当前位置:文档之家› FLIR A615在线式红外热像仪 容祺

FLIR A615在线式红外热像仪 容祺

FLIR A615在线式红外热像仪 容祺
FLIR A615在线式红外热像仪 容祺

FLIR A615热像仪对于使用PC软件解决问题以及需要640×480像素分辨率的任何用户而言,FLIR A615在线式红外热像仪所具备的特征和功能足以使之成为最理想的选择。可兼容GigE Vision(TM)和GenICam(TM)是A615热像仪的主要特征,当用户使用 IMAQ Vision和Halcon软件包时,此兼容特征可使FLIR A615在线式红外热像仪实现即插即用.

FLIR A615在线式红外热像仪主要特征:

?

价格经济

?兼容GigE Vision

?兼容GenICam

?触发/ 同步/GPIO

?以50 Hz传输16位640×480像素的图像、信号、线性温度和全辐射红外图像

?窗口模式:以 100 Hz传输640 × 240图像或以200 Hz传输640 × 120图像

?与任何支持GenICam的软件兼容,包括National Instruments IMAQ Vision和Stemmers Common Vision Blox软件

?过TCP/IP协议来进行控制和设置

典型应用:

?

需测温的高端红外应用

?炉渣检测

?食品加工

?电子产品测试

?电阻器测试

?汽车制造

汽车工业的红外自动化应用

汽车和商用交通工具、发动机制造以及为该行业提供服务的二级承包商:

?

钎焊和焊接

?检查层压部件的质量,如汽车仪表盘

?汽车座椅加热系统

?检查全真皮座椅的质量

?验证车窗除霜

?轮胎的摩擦控制

?加热,空调制冷功能

?浇注塑料或金属零件

电子设备的红外自动化应用

电子设计、PCB和零部件制造、电子设备组装:

?

对PCB进行测试、确认和验证

?电力电子设计

?在组装线上进行故障追踪

FLIR A615在线式红外热像仪技术参数

型号

FLIR A615在线式红外热像仪

成像及光学数据:

视场角/最小焦距:25° × 19° / 0.25 m

空间分辨率(IFOV) :0.68 mrad

图像频率:50 Hz (采用窗口模式,可达100/200 Hz)

热灵敏度/NETD :< 0.05°C@ +30°C

调焦:自动或电动(内置马达)

探测器像元间距:17μm

波长范围:7.5–14 μm

红外图像分辨率:640 × 480

测量:

温度范围:–20°C~ +150°C;0°C ~ +650°C ;+300~ +2000°C

精度 : ±2°C或读数±2%

测量分析:

大气传输校正: 自动,基于输入的距离、大气温度和相对湿度

光学传输校正: 自动,基于内部传感器

发射率校正: 变量0.01~1.0之间

反射表面温度校正: 自动,基于输入的反射温度

外部光学组件/窗口校正自动,基于输入的光学组件/窗口透过率和温度

测量校正整体目标参数

USB:

USB控件与图像

USB, 标准USB 2 HS

USB, 连接类型USB Mini-B

USB, 通信TCP/IP Socket,FLIR专有

USB, 红外图像流以25 Hz传输16位640 × 480像素,线性信号、线性温度、全辐射图像

USB, 协议TCP, UDP, SNTP, RTSP, RTP, HTTP, ICMP, IGMP, ftp,SMTP, SMB (CIFS), DHCP, MDNS uPnP

以太网

以太网控件与图像以太网,类型千兆以太网以太网,标准IEEE 802.3

以太网,连接器类型RJ-45

以太网,通信TCP/IP Socket,FLIR专有;以及GenICam协议

以太网,红外图像流以50Hz传输16位 640 x 480像素;以100Hz传输16位 640 x 240像素;以200Hz传输x 120像素;线性信号、线性温度、全辐射图像;兼容GigE Vision和GenICam

以太网,协议TCP, UDP, SNTP, RTSP, RTP, HTTP, ICMP, IGMP, ftp,SMTP, SMB (CIFS), DHCP, MDNS uPnP

数字输入和输出

数字输入,作用图像标签(开始,停止,常规),图像流控制(开/关),输入外部设备(编程可读)

数字输入2光隔离, 10-30 VDC

数字输出,作用输出至外部设备(编程可设置)

数字输出2光隔离, 10-30 VDC, 最大100mA

数字I/O,隔离电压500 VRMS

数字I/O,工作电压12/24 VDC, 最大200 mA

数字I/O,连接器类型6针螺丝端子

电源系统

外部电源12/24 VDC, 24 W最大额定值

外部电源,连接器类型2针螺丝端子

电压容许范围10–30 VDC

环境数据

内置可见光数码相机500万像素,带LED照明灯

数码相机视频记录将MPEG-4保存到存储卡

数码相机视频流使用USB传输MPEG4

环境数据

工作温度范围–15°C ~ +50°C

存储温度范围–40°C ~ +70°C

湿度(工作及存储)IEC 60068-2-30/24 h 95%;相对湿度+25°C ~ +40°C

数据通信接口

接口: USB-mini、USB-A、数字视频输出

USB:?USB-A: 连接外部USB设备? USB Mini-B:将数据发送至PC并接收来自PC的数据视频输出:复合视频

视频,连接类型兼容HDMI

电源系统

电池:锂离子电池,工作时间为2.5小时

充电系统:在热像仪中(交流适配器或12V车载充电器)/双座充电器

电源管理:自动关机和休眠模式

环境数据:

工作温度范围–15°C ~ +50°C

存储温度范围–40°C ~ +70°C

湿度(工作及存储)IEC 60068-2-30/24 h 95%,相对湿度+25°C ~ +40°C / 2循环

EMC EN 61000-6-2:2001 (抗干扰);EN 61000-6-3:2001 (抗辐射);FCC 47 CFR Part 15 辐射)

封装IP 40 (IEC 60529)

抗撞击25 g (IEC 60068-2-29)抗震动 2 g (IEC 60068-2-6)

物理数据

重量0.9 kg

尺寸(长x宽x高)216× 73 × 75 mm

三脚架接口UNC 1/4”-20 (三面)

基本安装 2 × M4 螺纹安装孔(三面)外壳材质铝

交付范围

包装,内容硬纸箱、红外热像仪及镜头、标定证书、以太网(TM)线、电源及电源线、电源尾线、南手册、重要信息指南手册、USB线、用户文件光盘、应用光盘、延保卡或注册卡

选配件

A/SC3XX和A/SC6XX电源;电源尾线;A/SC3xx和A/SC6xx系列用硬壳便携箱;Thermovision(TM) 系统开发套件Thermovision(TM) Labview 套件;15°镜头;45°镜头

