当前位置:文档之家› 凸优化理论与应用

凸优化理论与应用

凸优化理论与应用
凸优化理论与应用

五种最优化方法

五种最优化方法 1.最优化方法概述 1.1最优化问题的分类 1)无约束和有约束条件; 2)确定性和随机性最优问题(变量是否确定); 3)线性优化与非线性优化(目标函数和约束条件是否线性); 4)静态规划和动态规划(解是否随时间变化)。 1.2最优化问题的一般形式(有约束条件): 式中f(X)称为目标函数(或求它的极小,或求它的极大),si(X)称为不等式约束,hj(X)称为等式约束。化过程就是优选X,使目标函数达到最优值。 2.牛顿法 2.1简介 1)解决的是无约束非线性规划问题; 2)是求解函数极值的一种方法; 3)是一种函数逼近法。 2.2原理和步骤

3.最速下降法(梯度法) 3.1最速下降法简介 1)解决的是无约束非线性规划问题; 2)是求解函数极值的一种方法; 3)沿函数在该点处目标函数下降最快的方向作为搜索方向; 3.2最速下降法算法原理和步骤

4.模式搜索法(步长加速法) 4.1简介 1)解决的是无约束非线性规划问题; 2)不需要求目标函数的导数,所以在解决不可导的函数或者求导异常麻烦的函数的优化问题时非常有效。 3)模式搜索法每一次迭代都是交替进行轴向移动和模式移动。轴向移动的目的是探测有利的下降方向,而模式移动的目的则是沿着有利方向加速移动。 4.2模式搜索法步骤

5.评价函数法 5.1简介 评价函数法是求解多目标优化问题中的一种主要方法。在许多实际问题中,衡量一个方案的好坏标准往往不止一个,多目标最优化的数学描述如下:min (f_1(x),f_2(x),...,f_k(x)) s.t. g(x)<=0 传统的多目标优化方法本质是将多目标优化中的各分目标函数,经处理或数学变换,转变成一个单目标函数,然后采用单目标优化技术求解。常用的方法有“线性加权和法”、“极大极小法”、“理想点法”。选取其中一种线性加权求合法介绍。 5.2线性加权求合法 6.遗传算法 智能优化方法是通过计算机学习和存贮大量的输入-输出模式映射关系,进

凸优化——无约束问题的梯度方法

第三周读书笔记 1. 牛顿法 Pure Newton's Method 在上一章中具体讨论了梯度方法,该类方法只应用了一阶最优条件的信息,即梯度。此外,在讨论标度梯度法时还简单地讨论到Newton方法,该类方法进一步地应用到二阶最优条件地信息,即Hessian矩阵。该章重点介绍牛顿法,与梯度方法利用梯度进行新点迭代的方法不同,牛顿法的点更新方法如下:若假设函数在处的Hessian矩阵是正定矩阵,即。那上面的最小化问题有唯一的稳定点,也是全局最小点: 其中,向量也被称作牛顿方向,利用以上更新公式进行迭代的方法也被称作纯粹牛顿方法。算法流程图如下: 牛顿法要求在每次更新处的Hessian矩阵为正定矩阵。或者我们可以放宽一点条件——即在定义域内的任意点处的Hessian矩阵均为正定,这说明了存在一个唯一的最优解。但是,这并不能保证算法的收敛性。 事实上,牛顿法在某些假设下具备很好的收敛性能(称局部二次收敛)——令在上二阶连续可导,假设: 存在,对任意有 存在,对任意,有 令是牛顿方法得到的序列,是在上唯一最小值。那么对任意,以下不等式成立: 此外,如果,那么

证明如下: 事实上,对于某些不满足上述条件(正定、李普希兹连续)的优化问题,牛顿方法也能表现出收敛性。但是,总的来说,当缺少这些严格假设时收敛性无法得到保障。为了解决即使在Hessian矩阵正定也无法保障牛顿法的收敛性问题下,进一步地提出一种步长解决方案,即阻尼牛顿法。 阻尼牛顿法 在纯粹牛顿法的基础上,我们在进行迭代更新时,重新加入步长选择机制,如利用回溯法进行步长选择的阻尼牛顿法,算法流程如下:

cholesky分解 这一小节是针对前部分的补充知识——在利用牛顿法解决相关优化问题的时候,我们会遇到判断Hessian矩阵是否正定,以及求解线性系统的问题,这两个问题都可以通过cholesky分解来解决。 给定一个的正定矩阵,cholesky分解的形式为,其中是一个的下三角矩阵且其对角元素为正数。一般利用cholesky分解去解决线性系统分为以下两步: 1. 找到的解 2. 找到的解 可以通过一个简单的递推公式计算cholesky因子。如下:

最优化方法及其应用 - 更多gbj149 相关pdf电子书下载

最优化方法及其应用 作者:郭科 出版社:高等教育出版社 类别:不限 出版日期:20070701 最优化方法及其应用 的图书简介 系统地介绍了最优化的理论和计算方法,由浅入深,突出方法的原则,对最优化技术的理论作丁适当深度的讨论,着重强调方法与应用的有机结合,包括最优化问题总论,线性规划及其对偶问题,常用无约束最优化方法,动态规划,现代优化算法简介,其中前八章为传统优化算法,最后一章还给出了部分优化问题的设计实例,也可供一般工科研究生以及数学建模竞赛参赛人员和工程技术人员参考, 最优化方法及其应用 的pdf电子书下载 最优化方法及其应用 的电子版预览 第一章 最优化问题总论1.1 最优化问题数学模型1.2 最优化问题的算法1.3 最优化算法分类1.4

