当前位置:文档之家› 水电站地下厂房施工技术

水电站地下厂房施工技术

水电站地下厂房施工技术
水电站地下厂房施工技术

水电站地下厂房施工技术

摘要:

龙滩水电站地下引水发电系统主厂房是世界级的地下厂房,其具有结构尺寸庞大、周边相邻洞室多、施工干扰大、地质情况复杂、开挖支护工程量庞大、安全质量进度要求高的特点。本文通过开挖阶段主厂房顶层、岩壁梁、高边墙的开挖施工方法及施工监测在地下厂房中应用研究方面进行介绍,为同类型工程施工中合理组织施工程序、采用安全而行之有效的开挖方法提供一定的借鉴。

1.工程概述

龙滩水电站是红水河梯级开发中的骨干工程,属Ⅰ等工程,工程规模为大(Ⅰ)型,工程按正常蓄水位400m设计,电站装机容量为6300MW。引水发电系统主要建筑物引水隧洞、主厂房、母线洞、主变室、尾水调压井、尾水支岔洞、尾水隧洞均布置于左岸地下岩体中。左岸洞室纵横交错,上下重叠,主要洞室尺寸庞大,构成复杂的地下洞室群,大小洞室总数119条。

地下厂房右端距河岸约160m。厂房洞室上覆岩层最小厚度约100m,最大厚度约230m。该地下厂房为目前世界最大的地下厂房,从河床侧向山体侧依次布置有主安装间、主厂房、副安装间。主厂房结构尺寸为388.5m×30.70m×77.6m。

主厂房围岩由厚层砂岩、粉砂岩和泥板岩互层夹少量层凝灰岩、硅泥质灰岩组成。其中砂岩、粉砂岩占68.2%;泥板岩占30.8%;灰岩、

层凝灰岩占1%。主洞室所在区域绝大部分为

Ⅲ类围岩、小部分为Ⅱ类围岩,极少部分属于Ⅳ、Ⅴ类围岩,具有较好的成洞条件。

2.主厂房开挖主要施工方法

2.1主要开挖程序:

地下厂房分9层开挖,主要步骤为:①利用主厂房顶层施工支洞进入厂房Ⅰ层开挖、支护,与此同时开挖母线排风廊道(3号施工支洞)至厂房另一端,形成两头对挖局面;②在Ⅰ层右端开挖支护完成100m后开挖Ⅱ层,并进行岩壁梁施工;③从进厂交通洞和经主变室至厂房的另一端(联系洞)对挖Ⅲ层,同样两端头降坡对挖Ⅳ层;④在厂房Ⅲ层开挖的同时,从引水下平洞进入厂房下游侧8m处,为加速Ⅳ、Ⅴ层开挖创造条件;⑤在厂房Ⅴ层开挖的同时,从尾水管进入开挖厂房Ⅷ、Ⅸ两层;⑥从引水下平洞进入厂房开挖Ⅴ、Ⅵ两层,最后爆通第Ⅶ层,从尾水支洞出渣,利用垫渣从尾水扩散段进入第Ⅶ、Ⅷ、Ⅸ层,进行喷锚支护工作;⑦每层开挖、锚杆、锚索、挂网、喷混凝土等工序进行平行流水作业。

2.2顶层开挖方法

厂房第一层开挖分为左端开挖及右端开挖,左端开挖主要通道为3#施工支洞,右端开挖主要通道为母线排风洞。先贯通两侧边导洞后进行中间岩柱开挖,周边采用光面爆破。顶拱开挖先进行两侧导洞开挖,支护好后,再进行中间岩柱拆除。

开挖过程中,两侧平行导洞交错施工,掌子面相距30m以上,以确保施工和工程安全。中间岩柱开始采用全断面开挖,由于断面较

大,围岩又为层状岩体,两侧导洞开挖结束后,围岩应力进行了重分布,光面爆破效果较差。因此后来采用以下方法:

①将中间岩柱分为左右半幅进行开挖,相互滞后2~3排炮;②减小爆破进尺,爆破进尺控制在2.5m以内;③调整光面爆破参数,孔距控制在50cm以内,线装药密度为100~120g/m;;④在Ⅲ2、Ⅳ类围岩支护滞后15m,Ⅳ类围岩跟进掌子面。通过采取以上方法厂房顶拱开挖成型较好。

2.3岩壁梁开挖:

岩锚梁开挖施工共经历了五个阶段:爆破试验阶段、手风钻开槽阶段、台车全断面开挖阶段、台车预留保护层开挖阶段及手风钻分层分块开挖阶段。通过方案现场试验比选,最终选定了采用手风钻分层分块开挖的方案。

采用预留保护层手风钻分层分块、预裂光爆相结合的开挖方式。先将岩台外层保护层挖除,再进行岩台部分岩石开挖,预留岩体采用密孔小药量隔孔装药,用“垂直孔+斜孔”双向同时光爆的方法进行开挖。为保证钻孔精度,斜孔采用搭设钻孔样架的方式进行钻孔。三臂台车作为锚杆支护的钻孔设备专门负责支护,尽量避免因支护不及时而影响手风钻开挖进度的情况发生。按此方式最终保质保量提前完成了岩锚梁的开挖任务。

说明:Ⅰ、Ⅱ区采用潜孔钻或手风钻进行钻孔,Ⅲ区及预裂孔采用手风钻进行钻孔。

2.4高边墙施工

采用两道预裂缝(双保险)确保中间拉槽梯段爆破对高边墙的爆破影响。在中间拉槽前,先对边墙轮廓线进行预裂,深度为4~4.5m,孔间距为50cm,线装药密度为180~200g/m,中间潜孔钻拉槽时对预留保护层同样进行预裂,预裂深度与梯段爆破深度相同。孔距60~80cm,线装药密度为300~350g/m。

梯段爆破严格控制单响药量,为满足设计高边墙质点振动速度Vs≤7cm/s的要求,采用单孔单响,孔间微差挤压爆破的施工方法。

预留保护层采用手风钻开挖,每层开挖高度为4m,周边预裂,采用小药量弱爆破的开挖方法,最大单响药量小于10kg,尽量减小爆破对周边墙围岩的影响。

针对龙滩地下厂房比较长的特点,在分层施工中采用层间搭接施工,搭接时间一般为1~2个月,当保护层较薄一侧剥离并支护好100m后,下一层中间拉槽开挖施工。

充分利用新奥法原理适时进行支护,为使围岩即时得到支护抗力,防止围岩卸荷位移,在工程施工中针对层状岩体特点,Ⅱ类围岩支护滞后30~50m,Ⅲ类围岩支护滞后15~30m,Ⅳ类围岩开挖支护紧跟掌子面,并在预拱采用超前锚杆、小导管进行加强支护,在边墙下卧过程中减少层高,将分层高度减少至3~4m。

采用先进的施工设备加快施工进度。针对龙滩地下厂房开挖强度高最高达6.5万m3./月、支护工程量大,且均为长锚杆、喷射钢钎微混凝土,以及技术指标要求高的特点,在施工中采用了

2台353E阿特拉斯三臂凿岩石车(1台全电脑凿岩台车和1台迈斯特喷车)。先进的设备保证了工程进度、支护的及时性和工程质量,确保了工程安全。厂房边墙与相邻洞室交叉段施工。高边墙在不同高程与其他洞室相贯通,高边墙稳定问题尤为突出。在附属洞室与大洞室相通时,采用先洞后墙的施工工艺,在洞口锁口和系统支护后再开挖高边墙,并在洞与洞、洞与井等交叉部位提前做好超前支护和加强支护工作。

3.施工监测的应用研究

3.1爆破监测:

