当前位置:文档之家› A field evaluation of rain garden flow and pollutant treatment

A field evaluation of rain garden flow and pollutant treatment

A field evaluation of rain garden flow and pollutant treatment
A field evaluation of rain garden flow and pollutant treatment

A FIELD EV ALUATION OF RAIN GARDEN FLOW AND POLLUTANT

TREATMENT

MICHAEL E.DIETZ?and JOHN C.CLAUSEN

University of Connecticut,Department of Natural Resources Management and Engineering,

1376Storrs Rd.,Unit4087,Storrs,CT06269-4087,USA

(?author for correspondence,e-mail:michael.dietz@https://www.doczj.com/doc/206038632.html,;Tel.:860-345-5219,

Fax:860-345-3357)

(Received9December2004;accepted1June2005)

Abstract.Rain gardens have been recommended as a best management practice to treat stormwa-ter runoff.However,no published?eld performance data existed on pollutant removal capabilities. Replicated rain gardens were constructed in Haddam,CT,to capture shingled-roof runoff.The gar-dens were sized to store the?rst2.54cm(1inch)of runoff.In?uent,over?ow and percolate?ow were measured using tipping buckets and sampled passively.Precipitation was also measured and sampled for quality.All weekly composite water samples were analyzed for total phosphorus(TP), total Kjeldahl nitrogen(TKN),ammonia-nitrogen(NH3-N),and nitrite+nitrate-nitrogen(NO3-N). Monthly composite samples were analyzed for copper(Cu),lead(Pb)and zinc(Zn).Redox potential was measured using platinum electrodes.Poor treatment of NO3-N,TKN,organic-N,and TP in roof runoff was observed.Many Cu,Pb and Zn samples were below detection limit,so statistical analysis was not performed on these pollutants.The only pollutants signi?cantly lower in the ef?uent than in the in?uent were NH3-N in both gardens and total-N in one garden.The design used for these rain gardens worked well for overall?ow retention,but had little impact pollutant concentrations in percolate.These results suggest that if an underdrain is not connected to the stormwater system,high ?ow and pollutant retention could be achieved with the2.54cm design method.

Keywords:bioretention,nutrients,rain garden,roof runoff,stormwater,urban

1.Introduction

Urban areas contain large amounts of impervious coverage that can range from 20%in residential areas to as much as85%in commercial areas(Novotny and Olem,1994).Increases in peak runoff velocity and decreases in lag time due to urbanization were noted by Leopold(1968).Although several studies in the1960s (e.g.,Waananen,1969)documented increased runoff from urban areas,this phe-nomenon was reported and measured more than100years ago(Kuichling,1889). Urbanization also has been found to decrease low?ows in streams as a result of less recharge of groundwater from precipitation(Ferguson and Suckling,1990). Urban areas further contribute pollutants to stormwater such as sediment,nitrogen, phosphorus and heavy metals,impairing downstream habitat and water quality (Novotny and Olem,1994).

Water,Air,and Soil Pollution(2005)167:123–138C Springer2005

124M.E.DIETZ AND J.C.CLAUSEN

Rain gardens,also termed bioretention areas,have been recommended as a best management practice(BMP)to reduce nonpoint source pollution from urban areas(US EPA,2000;Prince George’s County,1993).Rain gardens are shallow depressions in the landscape that are planted with trees and/or shrubs,and cov-ered with a bark mulch layer or ground cover.They allow stormwater to in?ltrate, recharge aquifers,and reduce peak?ows.In addition,they are expected to provide pollutant treatment,which has been attributed to several processes including ad-sorption,decomposition,ion exchange,and volatilization(Prince George’s County, 1993).

While the use of rain gardens is increasing nationally,there is a surprising lack of knowledge about their retention and in?ltration abilities.Prince George’s County, Maryland was the?rst to recommend the use of a rain garden as a stormwater treatment device with the publication of the Bioretention Design Manual(Prince George’s County,1993).Since then,numerous rain garden publications and fact sheets have become available(e.g.,City of Lenexa,2003;Hunt and White,2001; WI DNR,2003).There is no clear consensus on design questions such as how to size the gardens and the soil matrix to use.In addition,sizing the gardens becomes more complex as the variety of land cover types within the watershed increases. The?rst Bioretention Manual(Prince George’s County,1993)offered two different sizing methods.The?rst was based on storing the?rst one-half inch of runoff;the second involved a calculation using the rational“C”coef?cient for the watershed times5–7%of the watershed area.The“C”coef?cient is chosen based on the land use in the watershed,and examples can be found in Novotny and Olem(1994). The Natural Resources Conservation Service curve number(SCS,1986)is used in two publications to determine the appropriate size for a rain garden based on the amount of runoff expected(Hunt and White,2001;Prince George’s County,2002). The City of Lenexa,KS(2003)provides worksheets and graphs for sizing,but does not provide information on how the calculations were derived.The sizing method recommended by Wisconsin Department of Natural Resources(WI DNR,2003)is based on soil type and distance from the building,and is speci?c to rain gardens near residential roof areas.

An underdrain may be installed beneath a rain garden and connected to a tradi-tional stormwater system or daylight to facilitate drainage when native soils are not suf?cient to in?ltrate water quickly enough.Yet,an underdrain is not consistently recommended.An underdrain is not recommended by the WI DNR(2003).The use of an underdrain allows a portion of percolated stormwater to enter the traditional stormwater system.Peak?ow rates and pollutant concentrations may be reduced, but depending on the local soil conditions and rainfall pattern,a large volume of water could still be discharged to local waterways.The impact of the underdrain on overall pollutant retention in a rain garden has not been investigated.

The purposes of encouraging in?ltration are to maximize treatment and avoid standing water,which would encourage mosquito growth.The earlier manual from Prince George’s County(1993)recommended a ponding time of less than four

RAIN GARDEN POLLUTANT CAPTURE125 days,however,this recommendation was changed to less than three to four hours in the newer version of the manual(Prince George’s County,2002).Interestingly,the City of Lenexa(1993)includes an option for a permanent pool in their worksheet, and they state that some people introduce tadpoles or dragon?ies into them.This recommendation seems to differ greatly from the majority of the other sources,as most seem to suggest not having standing water in the garden.Although the methods and recommendations vary from simple to complex,none has been substantiated with?eld monitoring.

Davis et al.(2001)performed a laboratory column study of two scale-model rain gardens.They reported concentration reductions of greater than90%for cop-per(Cu),lead(Pb),and zinc(Zn),68%for total Kjeldahl-N(TKN),and87%for ammonia-N(NH3-N).Nitrite+nitrate-N(NO3-N)reductions were generally low (24%),and NO3-N out?ow concentrations from the upper ports(closer to the sur-face)in the system were higher than inputs,indicating that NO3-N was actually produced in the system.Application of synthetic stormwater to a?eld rain garden in Maryland by Davis(US EPA,2000)resulted in slightly lower reductions for all measured pollutants.No published data exist on the effectiveness of?eld scale rain gardens in reducing pollutants under actual working conditions.

The objective of the present study was to evaluate the ability of a?eld-installed rain garden to retain pollutants and reduce runoff.

2.Methods

2.1.C ONSTRUCTION

Two rain gardens were constructed in September2002in Haddam,CT,according to speci?cations in the most recent design manual from Prince George’s County, MD(Prince George’s County,2002).Native soil at the site was Penwood(Typic Udipsaments)loamy sand(USDA,1979).The soil was also classi?ed as loamy sand by the Soil Testing Laboratory at the University of Connecticut.This soil was adequate to provide the rapid in?ltration(3.8cm hr?1)recommended in the biore-tention manual(Prince George’s County,2002).A1,143μm(45-mil)EPDM liner (Firestone PondGard,Unit Liner Company,Shawnee,OK)was installed under the two rain gardens(Figure1).The liner is not normally a component of a rain garden, however,for sampling purposes,it was used here to seal the bottom and collect all percolate water.A10.2cm diameter perforated PVC pipe collected percolate water under each rain garden(above the liner)and was covered with15cm of2.54cm round stone.The native soil was installed in both gardens and covered with a layer of shredded hardwood bark mulch approximately5cm thick.The physical charac-teristics of the soil and mulch in the two gardens were similar(Table I).Plantings in the rain garden include three native species.Five chokeberry(Aronia prunifolia) shrubs,and four each of winterberry(Ilex verticillata)and compact inkberry(Ilex

126M.E.DIETZ AND J.C.CLAUSEN

TABLE I

Soil and mulch characteristics,rain gardens,Haddam,CT

Rain garden no.

12Mulch

Bulk density(g/cc) 1.63 1.660.2

Organic matter(%LOI) 1.6 1.9–

CEC(cmol c/kg)16.822.7166

pH 6.1 6.3–

Sand(%)84.483.6–

Silt(%)7.610.0–

Clay(%)8.0 6.4–

In?ltration capacity(cm/hr)12.610.3–

Figure1.Cross-section of rain garden in Haddam,CT.

glabra compacta)were planted in each garden.The shrubs and the mulch were obtained from a local nursery.