组合优化问題简卉习题一第二章 最优化问题的数学基础2.1 二次型与正定矩阵2.2 方向导数与梯度2.3 Hesse矩阵及泰勒展式2.4 极小点的判定条件2.5 锥、凸集、凸锥2.6 凸函数2.7 约束问题的最优性条件习题二第三章 线性规划及其对偶问题3.1线性规划数学模型基本原理3.2 线性规划迭代算法3.3 对偶问题的基本原理3.4 线性规划问题的灵敏度习题三第四章 一维搜索法4.1 搜索区间及其确定方法4.2 对分法4.3 Newton切线法4.4 黄金分割法4.5 抛物线插值法习题四第五章 常用无约束最优化方法5.1 最速下降法5.2 Newton法5.3 修正Newton法5.4 共轭方向法5.5 共轭梯度法5.6 变尺度法5.7 坐标轮换法5.8 单纯形法习題五第六章 常用约束最优化方法6.1外点罚函数法6.2 內点罚函数法6.3 混合罚函数法6.4 约束坐标轮换法6.5 复合形法习题六第七章 动态规划7.1 动态规划基本原理7.2 动态规划迭代算法7.3 动态规划有关说明习题七第八章 多目标优化8.1 多目标最优化问题的基本原理8.2 评价函数法8.3 分层求解法8.4目标规划法习题八第九章 现代优化算法简介9.1 模拟退火算法9.2遗传算法9.3 禁忌搜索算法9.4 人工神经网络第十章 最优化问题程序设计方法10.1 最优化问题建模的一般步骤10.2 常用最优化方法的特点及选用标准10.3 最优化问题编程的一般过程10.4 优化问题设计实例参考文献 更多 最优化方法及其应用 相关pdf电子书下载

凸优化理论与应用-暑期学习总结

“凸优化理论与应用”暑期学校学习总结 一、专家介绍 Stephen Boyd:斯坦福大学教授,曾多次来哈尔滨工业大学控制理论与制导技术研究中心开展学术讲座和交流活动。讲课全部是英文,很开朗。 段广仁:哈尔滨工业大学教授,曾于外国留学,讲了一口流利的英语,和Stephen Boyd教授交流时全部是英语。 谭峰:段广仁的学生,曾去Stephen Boyd教授那里做一年博后,然后回国,现在就职于哈尔滨工业大学,讲师。所以此次由她给大家做辅导。 二、课程安排 7.13上午8:15-9:15 开幕。段广仁老师对于本次暑期学校开展、Stephen Boyd、 谭峰以及幕后的工作人员做了简单的介绍,谈了课程的变 动的原因以及可能给我们加课等事宜。 9:30-11:00讲座1(Lecture 1) Stephen Boyd 教授。 7.14上午8:15-9:15 谭峰博士对于前一天Stephen Boyd 教授讲的知识的一个 回顾。 9:30-11:00讲座2(Lecture 2) Stephen Boyd 教授。 下午14:00-15:00讲座3(Lecture 3)Stephen Boyd 教授。 7.15上午8:15-9:15 谭峰博士。 9:30-11:00讲座4(Lecture 4) Stephen Boyd 教授。 7.16上午8:15-9:15 谭峰博士。 9:15-9:30 所有人一起拍一张照片。 9:30-11:00讲座5(Lecture 5) Stephen Boyd 教授。 三、主要知识 1.凸优化相应理论. 本部分一共有8章,老师只用了两节课共3个小时就讲完了。这部分的内容虽然我很认真的听了,也只能知道一点概况,说实话想学明白还需要以后投入大量的时间精力。 1.1 绪论 此部分介绍了在现实生活中存在的凸优化问题,最小二乘,线性规划,凸优化问题等。 1.2. 凸集 在此部分介绍了凸集里包含的集合的形式,如仿射集、凸集、凸锥、超平面

《最优化方法与应用》实验指导书

《最优化方法与应用》 实验指导书 信息与计算科学系编制

1 实验目的 基于单纯形法求解线性规划问题,编写算法步骤,绘制算法流程图,编写单纯形法程序,并针对实例完成计算求解。 2实验要求 程序设计语言:C++ 输入:线性规划模型(包括线性规划模型的价值系数、系数矩阵、右侧常数等) 输出:线性规划问题的最优解及目标函数值 备注:可将线性规划模型先转化成标准形式,也可以在程序中将线性规划模型从一般形式转化成标准形式。 3实验数据 123()-5-4-6=Min f x x x x 121231212320 324423230,,03-+≤??++≤??+≤??≥? x x x x x x st x x x x x

1 实验目的 基于线性搜索的对分法、Newton 切线法、黄金分割法、抛物线法等的原理及方法,编写算法步骤和算法流程图,编写程序求解一维最优化问题,并针对实例具体计算。 2实验要求 程序设计语言:C++ 输入:线性搜索模型(目标函数系数,搜索区间,误差限等) 输出:最优解及对应目标函数值 备注:可从对分法、Newton 切线法、黄金分割法、抛物线法中选择2种具体的算法进行算法编程。 3实验数据 2211 ()+-6(0.3)0.01(0.9)0.04 = -+-+Min f x x x 区间[0.3,1],ε=10-4