(1)爆破振动控制是厂房开挖的重点之一,爆破振动直接影响高边墙的稳定和岩臂吊车梁结构的安全。本工程厂房爆破质点控制标准为:高边墙Vs≤7cm/s;锚杆和喷射混凝土Vs≤5cm/s;混凝土3d强度时Vs≤(1~2cm/s);混凝土3~7强度时Vs≤(2~5cm/s);混凝土28d强度时Vs≤(5~7cm/s)。由此可见,质点振动速度要求高,必须选择合理的施工方法和爆破参数,做到尽量减少对围岩的影响。

龙滩地下厂房规模大,地质情况对高边墙稳定不利,为了有效控制爆破质点振动速度,对每排炮均进行监测,业主、监理、施工单位对监测数据共享,及时优化调整爆破参数,力争做到Vs≤7cm/s的设计要求。在洞与洞、洞与井等交叉部位提前做好超前支护和加强支护工作。

(2)开挖过程中的控制爆破措施:

采用中间拉槽两侧预留保护层的开挖方法,设置周边和拉槽两道预裂缝(双保险),中间拉槽采用单孔单响孔间微差挤压爆破技术;预留保护层(3.5~4m),采用手风钻开挖,采用多孔小药量、减少最大单响药量的方法,从而控制质点爆破振动速度。

增大爆破距离。在岩锚梁混凝土浇筑前,对岩锚梁下部的Ⅲ层(10m),先进行Ⅲ1层(6m)爆破,爆破后不出渣,待岩锚梁混凝土达到28d强度后进行Ⅲ1层出渣和剩余Ⅲ2层开挖,通过增加了爆破距离,控制了质点爆破振动速度。

3.2围岩监测:

龙滩地下厂房围岩监测仪器有多点位移计、锚杆应力计、锚索测力计,其点位按洞室径向分布。

通过监测仪器的埋设,达到业主、监理、施工单位对监测数据共享,严密监控厂房各系统围岩变形情况,并作出分析报告,及时调整开挖施工程序、支护参数,使围岩变形、位移处受控状态。

4.结束语

主厂房开挖支护从2001年11月23开工至2004年7月24日支护全面结束,历时32个月,比主厂房开挖支护合同工期提前8天。厂房采用控制爆破,成型良好,平均径向超挖小于20cm,目前顶拱、高边墙已趋于稳定。

(1)在中等岩石应力场的大规模地下厂房顶拱采用先开挖两侧导洞后拆除中间岩柱的施工方法是可行的,增加了工作面,减少了开

挖与支护之间的相互干扰,加快了施工进度。

(2)位于层状岩体的高边墙的稳定是施工中的难点,必须减少爆破对边墙的振动影响,对爆破设计进行优化,选择合理的爆破参数;爆破后要及时进行支护,并进行充分利用岩石弹性抗力。

(3)充分利用各种监测设备仪器进行数字化、信息化施工和设计。利用每次爆破监测资料成果复核爆破设计是否合理,对爆破设计进行调整,根据围岩应力应变监测成果及时进行支护或加强支护,以确保围岩稳定。

(4)支护是关键。支护是进度最大的制约因素,要加大支护力量的投入,确保支护紧跟开挖,在上一层支护结束后再进行下一层开挖,以免围岩产生较大的突然变形。

.

2019年厂房混凝土工程施工

8.2 厂房混凝土工程施工 8.2.1 混凝土工程概况
本标厂房混凝土工程项目主要包括:主、副厂房、安装间、尾水渠。混凝土工程
量分布情况如下表所示:
表 8.2-1
厂房混凝土工程主要工程量表
项目名称
单位
数量
厂房下部结构(C15 混凝土) m3
805
备注 (三级)
厂房下部结构(C20 混凝土) m3
250
(二级)
厂房下部结构(C25 混凝土) m3
192
(二级)
厂房上部结构(C25 混凝土) m3
288
(一、二级)
合计
m3
1535
8.2.2 施工方案 主厂房、副厂房、安装间和尾水渠及混凝土护岸利用布置在副厂房沿黄水河上游 侧的塔机进行施工。安装间塔机覆盖不到的部位利用汽车吊进行施工,副厂房塔机覆 盖不到的部分利用布置在副厂房靠升压站一侧的井字架配合塔机进行施工。 主厂房下部填塘混凝土,依地势在两侧布置溜槽配合塔机进行施工,可以满足该 部分的浇筑强度。 二期混凝土施工,大体积部分利用塔机浇筑;小体积回填混凝土,利用 HB-30 混凝土泵进行浇筑。 混 凝 土 由 拌和站拌制,5t 自卸汽车经进料线运至施工现场。厂房下部混凝土施工 利用 1#进料线;当尾水渠及跨尾水渠公路桥完成后,厂房上部混凝土施工利用 2#进 料线。

8.2.3 施工道路布置 1#施 工 道 路 作 为 塔 机 安 装 与 拆 除 的 线 路 。从 混 凝 土 搅 拌 机 至 安 装 间 沿 黄 水 河 上 游 侧布置 1#进料线;当尾水渠及跨尾水渠公路桥完成后,从 1#进料线引一条至尾水公 路的 2#进料线。 1#进料线使用时段:2003 年 1 月 1 日~2003 年 4 月 15 日。 2#进料线使用时段:2003 年 4 月 15 日~2003 年 7 月 30 日。 施 工 道 路 与进料线布置详见投标 附图《投附 -ZZ/CV-03》、《投附 -ZZ/CV-07》。 8.2.4 施工机械布置 8.2.4.1 施工机械布置说明 为 满 足 厂 房混凝土施工各时段的 要求,在副厂房沿黄水河上游侧布置一台 C5530 型固定式塔机,塔机布置在现有公路上,塔机中心距厂房外边线 5m。塔机覆盖半径 为:50m。 塔机覆盖不到的位置,分别采用汽车吊、溜槽、井字架或混凝土泵等手段进行混 凝土浇筑施工。塔机布置详见附图《投附-ZZ/CV-07》。 8.2.4.2 塔机的安装与拆除 在厂房基坑石方开挖基本结束前,进行塔机基础混凝土浇筑(坐在基岩面上)。 塔 机 基 础 混 凝 土强度达到设计强度后 进行塔机安装,利用 50t 汽车吊站在现有公 路 上 进行塔机安装,安装时间:2003 年 1 月 10 日~2003 年 1 月 15 日。塔机在厂房上 部混凝土完成后,利用 50t 汽车吊站在现有公路上进行拆除,拆除时间:2004 年 8 月 20 日~2004 年 8 月 25 日。 8.2.4.3 塔机工作机械性能 塔机工作性能见表 8.2-2。

河床式水电站厂房梯形钢屋架施工方案

土建施工及金属结构安装工程 CB-YZ-CS-92 主厂房钢屋架安装 施工方案 批准:_______________ 审核:_______________ 编制:_______________ ********* 工程局有限公司 江西********水电站土建施工及金属结构安装工程项目经理部 0一二年一月

1概述 (1) 2编制依据 (1) 3施工准备 (2) 3.1技术准备 (2) 3.2场地准备 (3) 3.3机械材料准备 (3) 4主要工序及施工方法 (3) 4.1钢屋架的制作 (3) 4.2钢屋架的焊接 (6) 4.3钢屋架防腐涂装 (6) 4.4钢屋架吊装 (8) 5主要施工机具 (10) 6主要技术措施材料 (11) 7施工进度计划及劳动力组织 (11) 7.1施工进度计划 (11) 7.2劳动力计划 (11) 8质量保证措施 (12) 9施工进度保证措施 (13) 9.1充分准备 (13) 9.2制作加工 (13)

