当前位置:文档之家› 离心泵的基本知识

离心泵的基本知识

离心泵的基本知识
离心泵的基本知识

泵的分类方法有以下三种:(一)按工作原理分类

1.容积式泵依靠泵内工作室容积大小作周期性地变化来输送液体的泵;2.叶片式泵依靠泵内高速旋转的叶轮把能量传给液体,从而输送液体的泵;3.其它类型泵依靠一种流体(液、气或汽)的静压能或动能来输送液体的泵。此类泵又称流体动力作用泵。

采用这种分类方法时,根据泵的结构又可分为以下几种。

(二)按泵产生的压力(扬程)分类

1.高压泵总扬程在600m以上;

2.中压泵总扬程为200~600ml

3.低压泵总扬程低于200m。

(三)按泵用处分类

第2节离心泵的工作原理及分类

一.离心泵的基本构成

离心泵的主要部件有:叶轮、转轴、吸入室、泵壳、轴封箱和密封环等,如图2-1所示。有些离心泵还装有导轮、诱导轮、平衡盘等。

离心泵的过流部件是吸入室、叶轮和蜗壳。其作用简述如下:

(1)吸入室吸入室位于叶轮进口前,其作用是把液体从吸入管引入叶轮,要求液体吸入室的流动损失要小,并使液体流入叶轮时速度分布均匀。

(2)叶轮叶轮是离心泵的重要部件,液体就是从叶轮中得到能量的。对叶轮的要求损失最小的情况下,使单位重量的液体获得较高的能量。

(3)蜗壳蜗壳位于叶轮出口之后,其功用是把从叶轮内流出来的液体收集起来,并按一定要求送入下级叶轮或送入排出管。由于液体在流出叶轮时速度很高,为了减少后面的管路损失,液体在送入排出管以前,必须将其速度降低,把速度能转变成静压能,这个任务也要求蜗壳等转能装置来完成,而且要求蜗壳在完成上述两项任务时流动损失最小。

二.离心泵的工

图2—1 离心泵基本构件

作原

1一转轴2一轴封箱3一扩压管4一叶轮5一吸入室6一密封

离心泵是由原动机(电动机或汽轮机)带动叶轮高速旋转,使液体由

于离心力的作用而获得能量的液体输送设备,故名离心泵。

当原动机带动叶轮高速旋转时,充满在泵体内的液体,在离心力的作用下,从叶轮中心被抛向叶轮的外缘。在此过程中,液体获得了能量,提高了静压强,同时由于流速增大,动能也增加了。液体离开叶轮进入

泵壳,由于流道逐渐加宽、液体的速度逐渐降低,便将其中部分动能转变为静压能,这样又进一步提高液体的静压强,于是液体以较高的压强进入排出管路。当泵内液体在高速旋转下产生离心现象而趋向叶轮外

缘时,在叶轮中心形成低压区,这样造成贮槽液面与叶轮中心处的压强差。在这个压强差的作用下,液体便沿着吸入管连续不断地进入叶轮中心,以补充被排出的液体。这样,只要叶轮的转动不停,液体就会连续不断地被吸入和压出,从而达到输送的目的。

离心泵的叶轮是按输送液体设计的,对气体不能施加足够的离心力,假如泵内存在空气,由于空气的重度远小于液体,产生的离心力亦小,此时叶轮中心只能造成很小的负压,形不成所需的压强差,液体便不能进入到叶轮中心,泵也就排不出液体,这种现象称为“气缚"。所以,离心泵没有自吸能力,启动前必须要灌泵。(二)、离心泵的型号.1.水泵输送介质为水;

常用的三种水泵型号的表示方法如下:(1)4BA—12型水泵型号的意义:

4—进口管直径,单位为英寸;

BA—表示该泵的结构特点是悬臂式,即水泵是从泵座上伸悬出来的;12—该泵的比转数的1/10,即该泵的比转数为l20。DFjY160-120×10 150AYⅡ150B

第3节离心泵参数

在石油化工生产中,离心泵是使用最广泛的液体输送机械。其特点是结构简单、流量均匀、可用耐腐蚀材料制造,且易于调节和自控。因

此,离心泵在石油化工生产中占有特殊的地位,估计约占生产用泵的80~90%。

一、离心泵各参数的定义

按国家标准化文件,离心泵各参数定义如下:

1.流量和额定流量

流量是指单位时间内泵所抽送液体的数量。通常以体积计,以Q表示,单位为m/h,3

m3/s,L/s;也可以质量计,以G表示,单位为t/h,t/s,kg /s;额定流量则指泵在最佳效率时的流量。即泵铭牌上所标注的数量。

换算关系:G=rQ

式中r-一液体的重度,㎏/m3.

2.扬程和额定扬程

扬程是指单位质量液体通过泵时所增加的能量,以H表示。其单位是m,通常以米液

柱(mH20)表示。额定扬程是指在最佳效率时的扬程,即泵铭牌上所标注的数量。叶轮直径越大、叶轮数目越多、旋转速度越快,则扬程越高。泵铭牌上标出的扬程是指输送水的扬程,如输送油品或化工产品则应按粘度不同来换算;而且并非标出40米,就能送到40米高,必须减去吸入高度(如吸入罐液面比泵中心高,则应加上此段高度),还必须减去从吸入端至排出端整个管路、伐门、弯头等的压力损失(折合成米液柱)。如一台水泵吸井水,铭牌标出扬程40米,泵中心至井水面高3米,阻力损失2米,则泵只能送到35米高。还应指出,泵吸水高度不能达

到和超过10.33米,因吸入高度到10.33米时泵入口达到绝对真空。在未达到绝对真空前已汽化了,而且吸入管路还有一定的阻力损失,因此一般离心泵吸入高度不足7米。单级泵所产生的扬程可由下式粗算:H=u2/2g2

2式中u2-叶轮出口圆周速度,m/s. g-重力加速度,9.8 m/s.

u2=πnD2 /60

式中n一叶轮转速,r/min. π一圆周率,3.1415. D2—叶轮外径,m/s.

2当n=2950 rpm时,H=1200 D2 ;

如是多级泵,总扬程由各单个叶轮所产生的扬程相加。

4.功率

是指驱动机给泵的能量,通称轴功率,以kW表示。N轴=rQH/102 kW

式中r-液体的重度,kg/L; Q—流量,L/s; H—扬程,m;

5.净正吸入压头

多以NPSH表示(或汽蚀余量,以⊿h表示)。其含义是指为了保证泵不发生汽蚀,在泵内叶轮吸入口处,单位质量液体所必需具有的超过汽化压力后还富余的能量。单位是m。其中又分NPSHr和NPSHa。

(1)NPSHr是指必需的净正吸入压头,其含义如上所述,其数量大小值和泵叶轮优劣有关,优秀的泵,其NPSHr值较小o

(2)NPSHa是指泵吸入管路所能够提供的、保证泵不发生汽蚀、在叶轮吸入口处,单位质量液体所具有的超过汽化压力后还有的富余能量。它的数值大小与吸入管路优劣有关,与泵本身无关。当NPSHa数值大时,表示吸入管路设计合理,其值愈大愈好,要强调的是上述都是指

泵在输送液体为水且又在常温时。当输送液体为烃时,其汽化压力和烃的化学结构有关,要进行必要的修正。当非常温时,就是输水也要进行饱和蒸汽压的修正。在高原地

区因大气压低,也要进行必要的修正。

6.比转数

表示离心泵性能和几何结构的一个综合性参数,用nS表示。离心泵的比转数可按下式计算:

ns=3.65n

SS3/4

几何结构相似,性能相似的泵,比转数相同。一般来说,离心泵的比转数小,表示泵的扬程大而流量小;比转数大,表示泵的扬程小而流量大。各种离心泵的比转致范围为20~500,炼油装置用泵大都是低、中比转数泵,其中低比转数泵占绝大多数,比转数的范围为50~1OO。

7.转速每分钟主轴旋转数。以n表示,单位:转/分钟(r/min or rpm)

第4节机泵的使用与维护

一、泵的运转与操作

(一)运转前的检查

离心泵在安装后,试运转前应进行全面检查,这是因为泵的事故在装置生产运转初期发生的最多,安装质量直接影响泵的运转情况。

试运转前检查内容:首先检查螺栓螺帽有否松动,泵与管路的配置,是否有不合理的地方;其次检查泵吸入高度和条件是否在说明的规定范围以内,特别要注意吸入管路上是否有空气漏入或液体泄出的地方;最后还要检查转子的旋转方向与驱动机旋转方向是否一致。

(二)操作准备

l.盘车:用手轻轻正向转动机泵2~3圈,并确认轴承和旋转部分都能顺利转动不受阻碍。2。核对吸入条件

泵的吸入条件,是叶轮吸入口保持一定的压力,如果低于这个压力时将无法输液,所以要检查吸入高度和条件是否在规定的条件之内。

3.调整填料或机械密封装置,向冷却水夹套和密封装置中的冷却封液系统分别通水、通液,确认流道畅通。

4.加注润滑油、脂

向油箱和润滑部位注选定的合格润滑油、脂,达适当的油面高度、脂量。

5.灌泵

启动前,要使泵内灌满液体,必须绝对避免空转。这是因为离心动、静密封减漏间隙小,液体不易通过,因此只要空转几秒钟就会引起密封衬环烧损、咬死,导致事故。灌泵时要把空气、液化气、蒸汽全部放出,通常打开吸液阀和放空阀或泵壳的放气孔及管路中的仪表接头,但是对带压吸入的泵或高位泵其灌注方法不同,高位泵必须增设喷射器,真空泵需增加底阀和灌液箱等预灌装置。至于自吸式泵就不需要这些设备。