实验三 无约束最优化方法 1实验目的 了解最速下降法、牛顿法、共轭梯度法、DFP 法和BFGS 法等的基本原理及方法,掌握其迭代步骤和算法流程图,运用Matlab 软件求解无约束非线性多元函数的最小值问题。 2实验要求 程序设计语言:Matlab 针对实验数据,对比最速下降法、牛顿法、共轭梯度法、DFP 法和BFGS 法等算法,比较不同算法的计算速度和收敛特性。 3实验数据 Rosenbrock's function 222211()(100)+(1-)=-Min f x x x x 初始点x=[-1.9, 2],,ε=10-4

最优化方法及应用

陆吾生教授是加拿大维多利亚大学电气与计算机工程系 (Dept. of Elect. and Comp. Eng. University of Victoria) 的正教授, 且为我校兼职教授,曾多次来我校数学系电子系讲学。陆吾生教授的研究方向是:最优化理论和小波理论及其在1维和2维的数字信号处理、数字图像处理、控制系统优化方面的应用。 现陆吾生教授计划在 2007 年 10-11 月来校开设一门为期一个月的短期课程“最优化理论及其应用”(每周两次,每次两节课),对象是数学系、计算机系、电子系的教师、高年级本科生及研究生,以他在2006年出版的最优化理论的专著作为教材。欢迎数学系、计算机系、电子系的研究生及高年级本科生选修该短期课程,修毕的研究生及本科生可给学分。 上课地点及时间:每周二及周四下午2:00开始,在闵行新校区第三教学楼326教室。(自10月11日至11月8日) 下面是此课程的内容介绍。 ----------------------------------- 最优化方法及应用 I. 函数的最优化及应用 1.1 无约束和有约束的函数优化问题 1.2 有约束优化问题的Karush-Kuhn-Tucker条件 1.3 凸集、凸函数和凸规划 1.4 Wolfe对偶 1.5 线性规划与二次规划 1.6 半正定规划 1.7 二次凸锥规划 1.8 多项式规划 1.9解最优化问题的计算机软件 II 泛函的最优化及应用 2.1 有界变差函数 2.2 泛函的变分与泛函的极值问题 2.3 Euler-Lagrange方程 2.4 二维图像的Osher模型 2.5 泛函最优化方法在图像处理中的应用 2.5.1 噪声的消减 2.5.2 De-Blurring 2.5.3 Segmentation ----------------------------------------------- 注:这是一门约二十学时左右的短期课程,旨在介绍函数及泛函的最优化理论和方法,及其在信息处理中的应用。只要学过一元及多元微积分和线性代数的学生就能修读并听懂本课程。课程中涉及到的算法实现和应用举例都使用数学软件MATLAB 华东师大数学系

最优化方法及其应用课后答案

1 2 ( ( 最优化方法部分课后习题解答 1.一直优化问题的数学模型为: 习题一 min f (x ) = (x ? 3)2 + (x ? 4)2 ? g (x ) = x ? x ? 5 ≥ ? 1 1 2 2 ? 试用图解法求出: s .t . ?g 2 (x ) = ?x 1 ? x 2 + 5 ≥ 0 ?g (x ) = x ≥ 0 ? 3 1 ??g 4 (x ) = x 2 ≥ 0 (1) 无约束最优点,并求出最优值。 (2) 约束最优点,并求出其最优值。 (3) 如果加一个等式约束 h (x ) = x 1 ? x 2 = 0 ,其约束最优解是什么? * 解 :(1)在无约束条件下, f (x ) 的可行域在整个 x 1 0x 2 平面上,不难看出,当 x =(3,4) 时, f (x ) 取最小值,即,最优点为 x * =(3,4):且最优值为: f (x * ) =0 (2)在约束条件下, f (x ) 的可行域为图中阴影部分所示,此时,求该问题的最优点就是 在约束集合即可行域中找一点 (x 1 , x 2 ) ,使其落在半径最小的同心圆上,显然,从图示中可 以看出,当 x * = 15 , 5 ) 时, f (x ) 所在的圆的半径最小。 4 4 ?g (x ) = x ? x ? 5 = 0 ? 15 ?x 1 = 其中:点为 g 1 (x ) 和 g 2 (x ) 的交点,令 ? 1 1 2 ? 2 求解得到: ? 4 5 即最优点为 x * = ? ?g 2 (x ) = ?x 1 ? x 2 + 5 = 0 15 , 5 ) :最优值为: f (x * ) = 65 ?x = ?? 2 4 4 4 8 (3).若增加一个等式约束,则由图可知,可行域为空集,即此时最优解不存在。 2.一个矩形无盖油箱的外部总面积限定为 S ,怎样设计可使油箱的容量最大?试列出这个优 化问题的数学模型,并回答这属于几维的优化问题. 解:列出这个优化问题的数学模型为: max f (x ) = x 1x 2 x 3 ?x 1x 2 + 2x 2 x 3 + 2x 1x 3 ≤ S