主厂房钢屋架安装施工方案 1概述 主厂房采用轻型屋面梯形钢屋架,屋架跨度22.5m,檐高1.6m,脊高2.7m, 材料为Q235B钢材,2.2吨/榀,总计44t/20榀。屋面面积2176.65m2,双坡屋面,屋面材料为彩钢夹芯板,面板厚0.6mm,板厚75mm,有檩体系,檩距为1.5m。屋架柱顶高程141.7m,钢屋架GWJ24-5A' -5B'仿图集05G515的GWJ24-5A、-5B,具体尺寸见《主厂房钢屋架平面布置图》(图号:YZ-JS-CF-JG-03/06)。所 有金属构件均需除锈,用红丹打底一道,刷栗色调和漆两道。钢屋架结构构件安全等级为二级,设计使用年限为50年,结构重要性系数1.0。本工程主要工程量详见图表1 图表1 主要工程量表 2编制依据 依据业主和监理要求,根据设计图纸组织安排主厂房钢屋架的制作和安装工作,以此进行方案的编制。 2.1依据设计图纸 (1)《主厂房钢屋架平面布置图》(图号:YZ-JS-CF-JG-03/06 ); (2)《主厂房钢屋架上弦水平支撑平面布置图》(图号:YZ-JS-CF-JG-04/06 ))(3)《主厂房钢屋架下弦水平支撑平面布置图》(图号:YZ-JS-CF-JG-05/06 ); (4)《主厂房钢屋架檩条、拉条布置图》(图号:YZ-JS-CF-JG-06/06 );

水电站地下厂房开挖和支护方案

水电站地下厂房开挖和支护方案 发表时间:2019-01-14T15:55:15.173Z 来源:《防护工程》2018年第31期作者:刘进 [导读] 因此本文根据日常工作经验,对水电站开挖中地下厂房开挖与支护的技术方案进行探讨,以供同行参考。 中国葛洲坝集团第三工程有限公司陕西延川 717208 摘要:水电站厂房开挖和支护技术是一项非常复杂的技术,对水电站工程质量有显著影响。笔者根据实际工作经验探讨了水电站地下厂房开挖和支护技术方案,力求大大提高水电站地下厂房开挖和支护技术水平。 关键词:水电站:地下厂房开挖;支护;方案 水电站是一种常见的水利工程项目,具有多种的开挖形式,其中就包括水电站地下厂房,因为需要在深层的岩层中进行建设,利用围岩的稳定性来确定厂房具有较好的整体性,从而应对修建大坝时地形地貌不符合修建要求的问题,另外,还可以协调输水、发电和大坝安全之间的相互关系,所以广泛应用于我国的水利工程中。但是水电站地下厂房开挖对于地质条件要求很高,若遇到较大的构造带或岩层破碎带,就会大大增加施工的难度,因此本文根据日常工作经验,对水电站开挖中地下厂房开挖与支护的技术方案进行探讨,以供同行参考。 1水电站地下厂房开挖方案 水电站地下厂房开挖深度高达几十米。施工的难度较大,同时具有围岩挖空率高、断面尺寸大等特征,所以必须要提高围岩的稳定性,才能够确保工程顺利完成。通常情况下,地下厂房的开挖一般按照从上到下的顺序进程,实行分层分块开挖并且进行支护。就围岩的应力变化而言,应力历史会与开挖支护的程序存在一定关系。如果开挖或支护不当就会造成整个施工受到影响,同时会导致应力分布和破损区同时发生变化,大大增加了施工过程中的安全隐患。所以,在地下厂房的开挖过程中,一定要注意结合实际情况制定施工方案,选择合理的开挖程序和支护方法[1]。在开始施工前,首先要对地质进行严格探查,同时考虑到施工进度以及施工成本等要求,进一步优化开挖程序和支护施工方案,按照立体多层次、平面多工序的基本原则开展开挖支护作业,加强对各类监测信息的收集和应用,能够不断优化施工方案,达到最佳的施工效果。 1.1施工准备阶段 在地下厂房开挖前,一定要做好施工的相关准备,确保万无一失。要根据相关的监测信息进一步优化施工方案,科学布置施工支洞,更好地提供工作的平行作业平台。另外,施工方还要依据施工的要合同要求以及技术规范,合理选择开挖程序和施工工艺,进一步做好关键点监测与质量控制点信息。开挖主厂房前要做好围岩稳定性处理以及排水系统的施工,设置好各类监测仪器,同时要做好通风井的施工[2]。开挖水电站地下厂房时,如果地质条件为高应力条件,那么岩层中含有大量的弹性能就会突然释放,从而进一步破坏了围岩的卸荷,严重影响了围岩的稳定性,所以必须要考虑到围岩卸荷松弛的问题,及时采取有效的预防措施,避免发生岩爆灾害。岩爆的发生一般是因为围岩的力学平衡被严重破坏,从而释放了大量的能量,远远高于所消耗的能量,所以一定要尽量避免能量变化对围岩产生的影响,合理控制分层的能量变化。 1.2地下厂房开挖方法 地下厂房的开挖一般要遵循一定的规律,通常情况下是从上到下进行分层施工,从而实现逐步成型,控制每一层的厚度在8到10米内,能够达到最佳的施工效果。分层施工时,要注意确保钻孔的精度,合理控制爆破震动,考虑到设备的作业空间以及作业通道等因素对施工的影响。一般情况下,岩壁吊车梁层的厚度需要合理控制为10米左右[3],同时要注意控制下部界面高度。开挖地下厂房的需要合理选用开挖方法,通常情况下要合理控制开挖的轮廓,常用的开挖方法包括预裂爆破和光面爆破。完成爆破后,再对中间岩体进行清理时,通常选择微差爆破方法。在该阶段的施工过程中,需要注意要对爆破实验得到的数据进行分析,从而确定预留保护层的厚度,随后对预留保护层进行分层清理,通过预裂来控制上层轮廓,下层主要是通过光爆成型。光爆成型的控制力度较好,能够将开挖控制在20cm以下。需要注意的是,保护层开挖是边墙位移量的主要影响因素,所以一定要确定适当的保护层开挖方法。如果使用深孔预裂爆破的方法进行开挖轮廓,那么高度控制要在15cm以下。一般施工时没有特殊要求,就可以使用该方法进行开挖。 2水电站地下厂房支护方案 2.1支护施工原则 在进行支护时一定要遵循相应的设计原则,首先要根据地下厂房的具体地质条件进行支护工艺的选择。主厂房以及尾水调压室、进厂交通洞等主要采用喷锚支护的方法,能够起到永久支护的效果。局部洞室交叉口和隧道主要通过钢筋混凝土衬砌的方法[4],提供永久支护作用。其次,锚杆支护设计要依据地勘报告中的参数具体进行,要提高2类围岩的稳定性,支护达到一定的强度。第三,利用新奥法原理,开展喷锚支护设计,主要的程序为设计-施工-监测-修正,要加强对支护施工的监测和观察,及时调整支护参数。 2.2支护施工方案 通常情况下,岩体结构中的支护压力会根据岩体的位移变化而变化,两者之间的关系为负相关关系。如果位移量相同,那么支护后隧道围岩需要的支护压力要比之前的压力小,同时支护前后的压力差会根据位移变化而变化。在2类和3.类围岩中,要注意合理选择支护工艺。通常情况下浅孔锚干支护与开挖面的距离要达到3倍洞径长度以内。当完成复喷混凝土后,应该进深孔锚干,然后对预应力锚索进行设置。一般情况下,厂房的直立边墙高度不宜过高,通常控制在50-80米内,能够提高厂房的稳定性,这也要采取相应的加固措施。例如,利用预应力锚杆、喷涂混凝土等,另外为了进一步提高围岩的稳定性,还要使用预定力锚索进行加固。在支护施工过程中,需要注意支护所使用的施工时间较长,具有相比开挖施工更长的施工周期,所以整个地下厂房的施工进度受到支护施工的影响较大。因此,为了进一步提高施工的进度,在支护施工过程中可以适当使用高频冲击回转钻进工艺,能够有效提供施工效率,从而减少施工周期。除此之外,为了进一步节约施工时间,可以提前完成作业,通过开辟出作业空间的方法来完成,当完成主厂房开挖后,就能够在作业空间内着手开展穿索等工艺[5]。施工过程中尽管围岩已经得到加固,但是当开挖下部结构时,围岩仍然会发生位移,所以一定要加强对上部加固围岩的控制,提高其稳定性,否则上部围岩稳定性降低,就会影响摸索的锚固赋存力,严重情况下会导致应力超标,大大增加了安全隐患,因此一定要对预应力的增量进行有效控制,提高施工的安全性。除了做好系统支护之外,另外对于一些特殊部位,也要进一步加强守护,特别是洞室的

