DE的长; (2)求点O到平面ABC的距离。 10.如图,线段AB在平面⊥α,线段AC⊥α,线段BD⊥AB,且AB=7,AC=BD=24,CD=25,求线段BD与平面α所成的角。

高中数学人教A版选修2-1第三章章末总结

高中数学学习材料 金戈铁骑整理制作 章末总结 知识点一 空间向量的计算 空间向量及其运算的知识与方法与平面向量及其运算类似,是平面向量的拓展,主要考查空间向量的共线与共面以及数量积运算,是用向量法求解立体几何问题的基础. 【例1】沿着正四面体O -ABC 的三条棱OA 、OB →、OC →的方向有大小等于1、2和3的 三个力f 1,f 2,f 3.试求此三个力的合力f 的大小以及此合力与三条棱夹角的余弦值.

知识点二证明平行、垂直关系 空间图形中的平行、垂直问题是立体几何当中最重要的问题之一,利用空间向量证明平行和垂直问题,主要是运用直线的方向向量和平面的法向量,借助空间中已有的一些关于平行和垂直的定理,再通过向量运算来解决. 例2 如图,正方体ABCD—A1B1C1D1中,M、N分别为AB、B1C的中点. (1)用向量法证明平面A1BD∥平面B1CD1; (2)用向量法证明MN⊥面A1BD. 例3 如图,在棱长为1的正方体ABCD—A1B1C1D1中,P是侧棱CC1上的一点,CP=m. 试确定m使得直线AP与平面BDD1B1所成的角为60°. 例4正方体ABCD—A1B1C1D1中,E、F分别是BB1、CD的中点,求证:平面AED⊥

平面A1FD1. 知识点三空间向量与空间角 求异面直线所成的角、直线与平面所成的角、二面角,一般有两种方法:即几何法和向量法,几何法求角时,需要先作出(或证出)所求空间角的平面角,费时费力,难度很大.而利用向量法,只需求出直线的方向向量与平面的法向量.即可求解,体现了向量法极大的优越性. 例5 如图所示,在长方体ABCD—A1B1C1D1中,AB=5,AD=8,AA1=4,M为B1C1上一点且B1M=2,点N在线段A1D上,A1D⊥AN. (1)cos〈1A D,AM→〉; (2)求直线AD与平面ANM所成角的余弦值; (3)求平面ANM与平面ABCD所成角的余弦值. 知识点四空间向量与空间距离 近年来,对距离的考查主要体现在两点间的距离和点到平面的距离,两点间的距离可以直接代入向量模的公式求解,点面距可以借助直线的方向向量与平面的法向量求解,或者利用等积求高的方法求解. 例6

空间向量及立体几何练习试题和答案解析

. 1.如图,在四棱锥P﹣ABCD中,底面ABCD为正方形,平面PAD⊥平面ABCD, 点M在线段PB上,PD∥平面MAC,PA=PD=,AB=4. 的中点;PB(1)求证:M为 的大小;A2)求二面角B﹣PD﹣( 所成角的正弦值.BDP(3)求直线MC与平面 【分析】(1)设AC∩BD=O,则O为BD的中点,连接OM,利用线面平行的性质证明OM∥PD,再由平行线截线段成比例可得M为PB的中点; (2)取AD中点G,可得PG⊥AD,再由面面垂直的性质可得PG⊥平面ABCD,则PG⊥AD,连接OG,则PG⊥OG,再证明OG⊥AD.以G为坐标原点,分别以GD、GO、GP所在直线为x、y、z轴距离空间直角坐标系,求出平面PBD与平面PAD的一个法向量,由两法向量所成角的大小可得二面角B﹣PD﹣A的大小; (3)求出的坐标,由与平面PBD的法向量所成角的余弦值的绝对值可得直线MC与平面BDP所成角的正弦值. 【解答】(1)证明:如图,设AC∩BD=O,

∵ABCD为正方形,∴O为BD的中点,连接OM, ∵PD∥平面MAC,PD?平面PBD,平面PBD∩平面AMC=OM, ∴PD∥OM,则,即M为PB的中点; (2)解:取AD中点G, . . ∵PA=PD,∴PG⊥AD, ∵平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD, ∴PG⊥平面ABCD,则PG⊥AD,连接OG,则PG⊥OG, 由G是AD的中点,O是AC的中点,可得OG∥DC,则OG⊥AD. 以G为坐标原点,分别以GD、GO、GP所在直线为x、y、z轴距离空间直角坐标系, 由PA=PD=,AB=4,得D(2,0,0),A(﹣2,0,0),P(0,0,),C (2,4,0),B(﹣2,4,0),M(﹣1,2,), ,.