凸优化和机器学习

(1) 如果中任意两点之间的线段任在中,那么集合被称为凸集。即对任意和满足的都有 (2) 函数是凸函数,则是凸集,且对于任意在任 下有

的问题,其中为凸函数。也就是说,凸优化问题是指需要最小化的函数(代价函数)是凸函数,而且定义域为凸集的问题。 3.凸优化问题的一般求解方法 有些凸优化问题比较简单,是可以直接求解的,譬如二次规划,这里不做说明。求解凸优化问题,就要利用该问题的“凸”性——只要我一直朝着代价函数减小的方向去,那么我一定不会走错!这就是下降方法的基本思想。 《convex optimization》这本书中,将凸优化问题分为无约束优化、等式约束优化和不等式约束优化分别介绍了其算法,然其本质并无区别。下降方法即产生一优化点列其中 并且。此处表示迭代的步长(比例因子),表示的是搜索方向(搜索步径)。下降方法指只要不是最优点,成立。以下内容均来自Stephen Boyd 的《convex optimization》及其中文译本。 搜索步径 一旦确定了搜索方向,那么我们可以通过求解得到搜索步径,当求解该问题成本较低时,可以采用该方法。该方法称为精确直线搜索。 然而实践中一般采用非精确直线搜索方法,譬如回溯直线搜索。算法如下图:

下降方向 在各个领域都广为应用的LMS算法也称为随机梯度算法(LMS算法和这里算法的区别和联系应该会另写一篇)。用负梯度作为下降的方向是一种和自然的选择,此外还有Newton方法。而最速下降方法是定义出的在某一特定范数下的方法。梯度下降和Netwon方法分别是二次范数和Hessian 范数下的最速下降方法。算法的收敛性和Hessian矩阵有关,此处不详细说明。 等式约束 对于标准的凸优化问题,等式约束是仿射的,这也就意味着该优化问题的定义域是一个向量子空间。一个自然的想法是在这个空间内进行下降,这种想法被证明是可行的。根据初始迭代点的兴致,可以分为两类。 (1)初始点可行:在可行域内迭代 (2)初始点不可行:迭代过程中逐步靠近可行域 不等式约束 如果我们不能解决一个问题,那么就消除这个问题。 采用示性函数可以将不等式约束隐含在代价函数中,这里带来的问题是——代价函数非凸。障碍方法被引入以解决这个问题。(内点法)这样,不等式约束就变成了等式约束或是无约束的情况了。 如果,我不知道该怎么选择搜索方向?

最优化求解法在实际问题中的应用

本科毕业论文 (2014届) 题目:最优化求解法在实际问题中的应用学院:计算机与科学技术学院 专业:数学与应用数学 班级:10数本班 学号:1006131084 姓名:严慧 指导老师:孙钢钢

目录 1.摘要 (3) 2.关键字 (3) 3.引言 (3) 4.最优化求解法在实际问题中的应用 (4) 4.1.无约束最优化问题的求解............................................... ....... 4.2.有约束最优化问题的求解............................................... ....... 4.3.线性规划问题的求解............................................... ........... ... 4.4.非线性规划问题的求解............................................... ........... 5.结束语................................................................................................参考书目

1.摘要:本文介绍最优化及相关知识在实际生活中的应用,主要是利用运筹 学来研究解决在实际生活中所遇到的一些问题,找到最优的解决方案,帮助人们提供最好的最有科学依据的最佳方法。 2.关键字:最优化,运筹学,生活,应用。 Abstract:This paper introduced the Optimization in the real life application,this is use of Operations research to solve the problem in real life,finding the best solution,and provide the best and scientifically valid solution to the people . Key words: Optimization, Operations research, life, application. 3.引言 随着社会迅速发展,各行各业中的竞争日益激烈,我们日常生活中好多事情都会牵扯到最优化,比如运输成本问题、效益分配问题等等。 什么是数学最优化问题,就是利用合理的安排和规划在一件事情或者问题上取得利润最大,时间最少,路线最短,损失最少的方法。所以最优化解决方法对实际生活现实社会的帮助作用很大。现如今,最优化解决问题已经渗透到生活中的方方面面。 一个好的决策也许会让你绝处逢生,反败为胜,譬如中国历史上田忌赛马的故事,田忌的聪明之处在于在已有的条件下,经过策划安排,选择了最好的方案,所以最后就是自己看似劣势也能取胜,筹划是非常重要的,这就是运筹学的魅力。 我们在中国的古代史上就可以看到中国古人已经具有很好的运筹学思想了,在战争中,两兵交战,各方都会有自己的军师,历史上有很多著名的军师,比如诸葛亮,刘伯温等。他们在战争中所起到的作用就是“运筹于帷幄之中,决胜于千里之外”,运筹学二字也是来源于此,了解敌方的军情,以此做出相应的对策,筹划最佳作战计划,做到“知己知彼百战不殆”,历史上也不乏一些以少胜多以弱胜强的战争,由此可见运筹学在军事中的力量有多强大。 现代社会中运筹学不仅在军事方面发挥着重要作用,同样在企业经营管理方面也是非常重要的,最优化理论最早是在工业领域产生的,它的对象可以是产