厂房一层层混凝土地面施工方案

室内一层、室外混凝土地面施工方案 一、工程概况 1、设计概况:生产车间2#ABCD段一层建筑面积为10577m2。地面做法为:1、素土夯实,夯实系数不小于0.9,采用手握式夯机配合中型压路机洒水夯实 2、200mm厚C30素混凝土压光。 2、重点及难点分析: ⑴本车间地面面积大,如何控制平整度是施工的重点; ⑵地面回填土深度有1~2m,虽然采取了强夯,但基础梁和承台部分开挖后重新回填的土方的沉降量与原土方不同,且地面为素混凝土地面,施工正逢高温季节,如何控制由于温度应力、收缩应力及沉降不均匀引起的混凝土开裂是施工的主要难点; ⑶地面完成面是混凝土原浆压光面,其上没有其他装饰面,如何留设施工缝以保持完成面表面颜色一致是施工的难点之一。 3、施工条件: ⑴内抹灰完成,内脚手架拆除; ⑵所有地面的线管埋设完成并通过隐蔽验收。 ⑶地面控制标高已经设置。 二、施工组织 1、施工准备:

⑴物资设备准备:生产车间一层、室外地面混凝土采用自搅混凝土,采用机械运输混凝土;其他物资设备主要有:18cm钢模、振动棒、提浆磨光机、振桥、3m长的普通的铝合金刮杠。 ⑵施工班组准备:生产车间使用一个地面混凝土施工班组,因为地面混凝土施工的工艺要求高,所以要选择高素质的劳务班组,项目部通过考察和样板施工等方式对班组进行选择。 ⑶技术准备:施工前应针对施工工艺特点制定专项的施工方案,并进行技术交底;地面标高控制线已经弹好并且经过复核无误;通过甲方、监理单位的验收合格。 2、施工顺序:施工顺序见平面布置图。浇筑的顺序应该按先浇排列顺序为偶数的板(要装模),后浇奇数顺序的板(不需要装模),时间间隔不宜少于3d,偶数板砼添加适量膨胀剂。纵向割缝时,沿板与板的界面割缝。横向设置真缝,详见平面布置图。 三、施工方法 1、工艺流程: 定位放线(伸缩缝位置和地面控制标高)、支侧模(槽钢)→混凝土(人工)摊铺→振桥振捣和粗平→细部振动棒振捣→细刮(主要是细部的处理)→人工收浆→机械提浆、磨光→养护→割缝 2、施工方法: ⑴定位放线、支侧模: 定位放线重点在于控制槽钢侧模的标高和位置,混凝土设计厚度为200mm厚,使用侧模,其余2cm为标高控制余量。

水电站厂房设计

第十一章水电站地面厂房布置设计 第一节水电站厂房的任务、组成及类型 一、水电站厂房的任务 水电站厂房是水能转为电能的生产场所,也是运行人员进行生产和活动的场所。其任务是通过一系列工程措施,将水流平顺地引入水轮机,使水能转换成为可供用户使用的电能,并将各种必需的机电设备安置在恰当的位置,创造良好的安装、检修及运行条件,为运行人员提供良好的工作环境。 水电站厂房是水工建筑物、机械及电气设备的综合体,在厂房的设计、施工、安装和运行中需要各专业人员通力协作。 二、水电站厂房的组成 水电站厂房的组成可从不同角度划分。 (一)从设备布置和运行要求的空间划分 (1)主厂房。水能转化为机械能是由水轮机实现的,机械转化为电能是由发电机来完成的,二者之间由传递功率装置连接,组成水轮发电机组。水轮发电机组和各种辅助设备安装在主厂房内,是水电站厂房的主要组成部分。 (2)副厂房。安置各种运行控制和检修管理设备的房间及运行管理人员工作和生活用房。 (3)主变压器场。装设主变压器的地方。水电站发出的电能经主变压器升压后,再经输电线路送给用户。 (4)开关站(户外配电装置)。为了按需要分配功率及保证正常工作和检修,发电机和变压器之间以及变压器与输电线路之间有不同电压的配电装置。发电机侧的配电装置,通常设在厂房内,而其高压侧的配电装置一般布置在户外,称高压开关站。装设高压开关、高压母线和保护设施,高压输电线由此将电能输送给电力用户。 水电站主厂房、副厂房、主变压器场和高压开关站及厂区交通等,组成水电站厂区枢纽建筑物,一般称厂区枢纽。 (二)从设备组成的系统划分 水电站厂房内的机械及水工建筑物共分五大系统 (1)水流系统。水轮机及其进出水设备,包括压力管道、水轮机前的进水阀、蜗壳、水轮机、尾水管及尾水闸门等。 (2)电流系统。即电气一次回路系统,包括发电机及其引出线、母线、发电机电压配电设备、主变压器和高压开关站等。 (3)电气控制设备系统。即电气二次回路系统,包括机旁盘、厉磁设备系统、中央控制室、各种控制及操作设备如各种互感器、表计、继电器、控制电缆、自动及远动装置、通迅及调度设备等直流系统,如图11-1所示。

水电站地下厂房施工技术

水电站地下厂房施工技术 摘要: 龙滩水电站地下引水发电系统主厂房是世界级的地下厂房,其具有结构尺寸庞大、周边相邻洞室多、施工干扰大、地质情况复杂、开挖支护工程量庞大、安全质量进度要求高的特点。本文通过开挖阶段主厂房顶层、岩壁梁、高边墙的开挖施工方法及施工监测在地下厂房中应用研究方面进行介绍,为同类型工程施工中合理组织施工程序、采用安全而行之有效的开挖方法提供一定的借鉴。 1.工程概述 龙滩水电站是红水河梯级开发中的骨干工程,属Ⅰ等工程,工程规模为大(Ⅰ)型,工程按正常蓄水位400m设计,电站装机容量为6300MW。引水发电系统主要建筑物引水隧洞、主厂房、母线洞、主变室、尾水调压井、尾水支岔洞、尾水隧洞均布置于左岸地下岩体中。左岸洞室纵横交错,上下重叠,主要洞室尺寸庞大,构成复杂的地下洞室群,大小洞室总数119条。 地下厂房右端距河岸约160m。厂房洞室上覆岩层最小厚度约100m,最大厚度约230m。该地下厂房为目前世界最大的地下厂房,从河床侧向山体侧依次布置有主安装间、主厂房、副安装间。主厂房结构尺寸为388.5m×30.70m×77.6m。 主厂房围岩由厚层砂岩、粉砂岩和泥板岩互层夹少量层凝灰岩、硅泥质灰岩组成。其中砂岩、粉砂岩占68.2%;泥板岩占30.8%;灰岩、