6.高温和低温泵的预热及预冷

高温用泵和低温用泵均须在起动前进行完预热或预冷使之接近正

常运转温度,其理由为:高温泵的操作温度与未预热温度相差很大,若不预热就起动,则会引起转子变形、轴弯曲、结合部分松动或密封部分强制摩擦而导致磨损。

低温液化烃用泵,若不在规定的运转温度操作,则输液在较暖的泵壳会蒸发,使气体聚在泵壳内有造成干摩擦的危险。

(三)运转操作

l.起动

泵起动方法的须序随其型式和用途的不同有所差异,所以要按照泵厂的使用说明书进行起动。现以电动机带动的离心泵为例叙述其一般启动方法。

(1)打开入口阀、关闭出口阀,打开放空阀进行灌泵,放空阀见液后关闭。

(2)打开轴承冷却水阀和压力表阀。

(3)填料箱若带有水夹套,,则打开其冷却管的给水阀门。

(4)若带有封液装置,则打开封液阀门。

(5)高温用泵在未达到运转温度前应打开预热阀门,预热完毕时则关闭预热阀。

(6)若带有防止过热的装置,则打开自循环系统的阀门。

(7)启动电动机。运转2分钟正常后缓慢开出口阀,大流量泵运转中出口阀关闭不得大于

3分钟。严禁用入口阀调节流量。

(8)达到额定转数,出口压力表读数达额定值后,逐渐打开出口阀,并调节流量适中。

(9)检查填料箱处的泄漏情况,为了保证填料能得到充分润滑,可利用调节压盖和封液阀

的方法来保持适当泄漏量。

(10)泵流量提高后,如已不可能出现过热即关闭循环的阀门。轴流泵和容积泵,在封闭运

转时会使轴功率剧增,因此不允许在出口阀关闭的情况下启动。

2.停车

泵的停车方法,也要按其型式和用途来定,一般由电动机驱动的离心泵停车顺序如下:

(1)打开自循环系统的阀门。

(2)关闭出口阀。

(3)停止电动机。

(4)若保持泵的运转温度,则打开预热阀门。

(5)关闭轴承和填料箱的冷却水阀。

(6)必要时关闭入口阀,打开气阀(或放气孔)和底部导淋排凝阀,将泵内液体全部放掉。

轴流泵等应将上述(2)和(3)两项顺序倒过来进行,多数都是先停止电动机,再关闭出口阀。

3.泵的切换

在用泵和备用泵的切换顺序为:

启动备用泵达到转数时起经检查并确认无异常现象,就可停止主用泵。

应注意主用泵在并联运转时,不能很快停止,否则主用泵易产生水击现象,而且若

排出侧止逆阀动作不灵时,液体会向停用泵到流,造成排出管路压力下降流量减少。因此,为了防止上述现象,就应缓慢地关闭主用泵排出阀,待备用泵已在正常运转点上稳定运转后再停止主用泵。

二、泵的日常维护

操作者应该记住,保护泵及其所属设备是自己的职责,应当经常检查影响泵运转的各种因素,泵的使用期限可以由于操作者粗心大意而大大缩短。为使泵能正常连续运转,延长其使用寿命,应做好日常检查与维护保养,使之成为一项制度。

(一)机泵运行检查的用具

l.听诊器:用于检查轴承、变速器、连接件运动声音是否正常。

2.点温计:用于检查轴承等磨擦部位的温度。

3.振动仪:用于检查运行中的各部分的振幅大小。

4.吸油管:用于抽取润滑油样,检查润滑油质量,含杂质、水份、乳化变质等程度。

(二)日常检查中,除充分运用控制、测试仪表外,还要充分发挥人的主观能动性,采用“摸、听、闻、看、问”。“摸”就是摸摸有无过热、振动等;“听”就是听听转动部分的声音,有无异常声响,如水击声、摩擦声、撞击声、涡流声、折断声等;“闻”就是利用嗅觉,闻闻有无异常味道;“看”就是看一看各部仪表指示压力、流量、温度、电流、电压是否正常,泵的各部件有否变形、变色、变样,以及有无泄漏、有无堵塞等等;“问”就是问上班情况,以便及时做出正确判断、处理。表7-2为日常检查项目。

三、运转中泵的故障现象及原因

石油化工用离心泵的故障大致有:腐蚀、密损、振动与噪音、性能、轴封、轴承等故障。这些故障都是互相联系、互相影响、互为因果的。例如,叶轮的腐蚀和磨损会造成性能故障和机械故障;泵的汽蚀也会造成叶轮的冲蚀侵蚀。又如轴封的损坏会造成泵的性能故障和机械故障,因此不能截然分开。

(一)腐蚀故障

所谓腐蚀就是泵的材料与输送介质(或周围的介质)作用生成化合物而丧失其原来的性质,造成泵的故障或零件部件的损环。

腐蚀的原因一方面是泵所用金属材料不适合或金属成分和组织不

均匀等引起的,另一方面是局部腐蚀如点腐蚀、晶间腐蚀侵蚀等,腐蚀的结果会造成泵流量、压力都降低,甚至引起泵振动和噪音。

(二)磨损故障

在炼油厂和化工厂中,用来输送含有固体颗粒的浆液时,当然会使泵发生与固体颗粒的磨损。这种磨损往往会随着所含固体颗粒的硬度、浓度和流速等的增加而变剧,而小颗粒的磨损比大颗粒的磨损历害。对石油化工厂离心泵来说,叶轮、轴封和轴套会发生磨损。磨损后泵的流量和扬程会减少,性能下降。同时转子的磨损不均匀又会使转子不平衡,发生泵的振动。因此,除了采用耐磨材料外,还应对轴封采用冲洗措施以免杂质侵入,并对泵采取冲洗措施,以免流道堵塞。此外,对于易损件,在磨损量达到使用极限时应予更换,确保机泵正常运转。

(三)振动和噪音

石油化工用泵中,虽然不会象大型高速机器那样容易发生振动,但是产生振动的原因却是多方面的,而且不容易判别。振动往往伴随有噪音,为此必须了解可能产生振动和噪音的原因,以便采取措施来消除振动和噪音。

产生振动的原因主要有两个方面:

1.水力振动:当离心泵发生汽蚀时,汽蚀发生到相当严重就伴随有振动和噪音,此时振动频率很高,可达600~25000次/秒。这种振动的外部现象与吸入空气时类似。不仅是振动的噪音,汽蚀也会使泵的性能下降。

当离心泵在小流量不稳定区工作时,流量波动产生机械振动,其频率低(10~O.1次/秒)。

当液体流速突然急剧变化时,压力也会发生急剧变化,形成水力冲击。通常在泵运转时突然停泵(如临时停电)或流量突然变化时,会产生水击,特别是在反压或排出高度较大的系统中容易产生水击,水击便可引起泵的振动。

泵内液体流动不均匀使液压不平衡,产生径向力(蜗壳泵)或轴向力(透平泵)不平衡也会引起振动。如蜗壳圆周上液压不等,液体流过泵舌使压力发生周期性波动,形成水力振动,在其频率与泵固有频率相同时发生共振。

2.机械振动

引起机械振动的原因很多,可归纳为以下几类:

转子不平衡引起的振动,由于泵的口环损坏、叶轮腐蚀或局部堵塞、轴弯曲等而引起转子不平衡的振动。

临界转速引起的振动,泵的工作转速与转子固有频率相同,即等于临界转速时引起共振。转子与固定部分磨擦引起的振动,转子的零件

和固定部分发生摩擦,会产生反方向的振动,使振荡频率与临界转速相同也会引起共振。

油膜振荡(油膜振动或油抖动),在高速旋转式机械上,由于轴瓦部

分的油压作用使泵回旋,引起与临界转速相同的振荡频率,发生共振

振动。一般发生在轻载高速的转子中,当使工作转速在临界转速的两

倍左右时,很可能产生这种振动。

找中心不正引起的振动,泵找中心不彻底,基础刚度不够或基础下沉使中心变动,由于温度变形使泵体伸长而引起错动,,由于配管别

劲或管线热膨胀加力使中心变坳,泵体与转子伸长值有差形成转子弯曲,叶轮加工质量不好或由于轴承磨损引起中心变动.

地脚螺栓松或灌浆时不牢引起的振动。

驱动机引起的振动,由于电动机或汽轮机发生振动而对泵产生影响,发生振动。

(四)性能故障.

