当前位置:文档之家› 叶面积指数的主要测定方法

叶面积指数的主要测定方法

叶面积指数的主要测定方法
叶面积指数的主要测定方法

最新各种图形面积计算公式

各种图形面积计算公式 1、长方形的周长=(长+宽)×2 C=(a+b)×2 2、正方形的周长=边长×4 C=4a 3、长方形的面积=长×宽S=ab 4、正方形的面积=边长×边长S=a.a= a 5、三角形的面积=底×高÷2 S=ah÷2 6、平行四边形的面积=底×高S=ah 7、梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2 8、直径=半径×2 d=2r 半径=直径÷2 r= d÷2 9、圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr 10、圆的面积=圆周率×半径×半径?=πr 11、长方体的表面积=(长×宽+长×高+宽×高)×2 12、长方体的体积=长×宽×高V =abh 13、正方体的表面积=棱长×棱长×6 S =6a 14、正方体的体积=棱长×棱长×棱长V=a.a.a= a 15、圆柱的侧面积=底面圆的周长×高S=ch 16、圆柱的表面积=上下底面面积+侧面积 S=2πr +2πrh=2π(d÷2) +2π(d÷2)h=2π(C÷2÷π) +Ch 17、圆柱的体积=底面积×高V=Sh V=πr h=π(d÷2) h=π(C÷2÷π) h

18、圆锥的体积=底面积×高÷3 V=Sh÷3=πr h÷3=π(d÷2) h÷3=π(C÷2÷π) h÷3 19、长方体(正方体、圆柱体)的体积=底面积×高 V=Sh 各种图形体积计算公式 平面图形 名称符号周长C和面积S 1、正方形a—边长C=4a S=a2 2、长方形a和b-边长C=2(a+b) S=ab 3、三角形a,b,c-三边长 h-a边上的高 s-周长的一半 A,B,C-内角 其中s=(a+b+c)/2 S=ah/2 =ab/2·sinC =[s(s-a)(s-b)(s-c)]1/2 =a2sinBsinC/(2sinA) 4、四边形d,D-对角线长 α-对角线夹角S=dD/2·sinα 5、平行四边形a,b-边长 h-a边的高 α-两边夹角S=ah =absinα 6、菱形a-边长 α-夹角 D-长对角线长 d-短对角线长S=Dd/2 =a2sinα 7、梯形a和b-上、下底长 h-高 m-中位线长S=(a+b)h/2 =mh

城市绿地园林树种叶面积指数测定方法研究_以小叶榕为例

第38卷第3期2011年9月福建林业科技 Jour of Fujian Forestry Sci and Tech Vol.38No.3 Sep.,2011 doi:10.3969/j.issn.1002-7351.2011.03.20 城市绿地园林树种叶面积指数测定方法研究 ———以小叶榕为例 柯峰1,2,翁殊斐2,苏志尧2 (1.广州民航职业技术学院,广东广州510403;2.华南农业大学林学院,广东广州510642) 摘要:分别采用半球面影像技术和LAI-2000冠层分析仪对华南地区最常用园林树种小叶榕(Ficus microcarpa)的叶面积指数(Leaf Area Index,LAI)进行测定、比较和分析。研究表明,2种测量仪器所测LAI值存在极显著正相关(P<0.001);用半球面影像技术测量的LAI值与冠幅、胸径和树高之间也存在极显著一元线性关系,构建回归模型分别为:LAI= 0.0444Cw+1.6526,LAI=0.0088D+1.8327,LAI=0.0543H+1.6404;通过模型可估测小叶榕单株的叶面积指数,达到95%的置信区间的估测值范围。 关键词:小叶榕;叶面积指数LAI;回归模型;半球面影像技术;冠层分析仪 中图分类号:S718.43文献标识码:A文章编号:1002-7351(2011)03-0088-04 Methods for Measuring Leaf Area Index of Landscape Trees in Urban Greenland —A Case Study of Ficus microcarpa KE Feng1,2,WENG Shu-fei2,SU Zhi-yao2 (1.Capital Construction Department,Guangzhou Civil Aviation College,Guangzhou510403,China; 2.College of Forestry,South China Agricultural University,Guangzhou510642,Guangdong,China) Abstract:Leaf area index(LAI)was measured,compared,analyzed for the LAI of Ficus microcarpa,the most common landscape trees in southern China with hemispherical photography and LAI-2000canopy analyzer.The results showed that both LAI was signifi-cantly positive correlation(P<0.001).The LAI measured with hemispherical photographs and crown width,DBH and tree height exist the significant correlation.Regression model constructed were respectively:LAI=0.0444Cw+1.6526,LAI=0.0088D+ 1.8327,LAI=0.0543H+1.6404,the LAI of Ficus microcarpa could be estimated by the model,which reached95%of confidence interval estimation range. Key words:Ficus microcarpa;Leaf Area Index(LAI);regression model;hemispherical photography;canopy analyzer 城市绿地是由不同的园林树种、不同的植物个体所组成的,建立园林树种叶面积指数(Leaf Area In-dex,LAI)与冠幅、胸径、树高之间的回归模型,进而估算其绿量,是定量研究城市园林生态效益的基础[1]。叶面积指数,即一片林分或一株植物叶的表面积与土地表面积的比率,是衡量绿地生态效益及其绿化水平的指标[2-4]。研究叶面积指数对于改善植物的空间布局,增加城市绿量,提高城市园林绿化水平具有重要指导意义。 目前,测量叶面积指数的方法有多种,分为直接测量法和间接测量法[5-7],根据不同测量仪器,间接测量法大致又可分为顶视法和底视法2种。顶视法即用传感器从上向下测量,如遥感方法[8-9]。底视法是用传感器从下向上测量,所用的仪器主要是一些基于光学原理获取植物冠层参数的仪器,其原理均是由穿透林冠的孔隙率或比较林内及林外辐射量比率的差异来推导估算叶面积。如AccuPAR-80冠层分析仪、LAI-2000冠层分析仪等[10-12]。但这些仪器价格昂贵,操作步骤繁琐,不易推广应用。 收稿日期:2011-02-25;修回日期:2011-04-20 基金项目:华南农业大学校长基金(2008K019) 作者简介:柯峰(1983—),男,广东茂名人,广州民航职业技术学院助理工程师,硕士,从事园林规划设计、园林绿化工作与研究。 通讯作者:翁殊斐(1969—),女,华南农业大学副教授,硕士。Email:shufeiweng@https://www.doczj.com/doc/225957438.html,。