层凝灰岩占1%。主洞室所在区域绝大部分为

Ⅲ类围岩、小部分为Ⅱ类围岩,极少部分属于Ⅳ、Ⅴ类围岩,具有较好的成洞条件。 2.主厂房开挖主要施工方法 2.1主要开挖程序: 地下厂房分9层开挖,主要步骤为:①利用主厂房顶层施工支洞进入厂房Ⅰ层开挖、支护,与此同时开挖母线排风廊道(3号施工支洞)至厂房另一端,形成两头对挖局面;②在Ⅰ层右端开挖支护完成100m后开挖Ⅱ层,并进行岩壁梁施工;③从进厂交通洞和经主变室至厂房的另一端(联系洞)对挖Ⅲ层,同样两端头降坡对挖Ⅳ层;④在厂房Ⅲ层开挖的同时,从引水下平洞进入厂房下游侧8m处,为加速Ⅳ、Ⅴ层开挖创造条件;⑤在厂房Ⅴ层开挖的同时,从尾水管进入开挖厂房Ⅷ、Ⅸ两层;⑥从引水下平洞进入厂房开挖Ⅴ、Ⅵ两层,最后爆通第Ⅶ层,从尾水支洞出渣,利用垫渣从尾水扩散段进入第Ⅶ、Ⅷ、Ⅸ层,进行喷锚支护工作;⑦每层开挖、锚杆、锚索、挂网、喷混凝土等工序进行平行流水作业。 2.2顶层开挖方法 厂房第一层开挖分为左端开挖及右端开挖,左端开挖主要通道为3#施工支洞,右端开挖主要通道为母线排风洞。先贯通两侧边导洞后进行中间岩柱开挖,周边采用光面爆破。顶拱开挖先进行两侧导洞开挖,支护好后,再进行中间岩柱拆除。 开挖过程中,两侧平行导洞交错施工,掌子面相距30m以上,以确保施工和工程安全。中间岩柱开始采用全断面开挖,由于断面较

水电站厂房设计(图文讲解)

水电站厂房设计 第一节水电站厂房的任务、组成及类型 一、水电站厂房的任务 水电站厂房是将水能转为电能的综合工程设施,包括厂房建筑、水轮机、发电机、变压器、开关站等,也是运行人员进行生产和活动的场所。 水电站厂房的主要任务: (1)将水电站的主要机电设备集中布置在一起,使其具有良好的运行、管理、安装、检修等条件。 (2)布置各种辅助设备,保证机组安全经济运行,保证发电质量。 (3)布置必要的值班场所,为运行人员提供良好的工作环境。 二、水电站厂房的组成 (一)从设备布置和运行要求的空间划分 主厂房:布置水电站的主要动力设备(水轮发电机组)和各种辅助设备,设置装配场(安装间)。 副厂房:布置控制设备,电气设备和辅助设备,是水电站运行、控制、监视、通讯、试验、管理和工作的房间。 主变压器场:装设主变压器的地方。水电站发出的电能经主变压器升压后,再经输电线路送给用户。 高压开关站:装设高压开关、高压母线、和保护措施等设备的场所,高压输电线由此送往用户。 此外厂房枢纽中还有:进水道、尾水道和交通道路等。 水电站主厂房、副厂房、主变压器场和高压开关站及厂区交通等,组成水电站厂区枢纽建筑物,一般称厂区枢纽。 (二)从设备组成的系统划分 水电站厂房内的机械及水工建筑物共分五大系统 (1)水流系统。水轮机及其进出水设备,包括压力管道、水轮机前的进水阀、蜗壳、水轮机、尾水管及尾水闸门等。 (2)电流系统。即电气一次回路系统,包括发电机及其引出线、母线、发电机电压配电设备、主变压器和高压开关站等。 (3)电气控制设备系统。即电气二次回路系统,包括机旁盘、励磁设备系统、中央控制室、各种控制及操作设备如各种互感器、表计、继电器、控制电缆、自动及远动装置、通迅及调度设备等直流系统。

水电站厂房的设计说明

绪论 水电站厂房是水电站主要建筑物之一,是将水能转换为电能的综合工程设施。厂房中安装水轮机、发电机和各种辅助设备。通过能量转换,水轮发电机发出的电能,经变压器、开关站等输入电网送往用户。所以说水电站厂房是水、机、电的综合体,又是运行人员进行生产活动的场所。其任务是满足主、辅设备及其联络的线、缆和管道布置的要求与安装、运行、维修的需要;为运行人员创造良好的工作条件;以美观的建筑造型协调与美化自然环境。 水电站厂区包括: (1)主厂房。布置着水电站的主要动力设备(水轮发电机组)和各种辅助设备的主机室(主机间),及组装、检修设备的装配场(安装间),是水电站厂房的主要组成部分。 (2)副厂房。布置着控制设备、电气设备和辅助设备,是水电站的运行、控制、监视、通讯、试验、管理和运行人员工作的房间。 (3)主变压器场。装设主变压器的地方。电能经过主变压器升高到规定的电压后引到开关站。 (4)开关站(户外高压配电装置)。装设高压开关、高压母线和保护措施等高压电气设备的场所,高压输电线由此将电能输往用户,要求占地面积较大。 由于水电站的开发方式、枢纽布置、水头、流量、装机容量、水轮发电机组形式等因素,及水文、地质、地形等条件的不同,加上政治、经济、生态及国防等因素的影响,厂房的布置方式也各不相同,所以厂房的类型有各种不同的划分,例如按机组工作特点可分为立式机组厂房、卧式机组厂房。根据厂房在水电站枢纽中的位置及其结构特征,水电站厂房可分为以下三种基本类型: 1. 坝后式厂房。厂房位于拦河坝下游坝趾处,厂房与坝直接相连,发电用水直接穿过坝体引人厂房。 2. 河床式厂房。厂房位于河床中,本身也起挡水作用,如西津水电站厂房。若厂房机组段还布置有泄水道,则成为泄水式厂房(或称混合式厂房),。 3. 引水式厂房。厂房与坝不直接相接,发电用水由引水建筑物引人厂房。当厂房设在河岸处时称为引水式地面厂房。 水电站厂房是专门的水工建筑物,它具有一般水工建筑物的共性,故其设计有以

厂房地面混凝土施工方案

厂房地面混凝土施工方 案 集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-

厂房地面混凝土施工方案 1、定位放线 本次施工定位放线重点在于控制[12侧模的标高,混凝土设计厚度为160mm厚,使用[12侧模,其余3cm为标高控制余量,具体做法为事先在侧模下方做灰饼,以控制标高,间距不大于1500mm。待侧模顶标高达到设计要求后使用钢筋棍钉入地面下与侧模点焊使槽钢水平固定,再在槽钢下方用横向钢筋棍点焊与立棍和槽钢上,使其纵向固定。从而到达严格控制侧模标高的要求。 2、抹侧模垫层 用1:2水泥砂浆对侧模底部找平,宽度100mm,要严格控制垫层顶标高,终凝后在垫层上放出槽钢位置线。 3、支侧模 经项目部仔细研究,本次施工顺序为先B区再A区,每个区段内短向(36m)隔跨支模,从而做到隔跨浇筑混凝土,待混凝土强度达到设计要求后,利用第一次浇筑的混凝土地面作为第二次浇筑混凝土的侧模进行第二此混凝土的浇筑。 4、钢筋铺设 本次混凝土地面施工钢筋根据设计要求采用 Φz9@200单层双向钢筋,钢筋事先按要求长度加工好,铺设时 将钢筋穿过[12侧模上事先钻好的孔,从而保证了钢筋在混凝土边缘上保护层厚度为40的要求,中间的钢筋要用事先加工好的马镫铁垫起,马镫铁高度要严格控制以保证钢筋不下挠。 5、混凝土摊铺