离心泵性能故障的原因是多方面的,造成离心泵抽空的原因如下:1.漏气:由于吸入管漏气,轴封漏气(封液管堵塞或封液环错位使

封液进不去,封液中断或填料未压紧,或窜入冲洗水等)。泵内积存空气,吸入管有气囊,吸入管端浸深不够或露出液面等原因造成泵抽空。

未灌泵或灌不满,由于吸入阀未打开灌泵(吸入罐液面高于泵中心线~灌注头下)或由于泵和吸入管气体未排尽,底阀失灵或损坏,吸入系统严重漏损等原因造成抽空。

汽蚀,由于吸上高度过高或灌注高度不够(吸入罐液面过低),吸入液体温度升高或吸入压力降低使泵入口压力达到液体在输送温度下的饱和蒸汽压,吸入管路(底阀、滤网、吸入阀、吸入管)堵塞或失灵,叶轮入口堵塞,吸入管太细过长使吸入管阻力增大,吸侧(塔、容器或大气)压力降低,液体粘度大于设计值等原因发生汽蚀而形成抽空。

机械原因,由于泵轴断,叶轮松脱,叶轮反转,叶轮腐蚀或损坏等原因造成泵抽空。装置事故或动作失灵,由于工艺装置操作上的某些原因造成泵抽空,根据工艺装置和泵用途的不同,抽空的原因也有所不同。

2.排空

泵处于空转状态,排出管无液体排出,造成排空的原因有:

泵排出阀未打开或失灵,排出阀堵塞,排出管路系统堵塞(排出管、泵后面的换热器或加热炉结焦与堵塞,单向阀失灵)。

多级泵叶轮,过渡流道或中间级堵塞,泵的叶轮装错或转向反或转速过低会造成排空。

3.减量,泵的流量减小。此时泵的特性变化不大于输送系统特性变化(阻力变大或静扬程变大),造成减量的原因大致是:排出阀未全打开,单向阀失灵,泵后系统堵塞,或系统排出扬程增大(反压增高)液体粘度大于规定值。

4.减压减量,泵的流量和扬程均减小,此时泵的特性或输送系统特性变化,或两者均变化,造成减压、减量的原因是:

叶轮问题:叶轮装反或反转,叶轮部分堵塞,部分腐蚀或损坏。

转子问题:转子轴向位移或转子与泵体等固定部分密封间隙增大(如口环、平衡盘、衬套等磨损)。

吸入管路问题:吸入管漏气,未灌泵或有空气积存,吸入管浸深不够或液面上有旋涡潜入空气。

液体问题:液体粘度大于规定值或是液体中含气量多。其它问题:泵转速不够,泵体内级间紧固件不合适或损坏。5.超载主要驱动机超载(功率超过额定值),超载在试运、启动和运转几个阶段的原因有所不同,前者是出现设计和安装上的问题,后两者是出在操作和维护上的问题。

试动超载:为了避免水运时由于水的重度较油品大而引起驱动机超载,通常规定在小流量下水运试车,一般又规定流量不得小于额定流量的20~30%(视泵结构和材料而定,以免发生汽蚀抽空或抱轴;杂物堵塞而抱轴;轴弯曲等。此外,还可能出现电动机或汽轮机本身的故障引起超载。

启动超载:往往由于排出阀未关,启动泵使启动负荷大于额定值而跳闸停车,此外还可能由于未仔细盘车检查而引起驱动机超载,这方面原因可能是填料过紧或杂物卡堵,轴承润滑剂发生烧瓦、封油管堵塞引起填料烧坏而抱轴;平衡盘与平衡座粘合;泵内零件锈蚀;配管管系作用力过大,使泵体变形而发生抱轴。

另外,还有可能由于液体粘度或重度大于规定值或是泵的总扬程太高,转向相反或转速过高,泵预热不均匀引起抱轴;中心未找正、轴弯曲、轴向串动,空运时间长形成报轴等而引起超载。

运转超载:往往由于润滑油太少或太多,润滑油含水量大,润滑油变质或所加润滑油不合适等使轴承烧坏发生抱轴,引起驱动机超载。此外,大都是由于操作条件的变化或机械故障引起驱动机超载。如系统压力升高,大流量下操作,叶轮堵塞、轴弯曲、轴承损坏使转子中心下沉引起抱轴;填料压的过紧,被输送的液体重度大于规定值或是液体凝固等引起泵在运转中超载。

(五)轴封故障

l.机械密封常见故障及原因。机械密封常见的故障是漏损,而漏损则有周期性漏损和经常漏损以及突然性漏损,其原因各有不同:周期性漏损:泵转子轴向窜动,动环来不及补偿位移或操作不稳,密封箱内压力经常变动或转子周期性振动。

经常性漏损:这种漏损的原因很多,如动、静环密封面变形或损伤,密封面比压力太小,密封圈的密封性不好,静环或动环的密封面与轴垂直度误差过大,密封副不能补偿调整,防转销部顶住防转槽,转子振动,使用密封圈弹簧的方向不对,弹簧偏心,弹簧力受到阻碍失去作用,轴套表面在密封圈弹簧的方向不对,弹簧偏心,弹簧力受到阻碍失作用,轴套表面在密封圈处有轴向沟槽、凹坑或是轴套表面有积垢等而引起经常性漏损。

突然性漏损:突然漏损是由于泵强烈抽空使密封烧坏,弹簧折断,防转销被切断,静坏被防转销挤裂或本身碎裂。动、静坏表面损伤等原因造成的。

停用后启动发生漏损主要是由于摩擦副密封面处结焦或产生水垢

或弹簧力失去作用。摩擦表面磨损过大,这是造成机械漏损常见的原因。而造成磨损的原因则是多方面的如弹簧及比压过大,密封面表面硬度不够或不均,材料匹配不好;密封副内夹入杂物或介质不干净,硬环碎裂切割软的表面。

2、软填料密封常见故障及原因

造成密封漏损原因有中心找正、轴弯曲或轴瓦磨损;转子不平衡、填料与轴套磨损;

第9 / 13页底环间隙大,填料被挤入缝隙而磨坏;填料尺寸不合或少装填料等。或者是由于使用填料的材质与用途不符或制造质量不好,轴套磨损历害;泵振动很大,径向跳动量太大;填料箱冷却水或封油停止等都可能使填料损坏。

(六)轴承故障

轴承故障往往是表现为先热后烧坏或损坏。造成轴承故障的原因也是多方面的。有轴承本身原因,轴承的润滑与冷却条件和工作条件不良等。

l、轴承本身造成的故障

滚动轴承,可能造成的原因有:滚珠碎裂、外圈断裂、内圈松动和疲劳磨损以及滚珠架松脱或损坏。

2、润滑系统的故障

对于压力润滑系统,产生故障的原因可能是油压不足,油路不通;油质不好;油泵抽空不打油。

对于甩油润滑系统,产生故障的原因可能是甩油环断裂,油位太高或太低或油质不好。

油冷却系统中冷却水中断、堵塞、供水不足、结垢等都会影响冷却效果,使轴承发热导致损坏。但是过冷也会使轴承损坏。

轴承工作条件不良:由于转子的不平衡,中心未找正,轴弯曲、窜轴和松动等都会引起转子振动,使轴承工作条件恶化。

第5节机泵的润滑

(一)润滑油的五定制度

定点、定质、定量、定时、定期

1、定点:现代化机械设备中,都有规定的润滑部位,润滑点,并配有油孔、油标、油槽、油泵、油箱等各种加油装置,每个操作人员必须熟悉这些加油部位,按规定地点加油,不得在其它部位加油。

2、定质:要根据不同的机型,选择合适的油品和代用油品,在用油过程中要保持油品质量合格和清洁无杂质,禁止乱用油和用变质、不干净的油。用质量优于规定用油作代用油也会造成浪费;用质量劣于规定油作代用油要损坏设备,这两种现象都不符合定质的要求。

3、定量:每台设备应该有消耗定额,即每台设备每日、每月、每季、每年的

耗油量。耗油量超过规定要查明原因,改变现状,力求节约。耗油量低于定额也是不合理现象,会给设备带来损坏,同样应该查明原因,及时处理。

4、定时:按照规定时间给设备加油,是保证设备及时得到良好润滑的有效手段,可避免长期不加油或不必要的“常"加油等不合理现象。

5、定期:当设备工作一段时间后,因为设备的磨损和油品在使用中逐渐变质,都会影响润滑效果。所以在一定时期以后必须将润滑部位进行清洗,更换新油。在更换过程中,将残存在各注油部位的油污、杂质全部清除掉,并且用洗油洗净、拭干,再用新润滑油冲洗一遍后拭干,然后注入新油,这样才能保持良好的润滑状态。在换新油时要防止两方面的不良倾向。

第12 / 13页

(1)不负责任,长期不清扫、不更换。

(2)换油期太短,如不到换油时间提前换油,造成浪费。如果油品用

一、两天就变质,应查明原因,而不应用“勤换油”的办法,以免造成浪费。

(二)润滑油用具应标记清晰,专油专具,定期清洗,各用具所装过滤网应符合下列规定:l、过滤汽轮机油(透平油)、机械油、冷冻机油用80~l00目铜丝布网。2、过滤压缩机油、车用机油用60 ~80目铜丝布网。

3、过滤汽缸油、齿轮油用40~60铜丝布网。

常用润滑油用具有:领油大桶、油站固定油箱、油抽子、提油桶、手油壶、过滤漏斗、接油盘、黄油桶、黄油枪等。(三)三级过滤:化验合格的油品在用到润滑部位之前,一般要经过几次容器的倒换。每倒换一次容器都要求有一次过滤以杜绝杂质。这种过滤一般都在三次或三次以上,故称为三级过滤。润滑油用具组成三级过滤,如下所示:润滑油三级过滤示意图