本文来源:https://www.doczj.com/doc/255395732.html,/a/FLIR_A615.html

红外热像仪市场分析要点

红外热像仪的市场应用和前景分析 新产品开发部 2013年3月 红外热像仪是一种用来探测目标物体的红外辐射,并通过光电转换、电信号处理等手段,将目标物体的温度分布图像转换成视频图像的高科技产品。红外热像仪具有很高的军事应用价值和民用价值。在军事上,红外热像仪可应用于军事夜视侦查、武器瞄具、夜视导引、红外搜索和跟踪、卫星遥感等多个领域。在民用方面,红外热像仪可以用于材料缺陷的检测与评价、建筑节能评价、设备状态热诊断、生产过程监控、自动测试、减灾防灾等诸多方面。 一、红外热像仪在各行业的应用 红外热像仪行业是一个发展前景非常广阔的新兴高科技产业,被广泛应用于军民两个领域。在现代战争条件下,该技术已在卫星、导弹、飞机等军事武器上获得了广泛的应用。同时,随着非制冷红外热成像技术的发展,尤其是随着产业化过程中生产成本的大幅度降低,红外热像仪已在电力、消防、工业、医疗、安防等国民经济的各个部门得到了非常广泛的应用。 1、电力设备检测 电力、电信设备过热故障预知检测,在电力系统和设备维修检查中,红外线热像仪被证明是节约资金的诊断和预防工具。测量电气设备,非接触红外热像仪可以从安全的距离测量一个物体的表面温度,使其成为电气设备维修操作中不可缺少的工具。红外热像仪可以有效防止设备故障和计划外的断电事故的发生。 ①输电设备:接头、绝缘子、夹板、跳线、高压线、压接套管、瓷瓶引线; ②变电系统:互感器、隔离开关、空气断线器、油断路器、少油量断路器、避雷

器、电容器、电抗器、变压器、总线、套管、整流器、绝缘子、线夹、阻波器; ③配电系统:配电盘、开关箱、变压器、断电器、接触器、保险丝、电缆; ④发电厂:发电机碳刷绕组装备、发电机、变压器、油枕、发电机馈电线、电压调节器、发电机马达控制中心电盘、UPS; 下面是需要采用红外热像仪进行检查的部分设施: A:电气装置:可发现接头松动或接触不良,不平衡负荷,过载、过热等隐患。这些隐患可能造成的潜在影响是产生电弧、短路、烧毁、起火。 B:变压器:可以发现的隐患有接头松动、套管过热、接触不良(抽头变换器)、过载、三相负载不平衡、冷却管堵塞不畅。空冷器件的绕组可直接用红外热像仪测量以查验过高的温度,任何热点都表明变压器绕组的损坏。其影响为产生电弧、短路、烧毁、起火。 C:电动机、发电机:可以发现的隐患是轴承温度过高、不平衡负载、绕组短路或开路、碳刷、滑环和急流环发热、过载过热、冷却管路堵塞。其影响为有问题的轴承可以引起铁心或绕组线圈的损坏;有毛病的碳刷可以损坏滑环和集流环,今儿损坏绕组线圈。检查发热点,在出现的问题导致设备故障之前定期维修或更换。 电动机线圈绝缘层:通过测量电动机线圈绝缘层的温度、延长它的寿命。还可能引起驱动目标的损坏。为了保持电动机的寿命期,检查供电连接线和电路断路器(或者保险丝)温度是否一致。 D:连接器:电连接部位会逐渐放松连接器,由于反复地加热(膨胀)和冷却(收缩)产生热量、或表面赃物、碳沉积和腐蚀。非接触红外热像仪可以迅速确定表明有严重问题的温升。 电动机轴承: E:各相之间的测量:检查感应电动机、大型计算机和其它设备的电线和连接器各相之间的温度是否相同。 F:不间断电源:确定UPS输出滤波器上连接线的发热点。一个温度低的点表明可能直流滤波线路是开路。 备用电池:检查低压电池以确保连接正确。与电池接头接触不良可能会加热到足以烧毁电池芯棒。

红外热像仪用户手册终结版

IPRE-160 红外热像仪用户手册

! 警告、小心和注意 定义 !警告代表可能导致人身伤害或死亡的危险情况或行为。 !小心代表可能导致热像仪受损或数据永久丢失的情况或行为。 !注意代表对用户有用的提示信息。 重要信息–使用仪器前请阅读 !警告–本仪器内置激光发射器,切勿凝视激光束。激光规格为635 nm, 0.9mW, 二级。 !小心–因热像仪使用非常灵敏的热感应器,因此在任何情况下(开机或关机)不得将镜头直接对准强烈幅射源(如太阳、激光束直射或反射等),否则将对热像仪造成永久性损害! !小心 - 运输期间必须使用原配包装箱,使用和运输过程中请勿强烈摇晃或碰撞热像仪。!小心–热像仪储存时建议使用原配包装箱,并放置在阴凉干燥,通风无强烈电磁场的环境中。 !小心-避免油渍及各种化学物质沾污镜头表面及损伤表面。使用完毕后,请盖上镜头盖。 !小心 -为了防止数据丢失的潜在危险,请经常将数据复制(后备)于计算机中。 !注意 -在精确读取数据前,热像仪可能需要3-5分钟的预热过程。 !注意 -每一台热像仪出厂时都进行过温度校正,建议每年进行温度校正。 !小心 -请勿擅自打开机壳或进行改装,维修事宜仅可由本公司授权人员进行。

目录 ! 警告、小心和注意 (2) 1简介 (5) 1.1标准配置 (7) 1.2可选配置 (7) 2热像仪简介 (8) 2.1功能键 (8) 2.2接口 (11) 3基本操作 (12) 3.1电池安装及更换 (12) 3.1.1电池装卸 (12) 3.1.2更换电池 (13) 3.2电池安全使用常识 (14) 3.3快速入门 (15) 3.3.1获取热像 (15) 3.3.2温度测量 (15) 3.3.3冻结和存储图像 (17) 3.3.4回放图像 (17) 3.3.5导出存储的图像 (17) 4操作指南 (18) 4.1操作界面描述 (18) 4.1.1工作界面 (18) 4.1.2主菜单 (19) 4.1.3对话框 (20) 4.1.4提示框 (20) 4.2测温模式 (20) 4.3自动/手动 (21) 4.4设置 (22) 4.4.1测温设置 (22) 4.4.2测温修正 (23) 4.4.3分析设置 (24) 4.4.4时间设置 (25) 4.4.5系统设置 (26) 4.4.6系统信息 (27) 4.4.7出厂设置 (27) 4.5文件 (29) 4.5.1打开 (29) 4.5.2存储 (30)