混凝土采用商品混凝土。塌落度要严格控制在进场时110~120mm。由混凝土罐车运至现场,汽车泵驶入厂房内,将混凝土泵送入模,人工协助摊铺至设计厚度+虚铺高度(虚铺高度根据经验为2~3cm)。摊铺混凝土时应连续摊铺,不得中断。 6、混凝土振捣 用插入式振捣棒仔细振捣,快插慢拔直到水泥混凝土表面不再冒泡。出现乳浆停止下沉为止。振捣过程中人工协助整平,呈现出有乳浆又大致平整的表面。 7、粗刮 每条水泥混凝土振捣完毕,用槽钢刮杠来回往返4~5次,达到上表面整平,布满原浆且粗骨料被挤压沉实到水泥混凝土中下部为止。 8、表面揉浆 为确保上表面原浆厚度均匀,特用φ75mm无缝钢管(内灌细砂)沿混凝土浇筑方向来回滚动,反复揉浆,作为整平工序的补充。 9、细刮 每条水泥混凝土揉浆完毕后,用铝合金刮杠来人工仔细刮平,达到上表面整平,有光泽 10、机械压光 在混凝土地面初凝后且未到终凝时采用叶片式混凝土压光机对混凝土进行表面压光,由于本工程地面为环氧树脂自流平地面,因此混凝土基层的压光不能洒水泥砂子粉,而是利用振捣和揉浆后表面反上来的乳浆进行压光。在混凝土终凝结束后再用磨光机二次磨光。 11、养护 混凝土浇筑24h后进行养护,采用塑料薄膜覆盖的方法来控制混凝土自身水化热蒸发的水分不流失,从而达到养护的目的。

水电站厂房砖砌体工程专项施工方案_secret

砌体专项施工方案 工程名称:辽宁庆阳特种化工有限公司1208项目911工房施工单位:鞍山市明宇建筑工程有限公司 建设单位:辽宁庆阳特种化工有限公司 编制人:张连祥 编制日期:2016-6-1

施工方案审批表

一、编制依据 1.911工房相关施工图纸及技术核定单 1.2《砌体工程技术规程》(J29-2006) 1.3《砌体工程施工质量验收规范》(GB50203-2002) 1.4 911工房现场实际情况 1.5建筑工程施工质量统一验收标准GB50300-2001 二、工程概况 2.1建筑概况 本工程位于庆阳特种化工有限公司七分厂厂区,建筑面积:1688m2 `,建筑高度:5.4m,局部建筑物高度为8.2m、9.2m;层数:1层;耐火等级:2级,抗震设防裂度为7度,耐入年限为50年 2.2砌体工程概况 911工房均采用MU15实心烧结砖砌筑,实心砖尺寸为240*115*54mm,采用M5水泥砂浆砌筑,墙宽370mm 2.3主要工程量及施工进度计划 2.3.1 主要工程量 厂房砌砖工程包括主厂房的建筑内外墙。 2.4砌体工程施工重点摘要 2.4.1 基层必须清扫干净,不能有灰土,弹出墙体的控制线和中心线。 2.4.2 用水准仪对基层进行抄平,高差超过2cm的用砂浆找平,超过2cm用细石混凝土找平。根据砌块厚度及灰缝宽度设置皮数杆。标明皮数及坚向构造的变化部位。根据弹好的轴线进行排砖,在不够整块处以辅助块砌筑。 2.4.3 砌筑时宜用“四一”砌筑法,做到灰缝平直,砂浆饱满,接搓可靠,在构造柱与墙体连接处,按要求砌成马牙槎。 2.4.4 在砌筑过程中,配合好安装工预埋管线。 2.4.5 砌块砌筑前,应在基础平面和楼层平面按砌块设计排列图,放出第一皮砌块的轴线、边线洞口线和分块线。 2.4.6 砌筑前应清除砌块表面的污物及粘土,并对砌块作外观检查,砌筑砌块

水电站厂房机电安装施工组织设计

保康寺坪水电站厂房机电安装 施工组织设计 编制: 审核: 批准: 葛洲坝集团第七工程有限公司 寺坪水电站施工项目部 二零零六年二月十五日

第一章工程概述 1.1 工程简述 寺坪水电站位于湖北省保康县寺坪镇肖家湾(粉清河段),为引水或电站,厂房内安装2台混流或水轮发电机组。单机容量30MW,电站总装机容量为60MW。电站设计利用小时3987H(远期),年发电量为1.792亿KWh(远期) 发电机额定电压10.5KW,出线电压等级为110KV,出线一回,接入保康县黄土坪变电所,线路长35KM,电站采用2机1变扩大单元接线。 1.2电站厂房布置主要数据 厂房为地面长41.5米主厂房净宽15.3米 安装间长16.1米 厂房桥机顶高程257.5米水轮机层地面高程235.55米 水轮机导叶中心高程233.0米蝶阀室高程229.55米 尾水管底板高程225.86米 1.3施工组织设计编写的依据和原则 1.3.1施工组织设计编写的依据 (1)寺坪水电站机电设备安装的招标文件 (2)有关设计图纸及厂家资料文字说明 (3)与本工程有关的规程,规范及技术标准 (4)我公司近年来在省内外各型水电站施工安装的经验和我公司的实际情况 1.32施工组织设计编写的原则 (1)保证机组安装质量的原则 (2)保证文明施工安全生产的原则 (3)保证本工程安装工期的原则 (4)保证节约原材料的原则 (5)符合国家环保的原则 1.4 主要工程范围和工程内容 1.41 主要工程范围 (1)所有安装设备的仓库或堆放场的卸货,验收,保管,维护现场二次运输。吊装,安装,调整,试验及系统调试。

(2)提交有关安装记录,试验报告,竣工验收文件,图纸和影像资料等。完成与土建项目承包人之间的协调,接受业主和监理单位的监督。 (3)完成有关埋件制作,构件支架的制作,所有埋件的预埋工作,完成部分零部件,材料的采购工作 (4)参加业主,监理部门组织的星期例会。 (5)参加业主组织的现场验收及试运行工作 1.42 主要工作内容 (1)水轮发电机组及其附属设备 (2)水力机械附属设备 (3)主厂房桥机 (4)发电机电压配电装置设备 (5)110KV变压器 (6)110KV升压站设备 (7)全厂厂用电及坝区供电系统设备全套 (8)全厂各类电缆敷设及电缆桥架全套 (9)厂房及坝区防雷,接地系统全套 (10)全厂计算机控制系统设备及工业电视系统设备 (11)全厂控制,保护,测量系统设备 (12)全厂照明电气埋管,埋件等预埋全套 (13)通信系统设备 (14)其他相关工作 第二章工程施工进程 2.1 工期进程方框图(二号机组适用,一号机完成顺延90天,从4月15号起计时)

厂房混凝土施工方案

厂房混凝土施工方案 一、概述 1.1工程概况 小石峡水电站工程属Ⅲ等中型工程,开发任务为发电。小石峡水电站装机容量为110MW(4×27.5MW),其单独运行保证出力10.10MW,多年平均年发电量3.82亿kW?h,装机年利用小时数3471h;与大石峡水电站联合运行时,保证出力22.54MW,多年平均年发电量4.35亿kW?h,装机年利用小时数3952h。水库总库容0.69亿m3。 发电厂房为引水式地面厂房,主厂房尺寸91.175×24.2×39.5m(长×宽×高),分主机间和安装间二部分,安装间布置在主厂房右侧。 副厂房长度与主厂房等长,宽度11.5m,共三层布置,由一次副厂房与二次副厂房组成。发电机层以下为电缆层,发电机层以上为中控层及GIS层。 厂房尾水平台高程1441.00m,电站正常尾水位1433.18m,最低尾水位1432.01m,尾水反坡段后接330m尾水渠后与河道相接。 1.2 气象条件 阿克苏河流域地处欧亚大陆腹地,塔里木盆地边缘,远离海洋,地域广阔,属典型的温带大陆性气候,北部和西部受天山屏障的阻隔,西风环流带来的水汽部分可翻越帕米尔高原或天山进入本区。气候特征为:日照充足,热量丰富;四季气候明显,冬冷夏热,春季时间长,风沙天气多,秋季凉爽降温快;干旱少雨,蒸发强烈,湿度很小,昼夜温差大。 据协合拉水文站1956~2004年和温宿气象站1967~2000年气象资料统计显示,统计得出小石峡水电站坝址处风速见表1-1。