离心泵的基础知识

离心泵的基础知识 一、离心泵的基本构造是由六部分组成的 离心泵的基本构造是由六部分组成的分别是叶轮,泵体,泵轴,轴承,密封环,填料函。 1、叶轮是离心泵的核心部分,它转速高出力大,叶轮上的叶片又起到主要作用,叶轮在装配前要通过静平衡实验。叶轮上的内外表面要求光滑,以减少水流的摩擦损失。 2、泵体也称泵壳,它是水泵的主体。起到支撑固定作用,并与安装轴承的托架相连接。 3、泵轴的作用是借联轴器和电动机相连接,将电动机的转距传给叶轮,所以它是传递机械能的主要部件。 4、轴承是套在泵轴上支撑泵轴的构件,有滚动轴承和滑动轴承两种。滚动轴承使用牛油作为润滑剂加油要适当一般为2/3~3/4的体积太多会发热,太少又有响声并发热!滑动轴承使用的是透明油作润滑剂的,加油到油位线。太多油要沿泵轴渗出并且漂贱,太少轴承又要过热烧坏造成事故!在水泵运行过程中轴承的温度最高在85度一般运行在60度左右,如果高了就要查找原因(是否有杂质,油质是否发黑,是否进水)并及时处理! 5、密封环又称减漏环。叶轮进口与泵壳间的间隙过大会造成泵内高压区的水经此间隙流向低压区,影响泵的出水量,效率降低!间隙过小会造成叶轮与泵壳摩擦产生磨损。为了增加回流阻力减少内漏,延缓叶轮和泵壳的所使用寿命,在泵壳内缘和叶轮外援结合处装有密封环,密封的间隙保持在0.25~1.10mm之间为宜。 6、填料函主要由填料,水封环,填料筒,填料压盖,水封管组成。填料函的作用主要是为了封闭泵壳与泵轴之间的空隙,不让泵内的水流不流到外面来也不让外面的空气进入到泵内。始终保持水泵内的真空!当泵轴与填料摩擦产生热量就要靠水封管住水到水封圈内使填料冷却!保持水泵的正常运行。所以在水泵的运行巡回检查过程中对填料函的检查是特别要注意!在运行600个小时左右就要对填料进行更换。 二、离心泵的过流部件 离心泵的过流部件有:吸入室,叶轮,压出室三个部分。叶轮室是泵的核心,也是流部件的核心。泵通过叶轮对液体的作功,使其能量增加。叶轮按液体流出的方向分为三类: (1)径流式叶轮(离心式叶轮)液体是沿着与轴线垂直的方向流出叶轮。 (2)斜流式叶轮(混流式叶轮)液体是沿着轴线倾斜的方向流出叶轮。 (3)轴流式叶轮液体流动的方向与轴线平行的。 叶轮按吸入的方式分为二类: (1)单吸叶轮(即叶轮从一侧吸入液体)。 (2)双吸叶轮(即叶轮从两侧吸入液体)。 叶轮按盖板形式分为三类: (1)封闭式叶轮。 (2)敞开式叶轮。 (3)半开式叶轮。 其中封闭式叶轮应用很广泛,前述的单吸叶轮双吸叶轮均属于这种形式。 三、离心泵的工作原理 离心泵的工作原理是:离心泵所以能把水送出去是由于离心力的作用。水泵在工作前,泵体和进水管必须罐满水行成真空状态,当叶轮快速转动时,叶片促使水很快旋转,旋转着的水在离心力的作用下从叶轮中飞去,泵内的水被抛出后,叶轮的中心部分形成真空区域。水原的水在大气压力(或水压)的

离心泵知识,性能参数及特性曲线(参考模板)

离心泵知识、性能参数与特性曲线要正确地选择和使用离心泵,就必需了解泵的性能和它们之间的相互关系。离心泵的主要性能参数有流量、压头、轴功率、效率等。离心泵性能间的关系通常用特性曲线来表示。 一、离心泵的概念:水泵是把原动机的机械能转换成抽送液体能量的机器。来增加液体的位能、压能、动能。原动机通过泵轴带动叶轮旋转,对液体作功,使其能量增加,从而使需要数量的液体,由吸入口经水泵的过流部件输送到要求的高处或要求压力的地方。 二、离心泵的基本构造 离心泵的基本构造是由六部分组成的,分别是:叶轮,吸液室,泵壳,转轴,托架,轴承及轴承箱,密封装置,基础台板等。 1、叶轮是离心泵的核心部分,它转速高输出力大,叶轮上的叶片又起到主要作用,叶轮在装配前要通过静平衡实验。叶轮上

的的内外表面要求光滑,以减少水流的摩擦损失。 2、泵壳,它是水泵的主体。起到支撑固定作用,并与安装轴承的托架相连接。 3、转轴的作用是借联轴器和电动机相连接,将电动机的转距传给叶轮,所以它是传递机械能的主要部件。 4、轴承是套在泵轴上支撑泵轴的构件,有滚动轴承和滑动轴承两种。轴承的依托为轴承箱。滚动轴承使用牛油作为润滑剂加油要适当一般为2/3~3/4的体积太多会发热,太少又有响声并发热!滑动轴承使用的是透明油作润滑剂的,加油到油位线。太多油要沿泵轴渗出,不利于散热;太少轴承又要过热烧坏造成事故!在水泵运行过程中轴承的温度最高在85度一般运行在60度左右,如果高了就要查找原因(是否有杂质,油质是否发黑,是否进水)并及时处理! 5、密封装置。叶轮进口与泵壳间的间隙过大会造成泵内高压区的水经此间隙流向低压区,影响泵的出水量,效率降低!间隙过小会造成叶轮与泵壳摩擦产生磨损。为了增加回流阻力减少内漏,延缓叶轮和泵壳的所使用寿命,在泵壳内缘和叶轮外援结合处装有密封装置,密封的间隙保持在0.25~1.10mm之间为宜。

离心泵知识点汇总

离心泵知识点汇总 1、机泵维护保养内容有哪些? 认真执行岗位责任制及设备维护保养等规章制度。 设备润滑做到“五定”、“三级过滤”,润滑器具完整、清洁。 维护工具、安全设施、消防器材等齐全完好,置放齐整。 2、离心泵振动的原因有哪些? 转子不平衡。 泵轴与电机不对中,对轮胶圈老化。 轴承或密封环磨损过多,形成转子偏心。 泵抽空或泵内有气体。 吸入压力过低,使液体汽化或近于汽化。 轴向推力变大,引起串轴。 轴承和填料润滑不当,磨损过多。 轴承磨损或损坏。 叶轮局部堵塞或外部附属管线振动。 润滑油(脂)过多或过少。 机泵基础刚度不够,螺栓松动。 3、离心泵抽空时有什么现象? 运行中的泵开始抽空时,会突然发出噪音、振动,并伴有压力、流量的降低和电流减小。抽空严重时,泵会发生强烈振动,压力回零,泵中无液体打出。 4、泵在冬天为什么要防冻? 水在零度以下发生体积膨胀,如果留在泵体内的水不清理出去,低温下的体积膨胀产生的力量会使泵体胀裂,造成不必要的损坏。防冻的方法主要有以下几种:

排净闲置泵内的存水。 保持冷却水细水长流。 对泵保温或用蒸汽、热水伴热。 备用泵保持出入口流通。 5、泵冻了以后如何处理? 泵冻了以后,决不能用蒸汽直接吹,以防因泵体热胀不均而破裂。 泵冻了以后先用冷水浇,然后待盘动车,可以用蒸汽或热水浇淋。 6、离心泵的主要工作原理是什么? 电动机带动叶轮高速旋转,使液体产生离心力,由于离心力的作用,液体被甩入侧流道排出泵外,或进入下一级叶轮,从而使叶轮进口处压力降低,与作用在吸入液体的压力形成压差,压差作用在液体吸入泵内,由于离心泵不停的旋转,液体就源源不断的被吸入或排出。 7、润滑油(脂)有哪些作用? 润滑冷却作用、冲洗作用、密封作用、减振作用、保护作用、卸荷作用。 8、润滑油使用前要经过哪三级过滤? 第一级:润滑油原装桶与固定桶之间; 第二级:固定油桶与油壶之间; 第三级:油壶与加油点之间。 9、什么是设备润滑“五定”? 定点:按规定点加油; 定时:按规定时间给润滑部位加油,并定期换油; 定量:按消耗定量加油; 定质:根据不同的机型选择不同的润滑油,并保持油品质量合格; 定人:每一个加油部位必须有专人负责。

离心泵基础知识(正式版)

文件编号:TP-AR-L4331 In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives. (示范文本) 编订:_______________ 审核:_______________ 单位:_______________ 离心泵基础知识(正式版)

离心泵基础知识(正式版) 使用注意:该安全管理资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 一.离心泵的工作原理 驱动机通过泵轴带动叶轮旋转产生离心力,在离 心力作用下,液体沿叶片流道被甩向叶轮出口,液体经 蜗壳收集送入排出管。液体从叶轮获得能量,?使压力 能和速度能均增加,并依靠此能量将液体输送到工作 地点。 在液体被甩向叶轮出口的同时,叶轮入口中心处 形成了低压,?在吸液罐和叶轮中心处的液体之间就产 生了压差,吸液罐中的液体在这个压差作用下,不断地 经吸入管路及泵的吸入室进入叶轮中。

二、离心泵的结构及主要零部件 一台离心泵主要由泵体、叶轮、密封环、旋转轴、轴封箱等部件组成,有些离心泵还装有导轮、诱导轮、平衡盘等。 1.泵体:即泵的壳体,包括吸入室和压液室。 ①吸入室:它的作用是使液体均匀地流进叶轮。 ②压液室:它的作用是收集液体,并把它送入下级叶轮或导向排出管,与此同时降低液体的速度,使动能进一步变成压力能。?压液室有蜗壳和导叶两种形式。 2.叶轮:它是离心泵内传递能量给液体的唯一元件,叶轮用键固定于轴上,随轴由原动机带动旋转,通过叶片把原动机的能量传给液体。 叶轮分类: ①按照液体流入分类:单吸叶轮(在叶轮的一

离心泵基础知识

编号:SM-ZD-57755 离心泵基础知识 Organize enterprise safety management planning, guidance, inspection and decision-making, ensure the safety status, and unify the overall plan objectives 编制:____________________ 审核:____________________ 时间:____________________ 本文档下载后可任意修改