红外热像仪在煤矿行业的应用

红外热成像技术在矿业的应用 1、检查井下隐性火区分布、火源位置 煤层漏氧导致 氧化,释放一氧化碳 和热量,热量逐渐累 积,达到着火点发生 自燃,造成井下火 灾。煤层总有一些微 细缝,微气体的热传 导、热对流和热扩散,使煤层表面局部产生温度变化,使用红外热像仪可以即时观察巷道煤壁,通过声光报警,及时发现存在温度过热的区域,从而采取有效措施,避免自燃的发生;红外热像仪采用整体实时成像技术,能将所观测物体的热分布情况完美地显现出来,从而能较好地区分出温度过高区域找出隐患点(优于红外线测温仪的点测取),大大提高了工作效率,同时减少了误判的几率。红外热像仪具有图像存储功能,可冻结图像存储后在电脑中进行准确分析。 2、预防煤炭堆积引发的自然 煤矿在开采后会被按等级在不同的区 域堆放。我们并不能排除煤堆由于温度的 上升引发的自然。使用红外热像仪,您可 以连续监测煤堆的热点,当发现火灾隐患 时,红外热像仪会自动定位温度过高点, 同时自动触发报警。接获报警后可对温度过高点采取淋水等降温措施,避免火灾的发生。 3、检查顶板冒落和采取透水 矿用红外热像仪拍取热图不需要可见光,它能够快速检查出煤壁表面的温度变化,并进行温场分析,找出温度最高点或最低点,特别适用于密闭墙、煤层

断面等,其表面温度的变化趋势能够为是否出现大面积渗水、透水做出判断提供依据。 4、检查各种电气及动力设备的运行状态 红外热像仪亦可在供电设备和 采矿设备正常运转的情况下,检测 所有电气设备、电缆的温度变化情 况、根据温场分布及温度变化情况, 根据温升情况判别是否存在故障、 是否需要检修。同时亦可采取非接触方式检测井下中央与采区变电所各种开关、接头、变压器的事故隐患,水泵、局扇、防爆电机及动力设备(动力电缆)的温升,运输机及运输皮带的发热状态,及时判别设备的状态,消除隐患。 5、判定识别瞎炮 煤矿的开采过程中,经常会采取爆破手段进行开采,爆破完成后如何有效地评估爆破效果,清除可能残留的哑炮成为每次爆破实施完毕后亟需解决的问题。有了红外热像仪的帮助,一切变得“so easy”。运用红外热像仪对原铺设的爆破面进行扫描,通过各炮眼残留热量和温度分析,进而排查有无出现瞎炮,如存在瞎炮,准备定位方便采取措施及时清理。

FLIRA315红外热像仪中文说明书

FLIRA315红外热像仪使用说明书 代理商:武汉筑梦科技有限公司 2014-1-6

第一章设备简介 1 FLIR红外热像仪原理 1.1红外热像仪 从原理上讲,热像仪包括两部分:光学部件和探测器。光学部件使目标的红外辐射集中到探测器上,探测器对之成像。 1.1.1光学材料 红外辐射和可见光的性质一样能折射和反射。因而,红外热像仪的光学部件设计方法和普通相机的相似。用于普通相机的玻璃对红外线的透射程度不够好,因而不能用于红外热像仪。所以必须寻找别的材料。对红外线透明的材料一般对可见光不透明。象硅和锗就通常对可见光不透明。 从图中可以看出,这两种材料可以作为SW和LW光学材料。通常,硅用于SW系统而锗用于LW热像仪。硅和锗有好的机械性能,即不易破裂,它们不吸水,可以用现代车削法加工成镜头。 1.1.2探测器 对红外辐射敏感的元件称为探测器。这些年来,热像仪采用过许多不同类型的探测器。这些探测器不分类型都有一些典型特点。探测器对入射辐射的探测结果以电信号输出。这信号取决于入射红外辐射的强度与波长。大部分探测器都存在截止波长,这也很典型。如果入射辐射的波长长于探测器的截止波长,探测器将没有信号输出。在1997 年以前,所有的探测器都是制冷型的,根据不同型号,低的至少制冷到–70oC,更有甚者需制冷到–196oC。 1997 年,AGEMA 公司在世界上首先生产出了新一代非制冷微量热型探测器热像仪:Thermovision? 570,现在叫做AGEMA 570。500 系列的另一种热像仪叫做AGEMA 550,它使用制冷型探测器。

AGEMA 550 的探测器由斯特林制冷机制冷。这种PtSi探测器需制冷到–196oC。它需要两分钟来制冷。作为“单一”探测器的换代品,在1995年FPA 探测器被运用于所有的热像仪(AGEMA)上。AGEMA 550的探测器有320 x 240 = 76,800 探测器单元。 2 FLIR红外热像仪组成及接口 2.1、红外热像仪组成 红外热像仪组成:抗反射膜、光学滤片、探测器 2.2 使用说明 2.2.1 红外测温方法 红外热像仪是通过非接触探测红外能量(热量),并将其转换为电信号,进而在显示器上生

使用红外热像仪应注意的问题

100 温度检测与校准技术计测技术!2010年第30卷增刊使用红外热像仪应注意的问题 乐逢宁,蔡静,马兰,张学聪 (中航工业北京长城计量测试技术研究所,北京 100095) 摘 要:热像仪作为一种红外成像仪器,以其非接触、快速、可对运动目标和微小目标测温等优势在军事和民用方面得到了广泛的应用。本文就红外热像仪的使用及在使用中需要注意的问题进行阐述。 关键词:热像仪;红外辐射;非接触;发射率 中图分类号:TH744 41 文献标识码:B 文章编号:1674-5795(2010)S0-0100-02 0 引言 红外热像仪作为一种红外成像仪器,在军事应用和民用领域发挥着重要的作用。红外热像仪既有一般红外测温仪器的优点,同时还有测温迅速、可对运动目标和微小目标测温、携带和使用方便等独特优势,除此之外还有以下特点: 1)可直观显示被测物体表面的温度场。同一般的红外测温仪只能显示个点或个别区域的温度值相比,热像仪可以同时显示被测物体表面各点温度的高低,并可以以图像形式反映。 2)可以对测温结果的图像进行多种处理。由于热像仪输出的信号中包含了被测物体的大量信息,可以采用多种处理方法以不同的方式显示:既可以对图像进行伪彩色处理,使不同颜色表示不同的温度;又可以对图像进行模数转换,以数字形式显示被测物体不同点的温度值。 3)温度分辨力高。一般的红外测温仪只能分辨0 1?的温差,对于热像仪,由于是同时显示被测物体表面两点间的温度值,温差最高可以达到0 01?。 1 红外热像仪的工作原理 红外热像仪是利用红外探测器、光学成像物镜和光机扫描系统(目前先进的焦平面技术则省去了光机扫描系统)接受被测目标的红外辐射能量分布图形反映到红外探测器的光敏元件上,在光学系统和红外探测器之间,有一个光机扫描机构对被测物体的红外热像进行扫描,并聚焦在单元或分光探测器上,由探测器将红外辐射能转换成电信号,经放大处理、转换或标准视频信号通过电视屏或监测器显示红外热像图。 这种热像图与物体表面的热分布场相对应,实质上是被测物体各部分红外辐射的热像分布图。实际上为了增加图像的层次感和立体感,也为了更好判断被测物体的整体温度分布,常常采用增加图像亮度、对比度等手段来提高图像的质量和实用性。 2 红外热像仪的使用及注意问题 红外热像仪的测温范围通常在-20~2000?,响应波段为8~14 m。为了尽可能减少环境因素的影响,环境温度通常在(23#5)?,湿度要求为小于85% RH。 红外热像仪在实际使用中,需要经过参数设置、对焦、设置温度水平和跨度、设置混合水平条等步骤后才能进行测温。 红外热像仪在使用过程中,需要注意以下问题: 1)焦距的调整。为了保证第一时间操作的正确性,尽量避免被测物体本身或周围背景的过热或过冷的反射影响到目标测量的准确性,应该在红外图像存储前调整焦距或测量方位。 2)发射率的设定。在测温之前务必设定发射率的值,一般发射率的值都设定在0 95以上。 3)选择正确的测温范围。在测温时,务必设置正确的测温范围,这时对热像仪的温度跨度进行微调将得到最佳的图像质量,否则将会影响温度曲线的质量和测温精度。 4)确定最大的测量距离。测量时务必知道精确测温读数的最大测量距离。因为通过热像仪光学系统的目标图像必须占到9个像素,或者更多。如果热像仪距离测温目标过远,测温结果将无法正确反映被测物体的真