2019-2020学年高中数学 第二章 平面向量章末小结导学案新人教A版必修4.doc

2019-2020学年高中数学第二章平面向量章末小结导学案新人教A版必修4 【本章知识体系】

【题型归纳】 专题一、平面向量的概念及运算 包含向量的有关概念、加法、减法、数乘。向量的加法遵循三角形法则和平行四边形法则,减法可以转化为加法进行运算。利用向量证明三点共线时,应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得出三点共线. 1、1.AB →+AC →-BC →+BA →化简后等于( ) A .3A B → B.AB → C.BA → D.CA → 2、在平行四边形ABCD 中,OA →=a ,OB →=b ,OC →=c ,OD →=d ,则下列运算正确的是( ) A .a +b +c +d =0 B .a -b +c -d =0 C .a +b -c -d =0 D .a -b -c +d =0 3、已知圆O 的半径为3,直径AB 上一点D 使AB →=3AD →,E 、F 为另一直径的两个端点, 则DE →·DF →=( ) A .-3 B .-4 C .-8 D .-6 4、如图,在正方形ABCD 中,设AB →=a ,AD →=b ,BD →=c ,则在以a , b 为基底时,AC →可表示为________,在以a , c 为基底时,AC →可表示为 ________. 5、下列说法正确的是( ) A .两个单位向量的数量积为1 B .若a ·b =a ·c ,且a ≠0,则b =c C .AB →=OA →-OB → D .若b⊥c ,则(a +c )·b =a ·b 专题二、平面向量的坐标表示及坐标运算 向量的坐标表示及运算强化了向量的代数意义。若已知有向线段两端点的坐标,则应先求向量的坐标,解题过程中,常利用向量相等,则其坐标相同这一原则。 6、已知向量a =(1,n ),b =(-1,n ),若2a -b 与b 垂直,则|a |等于( ) A .1 B. 2 C .2 D .4 7、设向量a =(1,-3),b =(-2,4),c =(-1,-2),若表示向量4a,4b -2c,2(a -c ),d 的有向线段首尾相接能构成四边形,则d =( ) A .(2,6) B .(-2,6) C .(2,-6) D .(-2,-6) 8、已知a =(1,1),b =(1,0),c 满足a ·c =0,且|a |=|c |,b ·c >0,则c =________. 专题三、平面向量的基本定理 平面向量的基本定理解决了所有向量之间的相互关系,为我们研究向量提供了依据。 9、已知AD 、BE 分别为△ABC 的边BC 、AC 上的中线,设AD →=a ,BE →=b ,则BC →等于( ) A.43a +23b B.23a +43 b C.23a -43b D .-23a +43 b

高中数学讲义微专题64 空间向量解立体几何(含综合题习题)

微专题64 利用空间向量解立体几何问题 一、基础知识 (一)刻画直线与平面方向的向量 1、直线:用直线的方向向量刻画直线的方向问题,而方向向量可由直线上的两个点来确定 例如:()()2,4,6,3,0,2A B ,则直线AB 的方向向量为()1,4,4AB =-- 2、平面:用平面的法向量来刻画平面的倾斜程度,何为法向量?与平面α垂直的直线称为平面α的法线,法线的方向向量就是平面α的法向量,如何求出指定平面的法向量呢? (1)所需条件:平面上的两条不平行的直线 (2)求法:(先设再求)设平面α的法向量为(),,n x y z =,若平面上所选两条直线的方向向量分别为()()111222,,,,,a x y z b x y z ==,则可列出方程组: 1112220 x y z x y x y z x y z z ++=?? ++=? 解出,,x y z 的比值即可 例如:()()1,2,0,2,1,3a b ==,求,a b 所在平面的法向量 解:设(),,n x y z =,则有20230x y x y z +=??++=? ,解得:2x y z y =-??=? ::2:1:1x y z ∴=- ()2,1,1n ∴=- (二)空间向量可解决的立体几何问题(用,a b 表示直线,a b 的方向向量,用,m n 表示平面 ,αβ的法向量) 1、判定类 (1)线面平行:a b a b ?∥∥ (2)线面垂直:a b a b ⊥?⊥ (3)面面平行:m n αβ?∥∥ (4)面面垂直:m n αβ⊥?⊥ 2、计算类: (1)两直线所成角:cos cos ,a b a b a b θ?==

七年级数学上册第二章知识点总结

第二章整式的加减 整式的概念: 单项式与多项式统称整式。(分母含有字母的代数式不是整式) 一、单项式:都是数或字母的积的式子叫做单项式。 1.单项式的系数:单项式中的数字因数。 2.单项式的次数:一个单项式中所有字母的指数的和。 注意 ①圆周率π是常数; ②只含有字母因式的单项式的系数是1或-1,“1”通常省略不写。 例:x2,-a2b等; ③单项式次数只与字母指数有关。例:23πa6的次数为。 ④单项式的系数是带分数时,应化成假分数。 ⑤单项式的系数包括它前面的符号。例:系数是。 ⑥单独的一个数字是单项式,它的系数是它本身;非零常数的次数是0。 考点: 1.在代数式:,3,,,,0中,单项式的个数有() A. 1个 B.2个 C.3个 D.4个 2.单项式-的系数与次数分别是() A. -2, 6 B.2, 7 C., 6 D., 7 3.的系数是_____________.