离心泵基础知识 简介:该安全管理资料适用于安全管理工作中组织实施企业安全管理规划、指导、检查和决策等事项,保证生产中的人、物、环境因素处于最佳安全状态,从而使整体计划目标统一,行动协调,过程有条不紊。文档可直接下载或修改,使用时请详细阅读内容。 一.离心泵的工作原理 驱动机通过泵轴带动叶轮旋转产生离心力,在离心力作用下,液体沿叶片流道被甩向叶轮出口,液体经蜗壳收集送入排出管。液体从叶轮获得能量,?使压力能和速度能均增加,并依靠此能量将液体输送到工作地点。 在液体被甩向叶轮出口的同时,叶轮入口中心处形成了低压,?在吸液罐和叶轮中心处的液体之间就产生了压差,吸液罐中的液体在这个压差作用下,不断地经吸入管路及泵的吸入室进入叶轮中。 二、离心泵的结构及主要零部件 一台离心泵主要由泵体、叶轮、密封环、旋转轴、轴封箱等部件组成,有些离心泵还装有导轮、诱导轮、平衡盘等。 1.泵体:即泵的壳体,包括吸入室和压液室。 ①吸入室:它的作用是使液体均匀地流进叶轮。

离心泵的基本知识

泵的分类方法有以下三种:(一)按工作原理分类 1.容积式泵依靠泵内工作室容积大小作周期性地变化来输送液体的泵;2.叶片式泵依靠泵内高速旋转的叶轮把能量传给液体,从而输送液体的泵;3.其它类型泵依靠一种流体(液、气或汽)的静压能或动能来输送液体的泵。此类泵又称流体动力作用泵。 采用这种分类方法时,根据泵的结构又可分为以下几种。 (二)按泵产生的压力(扬程)分类 1.高压泵总扬程在600m以上; 2.中压泵总扬程为200~600ml 3.低压泵总扬程低于200m。 (三)按泵用处分类 第2节离心泵的工作原理及分类 一.离心泵的基本构成 离心泵的主要部件有:叶轮、转轴、吸入室、泵壳、轴封箱和密封环等,如图2-1所示。有些离心泵还装有导轮、诱导轮、平衡盘等。 离心泵的过流部件是吸入室、叶轮和蜗壳。其作用简述如下: (1)吸入室吸入室位于叶轮进口前,其作用是把液体从吸入管引入叶轮,要求液体吸入室的流动损失要小,并使液体流入叶轮时速度分布均匀。 (2)叶轮叶轮是离心泵的重要部件,液体就是从叶轮中得到能量的。对叶轮的要求损失最小的情况下,使单位重量的液体获得较高的能量。

(3)蜗壳蜗壳位于叶轮出口之后,其功用是把从叶轮内流出来的液体收集起来,并按一定要求送入下级叶轮或送入排出管。由于液体在流出叶轮时速度很高,为了减少后面的管路损失,液体在送入排出管以前,必须将其速度降低,把速度能转变成静压能,这个任务也要求蜗壳等转能装置来完成,而且要求蜗壳在完成上述两项任务时流动损失最小。 二.离心泵的工 图2—1 离心泵基本构件 作原 1一转轴2一轴封箱3一扩压管4一叶轮5一吸入室6一密封 理 离心泵是由原动机(电动机或汽轮机)带动叶轮高速旋转,使液体由 于离心力的作用而获得能量的液体输送设备,故名离心泵。 当原动机带动叶轮高速旋转时,充满在泵体内的液体,在离心力的作用下,从叶轮中心被抛向叶轮的外缘。在此过程中,液体获得了能量,提高了静压强,同时由于流速增大,动能也增加了。液体离开叶轮进入

离心泵基础知识

图 2-1 离心泵活页轮 2-2 离心泵 离心泵结构简单,操作容易,流量均匀,调节控制方便,且能适用于多种特 殊性质物料,因此离心泵是化工厂中最常用的液体输送机械。近年来,离心泵正 向着大型化、高转速的方向发展。 2.2.1 离心泵的主要部件和工作原理 一、离心泵的主要部件 1.叶轮 叶轮是离心泵的关键部件,它是由若干弯曲的叶片组成。叶轮的作用是将原 动机的机械能直接传给液体,提高液体的动能和静压能。 根据叶轮上叶片的几何形式,可将叶片分为后弯、径向和前弯叶片三种,由 于后弯叶片可获得较多的静压能,所以被广泛采用。 叶轮按其机械结构可分为闭式、半闭式和开式(即敞式)三种,如图2-1 所示。在叶片的两侧带有前后盖板的叶轮称为闭式叶轮(c 图);在吸入口侧无 盖板的叶轮称为半闭式叶轮(b 图);在叶片两侧无前后盖板,仅由叶片和轮毂 组成的叶轮称为开式叶轮(a 图)。由于闭式叶轮宜用于输送清洁的液体,泵的 效率较高,一般离心泵多采用闭式叶轮。 叶轮可按吸液方式不同,分为单吸式和双吸式两种。单吸式叶轮结构简单, 双吸式从叶轮两侧对称地吸入液体(见教材图2-3)。双吸式叶轮不仅具有较大

的吸液能力,而且可以基本上消除轴向推力。 2.泵壳 泵体的外壳多制成蜗壳形,它包围叶轮,在叶轮四周展开成一个截面积逐渐扩大的蜗壳形通道(见图2-2)。泵壳的作用有:①汇集液体,即从叶轮外周甩出的液体,再沿泵壳中通道流过,排出泵体;②转能装置,因壳内叶轮旋转方向与蜗壳流道逐渐扩大的方向一致,减少了流动能量损失,并且可以使部分动能转变为静压能。 若为了减小液体进入泵壳时的碰撞,则在叶轮与泵壳之间还可安装一个固定不动的导轮(见教材图2-4中3)。由于导轮上叶片间形成若干逐渐转向的流道,不仅可以使部分动能转变为静压能,而且还可以减小流动能量损失。 注意:离心泵结构上采用了具有后弯叶片的叶轮,蜗壳形的泵壳及导轮,均有利于动能转换为静压能及可以减少流动的能量损失。 3.轴封装置 离心泵工作时是泵轴旋转而泵壳不动,泵轴与泵壳之间的密封称为轴封。轴封的作用是防止高压液体从泵壳内沿间隙漏出,或外界空气漏入泵内。轴封装置保证离心泵正常、高效运转,常用的轴封装置有填料密封和机械密封两种。 二、离心泵的工作原理 装置简图如附图。 1.排液过程 离心泵一般由电动机驱动。它在启动前需先向泵壳内灌满被输送的液体(称为灌泵),启动后,泵轴带动叶轮及叶片间的液体高速旋转,在惯性离心力的作用下,液体从叶轮中心被抛向外周,提高了动能和静压能。进而泵壳后,由于流道逐渐扩大,液体的流速减小,使部分动能转换为静压能,最终以较高的压强从排出口进入排出管路。 2.吸液过程 当泵内液体从叶轮中心被抛向外周时,叶轮中心形成了低压区。由于贮槽液面上方的压强大于泵吸入口处的压强,在该压强差的作用下,液体便经吸入管路被连续地吸入泵内。 3.气缚现象 当启动离心泵时,若泵内未能灌满液体而存在大量气体,则由于空气的密度

离心泵的基础知识

离心泵的基础知识 一、离心泵的基本构造就是由六部分组成的 离心泵的基本构造就是由六部分组成的分别就是叶轮,泵体,泵轴,轴承,密封环,填料函。 1、叶轮就是离心泵的核心部分,它转速高出力大,叶轮上的叶片又起到主要作用,叶轮在装配前要通过静平衡实验。叶轮上的内外表面要求光滑,以减少水流的摩擦损失。 2、泵体也称泵壳,它就是水泵的主体。起到支撑固定作用,并与安装轴承的托架相连接。 3、泵轴的作用就是借联轴器与电动机相连接,将电动机的转距传给叶轮,所以它就是传递机械能的主要部件。 4、轴承就是套在泵轴上支撑泵轴的构件,有滚动轴承与滑动轴承两种。滚动轴承使用牛油作为润滑剂加油要适当一般为2/3~3/4的体积太多会发热,太少又有响声并发热!滑动轴承使用的就是透明油作润滑剂的,加油到油位线。太多油要沿泵轴渗出并且漂贱,太少轴承又要过热烧坏造成事故!在水泵运行过程中轴承的温度最高在85度一般运行在60度左右,如果高了就要查找原因(就是否有杂质,油质就是否发黑,就是否进水)并及时处理! 5、密封环又称减漏环。叶轮进口与泵壳间的间隙过大会造成泵内高压区的水经此间隙流向低压区,影响泵的出水量,效率降低!间隙过小会造成叶轮与泵壳摩擦产生磨损。为了增加回流阻力减少内漏,延缓叶轮与泵壳的所使用寿命,在泵壳内缘与叶轮外援结合处装有密封环,密封的间隙保持在0、25~1、10mm 之间为宜。 6、填料函主要由填料,水封环,填料筒,填料压盖,水封管组成。填料函的作用主要就是为了封闭泵壳与泵轴之间的空隙,不让泵内的水流不流到外面来也不让外面的空气进入到泵内。始终保持水泵内的真空!当泵轴与填料摩擦产生热量就要靠水封管住水到水封圈内使填料冷却!保持水泵的正常运行。所以在水泵的运行巡回检查过程中对填料函的检查就是特别要注意!在运行600个小时左右就要对填料进行更换。 二、离心泵的过流部件 离心泵的过流部件有:吸入室,叶轮,压出室三个部分。叶轮室就是泵的核心,也就是流部件的核心。泵通过叶轮对液体的作功,使其能量增加。叶轮按液体流出的方向分为三类: (1)径流式叶轮(离心式叶轮)液体就是沿着与轴线垂直的方向流出叶轮。 (2)斜流式叶轮(混流式叶轮)液体就是沿着轴线倾斜的方向流出叶轮。 (3)轴流式叶轮液体流动的方向与轴线平行的。 叶轮按吸入的方式分为二类: (1) 单吸叶轮(即叶轮从一侧吸入液体)。 (2) 双吸叶轮(即叶轮从两侧吸入液体)。 叶轮按盖板形式分为三类: (1) 封闭式叶轮。 (2) 敞开式叶轮。 (3) 半开式叶轮。 其中封闭式叶轮应用很广泛,前述的单吸叶轮双吸叶轮均属于这种形式。 三、离心泵的工作原理 离心泵的工作原理就是:离心泵所以能把水送出去就是由于离心力的作用。水泵在工作前,泵体与进水管必须罐满水行成真空状态,当叶轮快速转动时,叶片促使水很快旋转,旋转着的水在离心力的作用下从叶轮中飞去,泵内的水被抛出后,叶轮的中心部分形成真空区域。水原的水在大气压力(或水压)的作用下通过管网压到了进水管内。这样循环不已,就可以实现连续抽水。在此值得一提的就是:离心泵启动前一定要向泵壳内充满水以后,方可启动,否则将造成泵体发热,震动,出水量减少,对水泵造成损坏(简称“气蚀”)造成