红外热像仪应用——电机检测

红外热像仪应用——电机检测 随着红外技术的不断发展,热像仪逐渐被应用于越来越多的民生行业。美国福禄克热像仪作为行业佼佼者,通过多年的推广和开发,已获得各领域工程师的广泛认可,此文将通过真实案例和热图的解说来阐述美国福禄克热像仪是如何应用于点击检测的。 电机是国民经济各部门大量采用的一种动力机械设备,温度是电机工作的重要指标,超过额定温度时每升高10℃,则电机的寿命将缩短一半。电机是企业维持正常生产的重要保证,使用fluke 红外热成像仪对电机进行检测是保证正常生产系统运行的重要措施。 电机温度异常的主要原因 1 电机电气接线接触不良或老化导致电气接线温度异常; 2 电机外壳由于铁心老化、散热不良导致外壳温度过高或温度不均匀; 3 与电机连接的轴承、连轴器由于润滑不良 电机热缺陷的特征描述 1、电机电气接线 根据以往红外热像测试的经验来看,电机电气接线以及线缆接头缺陷所导致的异常发热比较常见。主要原因是: 散热不良导致电机外壳温度异常

1)氧化腐蚀:金属表面严重锈蚀氧化,造成金属接触面的电阻值乘几十倍到几百倍的增加; 2)导线断股、接头松动:导体连接部位长期受到机械振动,使得导体压接部位的螺丝松动、导线断股电阻值增大。 3) 因为结构设计、安装工艺质量所引起的异常发热 2、电机外壳温度分布 电机是按照绕组绝缘的热容量进行分级的,过高的热量会使绕组绝缘迅速老化失效,外部运行温度通常比内部温度低大约 20C 。电机外壳温度过高主要表现在两个方面: 1)外壳部分区域温度过高:导致的原因可能是内部铁芯、绕组因绝缘层老 化或损坏导致短路。 2)外壳整体温度过高:电机的周围的空气流动不充分,或电机散热系统出现问题,电机外壳整体温度异常。 3)与电机连接的轴承、连轴器:1)过度润滑;2)缺乏润滑;3)未对准通常会导致轴承问题。 AR01 AR01 电机控制器过热 电机外壳温度不均匀

HHIR-85B型红外热像仪说明书

1 概述 1.1 用途 HHIR-85B型红外热像仪(以下简称红外热像仪)用 于单兵夜间观察、发现目标,实现夜间侦察作战能力。它 可以与多种瞄准、射击、观察类装备联合使用,具有较强 的穿透烟雾、识别伪装、全天时(昼/夜)工作的能力;可 在夜间单独使用,用于单兵夜间侦察,监控。 1.2 特点 a)可应用于单兵手持; b)具备完整的人机工程设计; c)可昼夜工作。 1.3 主要性能 1.3.1观察距离(能见度>15km,温度15℃~30℃,湿度< 40%条件下): a) 喷气式飞机探测距离(15m × 5m):≥5000m。(探 测是指可以发现飞行中的喷气式飞机,成像最少两像素。) b) 探测站立人员(高170cm × 宽40cm)目标:≥ 2000m。(探测是指可以发现直立走动的人员,成像最少 两像素。) --------------------------------------------------------------------------------12-1

--------------------------------------------------------------------------------12-2 c) 识别站立人员(高170cm × 宽40cm )目标:≥1000m 。(识别是指可以分辨直立走动的人员外形轮廓,成像最少五像素。) 1.3.2 技术指标 探测器类型: 非制冷焦平面 探测器: 384pixel × 288pixel ,面元25μm 噪声等效温差(NETD):≤100mk@30°C 工作波段: 8μm ~12μm 场频: 50Hz 电子放大倍率: 2× 空间分辨率MRTD : ≤0.4℃(在特征频率下) 视场: 6.5°×4.8° 红外物镜参数: 物镜直径=85mm ,F 数=1.0, 物镜焦距f=85mm 。 物镜类型: 电动调焦镜头 调焦范围: 10m~∞ 启动工作时间: <30s 电池工作时间: 3h (常温) 功耗: ≤6W (常温) 颜色: 主体制做成黑色 三角架接口类型: 1/4inch 主体外形尺寸(mm): (280±15)长×(130±5)宽

红外热像仪和视频报警系统在安防领域的应用讲解

红外热像仪和视频报警系统在安防领域 的应用 一、系统概述随着技术进步,视频监控系统已经在国家公共安全防范的各个领域中开始了广泛使用,这使得人民的安全环境在很大程度上得到了提高。现在的视频监控系统主要采用的是可见光摄像机和人工监视、录像相结合的方式进行日常的安全防护。但由于可见光摄像机在恶劣天气或照度较低的条件下,很难滤除干扰得到有用的视频图像,因此使得整个安全防范系统在夜间或恶劣天气条件下的防范能力大打折扣。而且现在的视频监控系统必须由安保 一、系统概述 随着技术进步,视频监控系统已经在国家公共安全防范的各个领域中开始了广泛使用,这使得人民的安全环境在很大程度上得到了提高。现在的视频监控系统主要采用的是可见光摄像机和人工监视、录像相结合的方式进行日常的安全防护。但由于可见光摄像机在恶劣天气或照度较低的条件下,很难滤除干扰得到有用的视频图像,因此使得整个安全防范系统在夜间或恶劣天气条件下的防范能力大打折扣。而且现在的视频监控系统必须由安保人员对视频画面进行24小时不间断的监视、人为对视频图像进行分析报警,否则系统就起不到实时报警的功能只能起到事发后取证的作用。因此整体来说,现在的视频监控系统还处于在半天时、半天候和半自动状态。因此如何提高在“夜黑风高”的案件高发时间段的自动报警防范能力,就成为了国家公共安全防范领域内急需解决的重要问题之一。 红外热像仪及视频报警系统,是基于非制冷红外热像仪或可见光摄像机等硬件系统,采用红外/可见光复合成像、视频图像处理及自动行为分析报警等相关软件与之结合,将现有视频监控系统的良好天气下的人工监视、事后取证功能,提升为全天候条件下的免人为看护、电脑自动实时报警功能。系统可在夜间或者恶劣天气条件下(如大雨、大雾等)工作,不仅能节省大量的人力,同时可实现全天时全天候实时报警。不仅弥补了现有视频监控系统的不足,而且提升了安防系统的自动识别、自动报警等相关自动化程度,具有非常重要的社会作用,具有广阔的市场。 1、非制冷红外热像仪硬件系统