4.判断下列式子是否是单项式,是的√,不是的打X ; a ;;;;;; 0 ; ;;;;; 5.写出下列单项式的系数和次数 的系数是______,次数是______; 的系数是______,次数是______; a2bc3的系数是_____,次数是_____; 的系数是_____,次数是_____; 的系数是______,次数是______; 的系数是_____,次数是_____; 53x2y的系数是_____,次数是______; 6.如果是一个关于x的3次单项式,则b=_______;若是一个4次 单项式,则m=_____;已知是一个6次单项式,求的值。 7.写出一个三次单项式__________,它的系数是_______;写一个系数为3,含有两个字母a,b的四次单项式_______。 知识点回顾 1.单项式的定义:_________________________________叫做单项式。 2.单项式的系数:_________________________________叫做单项式的系数。 3.单项式的次数:_________________________________叫做单项式的次数

高中数学空间向量与立体几何测试题及答案

高中 数学选修(2-1)空间向量与立体几何测试题 一、选择题 1.若把空间平行于同一平面且长度相等的所有非零向量的始点放置在同一点,则这些向量的终点构成的图形是( ) A.一个圆 B.一个点 C.半圆 D.平行四边形 答案:A 2.在长方体1111ABCD A B C D -中,下列关于1AC u u u u r 的表达中错误的一个是( ) A.11111AA A B A D ++u u u r u u u u r u u u u r B.111AB DD D C ++u u u r u u u u r u u u u u r C.111AD CC D C ++u u u r u u u u r u u u u u r D.11111()2 AB CD AC ++u u u u r u u u u r u u u u r 答案:B 3.若,,a b c 为任意向量,∈R m ,下列等式不一定成立的是( ) A.()()a b c a b c ++=++ B.()a b c a c b c +=+··· C.()a b a b +=+m m m D.()()a b c a b c =···· 答案:D 4.若三点,,A B C 共线,P 为空间任意一点,且PA PB PC αβ+=u u u r u u u r u u u r ,则αβ-的值为( ) A.1 B.1- C. 1 2 D.2- 答案:B 5.设(43)(32)a b ==,,,,,x z ,且∥a b ,则xz 等于( ) A.4- B.9 C.9- D. 649 答案:B 6.已知非零向量12e e ,不共线,如果1222122833e e e e e e =+=+=-u u u r u u u r u u u r , ,AB AC AD ,则四点,,,A B C D ( ) A.一定共圆 B.恰是空间四边形的四个顶点心 C.一定共面 D.肯定不共面 答案:C

人教课标版高中数学必修4《平面向量》章末基础测评

《平面向量》章末基础测评 (总分:150分;时间:120分钟) ―、选择题(每小题5分,共60分) 1.如图,AB DC AC =,与BD 相交于点,O 则相等的向量是( ) A.AD 与CB B.OA 与OC C.AC 与DB D.DO 与OB 2.将()223233a b a b b a ????? ?---+- ? ????????? 化成最简式为( ) A.45 33a b -+ B.45a b -+ C.4533a b - D.45a b - 3.如图,已知空间四边形,ABCD 设G 是CD 的中点,则() 1 2 AB BD BC ++等于( )

A.AG B.CG C.BC D.1 2 BC 4.设向量()(),4,1,,a x b x =-=-若向量a 与b 同向,则x =( ) A.O B.-2 C.2± D.2 5.在一平面内,线段AB 的中点为,M O 为线段AB 外一点,则( ) A.() 1 2 OA OM MB = + B.() 1 2 OB OM OA = + C.() 1 2 OM MA MB = + D.() 1 2 OM OA OB = + 6.如图,点,A B 在圆C 上,则AB AC ?的值( )

A.只与圆C 的半径有关 B.只与弦AB 的长度有关 C.既与圆C 的半径有关,又与弦AB 的长度有关 D.是与圆C 的半径和弦AB 的长度均无关的定值 7.如图,向量12,,e e a 的起点与终点均在正方形网格的格点上,则向量a 可用基底 12,e e 表示为( ) A.12e e + B.122e e -+ C.122e e - D.122e e + 8.点C 在线段AB 上,且2 ,5 AC AB = 若,AC BC λ=则λ等于( ) A.23 B.32 C.23 -