离心泵基础知识

2-2 离心泵 离心泵结构简单,操作容易,流量均匀,调节控制方便,且能适用于多种特殊性质物料,因此离心泵是化工厂中最常用的液体输送机械。近年来,离心泵正向着大型化、高转速的方向发展。 2.2.1 离心泵的主要部件和工作原理 图2-1 离心泵活页轮 一、离心泵的主要部件 1.叶轮 叶轮是离心泵的关键部件,它是由若干弯曲的叶片组成。叶轮的作用是将原动机的机械能直接传给液体,提高液体的动能和静压能。 根据叶轮上叶片的几何形式,可将叶片分为后弯、径向和前弯叶片三种,由于后弯叶片可获得较多的静压能,所以被广泛采用。 叶轮按其机械结构可分为闭式、半闭式和开式(即敞式)三种,如图2-1所示。在叶片的两侧带有前后盖板的叶轮称为闭式叶轮(c图);在吸入口侧无盖板的叶轮称为半闭式叶轮(b图);在叶片两侧无前后盖板,仅由叶片和轮毂组成的叶轮称为开式叶轮(a图)。由于闭式叶轮宜用于输送清洁的液体,泵的效率较高,一般离心泵多采用闭式叶轮。 叶轮可按吸液方式不同,分为单吸式和双吸式两种。单吸式叶轮结构简单,双吸式从叶轮两侧对称地吸入液体(见教材图2-3)。双吸式叶轮不仅具有较大

的吸液能力,而且可以基本上消除轴向推力。 2.泵壳 泵体的外壳多制成蜗壳形,它包围叶轮,在叶轮四周展开成一个截面积逐渐扩大的蜗壳形通道(见图2-2)。泵壳的作用有:①汇集液体,即从叶轮外周甩出的液体,再沿泵壳中通道流过,排出泵体;②转能装置,因壳内叶轮旋转方向与蜗壳流道逐渐扩大的方向一致,减少了流动能量损失,并且可以使部分动能转变为静压能。 若为了减小液体进入泵壳时的碰撞,则在叶轮与泵壳之间还可安装一个固定不动的导轮(见教材图2-4中3)。由于导轮上叶片间形成若干逐渐转向的流道,不仅可以使部分动能转变为静压能,而且还可以减小流动能量损失。 注意:离心泵结构上采用了具有后弯叶片的叶轮,蜗壳形的泵壳及导轮,均有利于动能转换为静压能及可以减少流动的能量损失。 3.轴封装置 离心泵工作时是泵轴旋转而泵壳不动,泵轴与泵壳之间的密封称为轴封。轴封的作用是防止高压液体从泵壳内沿间隙漏出,或外界空气漏入泵内。轴封装置保证离心泵正常、高效运转,常用的轴封装置有填料密封和机械密封两种。 二、离心泵的工作原理 装置简图如附图。 1.排液过程 离心泵一般由电动机驱动。它在启动前需先向泵壳内灌满被输送的液体(称为灌泵),启动后,泵轴带动叶轮及叶片间的液体高速旋转,在惯性离心力的作用下,液体从叶轮中心被抛向外周,提高了动能和静压能。进而泵壳后,由于流道逐渐扩大,液体的流速减小,使部分动能转换为静压能,最终以较高的压强从排出口进入排出管路。 2.吸液过程 当泵内液体从叶轮中心被抛向外周时,叶轮中心形成了低压区。由于贮槽液面上方的压强大于泵吸入口处的压强,在该压强差的作用下,液体便经吸入管路被连续地吸入泵内。 3.气缚现象 当启动离心泵时,若泵内未能灌满液体而存在大量气体,则由于空气的密度

泵的基础知识大全讲述讲解

泵的基础知识大全 一、什么是泵? 泵是输送液体或使液体增压的机械。它将原动机的机械能或其他外部能量传送给液体,使液体能量增加。 泵主要用来输送水、油、酸碱液、乳化液、悬乳液和液态金属等液体,也可输送液、气混合物及含悬浮固体物的液体。 泵通常可按工作原理分为容积式泵、动力式泵和其他类型泵三类。除按工作原理分类外,还可按其他方法分类和命名。如,按驱动方法可分为电动泵和水轮泵等;按结构可分为单级泵和多级泵;按用途可分为锅炉给水泵和计量泵等;按输送液体的性质可分为水泵、油泵和泥浆泵等。 泵的各个性能参数之间存在着一定的相互依赖变化关系,可以画成曲线来表示,称为泵的特性曲线,每一台泵都有自己特定的特性曲线。二、泵的定义与历史来源 输送液体或使液体增压的机械。广义上的泵是输送流体或使其增压的机械,包括某些输送气体的机械。泵把原动机的机械能或其他能源的能量传给液体,使液体的能量增加。 水的提升对于人类生活和生产都十分重要。古代已有各种提水器具,如埃及的链泵(前17 世纪)、中国的桔槔(前17世纪)、辘轳(前11 世纪)、水车(公元1 世纪),以及公元前3 世纪古希腊阿基米德发 明的螺旋杆等。公元前200 年左右,古希腊工匠克特西比 乌斯发明了最原始的活塞泵-灭火泵。早在1588年就有了关于4 叶片 滑片泵的记载,以后陆续出现了其他各种回转泵。1689 年,法国的D.帕

潘发明了4叶片叶轮的蜗壳离心泵。1818年,美国出现了具有径向直叶 片、半开式双吸叶轮和蜗壳的离心泵。1840?1850年,美国的H.R.沃辛顿发明了泵缸和蒸汽缸对置的蒸汽直接作用的活塞泵,标志着现代活塞泵的形成。1851?1875 年,带有导叶的多级离心泵相继发明,使发展高扬程离心泵成为可能。随后,各种泵相继问世。随着各种先进技术的应用,泵的效率逐步提高,性能范围和应用也日渐扩大。 三、泵的分类依据 泵的种类繁多,按工作原理可分为:①动力式泵,又叫叶轮式泵或叶片式泵,依靠旋转的叶轮对液体的动力作用,把能量连续地传递给液体,使液体的动能(为主)和压力能增加,随后通过压出室将动能转换为压力能,又可分为离心泵、轴流泵、部分流泵和旋涡泵等。②容积式泵,依靠包容液体的密封工作空间容积的周期性变化,把能量周期性地传递给液体,使液体的压力增加至将液体强行排出,根据工作元件的运动形式又可分为往复泵和回转泵。③其他类型的泵,以其他形式传递能量。如射流泵依靠高速喷射的工作流体将需输送的流体吸入泵后混合,进行动量交换以传递能量;水锤泵利用制动时流动中的部分水被升到一定高度传递能量;电磁泵是使通电的液态金属在电磁力作用下产生流动而实现输送。另 外,泵也可按输送液体的性质、驱动方法、结构、用途等进行分类。 四、泵在各个领域中的应用 从泵的性能范围看,巨型泵的流量每小时可达几十万立方米以上,而微型泵的流量每小时则在几十毫升以下;泵的压力可从常压到高达19.61Mpa(200kgf/cm2) 以上;被输送液体的温度最低达-200 摄氏度以下,最高可达800 摄氏度以上。泵输送液体的种类繁多,诸如输送水(清

