当前位置:文档之家› 2021届高三物理一轮复习—— “碰撞类”模型问题

2021届高三物理一轮复习—— “碰撞类”模型问题

2021届高三物理一轮复习—— “碰撞类”模型问题
2021届高三物理一轮复习—— “碰撞类”模型问题

2021届高三物理一轮复习—— “碰撞类”模型问题

专题解读 1.本专题主要研究碰撞过程的特点和满足的物理规律,并对碰撞模型进行拓展分析.

2.学好本专题,可以使同学们掌握根据物理情景或解题方法的相同或相似性,进行归类分析问题的能力.

3.用到的知识、规律和方法有:牛顿运动定律和匀变速直线运动规律;动量守恒定律;动能定理和能量守恒定律.

1.弹性碰撞

碰撞结束后,形变全部消失,动能没有损失,不仅动量守恒,而且初、末动能相等.

(1)m 1v 1+m 2v 2=m 1v 1′+m 2v 2′

12m 1v 12+12m 2v 22=12m 1v 1′2+12

m 2v 2′2 v 1′=(m 1-m 2)v 1+2m 2v 2m 1+m 2

v 2′=(m 2-m 1)v 2+2m 1v 1m 1+m 2

(2)v 2=0时,v 1′=m 1-m 2m 1+m 2 v 1

v 2′=2m 1m 1+m 2 v 1

讨论:①若m 1=m 2,则v 1′=0,v 2′=v 1(速度交换);

②若m 1>m 2,则v 1′>0,v 2′>0(碰后,两物体沿同一方向运动);

③若m 1?m 2,则v 1′≈v 1,v 2′≈2v 1;

④若m 10(碰后,两物体沿相反方向运动);

⑤若m 1?m 2,则v 1′≈-v 1,v 2′≈0.

2.非弹性碰撞

碰撞结束后,动能有部分损失.

m 1v 1+m 2v 2=m 1v 1′+m 2v 2′

12m 1v 12+12m 2v 22=12m 1v 1′2+12

m 2v 2′2+ΔE k 损 3.完全非弹性碰撞

碰撞结束后,两物体合二为一,以同一速度运动,动能损失最大.

m1v1+m2v2=(m1+m2)v

1

2m1v12+1

2m2v22=

1

2(m1+m2)v2+ΔE k损max

4.碰撞遵守的原则

(1)动量守恒.

(2)机械能不增加,即碰撞结束后总动能不增加,表达式为E k1+E k2≥E k1′+E k2′或

p12

2m1+p22

2m2≥

p1′2

2m1+

p2′2

2m2.

(3)速度要合理

①碰前若同向运动,原来在前的物体速度一定增大,且v前≥v后.

②两物体相向运动,碰后两物体的运动方向至少有一个改变或速度均为零.

例1(2019·福建泉州市质量检查)在游乐场中,父子两人各自乘坐的碰碰车沿同一直线相向而行,在碰前瞬间双方都关闭了动力,此时父亲的速度大小为v,儿子的速度大小为2v.两车瞬间碰撞后儿子沿反方向滑行,父亲运动的方向不变且经过时间t停止运动.已知父亲和车的总质量为3m,儿子和车的总质量为m,两车与地面之间的动摩擦因数均为μ,重力加速度大小为g,求:

(1)碰后瞬间父亲的速度大小和此后父亲能滑行的最大距离;

(2)碰撞过程父亲坐的车对儿子坐的车的冲量大小.

答案(1)μgt 1

2μgt2(2)3m v-3μmgt

解析(1)设碰后瞬间父亲的速度大小为v1,由动量定理可得

-μ·3mgt=0-3m v1

得v1=μgt

设此后父亲能滑行的最大距离为s,由动能定理可得

-μ·3mgs=0-1

2×3m v12

得s=1

2μgt2

(2)设碰后瞬间儿子的速度大小为v2,取父亲的运动方向为正方向,由动量守恒定律可得3m v-m·2v=3m v1+m v2

设碰撞过程父亲坐的车对儿子坐的车的冲量大小为I,由动量定理可得

I=m v2-(-m·2v)

解得I=3m v-3μmgt.