常用面积计算公式

常用面积计算公式 名 称 简图计算公式 正方形A a;a 0.7.71d A d 1.4142a 1.4142 A 长方形A ab a d2 2 b d2 2 A d a b;a d2 2 b b d a a 平 行四边形 A A A bh;h b h 三角形 a b c A a ()2 2 2 2b 1 P (a b c); 2 A P(P a)(P b)(P c) 梯形A;h ; (a b)h2A 2 a b 2A a b; b a h h 正六边型 A2.5981a2 2.5981R2 3.4641r R a1.1547r r0.86603a 0.86603R 2 a b 2 2 A 2 2 b ;b bh b 2 2 2 2 2A 2

圆A r23.1416r2 0.7854d2 L 2r6.2832r3.1416d r L/20.15915L0.56419A d L/0.31831L 1.1284 A 椭圆A ab 3.1416ab 周长的近似值 2P2(a b) 比较精确的值 2P[1.5(a b)ab] 扇型 1 A rl 0.0087266a r2 2 l 2A/r 0.017453ar r 2A/l 57.296l/a 180l 57.296l a r r 弓型 2 2 A[r l c(r h)];r 2 8h l 0.017453ar;c2h(2r h) 4r2 2 57.296l h r;a 2 r 圆环A(R r) 3.1416(R r) 0.7854(D d) 3.1416(D S)S 3.1416(d S)S S R r(D d)/2

叶面积指数LAI测量仪器介绍

叶面积指数LAI测量仪器介绍 目的是给出各种测量LAI的仪器的直观介绍。 LA I 是一个无量纲、动态变化的参数, 随着叶子数量的变化而变化。另外, 植物叶子的生长与植物种类自身特性、外部环境条件以及人为管理方式有关。再加上LA I 的不同定义和假设导致了LAI 值测量的极大差异。植物LAI 的地面测量方法有2 类: 直接测量和间接测量。本文简要介绍LAI2200(LAI2000)、SUNSCAN、TRAC、AccuPAR和DHP仪器并且给出一些选择建议。目前,遥感科学国家重点实验室关于LAI测量的仪器有LAI2000、LAI2200、TRAC和LI3000A。 1,LAI2200(LAI2000) LAI2200植物冠层分析仪基于成熟的LAI-2000技术平台,利用“鱼眼”光学传感器(垂直视野范围148度,水平视野范围360度,波谱响应范围320nm~490nm)测量树冠上、下5个角度的透射光线,利用植被树冠的辐射转移模型(间隙率)计算叶面积指数、空隙比等树冠结构参数。利用随机FV-2200软件,可对数据进行深入处理分析。该仪器由美国 LI-COR公司开发。 仪器组成如下图所示。

测量注意事项: 尽可能避免直射的阳光,尽量在日出日落时或者多云的天气(阴天)进行测量,如果避免不了,需要注意:1,使用270度的遮盖帽或者更小视野的遮盖帽;2,背对着阳光进行测量,遮挡住日光和操作者本身;3,对植物冠层进行遮阴处理;4,如果云分布不均匀导致光线不均匀的天气条件下要等待云彩飘过并且遮挡了阳光时再进行测量。 在非均匀、不连续植被情况下以及复杂地形区的测量结果不理想。 2,SUNSCAN

农作物需要各种元素的情况

农作物生长所需的各种必需元素 一、各种元素的作用 氮:是蛋白质、核酸、叶绿素、植物酶维生素、生物碱的重要成分。促进细胞的分裂与增长,使作物叶面积大,浓绿色。缺氮时,生长缓慢,植株矮小,叶片薄小,发黄;禾木科植物表现为分孽少,短小穗,子粒不饱满;双子叶植物表现为分枝少,易早衰。过量的氮素会使细胞壁变薄且肥大,柔软多汁,易受病虫侵袭,对恶劣天气失去抗性,导致生育期延长,贪青晚熟;对一些块根、块茎作物,只长叶子,不易结果。 磷:促进根系发育及新生器官形成,有利于作物内干质的积累,谷物子粒饱,块根、块茎作物淀粉含量高,瓜、果、菜糖分提高,油料作物产量和出油率提高;使作物具抗旱、抗寒特性。缺磷:生长缓慢,根系发育不良,叶色紫红,上部叶子深绿发暗,分孽少,生育期推迟,出现穗小、粒少、子秕,玉米秃顶,油菜脱荚,棉花落花落蕾,成桃少,吐絮晚。过磷:作物呼吸作用强烈,消耗大量糖分和能量,无效分孽增多,秕子增多,叶色浓绿,叶片厚密,节间过短,植株矮小,生长受阻,因早熟而产量降低;蔬菜纤维含量高,烟草燃烧性差;能引起锌、铁、镁等元素的缺乏,加重可对作物的不利影响。 钾:促进光合作用。适宜钾量的光合速率是钾量低的2倍以上。促进植株对氮的利用,对根瘤菌的固氮能力提高2—3倍。对粒数和粒重有良好的作用。增强植物的抗性如干旱、低温、含盐量、病虫危害、倒伏等。能减轻水稻胡麻叶斑病、稻瘟病、赤枯病、玉米茎腐病、棉花红叶茎枯病、烟草花叶病等危害。缺钾:叶边缘呈焦枯状,叶卷曲、赫黄色斑点、或坏死。 钙:形成细胞壁,促进细胞分裂,促进根系发育,增强植物的吸收能力,并能消除某种离子毒害的作用。缺钙:幼叶卷曲,粘化烂空,根尖细胞腐烂死亡。 镁:它是叶绿素的组成部分,许多酶的活化剂,能促进磷的转化吸收。还能合成维生素A、C以及对钙、钾、铵、氢等离子有拮抗作用。 硫:能促进氮的吸收,对呼吸有重要作用。硫还是某些植物油的成分。缺硫时叶绿素含量降低,根瘤形成少。 铁:是叶绿素的成分,对呼吸和代谢有重要作用,缺铁时上部叶子出现失绿症。 硼:能促进碳水化合物及生长素的正常运转。促进生殖器官的正常发育。还能调节水分吸收和氧化还原过程。缺硼:生长点和维管束受损。过硼:叶形发皱,叶色发白。