The study rain garden was sized to accept the?rst1.27cm(one-half inch)of runoff from the roof.The addition of the replicate garden increased the aboveground storage capacity to the?rst2.54cm(one-inch)of runoff from106.8m2of the asphalt shingle roof.The surface dimensions of the rain gardens were2.74m by3.35m.The soil was approximately0.6m deep,but bottom dimensions varied slightly,so rain garden1contained2.66m3of soil,and rain garden2contained2.33m3of soil.The paired rain gardens were designed to have a combined aboveground storage depth

RAIN GARDEN POLLUTANT CAPTURE127 of15.24cm(6inches).Aluminum gutters and downspouts in place at the site prior to the study were used to collect roof runoff.In?uent sampling was conducted in a concrete tipper distribution box;?ow was measured continuously using a tipping bucket.In?uent roof runoff?owed to the rain gardens through10.2cm slotted-pipe spreaders.In the chamber,?ow from each pipe was measured using tipping buckets.

2.2.S OILS

Organic matter content of the soils was determined at the beginning of the study by loss on ignition(NEC-67,1995).Textural analysis was performed using the hydrometer method(Gee and Bauder,1979).Both organic matter content and soil texture analysis were performed on a subsample from102.54cm diameter by6cm soil cores from each garden.Average bulk density was determined using the core method on4samples from each garden(SSSA,2002)Average in?ltration capacity was determined using a double-ring in?ltrometer(SSSA,2002).Cation exchange capacity was determined using the ammonium acetate(pH7)method(Sumner and Miller,1996).

2.3.S AMPLING

Subsurface and over?ow samples were collected in a3785-liter(1000gal)pump chamber adjacent to the rain gardens(Figure2).Water samples were collected pas-sively from the tipping bucket using PVC tubing,and split.Collection bottles were prepared by washing with a phosphate-free soap,acid washing with a nitric acid so-lution,and triple rinsing with distilled water.One-half of the sample was collected in bottles acidi?ed with nitric or sulfuric acid,for metals analysis and nutrient analysis, respectively.Water samples were stored at4?C in a refrigerator until they were col-lected weekly.They were then transported in a cooler to the water quality laboratory at the University of Connecticut,and stored at4?C until analysis.Holding times were<28days for nutrient samples,and<6months for metal samples(APHA, 1998).

2.4.A NALYSIS

Weekly composite samples were analyzed for total phosphorus(TP),TKN,NH3-N,and NO3-N on a Lachat colorimetric?ow injection system using EPA methods (US EPA,1983a).Organic nitrogen(ON)was calculated by subtracting the NH3-N concentration from the TKN concentration for every sample.Total nitrogen(TN) was calculated by adding TKN concentrations to NO3-N concentrations for every sample.

Monthly composite samples were analyzed for Cu,Pb and Zn using Inductively Coupled Plasma-Mass Spectrometry(ICP-MS)method200.7(US EPA,2001).

128M.E.DIETZ AND J.C.CLAUSEN

Figure2.Aerial view of rain gardens and monitoring,Haddam,CT.

Bacteria grab samples were taken when water was?owing at a site visit and analyzed for fecal coliform bacteria using the membrane?ltration method(US EPA, 1978).

2.5.P RECIPITATION

Precipitation was measured using a heated tipping-bucket rain gauge.Total weekly precipitation was also measured using a non-recording rain gauge.Monthly totals were compared to30-year normal precipitation at the NCDC station in Groton, CT,which is approximately38km from the study site.Ground water level was measured in5.1cm screened wells in each rain garden using a pressure transducer.

A Campbell Scienti?c CR-10datalogger was used to record water level,?ow(tips) from the inlet and under drain locations.Water level was measured every minute and a30-minute average was recorded.Tips were counted and totaled for the same period.Tips from the over?ow pipes were recorded using Onset Computer Hobo TM event loggers.

A weekly composite bulk deposition sample was collected using a funnel col-lector similar to the throughfall sampler used by Eaton et al.(1973).Precipitation samples were analyzed for the same constituents as other samples.

RAIN GARDEN POLLUTANT CAPTURE129 2.6.T EMPERATURE AND REDOX POTENTIAL

Water temperature was measured using a Campbell Scienti?c model107thermistor temperature probe at the inlet and the outlet of the two underdrains,when?ow was occurring.Thirty-minute averages were recorded using the CR-10datalogger.

Redox potential was measured at two depths in each garden with platinum welded electrodes(Jensen Instuments,Inc.,Tacoma,W A).Replicate shallow elec-trodes were installed to a depth of28cm,and replicate deep electrodes were in-stalled to a depth of55cm in each garden.Redox potential measurements(mv) were taken weekly using a millivolt meter and an Ag/AgCl reference electrode. Direct measurements were corrected to Normal Hydrogen Electrode potential by adding+0.199volt.

2.7.S TATISTICAL ANALYSIS

Analysis of variance(ANOV A)was used to determine if signi?cant differences existed in measured nutrient and metals concentrations between precipitation,in-let,and underdrain.Duncan’s multiple range test was used to determine signi?-cant differences among means.A value of one-half the detection limit was sub-stituted for any analytes reported as“non-detect.”The water quality data were log-transformed prior to analysis as the data were found to be log-normally dis-tributed.The SAS TM version9.0statistical package was used for all analyses(SAS, 2002).Nutrient percent retention was calculated as the difference between the prod-uct of in?uent and ef?uent concentrations and?ows.ANOV A was performed on the difference between weekly inlet and underdrain out?ow average temperatures,to determine if a signi?cant difference existed among seasons.Seasons were de?ned as follows:winter=December,January,February;spring=March,April,May; summer=June,July,August;fall=September,October,November.

3.Results

3.1.P RECIPITATION

From December2002through December2003,167.4cm of precipitation fell at the study site,which was24.2%above the30-year normal at the Groton NCDC station (NOAA,2003).

3.2.F LOW

Most of in?uent left the rain gardens as subsurface?ow(98.8%).Only0.8%of the in?ow water over?owed during the entire study period(Table II),which in-cluded an unusually cold and snowy winter with frequent frost in the soil.Over?ow

130M.E.DIETZ AND J.C.CLAUSEN

TABLE II

Flow mass balance for rain gardens,Haddam,CT.Depth values are

based on total rain garden area(26.1m2)

V olume(L)Depth(cm)%of in?ow

In?ow

Roof runoff170,06365384

Precipitation32,24112316

Total202,304776100

Out?ow

Underdrain199,93376798.8

Over?ow1,64560.8

Total201,578774

Residual72630.4

occurred four times,and three times,for garden1and garden2,respectively,during the56-week study period.The residual volume(0.4%)was assumed removed by evapotranspiration(ET)from the gardens.

Precipitation and?ow data for one event on October1,2003demonstrate the ability of the rain garden to reduce peak?ow rates and increase lag time(Figure3). The timing and shape of the inlet(roof runoff)hydrograph follow the precipitation hyetograph closely.However,the underdrain out?ow shows a lower peak?ow rate

Figure3.Precipitation,in?ow,and out?ow(underdrain)for one event,Haddam rain garden.

RAIN GARDEN POLLUTANT CAPTURE131 and a delayed response to the precipitation event(Figure3).No over?ow occurred during this42mm event.

3.3.N ITROGEN AND PHOSPHORUS

No signi?cant differences in NO3-N,TKN or ON concentrations were found among precipitation,inlet or underdrain concentrations(Table III).However,NH3-N con-centrations from the underdrains were signi?cantly(p=0.001)lower than NH3-N concentrations in the precipitation and the inlet.NH3-N mean concentrations were near detection limit for precipitation and inlet,and at detection limit for the under-drains(Table III).TN concentrations from the underdrain of rain garden1were signi?cantly(p=0.05)lower than precipitation and inlet TN concentrations;TP concentrations at the inlet were signi?cantly(p=0.001)greater than in the pre-cipitation.Interestingly,TP concentrations in ef?uent from both underdrains were signi?cantly greater than both precipitation and inlet concentrations.Although TP concentrations were higher from the underdrains than the inlet when analyzed using ANOV A,a trend can be seen when the concentrations are compared over time(Figure4).The geometric mean TP concentration at the inlet(regression not signi?cant)was0.019mg L?1,whereas the average of the two underdrains showed

TABLE III

Summary of geometric means and ANOV A results for pollutants measured in rain gardens,Haddam, CT

Underdrain

Bulk Roof

Variable n DL Unit deposition runoff Garden1Garden2 NO3-N ns470.2mg L?10.5a0.5a0.3a0.4a

±0.5±0.6±0.4±0.5 NH3-N???470.01mg L?10.03a0.04a0.01b0.01b

±0.12±0.19±0.01±0.14 TKN ns470.1mg L?10.5a0.7a0.4a0.6a

±0.7±0.8±0.3±0.4 TN?470.1mg L?1 1.2a 1.2a0.8b 1.0ab

±0.8±1.1±0.6±0.6 ON ns470.1mg L?10.4a0.5a0.4a0.6a

±0.6±0.7±0.3±0.4

TP???470.005mg L?10.012a0.019b0.058c0.060c

±0.018±0.038±0.036±0.064?p=0.05.

???p=0.001.

ns=ANOV A comparison non signi?cant.

DL=Detection limit.

132M.E.DIETZ AND J.C.CLAUSEN

Figure4.Rain garden TP concentrations over time,Haddam,CT.

an exponential decay trend(R2=0.6).Total phosphorus concentrations at the inlet and the underdrains towards the end of the study period were similar.We suspect that the disturbance of the soil at the beginning of the study period was the cause of the increase in phosphorus concentrations at the outlet.