凸优化理论

第一章凸集 1、仿射集 1.1、定义:任意以及都有; 直观上,如果两点在仿射集内,那么通过任意两点的直线位于其内; 1.2、仿射集的关联子空间: 如果是仿射集,且,则集合是一个子空间(关于加法和数乘封闭),因此仿射集可以表示为一个子空间加上一个偏移,,可以是C中任意一点;定义C的维数为子空间V的维数(向量基的个数); 1.3、线性方程组的解集: 等价于仿射集且其关联的子空间是就是的的零空间即; 1.4、仿射组合: 如果,称为的仿射组合; 如果是仿射集,,且,那么; 集合C是仿射集集合包含其中任意点的仿射组合; 1.5、仿射包: 集合C中的点的所有仿射组合组成的集合记为C的仿射包 ,;仿射包是包含的最小的仿射集合; 1.6、仿射维数: 集合仿射维数为其仿射包维数, 即仿射包相关联子空间的维数,即是其子空间最大线性无关基; 如果集合的仿射维数小于n ,那么这个集合在仿射集合中; 1.7、集合相对内部: 定义为的内部,记为,即; 集合内部:由其内点构成,内点为; 1.8、集合的相对边界: 集合C的相对边界定义为,为C的闭包; 集合C的边界定义为; ------------------------------------------------------------------------------------------------------------------------------ 2.凸集: 如果,,,都有; 直观上,如果两点在凸集内,则两点间的线段也在凸集内;仿射集是凸集; 2.1、凸组合: 如果,,,称为的凸组合; 点的凸组合可以看做他们的混合或加权平均,代表混合时所占的份数。 如果点在凸集内,则它们的凸组合仍在凸集内; C是凸集集合包含其中所有点的凸组合; 2.2、集合的凸包: 集合C中所有点的凸组合,; C的凸包是包含C的最小凸集; 2.3、无穷级数的凸组合: 假设,,,并且,,、、,为凸集,

“凸优化”教学大纲

“凸优化”教学大纲 ?基本目的: 近年来,随着科学与工程的进步,凸优化理论与方法的研究迅猛发展,在科学与工程计算,数据科学,信号和图像处理,管理科学等诸多领域中得到了广泛应用。通过本课程的学习,掌握凸优化的基本概念,对偶理论,典型的几类凸优化问题的判别及其计算方法,熟悉相关计算软件 ?课程对象: 高年级本科生和研究生。 ?教材: (1)Stephen Boyd and Lieven Vandenberghe, Convex optimization, Cambridge University Press, 2004 参考书 (2)Jorge Nocedal and Stephen Wright, Numerical Optimization, Springer, 2006 (3)袁亚湘,孙文瑜,最优化理论与方法,科学出版社,2003 ?内容提要和学时分配: 1. 凸优化简介, 3学时 课程简介,凸优化问题介绍 2. 凸集,凸函数, 3学时 凸集和凸函数的定义和判别 3. 数值代数基础, 3学时 向量,矩阵,范数,子空间,Cholesky分解,QR分解,特征值分解,奇异值分解 4. 凸优化问题, 6学时 典型的凸优化问题,线性规划和半定规划问题 5. 凸优化模型语言和算法软件,3学时 模型语言:AMPL, CVX, YALMIP; 典型算法软件: SDPT3, Mosek, CPLEX, Gruobi 6. 对偶理论, 3学时 对偶问题的转换和对偶理论 7. 梯度法和线搜索算法,3学时 最速下降法及其复杂度分析,线搜索算法,Barzilar-Borwein 方法 8. 近似点梯度法, 3学时

最优化方法在化学工程中到的应用

最优化方法在化学工程中到的应用 摘要:随着高新技术、信息技术及计算机领域的飞速发展,最优化在众多领域的应用日益广泛,涉及问题的规模越来越大,复杂程 度越来越高。最优化方法主要运用数学方法研究各种系统的优化途径及方案,为决策者提供科学决策的依据。其目的在于针对所研究的系统,求得一个合理运用人力、物力和财力的最佳方案,发挥和提高系统的效能及效益,最终达到系统的最优目标。随着最优化理论的发展,最优化模型和算法的不断完善、创新,如遗传算法、神经网络的建立,进一步为建立可靠模型、精确求解铺平道路。在化工生产与产品销售过程中,最优化的踪迹更是无处不在,如生产设备最优化、生产流程最优化、运输管道最优化、产品利润最优化,以及涉及相关化学实验、化学反应动力学的最优化模型。最优化方法的日益成熟使化工生产低投入高产出得以实现,节约了资源提高了效率,降低了污染。而一系列最优化软件,如Matlab、lingo等在化工过程中得到了广泛应用。关键词:最优化;化学工程;应用现状;管网 最优化方法(也称运筹学方法)是近几十年形成的,主要运用数学方法研究各种系统的优化途径及方案,为决策者提供科学决策的依据[1]。随着科学技术,尤其是计算机技术发展,最优化方法已经在各个领域,如化学工程、生化工程、机械工程、土木工程、经济管理等,得到越来越广泛的运用[2]。化工过程系统最优化设计的研究在