叶面积测定仪测定叶面积的原理及意义

叶面积测定仪测定叶面积的原理及意义 植物叶片是非常重要的,在整个作物生长的过程中叶片都担任一个能量转化的场所,是蒸腾作用的场地,检测它的相关参数,不仅是产量形成和品种特点的重要指标,而且也是合理栽培以及病虫害发生检测的重要手段,这些数据还是研究生理生化、遗传育种、作物栽培的内容,可以说对这个农业的发展是非常有帮助的,而其中叶面积的测量是不可少的一项检测参数,一般可以通过叶面积测定仪的帮助来获取。 叶面积测定仪是用在植物叶片的质量检测中,那么它的原理和光学反射有多少人了解那?下面我就为大家介绍一下它的相关知识。叶面积测定仪利用光学反射和透射原理,采用特定的发光器件和光敏器件,测量叶面积的大小。从选用的光学器件来分,叶面积测定仪可分为光电叶面积仪、扫描叶面积仪和激光叶面积仪三类;从测量过程中是否移动叶片来分,可分为移动式和固定式测量。叶面积测定仪量叶面积度高、误差小、操作简单、速度快。 目前使用的叶面积测定仪多为日本进口的,要求严格按照使用指导使用。叶面积测定仪的误差多来源于设计本身和使用过程,叶面积测定仪的误差除了本身机械误差外,还跟叶形有关:叶子的长宽比越大,误差就越大;周长越大,误差也越大。 现在我国各项发展逐渐走向正轨,各种的仪器都可以由国内的公司研发出来,托普云农就是我国一家专门生产农业仪器的公司,托普云农的叶面积测定仪是主机、探头一体化设计,操作更方便,采用的是微电脑技术,LCD液晶显示、高性能充电锂电池,无需外部供电,低电压显示,更适用于野外测量。可以说应用在野外检测中非常的方便,被广泛的使用在农业、气象、林业等部门。 为什么要运用叶面积测定仪对植物的叶片面积测定呢?由于叶面积控制着植被的许多生物物理过程,如光协作用、呼吸作用、蒸腾作用、碳循环和降水截获等。如花生光合面积主要指能停止光协作用的绿叶面积,是光协作用中与产量关系最亲密、变化最大、同时最易受控制的要素,95%以上的干物质源于绿叶

所有图形的面积,体积,表面积公式

长方形的周长=(长+宽)×2 正方形的周长=边长×4 长方形的面积=长×宽 正方形的面积=边长×边长 三角形的面积=底×高÷2 平行四边形的面积=底×高 梯形的面积=(上底+下底)×高÷2 直径=半径×2 半径=直径÷2 圆的周长=圆周率×直径= 圆周率×半径×2 圆的面积=圆周率×半径×半径 长方体的表面积= (长×宽+长×高+宽×高)×2 长方体的体积=长×宽×高 正方体的表面积=棱长×棱长×6 正方体的体积=棱长×棱长×棱长 圆柱的侧面积=底面圆的周长×高 圆柱的表面积=上下底面面积+侧面积圆柱的体积=底面积×高 圆锥的体积=底面积×高÷3 长方体(正方体、圆柱体) 的体积=底面积×高 平面图形 名称符号周长C和面积S 正方形a—边长C=4a S=a2 长方形a和b-边长C=2(a+b) S=ab 三角形a,b,c-三边长 h-a边上的高 s-周长的一半 A,B,C-内角 其中s=(a+b+c)/2 S=ah/2 =ab/2·sinC =[s(s-a)(s-b)(s-c)]1/2 =a2sinBsinC/(2sinA) 四边形d,D-对角线长 α-对角线夹角S=dD/2·sinα

平行四边形a,b-边长 h-a边的高 α-两边夹角S=ah =absinα 菱形a-边长 α-夹角 D-长对角线长 d-短对角线长S=Dd/2 =a2sinα 梯形a和b-上、下底长 h-高 m-中位线长S=(a+b)h/2 =mh 圆r-半径 d-直径C=πd=2πr S=πr2 =πd2/4 扇形r—扇形半径 a—圆心角度数 C=2r+2πr×(a/360) S=πr2×(a/360) 弓形l-弧长 b-弦长 h-矢高 r-半径 α-圆心角的度数S=r2/2·(πα/180-sinα)=r2arccos[(r-h)/r] - (r-h)(2rh-h2)1/2 =παr2/360 - b/2·[r2-(b/2)2]1/2 =r(l-b)/2 + bh/2 ≈2bh/3 圆环R-外圆半径 r-内圆半径 D-外圆直径 d-内圆直径S=π(R2-r2) =π(D2-d2)/4 椭圆D-长轴 d-短轴S=πDd/4 立方图形