关于高级高中物理模型总结归纳

1、追及、相遇模型 火车甲正以速度v 1向前行驶,司机突然发现前方距甲d 处有火车乙正以较小速度v 2同向匀速行驶,于是他立即刹车,使火车做匀减速运动。为了使两车不相撞,加速度a 应满足什么条件? 故不相撞的条件为d v v a 2)(2 21-≥ 2、传送带问题 1.(14分)如图所示,水平传送带水平段长L =6米,两皮带轮直径均为D=0.2米,距地面高度H=5米,与传送带等高的光滑平台上有一个小物体以v 0=5m/s 的初速度滑上传送带,物块与传送带间的动摩擦因数为,g=10m/s 2,求: (1)若传送带静止,物块滑到B 端作平抛 运动 的水平距离S 0。 (2)当皮带轮匀速转动,角速度为ω,物 体平抛运动水平位移s ;以不同的角速度ω值重复 上述过程,得到一组对应的ω,s 值,设皮带轮顺时针转动时ω>0,逆时针转动时ω<0,并画出s —ω关系图象。 解:(1))(12110m g h v t v s === (2)综上s —ω关系为:?? ? ??≥≤≤≤s rad s rad s rad s /707/70101.0/101ωωω ω 2.(10分)如图所示,在工厂的流水线上安装有水平传送带,用水平传送带传送工件,可以大大提高工作效率,水平传送带以的 工 恒定的速率s m v /2=运送质量为kg m 5.0=

件,工件都是以s m v /10=的初速度从A 位置滑上传送带,工件与传送带之间的动摩擦因数2.0=μ,每当前一个工件在传送带上停止相对滑动时,后一个工件立即滑上传送带,取2/10s m g =,求: (1)工件滑上传送带后多长时间停止相对滑动 (2)在正常运行状态下传送带上相邻工件间的距离 (3)在传送带上摩擦力对每个工件做的功 (4)每个工件与传送带之间由于摩擦产生的内能 解:(1)工作停止相对滑动前的加速度2/2s m g a ==μ ① 由at v v t +=0可知:s s a v v t t 5.02 1 20=-=-= ② (2)正常运行状态下传送带上相邻工件间的距离m m vt s 15.02=?==? ③ (3)J J mv mv W 75.0)12(5.02 12121 222 02=-??=-= ④ (4)工件停止相对滑动前相对于传送带滑行的距离 )21(20at t v vt s +-=m )5.022 1 5.01(5.022??+?-?=m m 25.0)75.01(=-=⑤ J mgs fs E 25.0===μ内 ⑥ 3、汽车启动问题 匀加速启动 恒定功率启动 4、行星运动问题 [例题1] 如图6-1所示,在与一质量为M ,半径为R ,密度均匀的球体距离为R 处有一质量为m 的质点,此时M 对m 的万有引力为F 1.当从球M 中挖去一个半径为R/2的小球体时,剩下部分对m 的万有引力为F 2,则F 1与F 2的比是多少?

高考物理模型之圆周运动模型

第二章 圆周运动 解题模型: 一、水平方向的圆盘模型 1. 如图1.01所示,水平转盘上放有质量为m 的物块,当物块到转轴的距离为r 时,连接物块和转轴的绳刚好被拉直(绳上张力为零)。物体和转盘间最大静摩擦力是其正压力的μ倍,求: (1)当转盘的角速度ωμ12=g r 时,细绳的拉力F T 1。 (2)当转盘的角速度ωμ232=g r 时,细绳的拉力F T 2。 图2.01 解析:设转动过程中物体与盘间恰好达到最大静摩擦力时转动的角速度为ω0,则μωmg m r =02,解得ωμ0=g r 。 (1)因为ωμω102=g r ,所以物体所需向心力大于物与盘间的最大静摩擦力,则细绳将对物体施加拉力F T 2,由牛顿的第二定律得:F mg m r T 222+=μω,解得 F mg T 22=μ。 2. 如图2.02所示,在匀速转动的圆盘上,沿直径方向上放置以细线相连的A 、B 两个小物块。A 的质量为m kg A =2,离轴心r cm 120=,B 的质量为m kg B =1,离轴心