红外热像仪使用说明书

红外热像仪使用说明书 在红外热像仪的使用说明书中,以下的指标值得关注: 除了从典型应用的角度之外,还可以快速地从回答3个简单问题,来进行红外热像仪关键指标的选择: 问题一:红外热像仪到底能测多远? 红外热像仪的检测距离= 被测目标尺寸÷IFOV,所以空间分辨率(IFOV)越小,可以测得越远。例如:输电线路的线夹尺寸一般为50mm,若使用Fluke Ti25 热像仪,其IFOV为2.5mRad ,则最远检测距离为50÷2.5=20m 问题二:红外热像仪能测多小的目标? 最小检测目标尺寸= IFOV×最小聚焦距离。所以IFOV越小,最小聚焦距离越小,则可检测到越小的目标。举例: 某品牌热像仪Fluke Ti25 热像仪 空间分辨率(IFOV):2.6mRad 空间分辨率(IFOV):2.5mRad 像素:320×240 像素:160×120 最小聚焦距离:0.5m 最小聚焦距离:0.15m 最小检测尺寸:1.3 mm 最小检测尺寸:0.38 mm 从对比图看,右侧Fluke Ti25,虽像素稍低,但凭借更小的IFOV 及最小聚焦距离优势,实际可以拍摄到0.38mm微小目标,而另一品牌则只能测到1.3mm 的目标。 问题三:热像仪能看得多清晰? 因素一:热灵敏度决定热像仪区分细微温差的能力。同样状况下,右图所用热像仪的热灵敏度更低,画面清晰显示花蕊细节的温度分布,而左图同区域只能看到一片红色。

因素二:最小检测尺寸决定了热像仪捕捉细小尺寸的能力。尺寸越小,相同面积的检测目标画面由更多像素组成,画面更清晰。 由右图可见,像素(马赛克)越小越清晰 什么是空间分辨率(IFOV)? 在单位测试距离下,红外热像仪每个像素能够检测的最小目标( 面积),以mRad 为单位,是一个主要由像素和所选镜头角度所决定的综合性能参数,是热像仪处理空间细节能力的技术指标。 为什么空间分辨率(IFOV)越小越好? 单位距离相同时,IFOV 越小,单个像素所能检测的面积越小,单位测量面积上由更多的像素所组成,图像呈现的细节越多,成像越清晰。

红外热像仪操作步骤(精)

红外热像仪操作步骤 第一、连接设备,该仪器主要的部件有MAG30系列在线式热像仪(包括镜头)1台,12V电源适配器一个,网线一条(普通网线即可),IO接线端子,安装盘(光盘内附带用户手册)。使用时,将热像仪固定在三角支架上,连接处有螺丝固定,旋紧即可;将电源线插入12V DC 电源接口,此时电源指示灯亮;将网线插入电脑的网线接口(即RJ45网口)和热像仪的RJ445网口,若连接通路,则网口的黄色指示灯变亮,若不通则检查网线等方面。 第二、我们目前使用的是将热像仪与电脑直接通过网线相连,该情况下需要对电脑的ip地址进行修改,xp系统与win7系统修改ip的方法稍有差异,对于xp系统,可右键点击网上邻居—选择属性—本地连接—右键—属性—双击 tcp/ip协议—使用下面的ip地址,进行修改即可,若为win7系统,则右键点 击网上邻居—选择属性----点击本地连接—属性—双击 internet 协议版本4--—使用下面的ip地址,修改即可,Ip地址为 192.168.1.2—192.168.1.250之间均可,子网掩码255.255.255.0,网关192.168.1.1,即可完成连接。 第三、打开电脑上的软件ThermoX.exe(红外热像仪),,由于是网线直接连接在软件界面右侧的启用DHCP Server打钩

,打钩后,MAG30-110257即为该设备的型号,此时连接完毕。 第四、点击软件主界面右下方的黑色三角即可开始进行红外录制,然后要进行对焦,使出现的画面更加清晰,点击对焦按钮 完成自动对焦。 第五、该设备可以进行图片和视频以及带温度等详细信息的视频文件,根据需要进行保存,也可直接存储为温度流,方便以后进行相关分析。 ,左键点击存温度流按钮,出现保存路径对话框,设置其保存路径。待完成需要的测量后,点击上图黑色方框停止记录,此时完成实验过程。 第六、对实验保存的温度流进行回放,首先断开热像仪,点击下图中的断开按钮,然后点击主界面上方菜单的回放下拉菜 单,,选择打开文件,寻找保存的.mgs为文件后缀名的文件,可通过回放菜单中的回放控制进行一些相应的设置(如选择循环播放等)。

20-红外热像仪的研究和使用实验

实验二十 红外热像仪的研究和使用 红外热像仪是一种利用红外线辐射而拍摄的摄像仪,热成像显示系统是一种处理热信息的微机处理系统。红外热像技术与X 射线,B 超,CT ,磁共振和核显像原理不同,它不主动发射任何射线,而只接受物体辐射出的“热”线——红外线,从而形成物体的“热”影象,是物体的三维“热”(温度)分布图象。热像处理技术在军事上运用很广,而且即有相当重要的地位,如,夜间跟踪目标,武器瞄准器等。但在民用上的运用是这几年的事,比如,医学上通过热拍摄来分析人体各部分的热分布,从而找出病变的部分;电学中对电路板上各元器件的热分布的合理性的研究,从而改善各元器件的分布结构等等。 【实验目的】 1. 熟悉热像仪的基本结构原理。 2. 学会使用热颜色处理热源的软件包。 3. 观察和分析电路板的热分布特性。 4. 描绘电路板的热分布图。 【实验原理】 自然界存在着一种不为人们所注意的客观现象,这就是任何物体都具有一定的温度,它们都是“热”的,所不同的只是热的程度有差异而已。在物理学中,热是用绝对温度来表示的(即用K 表示)。因此,上述现象又可表示为:自然界不存在绝对温度为零的物体。 绝对温度=摄氏温度+273 热与光,电,磁一样,具有辐射特性(热辐射),只是辐射波长有长短。将热,光,电,磁等的辐射,按其辐射波长的长短依次排列,便是人们熟知的波谱(图1)所示。 10-5 0.2 0.4 0.75 1.00 波长(μm ) 图1 红外线在波谱中的位置 热辐射又称红外辐射,这是因为其辐射波长的位置与可见的红光相临并在其外。红外辐射为英国科学家赫胥尔于1800年所发现。 物体的红外辐射波长与其自身温度有关,服从维恩定律: C T m =λ (1) 式中:λm-----物体红外辐射的峰值波长(um ) T ------物体的绝对温度(K ) C ------常数2898。 从式(1)中可看出,物体绝对温度越高,其辐射波长越短;反之亦然。 物体的绝对温度不仅决定了物体辐射的波长,而且也确定了物体的辐射出射度(单位