农作物学

1.土壤:是发育于地球陆地表层,能够生长绿色植物的疏松多孔表层。 2.土壤肥力:是指在植物生长期间,土壤能持续不断地、适量地提供并协调植物生长所需要的水分、养分、空气、热量等因素及其他生活条件的能力。肥力是土壤的基本属性和质的特征。 土壤学中把水、肥、气、热——称为四大肥力因素。 3. 自然肥力:是指土壤在自然因子即五大成土因素(气候、生物、母质、地形和年龄)的综合作用下发育来的肥力,它是自然成土过程的产物。 人为肥力:是耕作熟化过程发育而来的肥力,是在耕作、施肥、灌溉及其它技术措施等人为因素影响作用下所产生的结果。 从肥力的实际经济效益分为:有效肥力和潜在肥力。 有效肥力:是指在当季生产上发挥出来并产生经济效果的那一部分肥力。 潜在肥力:是指在当季生产上未能产生经济效果的那一部分肥力。 有效肥力和潜在肥力是可以相互转化的,两者之间没有截然的。 4. 土壤生产力:是由土壤本身属性及发挥肥力作用的外部条件(包括自然条件、人为因素、社会因素)所共同决定的,它是土壤的经济效应 母质:是指经各种风化作用形成的疏松、粗细不同的矿物颗粒.它是岩石的风化产物,是形成土壤的基础物质。 5. 自然土壤形成的本质:地质大循环和生物小循环的共同作用是土壤发生的基础 6. 自然土壤土体构型:①覆盖层(O)②淋溶层(A)③淀积层(B)④母质层(C) 农业土壤的土体构型:①耕作层(A)②犁底层(P)③心土层(B)④底土层(C) 7. 原生矿物:由地壳深处的岩浆直接冷凝和结晶而成的矿物称为原生矿物。 次生矿物:在地壳中或地表面,由原生矿物经风化和变质作用后,改变了原来的形态、性质和成分而形成的新的矿物,称为次生矿物。 土壤原生矿物:是指那些在风化过程中末改变化学成分和结构的原始成岩矿物。 土壤有机质:泛指土壤中以各种形态存在的一切有机物质的总称。 8、土壤有机质的转化 1.矿质化作用——土壤有机质在微生物的作用下,最终分解为简单化合物,同时释放出矿质养料的过程,称为有机质的矿质化作用。

叶面积扫描仪测量及操作方法详解

叶面积扫描仪测量及操作方法详解 叶面积扫描仪也叫叶面积测量仪,托普云农的智能叶面积测量系统是由背光装置和装有嵌入式软件的平板组成。采用先进的图像处理技术,根据叶子特征提取、空间转换、边缘检测原理、形态学等技术综合设计的软件。叶面积扫描仪广泛应用于农业领域的田间作物叶面积测量。 YMJ-C叶面积扫描仪具有操作简洁化,应用人性化、智能化和可升级化等特点,叶面积扫描仪带有手动修正功能,可进行剪切、修补、自动切叶柄等,确保测量高精度。 叶面积扫描仪又称叶面积测定仪,是托普云农自主研发生产的高精度无损检测仪器,能快速对被测物面积进行测量参数精准,测量方法为:直接测量方法 在冠层结构较小的作物(小麦)、草地地区使用了收获测量法比较准确。直接测量法是一种传统的、相对精确的方法,通常作为间接测量法的有效验证。在测量叶片面积时,通常使用的方法包括照相法、比叶面积法( SLA)等。 半球摄影方法 半球摄影方法(hemispherical canopy photography (DHP) 采用视场角接近或等于180毅的鱼眼镜头摄影,将整个半球空间投影在影像水平面上成像. 商业化鱼眼镜头有极化投影、正射投影、兰伯特等积投影和立体等角投影 4 种投影

方式,极化投影和立体等角投影为常见的投影方式.DHP 方法早期应用于森林冠层辐射分布测量研究,而冠层辐射分布直接取决于森林冠层LAI 及其空间分布,因此后来DHP方法被推广应用于森林冠层地面LAI 测量。DHP 方法可单次测量上半球方向间隙率,因而其在冠层充分采样的同时可极大提高地面LAI 的测量精度及效率. 与其他光学测量方法相比,DHP 方法在冠层信息永久记录、冠层半球方向直射光及散射光分布测量、冠层聚集效应评估及结构参数测量等方面优势明显。具体产品有如英国的HemiDIG数字植物冠层分析系统; DHP 方法则适宜在黎明前、黄昏后和多云天气条件下观测。采用DHP 方法时,相机曝光设置、相机类型、影像分辨率等观测条件均不同程度地影响LAI 测量精度。 其他方法 北京师范大学遥感科学国家重点实验室屈永华提出了基于无线传感器网络的测量方法,目的是实现生长期内LAI的长期连续观测。 测量注意事项:尽可能避免直射的阳光,尽量在日出日落时或者多云的天气(阴天)进行测量,如果避免不了,需要注意:1,使用270度的遮盖帽或者更小视野的遮盖帽; 2,背对着阳光进行测量,遮挡住日光和操作者本身; 3,对植物冠层进行遮阴处理; 4,如果云分布不均匀导致光线不均匀的天气条件下要等待云彩飘过并且遮挡了阳光时再进行测量。在非均匀、不连续植被情况下以及复杂地形区的测量结果不理想。 叶面积扫描仪操作简单使用便捷待机时间长,测量参数精准。已被农科院、农业研究院等众多高等学府和企业个人广泛使用。 叶面积扫描仪,叶面积测量仪功能特点: 叶面积测量仪硬件功能特点: 1、安卓系统具有操作简洁化,应用人性化、智能化和可升级化。 2、背光装置可选。(YMJ-C可选配背光装置即YMJ-CH) 软件功能特点:

室内面积计算公式

室内面积计算公式 一、楼地面 1、找平层、整体面层按房间净面积以平方米计算,不扣除柱、墙垛、间壁墙及面积在0.3㎡以内孔洞所站面积,但门洞口、暖气槽面积也不增加。 2、块料面层、木地板、活动地板,按图示尺寸以平方米计算。 3、铝合金道牙按图示尺寸以米计算。 4、楼梯满铺地毯按楼梯间净水平投影面积以平方米计算,但楼梯井宽超过500㎜者应扣除其面积;不满铺地毯按实铺地毯的展开面积计算。 5、块料踢脚、木踢脚按图示长度以米计算。 6、台阶、坡道按图示水平投影面积以平方米计算。 7、防滑条、地毯压棍和地毯压板按图示尺寸以米计算。 二、天棚 1、天棚面层 A、天棚面层按房间净面积以平方米计算,不扣除检查口、附墙烟囱、附墙垛和管道所占面积,但应扣除独立柱、与天棚相连的窗帘盒、0.3㎡以上洞口及嵌顶灯槽所占的面积。 B、天棚中的折线、错台、拱型、穹顶、高低灯槽等其它艺术形式的天棚面积均按图示展开面积以平方米计算。 2、面层装饰 A、天棚面积按房间净面积以平方米计算,不扣除柱、垛、附墙烟囱、检查口和管道所占的面积带梁的天棚,梁两侧面积并入天棚工程量内。 B、密肋梁井字梁天棚面积按图示展开面积以平方米计算。