The geometric mean concentration of0.5mg L?1for NO3-N in both the bulk deposition samples and in the runoff from the roof(Table III)was only slightly lower than the0.7mg L?1event mean concentration for NO3-N reported by the Nationwide Urban Runoff Program(NURP)for runoff from urban areas(EPA, 1983b).The NURP event mean concentrations of1.9and2.4mg L?1for TKN and TP,respectively(US EPA,1983b),were higher than the mean concentrations of those pollutants found in this study(Table III).Chang and Crowley(1993)reported median NH4-N concentrations in runoff from an asphalt composition shingle roof in Texas of0.859mg L?1,which was not signi?cantly different from the0.799mg L?1NH4-N measured in open rainfall at the site.Concentrations of NH3-N in precipitation and roof runoff from the Haddam study site were lower than those measured in Texas(Chang and Crowley,1993),and were not signi?cantly different from each other.

Mass retention was less than36%for NO3-N,TN,TKN,and ON(Table IV). Mason et al.(1999)reported that NO3-N was not well retained by gravel soils, with concentrations in percolate water following concentrations in in?uent water. The only nutrient that was retained well by the system was NH3-N at84.6%.This corresponds well with results presented by Mason et al.(1999),who reported that NH4-N concentrations decreased as a function of in?ltration path length through gravel soils.The mechanisms responsible for the decrease were reported to be nitri?cation in the soil and adsorption of NH4-N to soil particles.For the Haddam

RAIN GARDEN POLLUTANT CAPTURE133

TABLE IV

Pollutant percent retention summary for rain gardens,Haddam,CT

NO3(g)NH3(g)TKN(g)TP(g)TN(g)ON(g)

Inlet108.213.01147.3 6.39252.5125.6 Bulk deposition27.0 3.6025.10.7752.620.8

In total135.216.61172.47.16305.2146.4 Garden1(under)43.6 1.1856.67.78100.355.5 Garden2(under)43.2 1.3461.37.29105.859.2 Over?ow0.50.040.70.02 1.30.6 Out total87.3 2.55118.615.09207.4115.3

%Retention35.484.631.2?110.632.021.3 rain garden,adsorption is assumed to be the primary mechanism responsible for the decrease in NH3-N concentrations,as a corresponding increase in NO3-N con-centrations,indicative of nitri?cation,was not found.Simultaneous nitri?cation and denitri?cation could also have caused the decrease in NH3-N concentrations without increasing NO3-N concentrations,however denitri?cation was not mea-sured directly.Retention for TP was?110.6%,indicating that more phosphorus left the system than entered.Retention of NO3-N and NH3-N was slightly greater than that reported by Davis et al.(2001),who reported24and79%removal for NO3-N and NH3-N,respectively in a laboratory pilot scale rain garden.However, retention of TKN and TP was lower than that presented by Davis et al.(2001), who found removals of68and81%,for TKN and TP,respectively.When synthetic runoff was applied to a rain garden in a?eld setting in Maryland,similar results to those presented by Davis et al.(2001)were found,except for a slightly lower re-tention of65%for TP(US EPA,2000).It should be noted,however that both of the other studies presented involve the application of synthetic runoff for six hour dura-tions,which may or may not be representative of?eld conditions for an actual rain garden.

Bulk total nitrogen deposition estimates of8.3(Yang et al.,1996),9.7(Carley et al.,2001),and10.1kg N ha?1yr?1(Nadim et al.,2001)have been reported in Connecticut.These estimates are based on summing wet and dry deposition values, except for Nadim et al.(2001),who also measured and reported bulk deposition directly.Air samples were taken to estimate dry deposition based on particle depo-sition rates(Carley et al.,2001;Yang et al.,1996).These values are all less than the 24.6kg ha?1yr?1measured at the site during the study period.Bulk total phosphorus deposition reported by Yang et al.(1996)was0.04kg ha?1yr?1,which is less than the0.3kg ha?1P measured at the study site.The study site had several trees within 15m,and although gross particles were?ltered from the bulk deposition sampler, pollen was observed on the sampling funnel during spring months.This added mass could have increased the concentrations of TN and TP measured at the site.

134M.E.DIETZ AND J.C.CLAUSEN

3.4.M ETALS

Since64%of all monthly metals samples were below detection limits(5,5,and 10μg L?1for Cu,Pb,and Zn,respectively),ANOV A and mass retention were not calculated for metals.

3.5.B ACTERIA

Fecal coliform concentrations for the inlet and both underdrains were<10FCU 100mL?1for each of six events sampled.Fecal coliform bacteria concentrations in the roof runoff(inlet)were less than the geometric mean of294FCU100mL?1 measured by Bannerman et al.(1993)in runoff from residential roofs.

3.6.T EMPERATURE

Water temperatures in roof runoff and rain garden ef?uent followed each other closely through the year(Figure5).Seasonal means are presented in Table V. ANOV A results on the difference between roof runoff temperature and underdrain out?ow temperature indicated no signi?cant differences among seasons.Although the gardens warmed roof runoff more during the fall and winter,the average dif-ference for all seasons except spring was negative(Table V).The lack of a cooling effect in the summer was surprising and may be due to the relatively shallow(0.6m) soil depth and the rapid in?ltration of water through the system.In addition,the

Figure5.Temperature of in?uent and ef?uent water in rain garden,Haddam,CT.

RAIN GARDEN POLLUTANT CAPTURE135

TABLE V

Seasonal mean water temperatures for rain gardens,Haddam,CT

Season Roof runoff(?C)Underdrain out?ow(?C)Difference

Fall14.517.1?2.5a

Winter 4.3 5.9?1.5a

Spring7.87.60.1a

Summer19.319.8?0.5a

Mean differences followed by the same letter for each season were not signi?cantly

different at p=0.05.

roof faces north,so the summer rains may not have picked up as much heat as if the roof had a more southerly exposure.

3.7.R EDOX POTENTIAL

The average shallow probe(28cm)measurements for both gardens were503and 555mv,for garden1and garden2respectively(Table VI).The average deep probe (55cm)measurements were545,and123mv for garden1and garden2,respec-tively.The minimum measurements taken were all less than96mv.Denitri?cation reactions are expected to take place in soils between500and200mv(Bohn et al., 2001).Two of the four average measurements for both gardens were within this range,and the minimum measurements were below this range.This indicates that during the period of measurement,conditions did exist that would favor denitri?-cation.It is not understood why NO3-N concentrations did not change after passing through the gardens.Although the redox potential was suitable for denitri?cation, it is possible that soil-water contact time was too short due to rapid in?ltration rates,or a suitable electron donor was not present in large enough concentrations to allow denitri?cation to occur.Kim et al.(2003)reported NO3-N removal of up

TABLE VI

Redox potential measurements for Haddam rain garden

(n=23)

Minimum(mv)Average(mv)

Rain garden1

Deep32545

Shallow?58503

Rain garden2

Deep?344123

Shallow96555

136M.E.DIETZ AND J.C.CLAUSEN

to80%when shredded newspaper was added to rain garden soils in laboratory soil columns.

4.Conclusions

Only0.8%of in?ow left the gardens as over?ow,indicating high in?ltration of roof runoff.The vast majority(98.8%)of in?ow left the gardens as subsurface?ow.The rain gardens reduced the peak?ow rate and increased the lag time of in?uent water.

The only nutrient well-retained by the rain gardens was NH3-N.Only NH3-N and TN concentrations from the underdrains were signi?cantly(p=0.001,0.05) lower than inlet concentrations.Although the concentration of TN was reduced signi?cantly(p=0.05)from the inlet to the underdrain of rain garden1,the mass retention of TN was poor.The export of TP from the system was not expected,and we believe that disturbance of the soil was the cause.

Overall,these rain gardens provided runoff control,but water quality renovation was not good.Installing a rain garden without an underdrain may not be appropriate in all situations.However,given the high overall retention of?ow found for the 2.54cm design method used in this study,a rain garden could be an effective BMP in reducing?ow and pollutant loads if an underdrain were not connected to the stormwater system.

Acknowledgments

Funding for this project was provided by the Long Island Sound Fund administered through sale of Long Island Sound license plates and contributions.The project was also funded in part by the DEP through a US EPA nonpoint source grant under §319of the Clean Water Act.

References

American Public Health Association,American Water Works Association,and Water Environment Federation:1998,Standard Methods for the Examination of Water and Wastewater,20th edn.

American Public Health Association,Washington,DC.

Bannerman,R.T.,Owens,D.W.,Dodds,R.B.and Hornewer,N.J.:1993,‘Sources of pollutants in wisconsin stormwater’,Wat.Sci.Tech.28(3-5),241–259.

Bohn,H.L.,McNeal,B.L.and O’Connor,G.A.:2001,Soil Chemistry,3rd edn.,John Wiley and Sons,New York,302pp.

Carley,R.J.,Perkins,C.,Trahiotis,M.and Nadim,F.:2001,‘Final report,nitrogen deposition moni-toring in connecticut’,Environmental Research Institute,University of Connecticut,submitted to Connecticut Department of Environmental Protection Air Management Bureau Chief,Hartford, CT,06106.

RAIN GARDEN POLLUTANT CAPTURE137 Chang,M.and Crowley,C.M.:1993,‘Preliminary observations on water quality of storm runoff from four selected residential roofs’,Water Resources Bulletin29(5),777–783.

City of Lenexa:2003,‘Rain Garden Design Principles’,City of Lenexa Watershed Management Division,Lenexa,KS.