1.3工程地质 电站厂房处于左岸河漫滩上,上部为砂卵砾石层,厚5~7m,下伏基岩为Q1砾岩,强风化层厚1.5~2.5m,弱风化层厚30~33m。厂房基础座于基岩弱风化层内,地基允许承载力0.8~1.0MPa。尾水渠处在砂卵砾石层内,砂卵砾石层厚6.5~12m,渠身全部处于砂卵砾石层内,砂卵砾石层抗冲刷能力差,需衬砌。 1.4主要工程量

水电站厂房施工组织设计..

顺河水电站厂区工程 施 工 组 织 设 计 重庆黄浦建设(集团)有限公司顺和水电站工程项目部

二○一一年二月四日 1.1 施工条件 1.1.1 工程概况 顺和水电站位于阿坝藏族羌族自治州九寨沟县境内,是汤珠河干流水电梯级开发方案规划的第二级电站。本电站首部位于汤珠河与勿角沟交汇处下游约100m,距上游马家电站厂房约110m,电站经左岸约8.24km的隧洞,于甘沟水文站下游约200m 处汤珠河左岸的Ⅰ级漫滩阶地上建厂房,电站额定水头206m,引用流量12.1m3/s,装机规模21MW。本电站开发任务以发电为主,兼顾下游河道减水段生态环境用水。工程区沿河有平武至九寨沟的S205 公路通过。汤珠河邻近九寨沟县县城(马家磨至县城直线距离约11km,河口至县城直线距离约11 km)。该城距阿坝州州府马尔康约500km;距盆中重镇绵阳市323km;距省府成都市426km;距甘肃省文县60km。 1.1.2 工程布置及建筑物 本电站为引水式电站,由首部枢纽、引水系统、厂区枢纽三部分组成。 1.1. 2.1 厂区枢纽 厂区主要建筑物有主机间、安装间、副厂房、升压站、尾水建筑物、进厂公 路、防洪堤等。 主机间共三层即发电机层、水轮机层、蜗壳层,主机间长21.20 m,宽 15.40m,高26.08m。内设2 台单机容量为10.5MW 的SF10.5-8/2600 发电机和两台HLA542-LJ-10125水轮机,机组间距9.00m,安装高程1367.12m。 安装间位于主机间上游侧,长15.40m,宽11.20m,为避免不均匀沉降,二者之

间设沉降缝,缝宽2cm。 副厂房位于在主机间沿河流流向的左侧,长32.52m、宽8.00 m、高11.44m, 为避免不均匀沉降,二者之间设沉降缝,缝宽2cm。 升压站位于主机间的左侧,由覆盖层明挖以及回填形成升压站平台。平面上基本呈“T”布置,长52 米、宽29.5 米,地面高程1373.58m,场内布置有两台容量分别为40MVA、16MVA油浸式变压器各一台,由通过厂区的公路可直接进入升压站。 厂房尾水采用正向出水布置,出口与原河床相接。 进厂公路由现有公路延伸扩建而成,总长约30m,坡度为2%。 1.1.3 自然条件 1.1.3.1 自然地理 本电站位于白水江下游右岸支流——汤珠河上,电站闸址位于九寨沟县两河口附近,闸址控制集水面积502km2,厂址位于九寨沟县甘沟水文站附近,控制集水面积567km2。 白水江系白龙江的一级支流,发源于岷山东麓的弓杠岭斗鸡台,分为黑河和白河两源,两源于黑河桥汇合后始称白水江:白水江自西北向东南流,流经九寨沟县白河乡、安乐乡、城关,在九寨沟县城下游约10公里处的双河乡汇入右岸支流——汤珠河,自柴门关出四川省境,流入甘肃省文县,于碧口汇入嘉陵江一级支流白龙江。白水江九寨沟县境内河道长约50km。该河段南部以黄土梁与平武县境内的火溪河为界;西南部以弓杠岭与岷江源头分水;西北以纳玛梁毗邻黄河的黑河流域;北接白龙江。 白水江流域地处青藏高原东南缘的岷山山脉东部,地理位置界于东经103° 30′至105°15′与北纬32°30′至33°40′之间,流域边缘雪峰环绕,流域内山势盘错,地势高亢,坡陡谷深;河道坡降大,水流湍急,河谷多

浅谈某水电站地下厂房设计

本页面为作品封面,下载文档后可自由编辑删除! (水利工程) 工 程 设 计 单位: 姓名: 时间:

【精品文档】 浅谈某水电站地下厂房设计 【摘要】某水电站地下厂房按2级建筑物设计,厂区地震基本烈度为6度,按规范规定,建筑物不进行地震设防。 【关键词】地下厂房;洞室群;喷锚支护;内部布置;结构设计 某水电站地下厂房位于左岸山体内。厂区岩层为燕山早期第三次侵入的黑云母花岗岩,厂房部位断裂不发育,上覆新鲜~微风化岩体,厚度40~140 m,通过厂房的主要断层有F7、F28、F29等,倾角较陡,规模小。据勘探钻孔统计,岩心平均采取率95%,RQD(岩石质量指标)80%,岩体纵波速4 600~5 600m/s,湿抗压强度165MPa。 地下厂房按2级建筑物设计,厂区地震基本烈度为6度,按规范规定,建筑物不进行地震设防。 1. 地下厂房位置选择 在选择地下厂房位置时,考虑了下面几个因素。 (1)厂房上游侧靠近水库处有F1断层,与厂房轴线基本平行。厂房应尽量远离F1,以确保厂房围岩稳定和减少渗水量。 (2)厂房靠山体侧的F3断层沿冲沟发育,F3影响范围内的不透水层埋藏很深,透水量较大。因此厂房应尽可能远离F3影响带。 (3)通过厂房的F7、F28、F29断层,与厂房轴线有较大的夹角,对厂房围岩稳定影响不大。而F12、F2断层与厂房轴线基本平行,F2断层靠河床侧正与厂房顶拱相切,对厂房围岩稳定不利,厂房应尽可能地避开。 综合以上因素,同时考虑主变室、尾水调压室及输水系统的布置,确定了主厂房位置。根据实际开挖揭露的地质情况来看,地下厂房位置选择是合理的。 2. 厂房纵轴线方向确定 2.1 确定原则。 (1)厂房纵轴线应尽可能垂直于岩体主要节理裂隙的走向或与其成较大的夹角,避 免上下游边墙承受较大的侧向压力,以利于围岩稳定。 (2)轴线尽可能平行于初始地应力的最大主应力方向或与其成较小夹角。 2.2 轴线方向确定。 根据厂区节理玫瑰图及实测的三维地应力成果,在满足洞室稳定和输水发电系统总布置要求的前提下,厂房轴线方向确定为N40°E。理由如下。 (1)根据厂区节理玫瑰图分析,主要节理组方向为N15~30°W,次要节理组方向为N70~85°E。厂房纵轴线与主要节理组方向夹角为55~70°,与次要节理组方向夹角为3 0~45°。 2