TiS系列红外热像仪使用说明书

TiS10, TiS20, TiS40, TiS45, TiS50, TiS55, TiS60, TiS65 Performance Series Thermal Imagers 用户手册July 2015 (Simplified Chinese) ? 2015 Fluke Corporation. All rights reserved. Specifications are subject to change without notice. All product names are trademarks of their respective companies.

有限保证和责任限制 在正常使用和维护条件下,Fluke 公司保证每一个产品都没有材料缺陷和制造工艺问题。保证期为从产品发货之日起二(2)年。部件、产品修理和服务的保证期限为 90 天。本项保证仅向授权零售商的原始买方或最终用户提供,并且不适用于保险丝和一次性电池或者任何被 Fluk e 公司认定由于误用、改变、疏忽、意外非正常操作和使用所造成的产品损坏。Fluke 公司保证软件能够在完全符合性能指标的条件下至少操作 90 天,而且软件是正确地记录在无缺陷的媒体上。Fluke 公司并不保证软件没有错误或无操作中断。 Fluke 公司仅授权零售商为最终客户提供新产品或未使用过产品的保证。但并未授权他们代表 Fluke 公司提供范围更广或内容不同的保证。只有通过 Fluke 授权 的销售商购买的产品,或者买方已经按适当的国际价格付款的产品,才能享受 Fluke 的保证支持。在一个国家购买的产品被送往另一个国家维修时,Fluke 公 司保留向买方收取修理/更换零部件的进口费用的权利。 Fluke 公司的保证责任是有限的,Fluke 公司可以选择是否将依购买价退款、免费维修或更换在保证期内退回到 Fluke 公司委托服务中心的有缺陷产品。 要求保修服务时,请与就近的 Fluke 授权服务中心联系,获得退还授权信息;然后将产品连同问题描述寄至该服务中心,并预付邮资和保险费用(目的地离岸价格)。Fluke 对运送途中发生的损坏不承担责任。在保修之后,产品将被寄回给买方并提前支付运输费(目的地交货)。如果 Fluke 认定产品故障是由于疏忽、误用、污染、修改、意外或不当操作或处理状况而产生,包括未在产品规定的额定值下使用引起的过压故障;或是由于机件日常使用损耗,则 Fluke 会估算修理费用,在获得买方同意后再进行修理。在修理之后,产品将被寄回给买方并预付运输费;买方将收到修理和返程运输费用(寄发地交货)的帐单。 本保证为买方唯一能获得的全部赔偿内容,并且取代所有其它明示或隐含的保证,包括但不限于适销性或适用于特殊目的的任何隐含保证。F LUKE 对任何特殊、间接、偶发或后续的损坏或损失概不负责,包括由于任何原因或推理引起的数据丢失。 由于某些国家或州不允许对隐含保证的期限加以限制、或者排除和限制意外或后续损坏本保证的限制和排除责任条款可能并不对每一个买方都适用。如果本保证的某些条款被法院或其它具有适当管辖权的裁决机构判定为无效或不可执行,则此类判决将不影响任何其它条款的有效性或可执行性。

优利德(UNI-T)UTi160A 红外热像仪使用

优利德(UNI-T)UTi160A 红外热像仪 优利德(UNI-T)UTi160A 红外热像仪 UTi160A红外热成像仪,以先进的UFPA非制冷焦平面红外探测器 和高质量的光学镜头为核心,结合方便快捷的操作系统、领先水平的 人体工学结构设计、功能完善的拓展配件,为适用用户打造了一款“成 像清晰、测量准确、操作简单、携带轻便”的理想测温工具,是现场 温度检测、预防性维护等应用场合的不二选择。 结构及外观 ● 直立式设计,符合手持式仪表的人体工学原理,易于“掌”握。 ● 可旋转式屏幕设计,即使检测不同角度的物体,轻转屏幕就可以 清晰的将测量结果呈现在用户面前。 ● 合理的按键布局,实现了真正意义上的“单手操作”。 ● 整机重量不到500克,携带及操作更轻便。 ● 核心部件:采用最先进的红外探测器和高质量的光学镜头,使得红外图像刷新更实时,显示更清晰;测温结果更准确,信

息更全面。 探测器类型:UFPA非制冷焦平面。 温度灵敏度:0.08℃@30℃。 工作波段:8-14um。 分辨率:160 x 120。 视场角:20°x 15°。 最小成像距离:0.1 m。 成像功能Array屏幕采用2.5寸TFT液晶显示屏。 图像帧频为50Hz,测量画面更流畅。 支持六种调色板,可满足不同行业/用户的需求。 热像仪拍摄的红外图像使得被测对象的温度分布情况一目了然, 根据被测对象温度分布的标准/经验值,再对比屏幕右侧的色标 图,用户可以快速判断出被测对象是否存在异常。 点测温功能:具备可移动点/最高/最低温度捕捉功能 使用可移动点,用户可以准确地获得图像中任意一点的温度读数 (数字形式)。使用最高/最低温度捕捉功能,用户在测量现场就可 以快速的知道被测对象的温度最高/最低点位置及其对应的温度读 数。这将更好的帮助用户在现场检测、分析并解决问题。