Connecticut Department of Environmental Protection:2002,‘Water Quality Standards’,79Elm St., Hartford,CT06106.

Davis,A.P.,Shokouhian,M.,Sharma,H.and Minami,C.:2001,‘Laboratory study of biological retention for urban stormwater management’,Water Environ.Res.73(1),5–14.

Eaton,J.S.,Likens,G.E.and Bormann,F.H.:1973,‘Throughfall and stem?ow chemistry in a northern hardwood forest’,J.Ecol.61(2),495–508.

Ferguson,B.K.and Suckling,P.W.:1990,‘Changing rainfall-runoff relationships in the urbanizing peachtree creek watershed,Atlanta,Georgia’,J.Am.Water Resour.Assoc.26(2),313–322. Gee,G.W.and Bauder,J.W.:1979,‘Particle size analysis by hydrometer:A simpli?ed method for routine textural analysis and a sensitivity test of measurement parameters’,Soil Sci.Soc.Am.J.

43,1004–1007.

Huang,C.P.,Elliott,H.A.and Ashmead,R.M.:1977,‘Interfacial reactions and the fate of heavy metals in soil-water systems’,J.Water.Pollut.Con.Fed.49(5),745–756.

Hunt,W.F.and White,N.:2001,‘Urban waterways:Designing rain gardens(Bioretention Areas)’, North Carolina Cooperative Extension Service.

Kim,H.,Seagren,E.A.and Davis,A.P.:2003,‘Engineered bioretention for removal of nitrate from stormwater runoff’,Water Environ.Res.75(4),355–367.

Kuichling,E.:1889,‘The relation between the rainfall and the discharge of sewers in populous districts’,Trans.Am.Soc.Civ.Eng.20,1–60.

Leopold,L.B.:1968,‘Hydrology for urban land planning-a guidebook on the hydrologic effects of urban land use’,Geological Survey Circular554.

Mason,Y.,Ammann,A.A.,Ulrich,A.and Sigg,L.:1999,‘Behavior of heavy metals,nutrients,and major components during roof runoff in?ltration’,Environ.Sci.Technol.33,1588–1597. Nadim,F.,Trahiotis,M.,Stapcinskaite,S.,Perkins,C.,Carley,R.,Hoag,G.E.and Yang,X.:2001,‘Estimation of wet,dry and bulk deposition of atmospheric nitrogen in connecticut’,J.Environ.

Monitoring.3,671–680.

National Oceanic and Atmospheric Administration:2003,Climatological data annual summary,New England.National Climatic Data Center.Asheville,NC.

NEC-67(Northeast Regional Coordinating Committee on Soil Testing):1995,Recommended Soil Testing Procedures for the Northeastern United States,Agricultural Experiment Station,Univer-sity of Delaware,DE,USA.Bulletin#493.

Novotny,V.and Olem,H.:1994,Water Quality:Prevention,Identi?cation,and Management of Diffuse Pollution,Van Nostrand Reinhold,New York,1054pp.

Prince George’s County:1993,‘Design Manual for Use of Bioretention in Stormwater Management’, Prince George’s County(MD)Government,Department of Environmental Protection.Watershed Protection Branch,Landover,MD.

Prince George’s County:2002,‘The Bioretention Manual’,Prince George’s County(MD)Govern-ment,Department of Environmental Protection.Watershed Protection Branch,Landover,MD. SAS Institute,Inc.:2002,The SAS System for Windows(Release9.0).Cary,NC.

SCS(U.S.Soil Conservation Service):1986,Urban Hydrology for Small Watersheds.U.S.Dept.of Agriculture Technical Release No.55(revised).210-VI-TR-55.

Soil Science Society of America:2002,Methods of Soil Analysis.Part4:Physical Methods,Soil Science Society of America,Inc.,Madison,WI,53711,1692pp.

Sumner,M.E.and Miller,W.P.:1996,‘Cation exchange capacity and exchange coef?cients’,in Meth-ods of Soil Analysis,Part3.Chemical Methods,Soil Science Society of America and American Society of Agronomy,Madison,WI,USA,pp.1201–1221.

138M.E.DIETZ AND J.C.CLAUSEN

United States Department of Agriculture,Soil Conservation Service:1979,‘Soil survey of Middlesex County,Connecticut’.

United States Environmental Protection Agency:1978,‘Microbiological Methods for Monitoring the Environment’,EPA600/8-78-017.Of?ce of Research and Development.Cincinnati,OH45268. United States Environmental Protection Agency:1983a,‘Methods for Chemical Analysis of Water and Wastes’,EPA600/4-79-020.Of?ce of Research and Development.Cincinnati,Ohio,45268. United States Environmental Protection Agency:1983b,‘Results of the Nationwide Urban Runoff Program’,NTIS PB84-185552.

United States Environmental Protection Agency:1994,‘Method6020,Inductively Coupled Plasma-Mass Spectrometry’,EPA SW-846Ch.3.3,Revision0,Of?ce of Research and Development, Cincinnati,Ohio,45268.

United States Environmental Protection Agency:2000,‘Low Impact Development(LID),a Literature Review’,EPA-841-B-00-005,Of?ce of Water,Washington,DC,20460.

United States Environmental Protection Agency:2001,‘Method200.7,Trace Elements in Water, Solids,and Biosolids by Inductively Coupled Plasma-Mass Spectrometry’,Revision5.0,EPA-821-R-01-010,Of?ce of Research and Development,Cincinatti,Ohio,45268.

Waananen,A.O.:1969,‘Urban effects on water yield’,in W.L.Moore and C.W.Morgan(eds), Effects of Watershed Changes on Stream?ow,University of Texas Press,Austin and London, 89pp.

Wisonsin Department of Natural Resources:2003,‘Rain gardens:A How-To Manual for Homeown-ers’,DNR Publication PUB-WT-7762003.

Yang,X.,Miller,D.R.,Xu,X.,Yang,L.H.,Chen,H.M.and Nikolaidis,N.P.:1996,‘Spatial and temporal variations of atmospheric deposition in interior and coastal connecticut’,Atmos.Environ.

30(22),3801–3810.

Zobrist,J.,M¨u ller,S.R.,Ammann,A.,Bucheli,T.D.,Mottier,V.,Ochs,M.,Schoenenberger,R., Eugster,J.and Boller,M.:2000,‘Quality of roof runoff for groundwater in?ltration’,Water Res.

34(5),1455–1462.

英雄联盟LOL全攻略英雄出装介绍打法教学

英雄联盟LOL全攻略英雄出装介绍 打法教学 超级菜鸟玩《英雄联盟》心得 本文由英雄联盟LOL QQ军团魔鬼(31 ***56) 独家撰写首发转载请注明作者与出处。 文章开篇之前,先讲讲我所认为的英雄联盟新手是什么样的。 Λ没有玩过美服的英雄联盟; 2、没玩过DOTA,魔兽争霸,魔兽世界?星际争霸等竞技类游戏; 3、曾经尝试过接触这些游戏但是因为无法理解游戏内容上不了手而不得不放弃; 4、懂基本的电脑基础和有其他类网络游戏经历。

如果你不属于新手,不属于上面几条内,请果断 绕过此文。 我就属于这样一个新手,一直以来,曾无数次的 尝试过玩星际,魔兽。对于我而言,最大的原因不 是语言障碍,而是对这类游戏背景、操作、玩法等内 容的态度和观念。我玩的网游基本上都是象传奇、 奇迹这种练级-装备-PK的RPG游戏。 市面上大多数网游也是这种模式。以前有朋友告诉我,玩匹和传奇一样的都是练级打怪买装备PK O每次按照传统网游那样去体验LoL兽,第一感觉是:好多角色,我该怎么选?这些角色怎么分类?什么样的是战士型的,什么样的是法师型的?而且名字都是外国人的名字,似乎天生对这种名字有一种莫名的抵触。好不容易选了一个角色,上去玩了几下,只是打小兵玩而已?于是顿生无趣,颓然放弃。 直到现在坚持玩了LOL之后,我才发现,我 一直在被这种想法禁锢着,如果想用玩传奇的想法来玩LOL的话,那绝对是大错特错。 如果想上手LOL,我觉得要从以下几点出发: 1:多学习。

现在网络上很多的LOL的新手教程或者游戏攻略,视频,心情等。都是前辈高手们总结出的很重要的经验,对新手有莫大的帮助。任何时候, 想要发挥的更好,基础的知识的一定不能漏掉的,比如每个英雄擅长的技能,该买什么样的装

英雄联盟国内形势一览:英雄联盟s8装备一览

6月中旬,TGA在北京GTV直播间举行。与前两年不同,英雄联盟项目,已经从一个腾讯游戏的“小弟弟”,成长为真正的大哥大了。无论是比赛奖金,观众支持,现场表演,无不展现出一款世界级竞技游戏的风范。最后是由国内最为知名的队伍WE,经过一系列的战斗,以全胜的姿态取得了冠军并抱走了20W的巨额奖金。可以说,WE在国内英雄联盟界的地位,已经不可动摇。 而7月底,由游戏风云在CHINAJOY主办的s2世界总决赛选拔赛,也是画下了一个圆满的句号。形势如出一辙,重新组建的IG战队,同样的以全胜的战绩夺得了桂冠。 本文将重点分析下,这2届比赛笔者所看到的,国内英雄联盟职业界的变化。通过2届比赛的整体阵容选择,对线英雄克制,到战术细节变化,用笔者在英雄联盟这款游戏上的经验,帮助读者们理解在当前的英雄联盟界队伍的实力对比,以及游戏技战术的更新换代。 首先介绍一下TGA的队伍们。 WE WE.国内的成绩不用多讲,而在国际比赛中,WE也曾在IEM广州站上力克世界顶尖强队CLG取得冠军,加上韩国OGN小组赛成功出线,国际上也是有了不错的名气。