泵的基本知识

泵的基本知识 泵是一种输送液体的流体机械,它把原动机的机械能或其他能源的能量传递给液体,使液体的能量(位能、压力能或动能)增加。 从定义可看出泵的主要用途:泵主要用来输送液体(泵总成在工作时输送的泥浆)泵输送液体的种类繁多,诸如输送水(清水、污水等)、油液、酸碱液、悬浮液、和液态金属等。 泵的性能参数主要有流量和扬程,此外还有轴功率、转速和必需汽蚀裕量。 流量是指单位时间内通过泵出口输出的液体量,一般采用体积流量。 扬程是单位重量输送液体从泵入口至出口的能量增量,对于容积式泵,能量增量主要体现在压力能增加上,所以通常以压力增量代替扬程来表示。即泵抽送液体的液柱高度。 按照工作原理泵大致分为三类: 1、动力式泵,又称叶轮式泵或叶片式泵。 动力式泵,依靠快速旋转的叶轮对液体的作用力,将机械能传递给液体,使其动能和压力能增加,然后再通过泵缸,将大部分动能转换为压力能而实现输送。离心泵是最常见的动力式泵。 在一定转速下产生的扬程有一限定值,扬程随流量而改变;工作稳定,输送连续,流量和压力无脉动;一般无自吸能力,需要将泵缸内先灌满液体或将管路抽成真空后才能开始工作;适宜输送粘度很小的清洁液体,特殊设计的泵可输送泥浆、污水等或水输固体物。动力式泵主要用于给水、排水、灌溉、流程液体输送、电站蓄能、液压传动和船舶喷射推进等。 2、容积式泵,主要有:齿轮泵、活塞泵、柱塞泵、隔膜泵、螺杆泵等。 容积式泵是依靠工作元件在泵缸内作往复或回转运动,使工作容积交替地增大和缩小,以实现液体的吸入和排出。 工作元件作往复运动的容积式泵称为往复泵,作回转运动的称为回转泵。 齿轮泵和螺杆泵属于回转泵;活塞泵、柱塞泵、隔膜泵属于往复泵。 往复泵的吸入和排出过程在同一泵缸内交替进行,并由吸入阀和排出阀加以控制;回转泵则是通过齿轮、螺杆、叶形转子或滑片等工作元件的旋转作用,迫使液体从吸入侧转移到排出侧。 容积式泵在一定转速或往复次数下的流量是一定的,几乎不随压力而改变。 ①往复泵的流量和压力有较大脉动,需要采取相应的消减脉动措施;回转泵一般无脉动或只有小的脉动;

离心泵基础知识

编号:SY-AQ-05570 ( 安全管理) 单位:_____________________ 审批:_____________________ 日期:_____________________ WORD文档/ A4打印/ 可编辑 离心泵基础知识 Basic knowledge of centrifugal pump

离心泵基础知识 导语:进行安全管理的目的是预防、消灭事故,防止或消除事故伤害,保护劳动者的安全与健康。在安全管理的四项主要内容中,虽然都是为了达到安全管理的目的,但是对生产因素状态的控制,与安全管理目的关系更直接,显得更为突出。 一.离心泵的工作原理 驱动机通过泵轴带动叶轮旋转产生离心力,在离心力作用下,液体沿叶片流道被甩向叶轮出口,液体经蜗壳收集送入排出管。液体从叶轮获得能量,?使压力能和速度能均增加,并依靠此能量将液体输送到工作地点。 在液体被甩向叶轮出口的同时,叶轮入口中心处形成了低压,?在吸液罐和叶轮中心处的液体之间就产生了压差,吸液罐中的液体在这个压差作用下,不断地经吸入管路及泵的吸入室进入叶轮中。 二、离心泵的结构及主要零部件 一台离心泵主要由泵体、叶轮、密封环、旋转轴、轴封箱等部件组成,有些离心泵还装有导轮、诱导轮、平衡盘等。 1.泵体:即泵的壳体,包括吸入室和压液室。 ①吸入室:它的作用是使液体均匀地流进叶轮。

②压液室:它的作用是收集液体,并把它送入下级叶轮或导向排出管,与此同时降低液体的速度,使动能进一步变成压力能。?压液室有蜗壳和导叶两种形式。 2.叶轮:它是离心泵内传递能量给液体的唯一元件,叶轮用键固定于轴上,随轴由原动机带动旋转,通过叶片把原动机的能量传给液体。 叶轮分类: ①按照液体流入分类:单吸叶轮(在叶轮的一侧有一个入口)和双吸叶轮(液体从叶轮的两侧对称地流到叶轮流道中)。 ②按照液体相对于旋转轴线的流动方向分类:径流式叶轮、轴流式叶轮和混流式叶轮。 ③按照叶轮的结构形式分类:闭式叶轮、开式叶轮和半开式叶轮。 3.轴:是传递机械能的重要零件,?原动机的扭矩通过它传给叶轮。泵轴是泵转子的主要零件,轴上装有叶轮、轴套、平衡盘等零件。泵轴靠两端轴承支承,在泵中作高速回转,因而泵轴要承载能力大、耐磨、耐腐蚀。泵轴的材料一般选用碳素钢或合金钢并经调质处理。

常用泵的基础知识讲述

泵的维护保养 离心泵 一、日常维护保养 1、离心泵管路及结合处有无松动现象。用手转动离心泵,试看离心泵是否灵活。 2、支承体内加入轴承润滑机油,观察油位应在油标的中心线处,润滑油应及时更换或补充。 3、离心泵泵体的引水螺塞,灌注引水是否严密。 4、打开出水管路的闸阀和出口压力表。 5、电机,试看电机转向是否正确。

6、当离心泵正常运转后,打开出口压力表视显示适当压力后,逐渐打开闸阀,同时检查电机负荷情况。 7、控制离心泵的流量和扬程在标牌上注明的范围内,以保证离心泵在最高效率点运转,才能获得最大的节能效果。 8、泵在运行过程中,轴承温度不能超过环境温度35℃,最高温度不得超过80℃。 9、离心泵有异常声音应立即停车检查原因。 10、要停止使用时,先关闭闸阀、压力表,然后停止电机。 11、在工作第一个月内,经100小时更换润滑油,以后每隔500小时,换油一次。 12、填料压盖,保证填料室内的滴漏情况正常(以成滴漏出为宜)。 13、检查轴承、机封、轴套磨损情况,必要时进行更换。 14、在寒冬季节使用时,停车后,需将泵体下部放水螺塞拧开将介质放净。防止冻裂。 二、离心泵常见故障及排除方法 设备维护小常识 设备专业点检提示 点:设备重要部位点、工装模具 期:定期检查 标:按标准检查 录:检查、处理均有记录 析:分析故障记录和发展趋势,倾向管理 修:及时做好预防和事后维修

管道泵 一、安装说明 1、安装前应检查机组紧固件有无松动现象,泵体流道有无异物堵塞,以免水泵运行时损坏叶轮和泵体。 2、安装时管道重量不应加在水泵上,以免水泵变形。 3、安装时必须拧紧地脚螺栓,以免启动时振动对泵的性能产生影响。 4、为了维修方便和使用安全,在泵的进出口管路上各安装一只调节阀及在泵出口附近安装一颗压力表,以保证在额定扬程和流量范围内运行,确保泵正常运行,延长水泵的使用寿命。 5、安装后拨动泵轴,叶轮应无磨损声或卡死现象,否则应将拆开检查原因, 6、泵分硬性联接安装和柔性联接安装两种(见联接方式) 二、启动与停车 起动前准备: 1、试验电机转向是否正确,从电机顶部往泵看为顺时针旋转,试验时间要短,以免损坏机械密封。 2、打开排气阀使液体充满整个泵体,待满后关闭排气阀。 3、检查各部位是否正常。 4、用手盘动泵以使润滑液进入机械密封端面。 5、高温型应先进行预热,升温速度50℃/小时,以保证各部件受热均匀。 起动: 1、全开进口阀门。 2、关闭突出管路阀门。 3、起动电机,观察泵运行是否正常。

离心泵的基础知识

泵的分类方法有以下三种: (一)按工作原理分类 1.容积式泵依靠泵内工作室容积大小作周期性地变化来输送液体的泵; 2.叶片式泵依靠泵内高速旋转的叶轮把能量传给液体,从而输送液体的泵; 3.其它类型泵依靠一种流体(液、气或汽)的静压能或动能来输送液体的泵。此类泵又称流体动力作用泵。 采用这种分类方法时,根据泵的结构又可分为以下几种。

(二)按泵产生的压力(扬程)分类 1.高压泵总扬程在600m以上; 2.中压泵总扬程为200~600ml 3.低压泵总扬程低于200m。 (三)按泵用处分类 第2节离心泵的工作原理及分类 一.离心泵的基本构成 离心泵的主要部件有:叶轮、转轴、吸入室、泵壳、轴封箱和密封环等,如图2-1所示。有些离心泵还装有导轮、诱导轮、平衡盘等。 离心泵的过流部件是吸入室、叶轮和蜗壳。其作用简述如下: (1)吸入室吸入室位于叶轮进口前,其作用是把液体从吸入管引入叶轮,要求液体吸入室的流动损失要小,并使液体流入叶轮时速度分布均匀。 (2)叶轮叶轮是离心泵的重要部件,液体就是从叶轮中得到能量的。对叶轮的要求损失最小的情况下,使单位重量的液体获得较高的能量。 (3)蜗壳蜗壳位于叶轮出口之后,其功用是把从叶轮内流出来的液体收集起来,并按一定要求送入下级叶轮或送入排出管。由于液体在流出叶轮时速度很高,为了减少后面的管路损失,液体在送入排出管以前,必须将其速度降低,把速度能转变成静压能,这个任务也要求蜗壳等 转能装置来完成,而且要求蜗壳在完成上述两项任务时流动损失最小。