过去二三十年中取得了很大的进展,这主要得益于计算及技术的发展,计算机的应用不仅仅体现在为大规模数值问题的处理提供了强有力 的工具, 而更多地体现在为过程设计的经验和艺术插上了数字化的 翅膀.大约在十多年前, 当大规模数学规划方法的实施仍面临一系列 问题时, 在过程设计领域中一种新引入的概念方法一专家系统以及 由此而引申的人工智能方法在解决实际问题上表现出的优势, 引起 了人们的关注目前基于知识和规则的智能系统研究取得了很大的进展, 基于经验、工况分析以及逐渐演进方法等的设计过程也越来越多地由计算机完成, 应用知识和经验规则进行过程设计的计算机辅助 系统逐步趋于完善, 特别是针对更加复杂(例如同时考虑环境影响以 及安全性)的大规模过程系统设计问题, 这些方法仍会有很好的应用 前景。 化工生产遍布现代生活的方方面面,涉及生活用品、工业材料、油气能源,不一而足。化工过程是一个由原料到产品的过程,其中包含物质的转化与能量的传递,而节能省材一直是工业生产的目标之一;化学反应需要在特定的反应设备里进行,怎样设计反应器,使其既能满足生产要求又能高效率的利用资源,是化工设计者的设计原则;原料、产物与成品的输送需要管线,适当的管路管道尺寸的选择,管道的成本;产量的设定,产品的销售等这一系列问题都需要最优化选择,而最优化算法从建立模型、求解方法方面使这一系列决策尽可能达到最理想结果,以下将对最优化方法在化工过程各个部分的应用作简要介绍。针对化学工程,最优化方法主要应用领域包括“三传一反”过

最优化方法及其应用

最优化方法及其应用

第一章 最优化问题总论 无论做任何一件事,人们总希望以最少的代价取得最大的效益,也就是力求最好,这就是优化问题.最优化就是在一切可能的方案中选择一个最好的方案以达到最优目标的学科.例如,从甲地到乙地有公路、水路、铁路、航空四种走法,如果我们追求的目标是省钱,那么只要比较一下这四种走法的票价,从中选择最便宜的那一种走法就达到目标.这是最简单的最优化问题,实际优化问题一般都比较复杂. 概括地说,凡是追求最优目标的数学问题都属于最优化问题.作为最优化问题,一般要有三个要素:第一是目标;第二是方案;第三是限制条件.而且目标应是方案的“函数”.如果方案与时间无关,则该问题属于静态最优化问题;否则称为动态最优化问题. §1.1 最优化问题数学模型 最简单的最优化问题实际上在高等数学中已遇到,这就是所谓函数极值,我们习惯上又称之为经典极值问题. 例1.1 对边长为a 的正方形铁板,在四个角处剪去相等的正方形以制成方形无盖水槽,问如何剪法使水槽的容积最大? 解 设剪去的正方形边长为x ,由题意易知,与此相应的水槽容积为 x x a x f 2 )2()(-=. 令 0)6)(2()2()2)(2(2)('2 =--=-+--=x a x a x a x x a x f , 得两个驻点: a x a x 6 121== ,.

第一个驻点不合实际,这是因为剪去4个边长为2 a 的正方形相当于将铁板全部剪去.现在来判断第二个驻点是否为极大点. ∵ a x f 824)(''-=, 4)6 (''<-=a a f , ∴ 6 a x = 是极大点. 因此,每个角剪去边长为6 a 的正方形可使所制成的水槽容积最大. 例 1.2 求侧面积为常数)0(62 >a a ,体积最大的长方体体积. 解 设长方体的长、宽、高分别为z y x ,, 体积为v ,则依题意知体积为 xyz z y x f v ==)(,,, 条件为 06)(2)(2 =-++=a xy xz yz z y x ,,?. 由拉格朗日乘数法,考虑函数 )6222()(2 a xy xz yz xyz z y x F -+++=λ,,, 2()02()02()0x y z F yz y z F xz z x F xy x y λλλ'=++='=++='=++=,, , 由题意可知z y x ,, 应是正数,由此0≠λ,将上面三个等式分别乘以z y x ,, 并利用条件2 3a xy zx yz =++,得到 22 22(3)02(3)02(3)0xyz a yz xyz a zx xyz a xy λλλ?+-=?+-=??+-=? ,,. 比较以上三式可得 xy a zx a yz a -=-=-222333, 从而a z y x ===.又侧面积固定的长方体的最大体积客观存在,因此侧面积固定的长方体中以正方

最优化方法及其应用

第一章 最优化问题总论 无论做任何一件事,人们总希望以最少的代价取得最大的效益,也就是力求最好,这就是优化问题.最优化就是在一切可能的方案中选择一个最好的方案以达到最优目标的学科.例如,从甲地到乙地有公路、水路、铁路、航空四种走法,如果我们追求的目标是省钱,那么只要比较一下这四种走法的票价,从中选择最便宜的那一种走法就达到目标.这是最简单的最优化问题,实际优化问题一般都比较复杂. 概括地说,凡是追求最优目标的数学问题都属于最优化问题.作为最优化问题,一般要有三个要素:第一是目标;第二是方案;第三是限制条件.而且目标应是方案的“函数”.如果方案与时间无关,则该问题属于静态最优化问题;否则称为动态最优化问题. §1.1 最优化问题数学模型 最简单的最优化问题实际上在高等数学中已遇到,这就是所谓函数极值,我们习惯上又称之为经典极值问题. 例1.1 对边长为a 的正方形铁板,在四个角处剪去相等的正方形以制成方形无盖水槽,问如何剪法使水槽的容积最大? 解 设剪去的正方形边长为x ,由题意易知,与此相应的水槽容积为 x x a x f 2)2()(-=. 令 0)6)(2()2()2)(2(2)('2=--=-+--=x a x a x a x x a x f , 得两个驻点: a x a x 61 21== ,. 第一个驻点不合实际,这是因为剪去4个边长为2a 的正方形相当于将铁板全部剪去.现 在来判断第二个驻点是否为极大点. ∵ a x f 824)(''-=, 0 4)6(''<-=a a f , ∴ 6a x = 是极大点. 因此,每个角剪去边长为6a 的正方形可使所制成的水槽容积最大. 例1.2 求侧面积为常数 )0(62>a a ,体积最大的长方体体积. 解 设长方体的长、宽、高分别为z y x ,, 体积为v ,则依题意知体积为 xyz z y x f v ==)(,,, 条件为 06)(2)(2=-++=a xy xz yz z y x ,,?. 由拉格朗日乘数法,考虑函数 )6222()(2a xy xz yz xyz z y x F -+++=λ,,,