中单若风既是队长也是队中元老,实力强劲发挥稳定,正在朝心目中世界最强apc的位置奋力前进。 队伍王牌ADC微笑,被以前CLG打野Saintvious为代表的部分外国选手也公认为最强的ADC。 辅助IF与微笑配合默契娴熟,且最大优点是性格老实沉稳,从Dota时期就以擅长辅助著称。上单草莓是前国服路人王,电一SOLO排位分数长期保持前列,加入WE后从ADC位置换到了上单位置,进步相当的明显,如今已经成为了队伍信任而不可或缺的一份战力。 打野夜尽天明外号刀哥,打法稳健保守,对于坦克类打野的理解尤为出众。 EHMOE EHOME.国内传统三强之一,成立很早,曾经拿到第一届TGA英雄联盟项目的冠军。但之后因为人员不断变更等因素,往往在大赛中未能杀人决赛。 中单梦梦贝利亚是国服高分中单玩家,特点是擅长的英雄不算最热门,比如凤凰,在当时的TGA只有他是把凤凰拿上了比赛并取得了不俗的效果。

英雄联盟装备药水介绍

治疗宝珠+5生命回复/5秒巨人腰带 +400生命值 红水晶 +180生命值 布甲 +15护甲 锁子甲 +40护甲 抗魔斗篷 +20魔法抗性 多兰之盾+100生命值 +5护甲 +5生命回复/5秒唯一被动:格挡6点来自敌方英雄的普攻伤害。 多兰之刃+80生命值 +10攻击力被动:你的普通攻击在每次命中敌人后,都会为你回复5点生命值。

多兰之戒+80生命值 +15法术强度 +3法力回复/5秒被动:每击杀一名敌方单位,你的法力值就会回复5点。 负极斗篷 +45魔法抗性 勘探者之刃+20攻击力 +5%生命偷取唯一被动—勘探者:+200生命值。(同名的唯一被动效果不叠加。) 勘探者之戒+40法术强度 +10法力回复/5秒唯一被动—勘探者:+200生命值(同名的唯一被动效果不叠加。) 精魄之石+14生命回复/5秒 +7法力回复/5秒唯一被动—屠夫:对野怪造成的伤害提升20%。唯一被动—撕裂:普通攻击会对野怪造成10点额外真实伤害。(同名的唯一被动效果不叠加。) 坚韧合剂点击使用:增加120—235生命值(基于英雄等级),和15攻击力,持续3分钟。装备栏已满后购买将自动使用。 水晶瓶唯一主动:消耗一个充能,以在10秒里持续地回复总共100生命值和40法力值。唯一被动:有3个初始充能,并且每当你靠近商店时,都会重新将充能数充满。

洞察红宝石+300生命值唯一被动—守卫刷新:初始就有5个充能,并且会在每次你造访商店时充满。唯一主动—幽灵守卫:消耗一层充能来放置一个隐形的守卫,持续3分钟。你一次最多能放置3个来自该物品的守卫。 洞察之石+100生命值唯一被动—守卫刷新:初始就有4个充能,并且会在每次你造访商店时充满。唯一主动—幽灵守卫:消耗一层充能来放置一个隐形的守卫,持续3分钟。你一次最多能放置2个来自该物品的守卫。 深渊权杖+70法术强度 +45魔法抗性唯一光环:降低周围敌人20魔法抗性。 阿塔玛之戟+45护甲 +15%暴击几率唯一被动:增加相当于你最大生命值1.5%的攻击力 催化神石+200生命值 +300法力值唯一被动—成长之力:升级时,英雄会在8秒的持续时间里回复总共150点生命值和200点法力值。(同名的唯一被动效果不叠加。) 冰霜之锤+700生命值 +20攻击力唯一被动—钻石星辰击:物理攻击将降低目标40%的移动速度,持续1.5秒(远程攻击的减速效果为30%)。 双生暗影+50法术强度 +30魔法抗性 +5%移动速度唯一主动:狩猎召唤2个免疫伤害、持续6秒的幽灵,来寻找最近的2名敌方英雄。如果它们触碰到了一名敌方英雄,那么会将该英雄的移动速度减少40%,并使他暴露2.5秒。冷却时间120秒。

《英雄联盟(LOL)》游戏数据计算大全.

《英雄联盟(LOL》游戏数据计算大全 1.物品与光环 Q: 物品的叠加原理是怎么样的? A: 所有物品增加的属性都可以叠加,除了唯一被动的效果。比如当你拥有2把Infinity Edge时, 那么一把的效果是: +80 伤害 +20% 暴击 唯一被动: 暴击现在为250%的伤害,而不是200% 。 2把的效果就是: +160 伤害 +40% 暴击 唯一被动: 暴击现在为250%的伤害,而不是200% (这个不叠加 Q: 光环是如何作用的? A: 环效果是最多可以拥有2个的。比如如果你有一个Mana Manipulator(唯一被动:对友军恢复 7.2 Mana每 5 秒,然后你的盟友也合了一个。那么你和盟友自己将获得2个光环的效果!而没有合成的人则只拥有一个光环的效果。但是同样的光环效果最多不超过2个。 Q: 减少cd的物品如何叠加。

A: 此类物品直接叠加。如果你有一个减少9%cd的物品,又合了一个减少 10%cd的物品,那么你将减少19%的cd。但是上限为40%。 2.游戏计算公式 Q: 躲闪是如何计算的。 A: 躲闪增加的效果递减。(这个计算方式和war3一样的就相当于算概率,A发生B 不发生 A不发生B发生 AB一起发生。比如你有10%的躲闪了,又合了忍者鞋11%的躲闪。那么你的躲闪将是10%+11%- 10%*11*=19.9% Q: 可以躲闪掉魔法么? A: 不可以躲闪魔法,唯一的办法是通过某些特定物品。比如- Banshee's Veil (每30秒低档一次魔法攻击 Q: 吸血如何计算。 A: 吸血受护甲的影响。比如你造成100伤害,对方护甲有20%减成,那么你的攻击将造成80伤害。如果此时你的吸血效果为10%,那么你将吸取8点血。吸血效果可以叠加,并且没有上限没,也就是说你可能会获得超过100%的吸血。 Q: 护甲和魔防是如何计算的? A:每一点护甲意味着对方要杀死你将需要多造成你生命1%的攻击。比如当你有100护甲时,对方需要多造成100%伤害才能杀死你,也就是说你减少了一半的攻击。再比如你有300护甲时,对方需要多打300%,也就是总共需要造成400%你生命值的攻击力,也就是你只承受了25%伤害并且这种关系没有收益递减。也就是说为线性关系。如果你有1000血,那么每点护甲可以看成给你多提供了10点血。 魔法防御也是同样的道理。要注意的是魔防只防御魔法,物力防御只防御物力(废话?呵呵

《英雄联盟(LOL)》游戏数据计算大全

《英雄联盟(LOL)》游戏数据计算大全 1.物品与光环 Q: 物品的叠加原理是怎么样的? A: 所有物品增加的属性都可以叠加,除了唯一被动的效果。比如当你拥有2把Infinity Edge时, 那么一把的效果是: +80 伤害 +20% 暴击 唯一被动: 暴击现在为250%的伤害,而不是200% 。 2把的效果就是: +160 伤害 +40% 暴击 唯一被动: 暴击现在为250%的伤害,而不是200% (这个不叠加) Q: 光环是如何作用的? A: 环效果是最多可以拥有2个的。比如如果你有一个Mana Manipulator(唯一被动:对友军恢复 7.2 Mana每 5 秒),然后你的盟友也合了一个。那么你和盟友自己将获得2个光环的效果!而没有合成的人则只拥有一个光环的效果。但是同样的光环效果最多不超过2个。 Q: 减少cd的物品如何叠加。 A: 此类物品直接叠加。如果你有一个减少9%cd的物品,又合了一个减少10%cd的物品,那么你将减少19%的cd。但是上限为40%。 2.游戏计算公式 Q: 躲闪是如何计算的。 A: 躲闪增加的效果递减。(这个计算方式和war3一样的)就相当于算概率,A发生B 不发生 A不发生B发生 AB一起发生。比如你有10%的躲闪了,又合了忍者鞋11%的躲闪。那么你的躲闪将是10%+11%- 10%*11*=19.9% Q: 可以躲闪掉魔法么? A: 不可以躲闪魔法,唯一的办法是通过某些特定物品。比如- Banshee's Veil (每30秒低档一次魔法攻击) Q: 吸血如何计算。