C、天棚中的折线、灯槽线、圆弧型线、拱型线等艺术形式的面层按图示展开面积以平方米计算。 D、天棚涂料、油漆、裱糊按饰面基层相应的工程量以平方米计算。 3、其它项目 A、金属格栅吊顶、硬木格栅吊顶等均根据天棚图示尺寸按水平投影面积以平方米计算。 B、玻璃采光天棚根据玻璃天棚面层的图示尺寸按展开面积以平方米计。 C、天棚吸音保温层按吸音保温天棚的图示尺寸以平方米计算。 D、藻井灯带按灯带外边线的设计尺寸以米计算。

农作物需要各种元素的情况讲课稿

农作物需要各种元素 的情况

农作物生长所需的各种必需元素 一、各种元素的作用 氮:是蛋白质、核酸、叶绿素、植物酶维生素、生物碱的重要成分。促进细胞的分裂与增长,使作物叶面积大,浓绿色。缺氮时,生长缓慢,植株矮小,叶片薄小,发黄;禾木科植物表现为分孽少,短小穗,子粒不饱满;双子叶植物表现为分枝少,易早衰。过量的氮素会使细胞壁变薄且肥大,柔软多汁,易受病虫侵袭,对恶劣天气失去抗性,导致生育期延长,贪青晚熟;对一些块根、块茎作物,只长叶子,不易结果。 磷:促进根系发育及新生器官形成,有利于作物内干质的积累,谷物子粒饱,块根、块茎作物淀粉含量高,瓜、果、菜糖分提高,油料作物产量和出油率提高;使作物具抗旱、抗寒特性。缺磷:生长缓慢,根系发育不良,叶色紫红,上部叶子深绿发暗,分孽少,生育期推迟,出现穗小、粒少、子秕,玉米秃顶,油菜脱荚,棉花落花落蕾,成桃少,吐絮晚。过磷:作物呼吸作用强烈,消耗大量糖分和能量,无效分孽增多,秕子增多,叶色浓绿,叶片厚密,节间过短,植株矮小,生长受阻,因早熟而产量降低;蔬菜纤维含量高,烟草燃烧性差;能引起锌、铁、镁等元素的缺乏,加重可对作物的不利影响。 钾:促进光合作用。适宜钾量的光合速率是钾量低的2倍以上。促进植株对氮的利用,对根瘤菌的固氮能力提高2—3倍。对粒数和粒重有良好的作用。增强植物的抗性如干旱、低温、含盐量、病虫危害、倒伏等。能减轻水稻胡麻叶斑病、稻瘟病、赤枯病、玉米茎腐病、棉花红叶茎枯病、烟草花叶病等危害。缺钾:叶边缘呈焦枯状,叶卷曲、赫黄色斑点、或坏死。

钙:形成细胞壁,促进细胞分裂,促进根系发育,增强植物的吸收能力,并能消除某种离子毒害的作用。缺钙:幼叶卷曲,粘化烂空,根尖细胞腐烂死亡。 镁:它是叶绿素的组成部分,许多酶的活化剂,能促进磷的转化吸收。还能合成维生素A、C以及对钙、钾、铵、氢等离子有拮抗作用。 硫:能促进氮的吸收,对呼吸有重要作用。硫还是某些植物油的成分。缺硫时叶绿素含量降低,根瘤形成少。 铁:是叶绿素的成分,对呼吸和代谢有重要作用,缺铁时上部叶子出现失绿症。 硼:能促进碳水化合物及生长素的正常运转。促进生殖器官的正常发育。还能调节水分吸收和氧化还原过程。缺硼:生长点和维管束受损。过硼:叶形发皱,叶色发白。 锰:是多种酶的成分和活化剂。参与呼吸、光合、硝酸还原作用。能够提高含糖率、块根产量。 铜:参与呼吸作用,提高叶绿素的稳定性。缺铜时:生殖器官发育受阻。 锌:对植物体内物质水解、氧化还原及蛋白质的合成有重要作用。能提高子粒重量,改变子实和茎干的比率。水稻的缩苗症、玉米的白叶病是有缺锌引起的。 钼:促进豆科作物固氮,促进光合作用的强度,消除酸性土壤中的活性铝的毒害作用。缺钼:植株矮小,生长受阻,叶片失绿,枯萎以致坏死。氯:参与光合作用,对很多植物有着相反的作用。