最优化方法及其应用郭科课后答案+复习资料

1 2 ( ( ? 1.一直优化问题的数学模型为: 习题一 min f (x ) = (x ? 3)2 + (x ? 4)2 ? g (x ) = x ? x ? 5 ≥ 0 ? 1 1 2 2 ? 试用图解法求出: s .t . ?g 2 (x ) = ?x 1 ? x 2 + 5 ≥ 0 ?g (x ) = x ≥ 0 ? 3 1 ??g 4 (x ) = x 2 ≥ 0 (1) 无约束最优点,并求出最优值。 (2) 约束最优点,并求出其最优值。 (3) 如果加一个等式约束 h (x ) = x 1 ? x 2 = 0 ,其约束最优解是什么? * 解 :(1)在无约束条件下, f (x ) 的可行域在整个 x 1 0x 2 平面上,不难看出,当 x =(3,4) 时, f (x ) 取最小值,即,最优点为 x * =(3,4):且最优值为: f (x * ) =0 (2)在约束条件下, f (x ) 的可行域为图中阴影部分所示,此时,求该问题的最优点就是 在约束集合即可行域中找一点 (x 1 , x 2 ) ,使其落在半径最小的同心圆上,显然,从图示中可 以看出,当 x * = 15 , 5 ) 时, f (x ) 所在的圆的半径最小。 4 4 ? g (x ) = x ? x ? 5 = 0 ? 15 ?x 1 = 其中:点为 g 1 (x ) 和 g 2 (x ) 的交点,令 ? 1 1 2 ? 2 求解得到: ? 4 5 即最优点为 x * = ??g 2 (x ) = ?x 1 ? x 2 + 5 = 0 15 , 5 ) :最优值为: f (x * ) = 65 ?x = ?? 2 4 4 4 8 (3).若增加一个等式约束,则由图可知,可行域为空集,即此时最优解不存在。 2.一个矩形无盖油箱的外部总面积限定为 S ,怎样设计可使油箱的容量最大?试列出这个优 化问题的数学模型,并回答这属于几维的优化问题. 解:列出这个优化问题的数学模型为: max f (x ) = x 1x 2 x 3 ?x 1x 2 + 2x 2 x 3 + 2x 1x 3 ≤ S ? s .t . ?x 1 > 0 ?x 2 > 0 ??x 3 > 0 该优化问题属于三维的优化问题。

凸优化(08.27)

凸优化总结 1基本概念 1.1) 凸集合:n S R ?是凸集,如果其满足:x; y S + = 1 x + y S λμλμ∈?∈ 几何解释:x; y S ∈,则线段[x,y]上的任何点都S ∈ 1.2) 仿 射 集 : n S R ?是仿射集,如果其满足:x; y S , R ,+ = 1 x + y S λμλμλμ∈∈?∈ 几何解释:x; y S ∈,则穿过x, y 的直线上的任何点都S ∈ 1.3) 子空间:n S R ?是子空间,如果其满足:x; y S , R , x + y S λμλμ∈∈?∈ 几何解释:x; y S ∈,则穿过x, y ,0的平面上的任何点都S ∈ 1.4) 凸锥:n S R ?是凸锥,如果其满足:x; y S ,0 x + y S λμλμ∈≥?∈ 几何解释:x; y S ∈,则x, y 之间的扇形面的任何点都S ? 集合C 是凸锥的充分必要条件是集合C 中的元素的非负线性组合仍在C 中,作为一般化结 果,其中非负线性组合的数目可以推广到无穷 1.5) 超平面:满足{ } T x a x = b (a 0)≠的仿射集,如果b=0则变为子空间

1.6) 半空间:满足{ } T x a x b (a 0)≤≠的凸集,如果b=0则变为凸锥 1.7) 椭球体:{ } T -1 c c =x (x-x )A (x-x ) 1 ξ≤T n c A = A 0; x R ∈ 球心 1.8) 范数:f :R n —R 是一种范数,如果对所有的n x; y R , t R ∈∈满足 1. f(x) 0; f(x) = 0 x = 0 2. f(tx) = tf(x) 3. f(x + y) f(x) + f(y) ≥?≤ 范数分类 ● 1范数 2 x = ● 2范数 1i x x x =∑ ● 3无穷范数 max i i x x ∞ = 1.9) 有效域:集合(){()}dom f x X f x =∈<∞ 1.10) 水平集:{()}{()}x X f x and x X f x αα∈<∈≤,其中α为一标量 1.11) 上镜图:函数:(,f x ∈-∞∞的上镜图由下面的集合给定 {}()(,),,()epi f x w x X w R f x w =∈∈<给出的1n R +给出的子集。 1.12) 多面体:有限数目半空间集合的交集{ }{ } T i i x a x b ,1,...=x Ax b P i k =≤= 1.13) 共轭函数:f :R n —R 上的共轭函数定义为:*()sup (())T x domf f y y x f x ∈=-,* f 是凸 函数即使f 不是 1.14) Jensen 不等式: f :R n —R 上的凸函数 ● 两点12112211221,0()()()i f x x f x f x θθθθθθθ+=≥?+≤+ ● 多点 11,0()()i i i i i i i i f x f x θ θθθ=≥?≤∑∑∑ ● 连续()0,()1(())()()p x p x dx f xp x dx f x p x dx ≥=?≤ ???