A: 吸血受护甲的影响。比如你造成100伤害,对方护甲有20%减成,那么你的攻击将造成80伤害。如果此时你的吸血效果为10%,那么你将吸取8点血。吸血效果可以叠加,并且没有上限没,也就是说你可能会获得超过100%的吸血。 Q: 护甲和魔防是如何计算的? A:每一点护甲意味着对方要杀死你将需要多造成你生命1%的攻击。比如当你有100护甲时,对方需要多造成100%伤害才能杀死你,也就是说你减少了一半的攻击。再比如你有300护甲时,对方需要多打300%,也就是总共需要造成400%你生命值的攻击力,也就是你只承受了25%伤害并且这种关系没有收益递减。也就是说为线性关系。如果你有1000血,那么每点护甲可以看成给你多提供了10点血。 魔法防御也是同样的道理。要注意的是魔防只防御魔法,物力防御只防御物力(废话?呵呵) Q: 我怎么看到我人物的属性。 A: 在游戏里,左下角可以看见人物的攻击,AP,移动速度,护甲,魔防。如果要看到其他属性,请按C键,或者点击人物头像。 3. 移动速度 Q: 不同的鞋子增加了多少移动速度 A: 1级增加50,2级70,3级90。 Q: 移动速度如果计算? A: 首先每个英雄有一个初始移动值,假如为300。当你穿上2级鞋子,那么你拥有370的移动效果。如果此时你获得一个+35%移动效果的buff。那么就是370 * 1.35,你将有499.5的移动速度。要注意的是这里只是理论竖直,移动效果将符合收益递减规则(下面一个问题会详细解释)这里我们先忽略。现在在前面的例子上如果你中了ashe的减速箭,将减少38%的移动速度。本来是499.5,现在将为499.5 *(1-38%) =309.69 Q: 移动速度的收益递减如何计算 A: 当你人物移动速度超过490后,每一点增加将只收益50%。所以假如你最后理论移动数值为748,那么你的速度为:490+(748-490)*0.5= 604的移动速度。当速度超过415 时候,每点收益为80%。所以假如你的人物速度在所有调整后为445,那么你实际的速度为,415+(445-415 )* 0.8=439。 Q: 减速叠加么? A:不叠加。当你受到2个减速时候,减速减的多的那个将起作用。如果这个效果结束了,并且你还有另一个减速效果,那么另一个将继续起作用。 比如你受到2个debuff:5秒减少30%速度,3秒减少50%。那么前3秒你身上的减速效果为50% ,最后2秒为30% 。

LOL新手推荐攻略:英雄联盟攻击装备全解析

新手推荐攻略:英雄联盟攻击装备全解析 本心得不包括一些比较酱油的物品如燃烧宝石 本心得是写给那些对LOL了解还十分浅的新手玩家,加深他们对物品的理解。 BF!绝大多数人都会用到的配件,合成几件强力AD装备都要用到他。一般来说有钱出一把会是不错的选择,如果你第一次回家和笔者一样有1800块钱不出BF而出草鞋+3把多兰,我只能说我很欣赏你。 不过有人觉得优势就叠BF,其实不是很明智的选择,因为虽然BF的性价比不算太低,但是他升级后才能真正让你的输出变得耀眼起来。 LOL代练,刷金币,代练排位,走淘宝交易++QQ : 2924394866讓妳超神让五 杀不是梦╔★═ ═★══╗承诺:新号定级赛包到黄金段位240元2天完成,定级赛包到铂金段 位600元4天,定级赛包到钻石段位1200元7天,S3黄金段位的S4定位赛20 元一局60%的胜率,不到全额退款 无尽!最强的输出装!傲人的价格使得他对你的攻击力提升上了一个档次,被动效果更是能让你作为一名AD英雄也时不时有了爆发 但是要注意的是无尽加的只有AD和暴击,不是非常适合一些没有攻速加成的DPS英雄作为第一件大件(虽然这种远程DPS比较少,不过最近很火的vayne 就是一个) 或是在逆风打钱难的话,先出黑切或是嗜血也是不错的选择

旗子!虽然是很虎的装备,对团队的帮助也很大,但是渐渐的队里只有一个AD,对旗子的需求就没有那么的急切了,但仍然是一件非常好的装备但是缺点在于出的时机比较难选择,第一件出缺攻击力,如果第一件出了无尽,有暴击又加攻速的红叉更加合适。 所以个人感觉比较适合第一件出了黑切/嗜血的同志 黄叉!少数加移速的装备之一。有攻速有暴击,但是都相少了一点,不过出了后不论是合成三相还是红叉都是很好用的。 有时在觉得比较难憋BF的局也能先当一件中件来出,毕竟那时候一般比较逆风,移速的作用常常就会发挥出来。 这件叫反曲弓的装备虽然很常用,不过好像的确是没什么昵称…… 这件装备给你最大的一个优势就是你感觉你出了这装备以后,你的攻速就一下子老母鸡变鸭了,也的确是能升级成不少很有用的装备。 感觉自己缺攻速又有1000块钱的时候就和黄叉自己取舍吧

LOL装备库大全

主动技能类 里格尔的灯笼总价1600 组件麦瑞德的拳刃(长剑+布甲)+吸血鬼权杖 +23攻击力+30护甲+18%生命偷取 唯一被动:攻击小兵时20%几率对其造成500点伤害 唯一主动:放置一个隐形的守卫,拥有1100视野(假眼)持续3分钟,冷却3分钟 黑水弯刀总价1825 组件长柄战斧+吸血鬼节杖 +35物理攻击+15%生命偷取 唯一主动:为目标英雄造成150点法伤,并减缓其50%移动速度,持续3秒施法距离400,冷却60秒 海克斯科技枪刃总价3625 组件黑水弯刀+科技左轮 +60物理攻击+75法术强度+25%生命偷取+20%法术吸血 唯一主动:对目标造成300点法术伤害减少其50%移动速度,持续3秒施法距离700,冷却60秒 兰顿之兆总价3075 组件:黄金之心(红宝石)典狱官之铠(无袖链甲+活力宝珠)布甲 +300HP +53护甲+25HP/5秒 唯一被动:减少5%技能冷却、被攻击时20%几率减少攻击者20%移动速度和35%攻击速度,持续3秒 唯一主动:减少周围单位35%攻击速度和移动速度,持续2秒,每100点护甲或魔法抗性增加0.5秒持续时间,60秒冷却 妖梦之灵总价2687 组件贪婪之刃(恶徒手套)无情之力(长剑*2) +30攻击力+15%暴击几率 唯一被动:+20护甲穿透、减少15%英雄技能冷却时间 唯一主动:增加移动速度20%,攻击速度50%,持续4秒每次近战攻击延长2秒,最多增加8秒,冷却60秒 冥火之拥总价2610 组件凯奇的幸运之选(增幅手册)恶魔法典(增幅手册+梅齐垂饰) +60法术伤害+10MP/5秒 唯一被动:减少15%技能冷却 唯一主动:造成目标当前血量30%(每100点法伤+3.5%)的魔法伤害最低200点,冷却1分钟

LOL装备大全介绍

先给装备的介绍吧英雄及技能实在太多了 里格尔的灯笼总价1600 组件麦瑞德的拳刃(长剑+布甲)+吸血鬼权杖 +23攻击力+30护甲+18%生命偷取 唯一被动:攻击小兵时20%几率对其造成500点伤害 唯一主动:放置一个隐形的守卫,拥有1100视野(假眼)持续3分钟,冷却3分钟 黑水弯刀总价1825 组件长柄战斧+吸血鬼节杖 +35物理攻击+15%生命偷取 唯一主动:为目标英雄造成150点法伤,并减缓其50%移动速度,持续3秒施法距离400,冷却60秒 海克斯科技枪刃总价3625 组件黑水弯刀+科技左轮 +60物理攻击+75法术强度+25%生命偷取+20%法术吸血 唯一主动:对目标造成300点法术伤害减少其50%移动速度,持续3秒施法距离700,冷却60秒 兰顿之兆总价3075 组件:黄金之心(红宝石)典狱官之铠(无袖链甲+活力宝珠)布甲+300HP +53护甲+25HP/5秒 唯一被动:减少5%技能冷却、被攻击时20%几率减少攻击者20%移动速度和35%攻击速度,持续3秒 唯一主动:减少周围单位35%攻击速度和移动速度,持续2秒,每100点护甲或魔法抗性增加0.5秒持续时间,60秒冷却 妖梦之灵总价2687 组件贪婪之刃(恶徒手套)无情之力(长剑*2) +30攻击力+15%暴击几率 唯一被动:+20护甲穿透、减少15%英雄技能冷却时间 唯一主动:增加移动速度20%,攻击速度50%,持续4秒每次近战攻击延长2秒,最多增加8秒,冷却60秒 冥火之拥总价2610 组件凯奇的幸运之选(增幅手册)恶魔法典(增幅手册+梅齐垂饰)+60法术伤害+10MP/5秒 唯一被动:减少15%技能冷却 唯一主动:造成目标当前血量30%(没100点法伤+3.5%)的魔法伤害最低200点,冷却1分钟 死刑宣告总价1350 组件吸血鬼节杖恶徒手套 +18%生命偷取+15%暴击 唯一被动:你的攻击会使目标受到持续伤害,4点每秒,持续8秒 唯一主动:是目标受到重伤,减少目标50%的受到治疗效果和生命恢复速度,持续8秒,冷却20秒 预言之剑总价1970 组件反曲弓短剑 +60%攻击速度 唯一被动:没攻击3次,第4次攻击会附带100点法术伤害