二.离心泵的工 作原 理 离心泵是由原动机(电动机或汽轮机)带动叶轮高速旋转,使液体由于离心力的作用而获得能量的液体输送设备,故名离心泵。 当原动机带动叶轮高速旋转时,充满在泵体内的液体,在离心力的作用下,从叶轮中心被抛向叶轮的外缘。在此过程中,液体获得了能量,提高了静压强,同时由于流速增大,动能也增加了。液体离开叶轮进入泵壳,由于流道逐渐加宽、液体的速度逐渐降低,便将其中部分动能转变为静压能,这样又进一步提高液体的静压强,于是液体以较高的压强进入排出管路。 当泵内液体在高速旋转下产生离心现象而趋向叶轮外缘时,在叶轮中心形成低压区,这样造成贮槽液面与叶轮中心处的压强差。在这个压强差的作用下,液体便沿着吸入管连续不断地进入叶轮中心,以补充被排出的液体。这样,只要叶轮的转动不停,液体就会连续不断地被吸入和压出,从而达到输送的目的。 离心泵的叶轮是按输送液体设计的,对气体不能施加足够的离心力,假如泵内存在空气,由于空气的重度远小于液体,产生的离心力亦小,此时叶轮中心只能造成很小的负压,形不成所需的压强差,液体便不能进入到叶轮中心,泵也就排不出液体,这种现象称为“气缚"。所以,离心泵没有自吸能力,启动前必须要灌泵。 (二)、离心泵的型号 . 1.水泵 输送介质为水; 常用的三种水泵型号的表示方法如下: (1)4BA —12型水泵 型号的意义: 4—进口管直径,单位为英寸; BA —表示该泵的结构特点是悬臂式,即水泵是从泵座上伸悬出来的; 12—该泵的比转数的1/10,即该泵的比转数为l20。 DFjY160-120×10 150AY Ⅱ150B 第3节 离心泵参数 在石油化工生产中,离心泵是使用最广泛的液体输送机械。其特点是结构简单、流量均匀、 图2—1 离心泵基本构件 1一转轴 2一轴封箱 3一扩压管 4一叶轮 5一吸入室 6一密封

离心泵的基础知识

离心泵得基础知识 一、离心泵得基本构造就是由六部分组成得 离心泵得基本构造就是由六部分组成得分别就是叶轮,泵体,泵轴,轴承,密封环,填料函。 1、叶轮就是离心泵得核心部分,它转速高出力大,叶轮上得叶片又起到主要作用,叶轮在装配前要通过静平衡实验。叶轮上得内外表面要求光滑,以减少水流得摩擦损失。 2、泵体也称泵壳,它就是水泵得主体。起到支撑固定作用,并与安装轴承得托架相连接。 3、泵轴得作用就是借联轴器与电动机相连接,将电动机得转距传给叶轮,所以它就是传递机械能得主要部件。 4、轴承就是套在泵轴上支撑泵轴得构件,有滚动轴承与滑动轴承两种。滚动轴承使用牛油作为润滑剂加油要适当一般为2/3~3/4得体积太多会发热,太少又有响声并发热!滑动轴承使用得就是透明油作润滑剂得,加油到油位线。太多油要沿泵轴渗出并且漂贱,太少轴承又要过热烧坏造成事故!在水泵运行过程中轴承得温度最高在85度一般运行在60度左右,如果高了就要查找原因(就是否有杂质,油质就是否发黑,就是否进水)并及时处理! 5、密封环又称减漏环。叶轮进口与泵壳间得间隙过大会造成泵内高压区得水经此间隙流向低压区,影响泵得出水量,效率降低!间隙过小会造成叶轮与泵壳摩擦产生磨损。为了增加回流阻力减少内漏,延缓叶轮与泵壳得所使用寿命,在泵壳内缘与叶轮外援结合处装有密封环,密封得间隙保持在0、25~1、10mm 之间为宜。 6、填料函主要由填料,水封环,填料筒,填料压盖,水封管组成。填料函得作用主要就是为了封闭泵壳与泵轴之间得空隙,不让泵内得水流不流到外面来也不让外面得空气进入到泵内。始终保持水泵内得真空!当泵轴与填料摩擦产生热量就要靠水封管住水到水封圈内使填料冷却!保持水泵得正常运行。所以在水泵得运行巡回检查过程中对填料函得检查就是特别要注意!在运行600个小时左右就要对填料进行更换。 二、离心泵得过流部件 离心泵得过流部件有:吸入室,叶轮,压出室三个部分。叶轮室就是泵得核心,也就是流部件得核心。泵通过叶轮对液体得作功,使其能量增加。叶轮按液体流出得方向分为三类: (1)径流式叶轮(离心式叶轮)液体就是沿着与轴线垂直得方向流出叶轮。 (2)斜流式叶轮(混流式叶轮)液体就是沿着轴线倾斜得方向流出叶轮。 (3)轴流式叶轮液体流动得方向与轴线平行得。 叶轮按吸入得方式分为二类: (1) 单吸叶轮(即叶轮从一侧吸入液体)。 (2) 双吸叶轮(即叶轮从两侧吸入液体)。 叶轮按盖板形式分为三类: (1) 封闭式叶轮。 (2) 敞开式叶轮。 (3) 半开式叶轮。 其中封闭式叶轮应用很广泛,前述得单吸叶轮双吸叶轮均属于这种形式。 三、离心泵得工作原理 离心泵得工作原理就是:离心泵所以能把水送出去就是由于离心力得作用。水泵在工作前,泵体与进水管必须罐满水行成真空状态,当叶轮快速转动时,叶片促使水很快旋转,旋转着得水在离心力得作用下从叶轮中飞去,泵内得水被抛出后,叶轮得中心部分形成真空区域。水原得水在大气压力(或水压)得作用下通过管网压到了进水管内。这样循环不已,就可以实现连续抽水。在此值得一提得就是:离心泵启动前一定要向泵壳内充满水以后,方可启动,否则将造成泵体发热,震动,出水量减少,对水泵造成损坏(简称“气蚀”)造成设备事故!

离心泵基础知识

2-2 离心泵 离心泵结构简单,操作容易,流量均匀,调节控制方便,且能适用于多种特殊性质物料,因此离心泵就是化工厂中最常用得液体输送机械。近年来,离心泵正向着大型化、高转速得方向发展。 2.2.1 离心泵得主要部件与工作原理 图2-1 离心泵活页轮 一、离心泵得主要部件 1.叶轮 叶轮就是离心泵得关键部件,它就是由若干弯曲得叶片组成。叶轮得作用就是将原动机得机械能直接传给液体,提高液体得动能与静压能。 根据叶轮上叶片得几何形式,可将叶片分为后弯、径向与前弯叶片三种,由于后弯叶片可获得较多得静压能,所以被广泛采用。 叶轮按其机械结构可分为闭式、半闭式与开式(即敞式)三种,如图2-1所示。在叶片得两侧带有前后盖板得叶轮称为闭式叶轮(c图);在吸入口侧无盖板得叶轮称为半闭式叶轮(b图);在叶片两侧无前后盖板,仅由叶片与轮毂组成得叶轮称为开式叶轮(a图)。由于闭式叶轮宜用于输送清洁得液体,泵得效率较高,一般离心泵多采用闭式叶轮。 叶轮可按吸液方式不同,分为单吸式与双吸式两种。单吸式叶轮结构简单,双吸式从叶轮两侧对称地吸入液体(见教材图2-3)。双吸式叶轮不仅具有较大得吸液能力,而且可以基本上消除轴向推力。 2.泵壳

泵体得外壳多制成蜗壳形,它包围叶轮,在叶轮四周展开成一个截面积逐渐扩大得蜗壳形通道(见图2-2)。泵壳得作用有:①汇集液体,即从叶轮外周甩出得液体,再沿泵壳中通道流过,排出泵体;②转能装置,因壳内叶轮旋转方向与蜗壳流道逐渐扩大得方向一致,减少了流动能量损失,并且可以使部分动能转变为静压能。 若为了减小液体进入泵壳时得碰撞,则在叶轮与泵壳之间还可安装一个固定不动得导轮(见教材图2-4中3)。由于导轮上叶片间形成若干逐渐转向得流道,不仅可以使部分动能转变为静压能,而且还可以减小流动能量损失。 注意:离心泵结构上采用了具有后弯叶片得叶轮,蜗壳形得泵壳及导轮,均有利于动能转换为静压能及可以减少流动得能量损失。 3.轴封装置 离心泵工作时就是泵轴旋转而泵壳不动,泵轴与泵壳之间得密封称为轴封。轴封得作用就是防止高压液体从泵壳内沿间隙漏出,或外界空气漏入泵内。轴封装置保证离心泵正常、高效运转,常用得轴封装置有填料密封与机械密封两种。 二、离心泵得工作原理 装置简图如附图。 1.排液过程 离心泵一般由电动机驱动。它在启动前需先向泵壳内灌满被输送得液体(称为灌泵),启动后,泵轴带动叶轮及叶片间得液体高速旋转,在惯性离心力得作用下,液体从叶轮中心被抛向外周,提高了动能与静压能。进而泵壳后,由于流道逐渐扩大,液体得流速减小,使部分动能转换为静压能,最终以较高得压强从排出口进入排出管路。 2.吸液过程 当泵内液体从叶轮中心被抛向外周时,叶轮中心形成了低压区。由于贮槽液面上方得压强大于泵吸入口处得压强,在该压强差得作用下,液体便经吸入管路被连续地吸入泵内。 3.气缚现象 当启动离心泵时,若泵内未能灌满液体而存在大量气体,则由于空气得密度远小于液体得密度,叶轮旋转产生得惯性离心力很小,因而叶轮中心处不能形成吸入液体所需得真空度,这种虽启动离心泵,但不能输送液体得现象称为气缚。因

相关主题
文本预览
相关文档 最新文档