叶片面积测量方法总结

叶片面积测定的几种方法 来源:本站类别:技术文章更新时间:2010-7-20 16:33:24阅读59次 叶片面积测定的几种方法 1. 叶片是制造有机物的主要场所,作物产量的高低,在一定范围内与叶面积的大小呈正相关,通常衡量一个作物群体叶面积的大小,是用叶面积指数表示的,即一定的土地面积上,作物叶片的总面积相当于该地面的倍数。 叶面积指数越大,表明单位土地面积上的叶面积越大。但是,叶面积指数不是越大越好,各种作物的不同生育时期都将有一个适宜的叶面积指数,其适宜范围与品种、气候等条件密切相关。目前测定叶面积的方法较多,其准确度有差异。因此,在应用这方面资料和具体测定时,要作具体分析和必要的说明。 2. 材料及用具 料尺、叶面积测定仪、求积仪、记录表格、鼓风干燥箱、扭力天平(1%g)、干燥器、螺旋测微尺和织物测厚器。 3. 测定方法 (1)测定叶面积的方法测定作物叶面积的方法,因作物不同而异,常用的有以下几种。 ①纸样称重法:将各点取样叶片(未展开的和桔黄叶片除外,)逐叶平铺厚薄均匀的纸上(纸的均匀程度可预先剪同等大小的纸片称重测定),用铅笔沿叶缘描下,然后用剪刀按铅笔所画叶形剪下,或用工程晒图纸晒制叶形后剪下。全部称重得W1,另取已测知面积为A1的纸,称重得W2,则叶面积A2为: ②比叶重法: 鲜重法:将取样的全部叶片鲜样称重,再选取其中大、小两个类型的叶片各10片,叠集起来,分别用二种规格的已知面积纸板(或木板、玻璃板),压在叠好的叶片上,用刀片小心沿纸板边缘切割,把切下的一定面积的样品在扭力天平上称重。或者用已知面积的打孔器打孔后,将期打孔圆称重。经过计算得出比叶重值(g/cm2),两个值平均后得平均比叶重(g/cm2)。 式中0.0001为北朝鲜平方厘米化为平方米的转换系数。 干重法:按上述方法将切割后已知面积的叶片及期余叶片,测定干重,求出平均比叶重(g/cm2),再求出其取样点的叶面积。 ③叶面积仪测定法:目前叶面积的型号有多种,有座台式叶面积仪,有手持叶面积仪。这里介绍国产G

农作物生长所需的各种必需元素

农作物生长所需的各种必需元素 氮:就是蛋白质、核酸、叶绿素、植物酶维生素、生物碱的重要成分。促进细胞的分裂与增长,使作物叶面积大,浓绿色。缺氮时,生长缓慢,植株矮小,叶片薄小,发黄;禾木科植物表现为分孽少,短小穗,子粒不饱满;双子叶植物表现为分枝少,易早衰。过量的氮素会使细胞壁变薄且肥大,柔软多汁,易受病虫侵袭,对恶劣天气失去抗性,导致生育期延长,贪青晚熟;对一些块根、块茎作物,只长叶子,不易结果。 磷:促进根系发育及新生器官形成,有利于作物内干质的积累,谷物子粒饱,块根、块茎作物淀粉含量高,瓜、果、菜糖分提高,油料作物产量与出油率提高;使作物具抗旱、抗寒特性。缺磷:生长缓慢,根系发育不良,叶色紫红,上部叶子深绿发暗,分孽少,生育期推迟,出现穗小、粒少、子秕,玉米秃顶,油菜脱荚,棉花落花落蕾,成桃少,吐絮晚。过磷:作物呼吸作用强烈,消耗大量糖分与能量,无效分孽增多,秕子增多,叶色浓绿,叶片厚密,节间过短,植株矮小,生长受阻,因早熟而产量降低;蔬菜纤维含量高,烟草燃烧性差;能引起锌、铁、镁等元素的缺乏,加重可对作物的不利影响。 钾:促进光合作用。适宜钾量的光合速率就是钾量低的2倍以上。促进植株对氮的利用,对根瘤菌的固氮能力提高2—3倍。对粒数与粒重有良好的作用。增强植物的抗性如干旱、低温、含盐量、病虫危害、倒伏等。能减轻水稻胡麻叶斑病、稻瘟病、赤枯病、玉米茎腐病、棉花红叶茎枯病、烟草花叶病等危害。缺钾:叶边缘呈焦枯状,叶卷曲、赫黄色斑点、或坏死。 钙:形成细胞壁,促进细胞分裂,促进根系发育,增强植物的吸收能力,并能消除某种离子毒害的作用。缺钙:幼叶卷曲,粘化烂空,根尖细胞腐烂死亡。 镁:它就是叶绿素的组成部分,许多酶的活化剂,能促进磷的转化吸收。还能合成维生素A、C以及对钙、钾、铵、氢等离子有拮抗作用。 硫:能促进氮的吸收,对呼吸有重要作用。硫还就是某些植物油的成分。缺硫时叶绿素含量降低,根瘤形成少。 铁:就是叶绿素的成分,对呼吸与代谢有重要作用,缺铁时上部叶子出现失绿症。 硼:能促进碳水化合物及生长素的正常运转。促进生殖器官的正常发育。还能调节水分吸收与氧化还原过程。缺硼:生长点与维管束受损。过硼:叶形发皱,叶色发白。 锰:就是多种酶的成分与活化剂。参与呼吸、光合、硝酸还原作用。能够提高含糖率、块根产量。 铜:参与呼吸作用,提高叶绿素的稳定性。缺铜时:生殖器官发育受阻。 锌:对植物体内物质水解、氧化还原及蛋白质的合成有重要作用。能提高子粒重量,改变子实与茎干的比率。水稻的缩苗症、玉米的白叶病就是有缺锌引起的。 钼:促进豆科作物固氮,促进光合作用的强度,消除酸性土壤中的活性铝的毒害作用。缺钼:植株矮小,生长受阻,叶片失绿,枯萎以致坏死。 氯:参与光合作用,对很多植物有着相反的作用。 各种营养元素的作用就是同等重要与不可替代的,缺一不可,否则整个生长周期不能完成。人们强调施用氮、磷、钾三要素,这仅仅就是由于植物与