红外热像仪在工业制造领域的应用

红外热像仪在工业制造领域的应用 一、为何采用红外热像仪进行工业制造领域的诊断? 非接触红外热像仪采用先进的红外技术,快速、准确、方便、直观地显示被测物体表面温度场的分布,测量出物体的表面温度。不需要直接接触被测物体的表面,就能快速测试物体表面温度读数,并能可靠地测量热的、危险的或难以接触的物体表面温度。红外热像仪测量速度非常快,可以直观、连续地测试物体表面的温度变化。 红外热像仪能够展现可能错过的现场情况。在制造工厂,错过不仅仅意味着损失时间和成本,甚至可能会有人失去生命! 几十年来,从事预防性维护的专业人员、负责过程和质量保证的工程师都使用红外热像仪来解决棘手的问题和日常的维护工作。通常的检查目标包括电机、泵、传送机、电气连接和元器件,新设备安装,压力机修理,甚至厂房本身的结构情况。 二、红外热像仪可以对工业制造哪些方面进行故障诊断? 红外热像仪在测试物体表面温度突变时,具有其他仪器不可替代的作用。因此,红外热像仪在对工业制造设备进行故障诊断时,对容易产生温度突变和对温度变化敏感的工业设备零部件进行故障诊断,具有判断准确、快速、便捷的效果,主要应用表现在以下几个方面: ?塑胶工业的生产过程优化与质量控制 ?玻璃工业的生产过程优化与质量控制 ?造纸工业的生产过程优化与质量控制 ?食品行业的生产过程优化与质量控制

三、红外热像仪在塑胶、玻璃、造纸和食品工业设备的具体应用 1、塑胶工业的生产过程优化与质量控制 在塑胶工业的制造过程中,红外热成像系统被成功的应用在模具的温度分布状况分析与优化,部件成型的工艺流程控制。 2、玻璃工业(灯泡)的生产过程优化与质量控制 红外热像仪通过具有“穿透玻璃”和“玻璃表面”等测量滤片对包括生产过程(玻璃制造、玻璃珠测量、玻璃形态)以及最终制成品的测量。例如,卤素灯泡的温度测量与分析,以确保产品的质量合乎要求。通过选择镜头类型和成像速率,实现红外热像仪在玻璃制造过程对不同的工艺流程的优化。 同时,通过红外热像仪对车灯等玻璃模具加工、生产的温度控制,可控制并提高产品的生产质量。 模具和成型部件的温度温度分布 大型塑胶件脱模后的温度分布 一个专用挤压头的温度分布 橡胶挤出

红外热像仪使用说明

红外热像仪使用说明——泡罩包装机热封检测 随着红外技术的不断发展,红外热像仪被使用于越来越多的民生行业,。美国Fluke红外热像仪作为行业佼佼者,通过多年的推广和开发,已获得各领域工程师的广泛认可,此文通过真实案例和热图的解说介绍美国福禄克红外热像仪如何使用于泡罩包装机热封检测。 在存储药品片剂和部分食品的泡罩包装生产线中,上下的铝箔和硬片需要进行粘接剂的热压从而达到密封效果,热封的温度控制时保证包装密封性的关键参数,若温度没有达到工艺要求,则可能出现变质等严重质量问题,本文介绍使用热像仪检测平板热封设备的温度分布的应用,为药品和食品的质量提供保证。 什么是泡罩? 泡罩就是片剂药品和小颗粒食品(口香糖、糖果等)的外包装,也被称为“水泡眼”,该包装由3部分组成:PTP药用铝箔,药用PVC/PE/PVDC 塑料硬片或复合硬片,粘合剂。粘合剂的作用是在一定温度下把铝箔和硬片粘接起来,达到热封效果,从而起到保护内部药品或食品的作用。 泡罩包装工艺中是否有关于温度的检测要求? 粘合剂需要在一定的温度下才能达到热封强度,按照GBT12255-1990《药品包装用铝箔》标准,热封强度必须达到5.88牛顿/15mm,要满

足标准,除材料外,封合中温度的准确控制是关键因素。一般封合温度需要控制在140℃至170℃内,少部分特殊产品结合产线速度可能会有变化。 若达不到或超过工艺温度要求会有什么后果? 粘合剂的热封过程如果温度不够或超过,将达不到粘合剂的密封效果,主要有包装泄漏、热封强度不足、容易破损等问题发生,严重危害到内部存储的药品和食品的质量。 在泡罩包装机的热封中原先使用什么仪器进行温度检测和控制? 在封合板中预埋设热电偶或热电阻进行温度测控。 使用热电偶或热电阻进行检测有什么缺点,热像仪的优势在哪里?热电偶或热电阻只能检测到埋设部位的温度,无法检测封合板整体的温度分布,但封合板各部分的温度有可能不同,故使用热电偶或热电阻对某个点测温不能对整块封合板的热封质量进行有效检测;而使用红外热像仪可以瞬间拍摄整块封合板的温度分布热像图,并在软件中对检测的部位进行温度分析、比对,为改进和确保热封效果提供温度的依据。

指南︱选购科研用红外热像仪的七大须知

指南︱选购科研用红外热像仪的七大须知 致读者: 20世纪60年代中期,我们推出了首台商用红外热像仪。如今,我们已成为全球最大的红外热像仪生产商,拥有全世界最大的培训机构——红外技术培训中心(ITC)。FLIR凝聚了我们在红外热像仪领域50余年的经验和知识,编写成“选购科研用红外热像仪的七大须知”这一手册。我们坚信您定会从中受益,从而选购到性能最佳的研发用红外热像仪。 David C Bursell 科研事业部总监

简介 红外热像仪或热成像仪就是将红外辐射转化为可视图像,从而描绘物体或场景的温度变化。用户可通过非接触测量的形式测得目标物的温度,用于数据采集、分析和生成报告。使用红外热像仪进行数据查看、记录、分析和生成报告的过程称之为热成像技术。 热成像技术现已成为各种研发项目不可或缺的工具。市面有售的红外热像仪琳琅满目,价格与功能参差不齐,因此想正确选购一台满足特定应用的热像仪并非易事。 为了保证您现在和将来都能选购到满足自己使用需求的高质量红外热像仪,FLIR列出了选购研发用红外热像仪的七大须知。它能引导您明确项目需求,帮助您选择最符合特定应用的热像仪。基于7点建议的讨论通过指导您创建需求文件,帮助您缩小红外热像仪的选择范围,为您的最终选购指明方向。

第1点: 您要测量什么温度? 红外热像仪的常见应用就是测量所研究物体的温度变化。测量温度时需考虑的两点是:所测物体的温度范围和希望获得的温度分辨率。回答这两个问题将帮助您缩小选择范围,获得最适合您需求的红外热像仪和探测器类型。 温度范围: 温度范围即测量物体会有多冷或多热。这也可能就是您可以测得的最低或最高温度值。例如,您在拍摄停在跑道上的飞机的引擎。飞机机身的温度可能为25°C左右,而引擎的温度大约为500°C。所以您的温度范围大概是25°C到500°C,那么您就要选择能够一次拍摄到整个温度范围的热像仪系统。 温度分辨率: 温度分辨率是您需要测量的最小温度差,通常被称为红外热像仪的热灵敏度。基于不同的红外热像仪探测器类型,热像仪的热灵敏度可以在0.025 °C以下到0.075 °C以下之间。 红外热像仪的温度分辨率或灵敏度通常又称为噪音等效温差(NETD)。这一参数是红外热像仪能够检测到的高于其本底噪声的最小温度差。简言之,这就是您使用特定热像仪能够检测到的最小温差值。表1显示了不同型号红外热像仪的常见温度范围和温度分辨率。