r cm 210=,A 、B 与盘面间相互作用的摩擦力最大值为其重力的0.5倍,试求: (1)当圆盘转动的角速度ω0为多少时,细线上开始出现张力? (2)欲使A 、B 与盘面间不发生相对滑动,则圆盘转动的最大 角速度为多大?(g m s =102/) 图2.02 解析:(1)ω较小时,A 、B 均由静摩擦力充当向心力,ω增大,F m r =ω2可知,它们受到的静摩擦力也增大,而r r 12>,所以A 受到的静摩擦力先达到最大值。ω再增大,AB 间绳子开始受到拉力。 由F m r fm =1022ω,得:ω011111 055===F m r m g m r rad s fm ./ (2)ω达到ω0后,ω再增加,B 增大的向心力靠增加拉力及摩擦力共同来提供,A 增大的向心力靠增加拉力来提供,由于A 增大的向心力超过B 增加的向心力,ω再增加,B 所受摩擦力逐渐减小,直到为零,如ω再增加,B 所受的摩擦力就反向,直到达最大静摩擦力。如ω再增加,就不能维持匀速圆周运动了,A 、B 就在圆盘上滑动起来。设此时角速度为ω1,绳中张力为F T ,对A 、B 受力分析: 对A 有F F m r fm T 11121+=ω 对B 有F F m r T fm -=2212 2ω 联立解得:ω112 112252707=+-==F F m r m r rad s rad s fm fm /./ 3. 如图2.03所示,两个相同材料制成的靠摩擦传动的轮A 和轮B 水平放置,两轮半径 R R A B =2,当主动轮A 匀速转动时,在A 轮边缘上放置的小木块恰能相对静止在A 轮边缘上。若将小木块放在B 轮上,欲使木块相对B 轮也静止,则木块距B 轮转轴的最大距离为( ) A. R B 4 B. R B 3 C. R B 2 D. R B 答案: C

高考常用24个物理模型

F m 高考常用24个物理模型 物理复习和做题时需要注意思考、善于归纳整理,对于例题做到触类旁通,举一反三, 把老师的知识和解题能力变成自己的知识和解题能力,下面是物理解题中常见的24个解题 模型,从力学、运动、电磁学、振动和波、光学到原子物理,基本涵盖高中物理知识的各个 方面。主要模型归纳整理如下: 模型一:超重和失重 系统的重心在竖直方向上有向上或向下的加速度(或此方向的分量a y) 向上超重(加速向上或减速向下)F=m(g+a); 向下失重(加速向下或减速上升) F=m(g-a) 难点:一个物体的运动导致系统重心的运动 绳剪断后台称示数铁木球的运动 系统重心向下加速用同体积的水去补充 斜面对地面的压力? 地面对斜面摩擦力? 导致系统重心如何运动? 模型二:斜面 搞清物体对斜面压力为零的临界条件 斜面固定:物体在斜面上情况由倾角和摩擦因素决定 μ=tgθ物体沿斜面匀速下滑或静止μ> tgθ物体静止于斜面 μ< tgθ物体沿斜面加速下滑a=g(sinθ一μcosθ) a θ

模型三:连接体 是指运动中几个物体或叠放在一起、或并排挤放在一起、或用细绳、细杆联系在一起的物体组。解决这类问题的基本方法是整体法和隔离法。 整体法:指连接体内的物体间无相对运动时,可以把物体组作为整体,对整体用牛二定律列方程。 隔离法:指在需要求连接体内各部分间的相互作用(如求相互间的压力或相互间的摩擦力等)时,把某物体从连接体中隔离出来进行分析的方法。 连接体的圆周运动:两球有相同的角速度;两球构成的系统机械能守恒(单个球机械能不守恒) 与运动方向和有无摩擦(μ相同)无关,及与两物体放置的方式都无关。 平面、斜面、竖直都一样。只要两物体保持相对静止 记住:N= 211212 m F m F m m ++ (N 为两物体间相互作用力), 一起加速运动的物体的分子m 1F 2和m 2F 1两项的规律并能应用?F 2 12m m m N += 讨论:①F 1≠0;F 2=0 122F=(m +m )a N=m a N=212 m F m m + ② F 1≠0;F 2≠0 N= 211212 m F m m m F ++ (2 0F =是上面的情 况) F=2 11221m m g)(m m g)(m m ++ F=122112 m (m )m (m gsin )m m g θ++ F=A B B 12 m (m )m F m m g ++ F 1>F 2 m 1>m 2 N 1