平面向量-章末检测

第二章 平面向量(B) (时间:120分钟 满分:150分) 一、选择题(本大题共12小题,每小题5分,共60分) 1.已知向量a =(4,2),b =(x,3),且a ∥b ,则x 的值是( ) A .-6 B .6 C .9 D .12 2.下列命题正确的是( ) A .单位向量都相等 B .若a 与b 共线,b 与c 共线,则a 与c 共线 C .若|a +b |=|a -b |,则a ·b =0 D .若a 与b 都是单位向量,则a ·b =1. 3.设向量a =(m -2,m +3),b =(2m +1,m -2),若a 与b 的夹角大于90°,则实数m 的取值范围是( ) A .(-4 3 ,2) B .(-∞,-4 3)∪(2,+∞) C .(-2,4 3 ) D .(-∞,2)∪(4 3 ,+∞) 4.平行四边形ABCD 中,AC 为一条对角线,若AB →=(2,4),AC →=(1,3),则AD →·BD → 等于( ) A .8 B .6 C .-8 D .-6 5.已知|a |=1,|b |=6,a ·(b -a )=2,则向量a 与向量b 的夹角是( ) A.π6 B.π4 C.π3 D.π2 6.关于平面向量a ,b ,c ,有下列四个命题: ①若a ∥b ,a ≠0,则存在λ∈R ,使得b =λa ; ②若a ·b =0,则a =0或b =0; ③存在不全为零的实数λ,μ使得c =λa +μb ; ④若a ·b =a ·c ,则a ⊥(b -c ). 其中正确的命题是( ) A .①③ B .①④ C .②③ D .②④ 7.已知|a |=5,|b |=3,且a ·b =-12,则向量a 在向量b 上的投影等于( ) A .-4 B .4 C .-125 D.12 5 8.设O ,A ,M ,B 为平面上四点,OM →=λOB →+(1-λ)·OA → ,且λ∈(1,2),则( ) A .点M 在线段AB 上 B .点B 在线段AM 上 C .点A 在线段BM 上 D .O ,A ,B ,M 四点共线 9.P 是△ABC 内的一点,AP →=13 (AB →+AC → ),则△ABC 的面积与△ABP 的面积之比为( ) A.3 2 B .2 C .3 D .6 10.在△ABC 中,AR →=2RB →,CP →=2PR →,若AP →=m AB →+n AC → ,则m +n 等于( ) A.23 B.79 C.8 9 D .1 11.已知3a +4b +5c =0,且|a |=|b |=|c |=1,则a ·(b +c )等于( )

利用空间向量解立体几何完整

利用空间向量解立体几何(完整版)

————————————————————————————————作者:————————————————————————————————日期:

向量法解立体几何 引言 立体几何的计算和证明常常涉及到二大问题:一是位置关系,它主要包括线线垂直,线面垂直,线线平行,线面平行;二是度量问题,它主要包括点到线、点到面的距离,线线、线面所成角,面面所成角等。教材上讲的比较多的主要是用向量证明线线、线面垂直及计算线线角,而如何用向量证明线面平行,计算点到平面的距离、线面角及面面角的例题不多,给老师对这部分内容的教学及学生解有关这部分内容的题目造成一定的困难,下面主要就这几方面问题谈一下自己的想法,起到一个抛砖引玉的作用。 基本思路与方法 一、基本工具 1.数量积: cos a b a b θ?= 2.射影公式:向量a 在b 上的射影为 a b b ? 3.直线0Ax By C ++=的法向量为 (),A B ,方向向量为 (),B A - 4.平面的法向量(略) 二、用向量法解空间位置关系 1.平行关系 线线平行?两线的方向向量平行 线面平行?线的方向向量与面的法向量垂直 面面平行?两面的法向量平行 2.垂直关系

线线垂直(共面与异面)?两线的方向向量垂直 线面垂直?线与面的法向量平行 面面垂直?两面的法向量垂直 三、用向量法解空间距离 1.点点距离 点()111,,P x y z 与()222,,Q x y z 的 距离为222212121()()()PQ x x y y z z =-+-+-u u u r 2.点线距离 求点()00,P x y 到直线:l 0Ax By C ++=的距离: 方法:在直线上取一点(),Q x y , 则向量PQ u u u r 在法向量(),n A B =上的射影 PQ n n ?u u u r = 002 2 Ax By C A B +++ 即为点P 到l 的距离. 3.点面距离 求点()00,P x y 到平面α的距离: 方法:在平面α上去一点(),Q x y ,得向量PQ u u u r , 计算平面α的法向量n , 计算PQ u u u r 在α上的射影,即为点P 到面α的距离. 四、用向量法解空间角 1.线线夹角(共面与异面) 线线夹角?两线的方向向量的夹角或夹角的补角 2.线面夹角 求线面夹角的步骤:

相关主题
文本预览
相关文档 最新文档