红外热像仪在医疗领域的应用

红外热像仪在医疗领域的应用 标签:红外应用疾病诊断温度 人体是一个天然红外辐射源,它不断地向周围空间发散红外辐射能。其红外辐射波波段在5-50um之间,峰值在8-13um附近。当人体患病时,人体的全身或局部的热平衡受到破坏,在临床上多表现为人体组织温度的升高或高低。因此测定人体体温的变化是临床医学诊断疾病的一项重要指标。 红外热像仪可以显示和记录人体的温度分布,并将病变时的人体热像和正常生理状态下的人体热像进行比较,通过比较差别来判断病理状态,与精密的解剖学相比,热成像系统在反映人体体温的改变以及新陈代谢的进程方面有着常规检测手段无法替代的特性。 医用红外热成像技术检查应用的是人体自身皮肤辐射出的红外线,是绝对被动和不伤害人体的,其用于临床诊断有几十年的历史,现已用于多种疾病的诊断。 针对红外热像仪在医用红外热像仪的应用情况主要作以下简要介绍: 代谢性疾病(糖尿病)的诊断 糖尿病是典型的一种代谢功能性疾病,和人体体温有着密切的联系,使用医用红外热像仪诊断糖尿病显然比平常的血糖值化验方法更可靠。糖尿病的代谢功能异常多发生在微循环部位,通过使用施加温度负荷的方法,可以在短时间内诱发异常的功能状况,将体内的代谢功能异常状况通过温度变化诱发到体表。当然,体表温度也受到各种周围环境的影响,因此测量过程中要对环境和测量结果进行正确处理,以得出正确的代谢性疾病结论数据。 乳腺瘤的早期诊断 一般来说,健康妇女两侧乳房的热像图是对称的,任何乳房热图的不对称性往往与疾病和细胞活性有关,更多地可能与肿瘤有关。恶性肿瘤周围血管丰富,细胞反应活跃,其温度大多高于正常组织。实验表明,肿瘤组织代谢旺盛,供血丰富,热量从局部向外辐射。使用热像仪探测乳腺癌优势明显。

最新YRH600红外热像仪说明书及参数详情精编版

2020年Y R H600红外热像仪说明书及参数 详情精编版

YRH600矿用本质安全型红外热像仪 说 明 书

山东中煤工矿物资集团有限公司 一、产品简介 轻巧方便,设计符合人体工程学;防闪电路和特殊封装,在矿井下不会引起火花;最高温度/最低温度点自动捕捉,可自定义捕捉的范围;内置大容量闪存卡,可直接通过视频接口与电视连接,得到实时画面;优异的热成像质量和精确的温度测量;声光温度报警;内置激光指示器等。 二、工作原理 红外热像仪是指能够检测电磁波光谱在红外波段的辐射,并能将不可见的红外辐射变成包含温度数据的可视图片的检测设备。T.E.L梁.152兆.1537敏7751

三、本产品与红外测温仪的区别

红外测温仪是指能够检测电磁波光谱在红外波段的辐射,并能将不可见的红外辐射变成直观的温度数据的检测设备。 红外测温仪与红外热像仪最大的区别在于:成像和测温的精确性。 注:电磁波谱:自然界中有各种各样的电磁辐射,每种电磁辐射都拥有不同的波长和振动频率,它们一起组成了电磁光谱。人眼所能感觉到的可见光只是波谱中的一部分。除此之外,还有我们现在比较熟悉的红外线,紫外线等。 电磁波谱可任意划分成许多波长范围,这些波长范围我们称为“波段”。从电磁波谱上可以看到人眼所能感知的可将光的波段为380nm到780nm,而红外光的波段从780nm到1mm。 本产品的响应波长为8~14微米(um)。 四、规格参数 型号YRH600 探测器 类型非制冷焦平面 响应波长8~14um(微米) 分辨率160×120 性能 温度分辨率0.1℃@30℃ 视场角 20°×15° 最小焦距 0.1m

红外线热像仪在建筑节能检测中的应用

红外线热像仪在建筑节能检测中的应用 摘要:红外热成像技术是利用红外热成像仪把物体所辐射出的不可见红外辐射能量转换成可见的温度场图像,用不同颜色表示不同的温度的技术。近年来,红外热成像技术在建筑工程的节能保温领域得到了广泛的应用,涉及到热工缺陷、保温材料缺失、气密性等诸多领域。 关键字:红外线热像仪;建筑节能;检测;应用 一、红外线热像仪工作原理 红外线是一种电磁波,具有与无线电波和可见光一样的本质。红外线的发现是人类对自然认识的一次飞跃。利用某种特殊的电子装置将物体表面的温度分布转换成人眼可见的图像,并以不同颜色显示物体表面温度分布的技术称之为红外热成像技术,这种电子装置称为红外热像仪,红外热成像仪大致分为致冷型和非致冷型两大类。 红外热像仪可将人眼无法看到的红外辐射能量转换为电信号,并以备种不同的颜色来表示不同温度分布的可视图像显示出来。这些可视的数据信号可以协助人们查找温度异常点,从而在故障未发生之前发现故障隐患,识别设备或系统的潜在问题。 任何温度高于绝对零度的物体,都在不断地向周围辐射红外线。它所辐射的各种波长红外线能量的总和既与物体的绝对温度T的4次方成正比,也与黑体辐射系数成Cb正比,即:。 二、红外线热像仪的应用现状 热像仪在军事和民用方面都有广泛的应用。随着热成像技术的成熟以及各种低成本适于民用的热像仪的问世,它在国民经济各部门发挥的作用也越来越大。在工业生产中,许多设备常用于高温、高压和高速运转状态,应用红外热成像仪对这些设备进行检测和监控,既能保证设备的安全运转,又能发现异常情况以便及时排除隐患。同时,利用热像仪还可以进行工业产品质量控制和管理。此外,红外热像仪在医疗、治安、消防、考古、交通、农业和地质等许多领域均有重要的应用。如建筑物漏热查寻、森林探火、火源寻找、海上救护、矿石断裂判别、导弹发动机检查、公安侦察以及各种材料及制品的无损检查等。 目前,世界上最先进的红外热像仪(热成像仪或红外热成像仪),其温度灵敏度可达0.03℃。红外热像仪的应用范围愈来愈广泛,在科研领域的主要应用包括:汽车研究发展-射出成型、模温控制、刹车盘、引擎活塞、电子电路设计、烤漆;电机、电子业-印制电路板热分布设计、产品可靠性测试、电子零组件温度测试、笔记本电脑散热测试、微小零组件测试;引擎燃烧试验风洞实验;目标物特征分析;复合材料检测;建筑物隔热、受潮检测;热传导研究;动植物生态

相关主题
文本预览
相关文档 最新文档