英雄联盟-LOL--英雄出装介绍-打法教学

超级菜鸟玩《英雄联盟》心得 文章开篇之前,先讲讲我所认为的英雄联盟新手是什么样的。 1、没有玩过美服的英雄联盟; 2、没玩过DOTA,魔兽争霸,魔兽世界,星际争霸等竞技类游戏; 3、曾经尝试过接触这些游戏但是因为无法理解游戏内容上不了手而不得不放弃; 4、懂基本的电脑基础和有其他类网络游戏经历。 如果你不属于新手,不属于上面几条内,请果断绕过此文。 我就属于这样一个新手,一直以来,曾无数次的尝试过玩星际,魔兽。对于我而言,最大的原因不是语言障碍,而是对这类游戏背景、操作、玩法等内容的态度和观念。我玩的网游基本上都是象传奇、奇迹这种练级-装备-PK的RPG游戏。市面上大多数网游也是这种模式。以前有朋友告诉我,玩LOL和传奇一样的都是练级打怪买装备PK。每次按照传统网游那样去体验LOL兽,第一感觉是:好多角色,我该怎么选?这些角色怎么分类?什么样的是战士型的,什么样的是法师型的?而且名字都是外国人的名字,似乎天生对这种名字有一种莫名的抵触。好不容易选了一个角色,上去玩了几下,只是打小兵玩而已?于是顿生无趣,颓然放弃。 直到现在坚持玩了LOL之后,我才发现,我一直在被这种想法禁锢着,如果想用玩传奇的想法来玩LOL的话,那绝对是大错特错。 如果想上手LOL,我觉得要从以下几点出发: 1:多学习。 现在网络上很多的LOL的新手教程或者游戏攻略,视频,心情等。都是前辈高手们总结出的很重要的经验,对新手有莫大的帮助。任何时候,想要发挥的更好,基础的知识的一定不能漏掉的,比如每个英雄擅长的技能,该买什么样的装备,如果不去事先了解,那么游戏中会很迷茫,很吃亏。所以,千万不要以为他们写的都是废话,那是老鸟说的,我们新手还是认真的学习去吧。 2:摆正心态,稳扎稳打. 凡事都讲究循序渐进,有因才有果,谁也不是一生下来就会走路的,作为一个新手,在游戏中肯定有各种各样的疑问,这个时候不要着急,将自己的疑问整理下来,一条一条的去请教前辈玩家,了解了答案之后,你会发现,自己多掌握了一些东西,离老鸟也越来越近。要带着一种娱乐的心态去玩LOL,赢了固然好,输了也有经验。遇到不会玩的队友不要生气,我们都是新手,新手之间更要互相体谅。 3:最好有朋友陪玩。

lol装备大全_lol装备大全及用法介绍

lol装备大全_lol装备大全及用法介绍 lol装备大全,想了解一下更多有关lol装备大全最新的攻略及资讯吗?下面就由小骨来为大家带来lol装备大全的推荐 话说lols6版本确实加强了不少的英雄,然而隐性加强的确是s6装备,你没有发现adc没有装备几秒钟就死,然而换上装备就变得无比强大,那么s6新装备怎么用呢在?今天为大家解析lols6新装备——s6新装备用法攻略大全,叫你的对手做人! 大家要记住一点装备选择不能死板,通过一句话理解装备的内涵,在实际对局中和自己使用的英雄相结合才是最适合的。 一、死亡之舞(我知道你也不熟悉) 属性:+65攻击力 +10%冷却缩减 唯一被动:造成物理伤害的同时会治疗自身,治疗量相当于实际伤害值的12%。这个效果对群体伤害来说只有33%的效率。 唯一被动:你所受伤害的12%会以流血形式在3秒里持续扣除。 属性解析:同样是提供攻击力和冷却缩减的装备,这一点上看和夺萃之镰很相像。首先是被动,造成物理伤害的同时能对自己进行治疗,必须是物理伤害才能治疗自己,其次是自己所受伤害的一小部分会以流血的形式慢慢扣除。这个被动其实就是把瞬间的大量伤害分成一部分让你承担,不至于一下就被打死,你所受到伤害的总量还是不变的,只不过给予你一个吃药回血并自我救治的时间,没有这件装备的话,可能一个暴击就一命呜呼了。 一句话说装备:攻击、冷却缩减;造成物理伤害能治疗自己;所受到的伤害会延缓死亡,给自己救治的时间。 适合的英雄: 亚托克斯

希瓦娜 奥拉夫 该件装备同水银弯刀一样,属于后期类防御输出装,重点在于该装备对那些自我恢复能力强的英雄更为实用,它能把最后致命一击的伤害放缓,给足你一个自我救治的时间和机会。例如:盖伦、亚托克斯、奥拉夫、希瓦娜等。 二、幻影之舞(呵呵) 属性:+40%攻击速度 +30%暴击几率 唯一被动—幽影华尔兹:当你能够看见500码以内的一名敌方英雄时,为你提供+12%移动速度并使你无视单位的碰撞体积。 唯一被动—挽歌:你所命中的最后一名敌方英雄对你造成的伤害减少12%(如果你在10秒内不继续对该英雄进行攻击,那么这个效果就会消散)。 属性解析:霸气的“红叉”变成了鬼魅的“绿叉”,新的幻影之舞同以往相比没有那么暴力的属性提升,而新的被动赋予它新的游戏方式。被动效果在500距离内能提供大量的移速加成,还会忽视体积碰撞,而另一个被动在你所命中的最后一名敌方英雄对你造成的伤害会减少(在10秒内不继续对该名英雄攻击,这个效果就会消失)。500点的距离其实是很近的,但是在这个范围内,会提供给你超强的机动性,无论是风筝对手还是秀操作,小范围内超强的机动性以及减伤更符合幻影之舞的定义。 一句话说装备:攻速、暴击几率;小范围内忽视体积且有移速加成;攻击敌人能减伤。 适合的英雄:

lol装备大全

消耗品 生命药水 法力药水 坚韧合剂 灵巧合剂 智慧合剂 先知药剂真视守卫侦查守卫神谕精粹 装备防御类 治疗宝珠再生坠饰巨人腰带红水晶布甲锁子甲抗魔斗篷多兰之盾多兰之刃多兰之戒负极斗篷勘探者之刃勘探者之戒深渊权杖阿塔玛之戟催化神石冰霜之锤冰川护甲守护天使时光之杖和谐圣杯净蚀忍者足具基克的使徒 振奋盔甲燃烧宝石日炎斗篷舒瑞亚的狂 想曲 荆棘之甲提亚马特三相之力守望者铠甲狂徒铠甲智慧末刃贤者之石英勇徽章灵魂法衣巫妖之祸女妖面纱军团圣盾

麦瑞德之爪自然之力冰霜之心水银之靴 瑞莱的冰晶 节杖 黄金之心幽魂面具利维坦之甲水银饰带兰顿之兆瑞格之灯 海克斯饮魔 刀 玛莫提乌斯 之噬 中娅沙漏 伊丽莎的奇 迹 雅典娜的邪 恶圣杯离子火花 奥黛恩的面 纱 冰霜战锤 海克斯科技 探测器 钢铁烈阳之 法术类 仙女护符梅吉坠饰爆裂魔杖蓝水晶增幅典籍多兰之戒无用大棒勘探者之戒深渊权杖大天使之杖魔宗利刃催化神石冰川护甲时光之杖和谐圣杯御魔之器 梅贾的窃魂 卷 基克的使徒耀光振奋盔甲燃烧宝石 舒瑞亚的狂 想曲 女神之泪提亚马特三相之力 灭世者的死 亡之帽 贤者之石 凯奇的幸运 手 灵魂法衣巫妖之祸蜂刺

女妖面纱恶魔法典冰霜之心腐蚀之刃纳什之牙瑞莱的冰晶 节杖 鬼索的狂暴 之刃 冥火之拥 残暴之力虚空之杖幽魂面具幽梦之灵兰顿之兆海克斯科技 左轮枪 海克斯科技 枪刃 远古意志 中娅沙漏明朗之靴莫雷洛的邪 术秘典 月华咒刃 伊丽莎的奇 迹 雅典娜的邪 恶圣杯 奥黛恩的面 纱 海克斯科技 探测器攻击类 灵巧披风长剑十字镐暴风之剑短剑反曲之弓格斗手套 吸血鬼权 杖 多兰之刃勘探者之 刃 魔宗利刃 阿塔玛之 戟 狂战士胫 甲 冰霜之锤无尽之刃 最后的轻 语 净蚀幻影之舞基克的使 徒 黑色切割 者 饮血剑提亚马特三相之力狂热

lol英雄联盟专业术语大全(史上最详细)

lol英雄联盟专业术语大全(史上最详细) 现在玩lol的玩家越来越多了,而这款团队配合游戏在合作的时候如果队友的术语你听不懂那就悲催了哦,下面跑跑车就带来英雄联盟专业术语让你好好学习下吧。T:指Tank,肉盾,护甲高,血量多,能够承受大量伤害的英雄。DPS:damage per second,伤害每秒,特指能够对敌人造成大量伤害的英雄。AD:是指以物理伤害为主的一类英雄。ADC:是指以远程物理伤害为主的一类英雄。AP:是指以法系伤害为主的一类英雄。APC:是指以远程法系伤害为主的一类英雄。Carry:后期,核心,需要大量的金钱去堆积装备的英雄,成型后威力很大,起决定性作用。Gank:GangbangKill 的缩写,游戏中的一种常用战术,指两个以上的英雄并肩作战,对敌方英雄进行偷袭、包抄、围杀。通常是以多打少,又称“抓人”。Stun:带有眩晕效果的技能的总称,也指打断对手持续性施法和施法动作的打断技。Solo:一条线路上一个人,指英雄单独处于一路兵线上与敌人对峙,经验高升级速度远超其他两路。两名玩家一对一单独对抗,无其它人干预。Aoe :area of effect,效果范围,引申为有范围效果的技能补刀:指对血量不多的小兵造成最终一击的技术,也就是攻击小兵最后一下获得小兵的金钱,也可指对英雄的最后一击获得金钱。KS:Kill Steal的简称,指专门对敌方英雄造成