叶面积指数获取方法

A.直接方法直接测定方法是一种传统的、具有一定破坏性的方法。 1、叶面积的测定,传统的格点法和方格法。 2、描形称重法. 在一种特定的坐标纸上,用铅笔将待测叶片的轮廓描出并依叶形剪下坐标纸,称取叶形坐标纸重量,按公式计算叶面积. 3、仪器测定法. 叶面积测定仪可以分成两种类型,分别通过扫描和拍摄图像获取叶面积. 扫描型叶面积仪主要由扫描器(扫描相机) 、数据处理器、处理软件等组成,可以获得叶片的面积、长度、宽度、周长、叶片长度比和形状因子以及累积叶片面积等数据,主要仪器有: CI - 202 便携式叶面积仪、L I- 3000台式或便携式叶面积仪、AM - 300手持式叶面积仪等. 此外,还有使用台式扫描仪和专业图像分析软件测定的方法. 图像处理型 叶面积仪由数码相机、数据处理器、处理分析软件和计算机等组成,可以获取叶片面积、形状等数据,主要仪器有:W IND I2AS图象分析系统、SKYE 叶片面积图像分析仪、Decagon - Ag图象分析系统、WinFOL IA 多用途叶面积仪等. B、间接方法间接方法是用一些测量参数或用光学仪器得到叶面积指数,测量方便快捷,但仍需要用直接方法所得结果进行校正。 1、点接触法 点接触法是用细探针以不同的高度角和方位角刺入冠层,然后记录细 探针从冠层顶部到达底部的过程中针尖所接触的叶片数目,用以下公式计算. 式中,LA I为叶面积指数, n为探针接触到的叶片数, G (θ) 为投影函数,θ为天顶角. 当天顶角为57.5°时,假设叶片随机分布和叶倾角椭圆分布 ,则冠层 叶片的倾角对消光系数K的影响最小,此时采用32.5°倾角刺入冠层,会得出较准确的结果,用以下公式计算. 点接触法是由测定群落盖度的方法演进而来的 ,在小作物LA I的测量中较准确 ,但在森林中应用比较困难 ,主要是由于森林植物树体高大以及针叶树种中高密度的针叶影响了测定。 2、消光系数法 该法通过测定冠层上下辐射以及与消光系数该法通过测定冠层上下辐射以及与消光系数相关的参数来计算叶面积指数,前提条件是假设叶片。随机分布和叶倾角呈椭圆分布,由Beer - Lambert定 律知:

基于Windows PC端作物叶面积解析软件

基于Windows PC端作物叶面积解析软件 V1.0 使 用 说 明

一、系统简介.......................................................................................... 错误!未定义书签。 二、系统使用.......................................................................................... 错误!未定义书签。 三、运行环境.......................................................................................... 错误!未定义书签。 1.软件环境............................................................................................ 错误!未定义书签。2.硬件环境............................................................................................ 错误!未定义书签。 四、技术支持与服务.............................................................................. 错误!未定义书签。 1.服务内容............................................................................................ 错误!未定义书签。2.服务方式............................................................................................ 错误!未定义书签。 五.版权说明.......................................................................................... 错误!未定义书签。

各种面积计算公式

各种面积计算公式 长方形的周长=(长+宽)>2 正方形的周长=边长>4 长方形的面积=长>宽 正方形的面积=边长>边长 三角形的面积=底>高吃 平行四边形的面积=底>高 梯形的面积=(上底+下底)冷高吃 直径二半径>2半径=直径吃 圆的周长=圆周率 >直径 圆周率 >半径> 圆的面积=圆周率 >半径 >半径 长方体的表面积= (长观+长>高+宽 >高)> 椭圆的面积S=n ab 的公式求椭圆的面积。a = b 时, 当长半径a = 3(厘米),短半径b = 2(厘米)时,其面积S = 3> 2>茫6n 平方厘米)。 长方体的体积=长观辭 正方体的表面积=棱长 >棱长>6 正方体的体积=棱长 >棱长 >棱长 圆柱的侧面积=底面圆的周长 >高 圆柱的表面积=上下底面面积+侧面积 圆柱的体积=底面积 >高 圆锥的体积=底面积 >七 长方体(正方体、圆柱体) 的体积=底面积 >高 平面图形 名称符 正方形 S = a2 长方形 S = ab 三角形 h —a 边上的高 s —周长的一半 A,B,C —内角 其中 s = (a+b+c)/2 S = ah/2 =ab/2 sinC =[s(s-a)(s-b)(s-c)]1/2 =a2si nBsi nC/(2si nA) 四边形d,D —对角线长 a —对角线夹角 S = dD/2 - sin a 平行四边形a,b —边长 h — a 边的咼 a —两边夹角S = ah =absin a 菱形a —边长 a —夹角 D -长对角线长 d —短对角线长S = Dd/2 =a2sin a 号周长C 和面积S a —边长C = 4a a 和 b —边长 C = 2(a+b) a,b,c -三边长

【CN109975250B】一种叶面积指数反演方法及装置【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利 (10)授权公告号 (45)授权公告日 (21)申请号 201910333471.7 (22)申请日 2019.04.24 (65)同一申请的已公布的文献号 申请公布号 CN 109975250 A (43)申请公布日 2019.07.05 (73)专利权人 中国科学院遥感与数字地球研究 所 地址 100101 北京市朝阳区大屯路甲20号 北 专利权人 首都师范大学 (72)发明人 董莹莹 李雪玲 朱溢佞 叶回春  黄文江  (74)专利代理机构 北京集佳知识产权代理有限 公司 11227 代理人 杨华 王宝筠 (51)Int.Cl.G01N 21/552(2014.01)G06N 3/04(2006.01)G06N 3/08(2006.01)审查员 李新科 (54)发明名称 一种叶面积指数反演方法及装置 (57)摘要 本申请公开了一种叶面积指数反演方法及 装置,其中,方法包括:获取遥感植被冠层光谱反 射率数据,将遥感植被冠层光谱反射率数据输入 预先训练的深度神经网络模型,得到深度神经网 络模型输出的叶面积指数,深度神经网络模型至 少包括卷积层,卷积层的采样步幅大于1,并且取 不大于卷积层使用的滤波器的尺度的数值中的 最大值。通过本申请,可以反演出具有较高精度 的叶面积指数。权利要求书2页 说明书12页 附图2页CN 109975250 B 2020.03.24 C N 109975250 B