水电站主厂房桥机安装安全专项措施方案

江苏溧阳抽水蓄能电站机电设备安装工程主厂房250t桥式起重机安装安全技术措施 批准: 审核: 编制: 中国水利水电第五工程局有限公司 江苏溧阳抽水蓄能电站机电安装工程项目经理部

目录 一、概述 (1) 二、编制依据 (2) 三、主要施工方法 (3) 四、本工程存在的主要危险因素 (7) 五、桥机安装安全技术措施 (7) 六、本工程拟投入作业人员 (14) 七、本工程主要投入设备 (14) 八、桥机安装工程施工组织机构 (15)

江苏溧阳抽水蓄能电站机电设备安装工程主厂房250t桥式起重机安装安全技术措施 一、概述 江苏溧阳抽水蓄能电站地下主厂房内共布置有2 台QD250/50/10t-22.0 A3电动双梁单小车桥式起重机,主要担负地下主厂房6台水泵水轮机电动发电机组及其辅助系统设备的安装、运行、维护和检修的吊装任务。 QD250/50/10t-22.0 A3电动双梁单小车桥式起重机主要由桥架、大车行走机构、250t小车、10t 电动葫芦、250t/50t吊具、司机室和电气控制部分等组成。 QD250/50/10t-22.0 A3电动双梁单小车桥式起重机在地下主厂房安装间段进行安装。安装间长41m、宽21.45m、地面高程▽-41.5m,轨顶高程▽-29.8m,安装间地面至桥机轨道高差11.7m,上下游轨距22.0m。安装间与进厂交通公路相连,进厂交通洞浇筑后断面尺寸为宽10m,高8.5m。桥机安装计划使用130t 汽车起重机吊装就位。 本工程包括地下主厂房内2 台起重量为250t单小车桥机、轨道及滑触线的安装、实物法静动负荷试验。 桥机主要部件重量和外形尺寸表

厂房土建工程主要施工技术方案

土建工程主要施工技术方案 根据业主提供的控制点,建立施工测量控制网,作出几条主轴线的控制,经复核无误后,提出测量报验单,经监理同意后,方可进行下道工序的施工。 第1节 工程测量 1、 测量依据 (1)国家现行规范:《工程测量规范》; (2)中国轻工业广州设计院设计的施工图纸及相关标准图集; (3)业主方及其有关单位组织的施工现场有关测量控制点的交接和提供的相关资料。 2、 施工测量的组织 (1)测量人员的素质 该工程的测量工作,关系到建筑物定位及功能间的布局要求,能否满足设计要求,能否满足国内外相关规范的要求。我们将组织有理论和实践经验的测量人员来承担此项目的测量工作。 (2)施工测量的组织 以项目经理部牵头组织专业测量人员组成专业测量组。 本工程的测量控制网由我单位测量大队测设,经业主和监理工程师验收确认后,交项目部测量组使用,项目部测量组在使用前应予以检查及复测。

3、 测量设备的配备与管理 (1)测量设备、仪器准备: 日本拓普康DI9603红外线测距仪1台 德国010BJ2经纬仪2台 德国芬荼92336精密水准仪2台 钢卷尺50m2把 弹簧称100N2把 (2)测量设备管理 1)所有测量仪器、钢尺需检定合格后方可使用。 2)严格按照GB50026-93《工程测量规范》要求执行。方格网按Ⅱ级独立网要求测设。 3)所有测量仪器、钢尺等都由专业人员专人负责保管。 4、 建立施工控制网 (1)根据施工总平面图上拟建的建(构)筑物的坐标位置、基线、基点的相关数据,城市水准点或设计图纸上指定的相对标高参照点,用经纬仪、水准仪、钢尺进行网点的测设。 (2)测量按先整体后局部的工作程序进行。 (3)先在整个建筑场地内建立统一的控制网,作为各建(构)筑物的定位、放线的依据。 (4)根据施工控制网进行各建筑物定位测设。 (5)施工控制网点的测量,应进行闭合误差校该,误差值在

某水电站大坝工程施工组织设计方案2-施工总平面布置

第5章施工总平面布置 5.1 布置条件 5.1.1工程区地形 (1)厂房地质情况 电源电站厂房位于其培市下游约9km的恩梅开江左岸斜坡上。斜坡坡顶高程约1100~1500m,相对高差约800~1200m,地形相对较平缓,地形坡度25?左右,厂房区大面积残坡积物覆盖,零星可见闪长花岗片麻岩出露,厂房区地质构造简单,地表调查未发现断层及褶皱。片麻理倾向110?~135?,倾角67?~76?。地表调查未见泉水,厂房区水文地质条件简单。 根据5个钻孔及槽探资料,厂房区覆盖层及全风化层厚约11.6~18.9m,强风化带厚约0.7~4m,弱风化带厚约3.9~14.3m,弱风化顶板高程随地形变化。厂房基础可置于弱风化岩体上。根据厂房开挖设计,将形成高12~50.5m的人工边坡,上部约11.6~18.9m为松散层边坡,下部岩质边坡发育三组裂隙,裂隙组合切割构成块体,开挖边坡总体稳定性较差。 (2)引水隧洞地质情况 引水线路位于其培河左岸。沿途地表植被茂密,勘探深度较低。从周围情况分析,引水线路基岩为前寒武系花岗片麻岩(Gn),地表局部覆盖残坡积粉质粘土夹风化块石及砂、崩积块石等。 引水隧洞及压力钢管上覆岩体厚度多大于100m,岩性为花岗片麻岩,岩质坚硬,推测洞室围岩以Ⅱ类为主,围岩稳定,隧洞进出口段、沿线沟槽地段、断层带受表层卸荷影响及构造影响,岩体裂隙发育,围稳定性差,洞室围岩为Ⅲ-Ⅳ类,存在围岩稳定问题。 5.1.2对外交通条件 电源电站建设所需的主要物资均来自中国,采用铁路、公路等自云南运输出境。具体运输线路为昆明→大理→保山→腾冲→板瓦→辛孔→坝址。 其中昆明~大理铁路包括昆明~广通线154km,广通~大理线206km,全长359km。 大理~保山公路交通有高速公路和国道G320。大(理市)~保(山市)高速公路途经澜沧江。大理~澜沧江出入口长128km,澜沧江出入口~保山长41km。大理~保山高速公路全长169km。 保山~腾冲公路交通现有线路途经辛街、蒲缥镇、怒江曼海大桥、蚂蟥箐、高黎贡山。包括已建成的保(山市)~龙(陵县)高速公路至辛街段(15km)、国道G320辛街~怒江曼海大桥段(51km)、G320怒江曼海大桥~蚂蟥箐段(16km)、省道S317蚂蟥箐~腾冲县段(76km)。保山~腾冲公路交通现有线路全长158km。国道G320和省道S317为二级公路,沥青路面宽约8m,路基宽约8.5m。 腾冲~缅甸板瓦公路是新建已通车的平原微丘二级公路,路况良好,途经固东镇、滇滩镇。腾冲~滇滩59km,滇滩~板瓦11km,路线全长约70km。沥青路面,腾冲~滇滩路基宽约10m,滇滩~板瓦路基宽约8m。道路最高点高程为中缅北四号界桩(板瓦丫口)约2300m,最低点高程为腾冲约1700m。 板瓦~辛孔公路为弹石路面,路基宽约5m。路线全长14 km。辛孔~拉邦桥(电源电站进水口)公路为弹石路面,路基宽约5m。路线全长45km。 为伊洛瓦底江的开发,发包人近期将对板瓦~其培公路进行改扩建,对电源电站工程施工物资设备运输产生一定影响。 5.1.3场内交通条件

相关主题
文本预览
相关文档 最新文档