最优化方法的应用讲解

最优化方法 姓名张炯 学号 201200144423

a a a a 图 黄金分割法 一、一维搜索方法的分类 为了每次缩短区间,只需要在区间内再插入一点并计算其函数值。然而,对于插入点的位置,是可以用不同的方法来确定的。 ? 黄金分割法 ? 一类称作解析法或函数逼近法:构造一个插值函数来逼近原来函数,用插值函数的极小点作为区间的插入点 – 牛顿法、二次插值法等 黄金分割法 黄金分割法要求插入点、的位置相对于原区间[a,b]的两端点具有对称性,即 ()()12 b b a a b a a l l a l =--ì??í ?=+-??其中 为待定系数 2 1l l - =10.618 2 l -? = =

黄金分割法的搜索过程 ⑵出初始搜索区间[a,b]及收敛精度,将赋以0.618 ⑵按前页中坐标点比例公式计算α 1和α 2 ,并计算其对应的函数值f(α 1 )和f (α 2 )。 ⑶比较函数值,利用进退法缩短搜索区间 ⑷检查区间是否缩短到足够小和函数值是否收敛到足够近,如果条件不满足则返回到步骤⑵ ⑸如果条件满足则取最后两试验点的平均值作为极小点的数值近似值 黄金分割法程序框图

牛顿法 对于一维搜索函数,假定已给出极小点的一个较好的近似点a0,因为一个连续可微的函数在极小点附近与一个二次函数很接近,所以可以在a0点附近用一个二次函数来逼近函数,即在点a0将f(a)进行泰勒展开,并保留到二次项,有 然后以二次函数的极小点作为极小点的一个新近似点,根据极值必要条件 得 得 牛顿法的计算步骤 ⑴给定初始点a0,控制误差ε,令k=0 ⑵计算f(x)在a k 点的一阶和二阶导数 ⑶利用牛顿法迭代公式求a k+1 ⑷若|a k+1-a k |≤ε,则求得近似解a*=a k+1,停止计算,否则作第⑸步 ⑸令k=k+1,然后转第⑵步 牛顿法的优缺点 最大优点是收敛速度快 缺点 每一点处都要计算函数的导数和二阶导数,因而增加了每次迭代的工作量 用数值微分代替二阶导数时,舍入误差会影响牛顿法的收敛速度,当二阶导数很小时问题更严重 牛顿法要求初始点选得比较好,即不能离极小点太远,否则在可能使极小化序列发散或收敛到非极小点 1()0a f ¢=()()()00100f a f a a a ⅱ ?+-=() ()0100f a a a f a ¢=-ⅱ

优质课程《凸优化及其在信号处理中的应用》课程教学大纲

附件 课程教学大纲 课程编号:G00TE1204 课程名称:凸优化及其在信号处理中的应用 课程英文名称:Convex Optimization and Its Applications in Signal Processing 开课单位:通信工程学院 教学大纲撰写人:苏文藻 课程学分:2学分 课内学时:32学时 课程类别:硕士/博士/专业学位 课程性质:任选 授课方式:讲课 考核方式:作业,考试 适用专业:通信与信息系统、信号与信息处理 先修课程: 教学目标: 同学应: 1.掌握建立基本优化模型技巧 2.掌握基本凸分析理论 3.掌握凸优化问题的最优条件及对偶理论 4.认识凸优化在信号处理的一些应用

英文简介: In this course we will develop the basic machineries for formulating and analyzing various optimization problems. Topics include convex analysis, linear and conic linear programming, nonlinear programming, optimality conditions, Lagrangian duality theory, and basics of optimization algorithms. Applications from signal processing will be used to complement the theoretical developments. No prior optimization background is required for this class. However, students should have workable knowledge in multivariable calculus, real analysis, linear algebra and matrix theory. 课程主要内容: Part I: Introduction -Problem formulation -Classes of optimization problems Part II: Theory -Basics of convex analysis -Conic linear programming and nonlinear programming: Optimality conditions and duality theory -Basics of combinatorial optimization Part III: Selected Applications in Signal Processing -Transmit beamforming -Network localization -Sparse/Low-Rank Regression 参考书目: 1.Ben-Tal, Nemirovski: Optimization I-II: Convex Analysis, Nonlinear Programming Theory, Nonlinear Programming Algorithms, 2004. 2.Boyd, Vandenberghe: Convex Optimization, Cambridge University Press, 2004. 3.Luenberger, Ye: Linear and Nonlinear Programming (3rd Edition), 2008. 4.Nemirovski: Lectures on Modern Convex Optimization, 200 5.

相关主题
相关文档 最新文档