权 利 要 求 书1/2页CN 109975250 B 1.一种叶面积指数反演方法,其特征在于,包括: 获取遥感植被冠层光谱反射率数据; 将所述遥感植被冠层光谱反射率数据输入预先训练的深度神经网络模型,得到所述深度神经网络模型输出的叶面积指数,所述深度神经网络模型至少包括卷积层,所述卷积层的采样步幅大于1,并且取不大于所述卷积层使用的滤波器的尺寸的数值中的最大值; 其中,所述卷积层包括:第一个卷积层与第二个卷积层,所述第一个卷积层与所述第二个卷积层连接; 所述第一卷积层的滤波器尺寸为1*3,采样步幅为3,所述第二个卷积层的滤波器尺寸为1*3,采样步幅为3; 其中,所述深度神经网络模型还包括:一个池化层;所述第二个卷积层与所述池化层连接; 其中,所述深度神经网络模型还包括:三个全连接层,分别为第一个全连接层,第二个全连接层与第三个全连接层;所述池化层与所述第一个全连接层连接,所述第一个全连接层输出的数据,输入随机失活(Dropout),所述Dropout输出的数据输入所述第二个全连接层,所述第二个全连接层与所述第三个全连接层连接。 2.根据权利要求1所述的方法,其特征在于,所述预设的神经网络模型是采用训练样本训练得到;所述训练样本包括预设的植被光谱反射率数据,以及与所述预设的植被光谱反射率数据对应的叶面积指数; 所述预设的植被光谱反射率数据为在所述遥感植被冠层光谱反射率数据中的比例为0.14%的数据。 3.根据权利要求1所述的方法,其特征在于,所述第二个卷积层输出的数据输入预设的第一ReLU激活函数,所述第一ReLU激活函数输出的数据输入所述池化层,所述池化层输出的数据输入所述第一个全连接层,所述第一个全连接层输出的数据输入预设的第二ReLU激活函数,所述第二ReLU激活函数输出的数据输入所述Dropout,所述Dropout输出的数据输入所述第二个全连接层,所述第二个全连接层输出的数据输入预设的第三ReLU激活函数,所述第三ReLU激活函数输出的数据输入所述第三个全连接层,所述第三个全连接层输出的数据输入预设的Sigmoid函数。 4.一种叶面积指数反演装置,其特征在于,包括: 获取模块,用于获取遥感植被冠层光谱反射率数据; 输入模块,用于将所述遥感植被冠层光谱反射率数据输入预先训练的深度神经网络模型,得到所述深度神经网络模型输出的叶面积指数,所述深度神经网络模型至少包括卷积层,所述卷积层的采样步幅大于1,并且取不大于所述卷积层使用的滤波器的尺寸的数值中的最大值; 其中,所述卷积层包括:第一个卷积层与第二个卷积层,所述第一个卷积层与所述第二个卷积层连接; 所述第一卷积层的滤波器尺寸为1*3,采样步幅为3,所述第二个卷积层的滤波器尺寸为1*3,采样步幅为3; 其中,所述深度神经网络模型还包括:一个池化层;所述第二个卷积层与所述池化层连接; 2

玉米叶面积指数变化及其应用

玉米叶面积指数变化及其应用 摘要 叶面积指数(LAI)与作物产量的增长联系紧密,在一定范围内随着叶面积指 数的增加群体光合速率提高。LAI与品种特性,种植密度,栽培措施,气象条件 有密切联系。本文分别从玉米LAI模型构建和不同处理措施对玉米LAI的影响角 度总结近年来关于玉米LAI的研究以及其对于农业生产的意义。 前言 玉米是大田中的主要作物之一,我国的玉米生产水平有较大的提高潜力。叶 面积指数是计算作物蒸散和干物质累积最重要的生理参数,可为植冠表面最初能 量交换描述提供结构化定量信息,是进行物质循环及能量代谢等研究的基础,是 除单叶光合作用速率以外决定作物冠层光合作用计算精确与否的重要参数,且最 能反映遥感数据与作物生长状态密切关系关系,因此研究叶面积指数动态变化模 式有重要的应用价值。目前有关玉米LAI的测定,LAI动态模型的建立,不同株 型玉米LAI动态变化和不同的栽培因子对于玉米LAI的影响是研究的热点。 一、玉米LAI动态模型 关于玉米全生育期的动态变化模拟模型主要是logistic模型的扩展。例如中国科 学院地理科学与资源研林忠辉等提出的模型便是以积温指标表示的生育阶段为 自变量,综合不同地理位置、品种、播期、密度等的影响,是一个扩展的Logistic 叶面积生长模型。[1] 玉米叶面积指数随生育进程变化可分为4 个时期,即缓慢增长期,指播种~拔 节期叶面积指数增长缓慢;线性增长期,指拔节~抽雄吐丝期叶面积指数增长最 快,且吐丝期达最大值;相对稳定期,指抽雄吐丝~乳熟期叶面积指数相对稳定而 后期略有下降;衰退期,指乳熟~蜡熟期叶面积指数下降。Logistic 曲线可较好 地表述玉米叶面积指数前2 个生育阶段,但不能表述相对稳定期后期及衰退期叶 面积指数下降过程,必须经过修正方可用于整个生育期动态变化模拟。[2] 玉米LAI动态模型主要用于区域作物生长模拟模型和区域作物生长监测及遥感 估产。 二、不同株型玉米LAI动态变化 主要是研究平展型品种和紧凑型品种的LAI动态变化,通过比较得出不同品种 的最大最适叶面积指数,从而为玉米的增产提供理论依据。例如沈阳农业大学的 任志勇等通过比较的玉米品种平展型品种连玉16( A1)、半紧凑型品种丹玉 39( A2) 、紧凑型品种郑单958( A3)不同时期的LAI得出了不同株型品种获得最 高产量的密度不同, 获得最高产量的最大叶面积指数也不同的结论。连玉16在2 600株/667m2密度下获得了最高产量, 其叶面积指数为3.8 ,丹玉39和郑单958在 4 500株/667m2 密度下获得了最高产量, 其叶面积指数分别为5. 15和5. 66。[3] 吉林农大的岳阳等通过分析:两个紧凑型玉米品种:先玉335、郑单958;两个平 展型玉米品种:“三北9、长城799不同生育时期的LAI动态变化得出了两个紧凑 型玉米品种的群体叶面积指数、光合速率等均比两个平展型玉米品种表现优良, 有利于光合产物的积累,提高产量的结论。[4] 这些都为玉米栽培品种的选择和玉米育种提供了重要的参考。 三、不同的栽培因子对于玉米LAI的影响

相关主题
文本预览
相关文档 最新文档