最后一下伤害获得金钱和杀人数,而实际上对这个英雄的多数伤害是由队友造成的,又称“抢人头”。兵线:指双方小兵交战的线路位置。对线:指己方英雄和敌方英雄在兵线附近对峙。控线:高手们通过技能和补刀,把兵线停留在自己希望的地方。推线:运用技能或者高攻击,快速消灭敌方小兵,并带领己方小兵威胁或摧毁敌方防御塔。清兵:运用技能或者高攻击,快速消灭敌方小兵,获取金钱。又称刷兵打钱,英文“farm”。沉默:可以移动,能够进行物理攻击,但不可以使用技能。禁锢:不能移动,能够使用技能,但不可以进行物理攻击。眩晕:不能移动,不能攻击,不能使用技能。召唤师技能:英雄控制者(玩家)自己可以选定的技能,和使用的英雄无关。技能:英雄一共拥有5个技能,一个英雄专属的被动技能;4个为英雄普通技能普通技能的4个施放键对应为Q、W、E、R,其中前3个技能最高5级、最后一个R键技能为大招,最高3级。)攻击距离:一个技能的距离就是离目标多远的时候这个技能仍然对目标使用。这个距离通常可以通过将鼠标移至技能图标上查看;当你使用技 能时屏幕上会出现一个施法距离的指示。范围:有些技能可以同时影响多个目标,这有很多种途径可以实现,不过很多技能都有一个范围的效果指示告诉你这个技能会影响的区域。圆圈是范围效果的其中一种,圆形区域的技能通常可以通过一定距离施放。另一种范围效果是锥形范围,通常以英

LoL英雄联盟装备一览表

LoL英雄联盟装备一览表 时光之杖 +450点生命值,+525点法力值,+60点法术强度。被动:你的英雄每分钟增加18点生命值,20点法力值,2点法术强度。最多+180点生命值,+200点法力值,+20点法术强度。唯一被动:英雄升级时回复250点生命值和200点法力值,持续8秒。 +30点魔法抗性、+7.5法力回复/5秒、唯一被动:每损失1%的法力值会提高你1%的法力恢复速度。不与雅典娜的邪恶圣杯叠加。 和谐圣杯 +225生命值、+18点攻击力、被动特效:攻击有25%的几率降低目标30%移动速度,持续2.5秒。 净蚀 +25点护甲、唯一被动:减少10%来自普通攻击(防御塔除外)的伤害、唯一被动:提升2级移动速度。(不与其它鞋子叠加。) 忍者足具 +250点生命值、唯一被动:+15%冷却缩减、唯一光环:为附近的友方英雄提供12%的生命偷取、20%的攻击速度。 基克的使徒 +30点魔法抗性,+250点生命值。唯一被动:+10%冷却缩减。唯一被动:所受的治疗和回复效果提高15%。 振奋盔甲 +200点生命值。唯一被动:+10%冷却缩减 燃烧宝石

+40%攻击速度、+30点魔法抗性。唯一被动:你的攻击造成42点额外魔法伤害。唯一被动:你的攻击增加5点魔法抗性,持续5秒(最多叠加4次)。 智慧末刃 +18生命回复/5秒,+8法力回复/5秒。唯一被动:每10秒获得5点金钱。 贤者之石 +25护甲、唯一光环:周围的友方英雄+10生命回复/5秒。英勇徽章 +520点生命值、唯一光环:使周围友军增加12点法力回复/5秒和10%冷却缩减。 灵魂法衣 +350点法力值、+80点法术强度、+30点魔法抗性、+7%移动速度、唯一被动:施放一次技能后,下一次物理攻击将附带100%法术强度值的伤害。这个效果有2秒的冷却时间。 巫妖之祸 +375点生命值、+375点法力值、+50点魔法抗性。唯一被动:每45秒获得一个法术护盾,可以抵挡一次敌人的技能。 女妖面纱 +270点生命值、+18护甲、+24魔法抗性唯一光环:提高周围友军12点护甲、15点魔法抗性、8点攻击力。 军团圣盾

(完整版)英雄联盟装备大全

英雄联盟装备大全 玩英雄联盟有一段时间了,装备是不少的,我自己总结整理下子,有什么不合适的地方,大家可以给我提些建议。分为: 消耗品 装备 防御类 攻击类 移动速度 消耗品(超链接是CTRL+鼠标左键图片) 生命药水 法力药水 坚韧合剂 灵巧合剂 智慧合剂 先知药剂真视守卫侦查守卫神谕精粹 装备防御类 治疗宝珠再生坠饰巨人腰带红水晶布甲锁子甲抗魔斗篷多兰之盾多兰之刃多兰之戒负极斗篷勘探者之刃勘探者之戒深渊权杖阿塔玛之戟催化神石

冰霜之锤冰川护甲守护天使时光之杖和谐圣杯净蚀忍者足具基克的使徒 振奋盔甲燃烧宝石日炎斗篷舒瑞亚的狂 想曲 荆棘之甲提亚马特三相之力守望者铠甲狂徒铠甲智慧末刃贤者之石英勇徽章灵魂法衣巫妖之祸女妖面纱军团圣盾麦瑞德之爪自然之力冰霜之心水银之靴 瑞莱的冰晶 节杖 黄金之心幽魂面具利维坦之甲水银饰带兰顿之兆瑞格之灯 海克斯饮魔 刀 玛莫提乌斯 之噬 中娅沙漏 伊丽莎的奇 迹 雅典娜的邪 恶圣杯离子火花 奥黛恩的面 纱 冰霜战锤 海克斯科技 探测器 钢铁烈阳之 法术类 仙女护符梅吉坠饰爆裂魔杖蓝水晶增幅典籍多兰之戒无用大棒

勘探者之戒深渊权杖大天使之杖魔宗利刃催化神石冰川护甲时光之杖和谐圣杯 御魔之器梅贾的窃魂 卷 基克的使徒耀光振奋盔甲燃烧宝石 舒瑞亚的狂 想曲 女神之泪 提亚马特三相之力灭世者的死 亡之帽 贤者之石 凯奇的幸运 手 灵魂法衣巫妖之祸蜂刺 女妖面纱恶魔法典冰霜之心腐蚀之刃纳什之牙瑞莱的冰晶 节杖 鬼索的狂暴 之刃 冥火之拥 残暴之力虚空之杖幽魂面具幽梦之灵兰顿之兆海克斯科技 左轮枪 海克斯科技 枪刃 远古意志 中娅沙漏明朗之靴莫雷洛的邪 术秘典 月华咒刃 伊丽莎的奇 迹 雅典娜的邪 恶圣杯 奥黛恩的面 纱 海克斯科技 探测器攻击类 灵巧披风长剑十字镐暴风之剑短剑反曲之弓格斗手套 吸血鬼权 杖

最新英雄联盟S4物品一览表

最新英雄联盟S4物品一览表 加新增物品、老图标、物品属性已更新 守护者的号角 +180生命值 +12生命回复/5秒 唯一被动:在敌方施放技能时,会减少【战吼】1秒冷却时间。 唯一主动—战吼:获得30%移动速度加成、20护甲加成和20魔法抗性加成,持续3秒。冷却时间25秒。 炽天使之拥 +1000法力值 +60法术强度 +10法力回复/5秒 唯一被动—洞察:获得相当于最大法力值的3%的法术强度。 唯一主动—法力护盾:汲取当前法力值的20%来形成为一个护盾,护盾的生命值等于150+被汲取的法力值,持续3秒(冷却时间120秒)。 (同名的唯一被动效果不叠加。) 当你拥有3000点以上的法力值时,炽天使之拥可以提供比灭世者的死亡之帽更高的法术强度。在你已经拥有一个灭世者的死亡之帽时,你只需要拥有2000点以上法力,就能通过炽天使之拥获得比再出一个灭世者的死亡之帽更多的法术强度。 飞升护符 +20%冷却缩减 +15法力回复/5秒 +10生命回复/5秒 +2金币/10秒 唯一被动—贡品:附近的每个非你所杀的敌方小兵,在阵亡时都会为你提供3金币并治疗10生命值。 唯一主动:附近友方英雄移动速度增加40% ,持续时间3秒(冷却时间:60秒)。只能持有1个金币收入型装备 冰霜女皇的旨令 +50法术强度 +10法力回复/5秒 +10%冷却缩减 +4金币/10秒 唯一被动—贡品:对敌方英雄或建筑物施放技能和进行普攻时,会造成15额外伤害并获得10金币。这个效果每30秒最多触发3次。 唯一主动:发射一束冰枪,爆裂时会对附近的敌人造成50(+5x英雄等级)魔法伤害,并使他们减速80%,这个减速效果会在2秒里持续衰减。(冷却时间:60秒)

相关主题
文本预览
相关文档 最新文档