高考物理连接体模型问题归纳

绳牵连物”连接体模型问题归纳 广西合浦廉州中学秦付平 两个物体通过轻绳或者滑轮这介质为媒介连接在一起,物理学中称为连接体,连结体问题是物体运动过程较复杂问题,连接体问题涉及多个物体,具有较强的综合性,是力学中能考查的重要内容。从连接体的运动特征来看,通过某种相互作用来实现连接的物体,如物体的叠合,连接体常会处于某种相同的运动状态,如处于平衡态或以相同的加速度运动。从能量的转换角度来说,有动能和势能的相互转化等等,下面本文结合例题归纳有关“绳牵连物”连接体模型的几种类型。 一、判断物体运动情况 例1如图1所示,在不计滑轮摩擦和绳质量的条件下,当小车匀速向右运动时,物体A的受力情况是() A.绳的拉力大于A的重力 B.绳的拉力等于A的重力 C.绳的拉力小于A的重力 D.拉力先大于A的重力,后小于重力

解析:把小车的速度为合速度进行分解,即根据运动效果向沿绳的方向和与绳垂直的方向进行正交分解,分别是v2、v1。如图1所示,题中物体A的运动方向与连结处绳子的方向相同,不必分解。A的速度等 于v2,,小车向右运动时,逐渐变小,可知逐渐变大,故A向上做加速运动,处于超重状态,绳子对A的拉力大于重力,故选项A正确。 点评:此类问题通常是通过定滑轮造成绳子两端的连接体运动方向不一致,导致主动运动物体和被动运动物体的加速、减速的不一致性。解答时必须运用两物体的速度在各自连接处绳子方向投影相同的规律。 二、求解连接体速度 例2质量为M和m的两个小球由一细线连接(),将M置于半径为R的光滑半球形容器上口边缘,从静止释放,如图2所示。求当M滑至容器底部时两球的速度。两球在运动过程中细线始终处于绷紧状态。 解析:设M滑至容器底部时速度为,m的速度为。根据运动效果,将沿绳的方向和垂直于 绳的方向分解,则有:,对M、m系统在M从容器上口边缘滑至碗底的过程,由机械能

高中物理常见的物理模型易错题归纳总结

一、斜面问题 1.自由释放的滑块能在斜面上(如图9-1 甲所示)匀速下滑时,m 与M 之间的动摩擦因数μ=g tan θ. 图9-1甲 2.自由释放的滑块在斜面上(如图9-1 甲所示): (1)静止或匀速下滑时,斜面M 对水平地面的静摩擦力为零; (2)加速下滑时,斜面对水平地面的静摩擦力水平向右; (3)减速下滑时,斜面对水平地面的静摩擦力水平向左. 3.自由释放的滑块在斜面上(如图9-1乙所示)匀速下滑时,M 对水平地面的静摩擦力为零,这一过程中再在m 上加上任何方向的作用力,(在m 停止前)M 对水平地面的静摩擦力依然为零(见一轮书中的方法概述). 图9-1乙 4.悬挂有物体的小车在斜面上滑行(如图9-2所示): 图9-2 (1)向下的加速度a =g sin θ时,悬绳稳定时将垂直于斜面; (2)向下的加速度a >g sin θ时,悬绳稳定时将偏离垂直方向向上; (3)向下的加速度a <g sin θ时,悬绳将偏离垂直方向向下. 5.在倾角为θ的斜面上以速度v 0平抛一小球(如图9-3所示): 图9-3 (1)落到斜面上的时间t =2v 0tan θ g ; (2)落到斜面上时,速度的方向与水平方向的夹角α恒定,且tan α=2tan θ,与初速度无关; (3)经过t c =v 0tan θg 小球距斜面最远,最大距离d =(v 0sin θ)2 2g cos θ . 6.如图9-4所示,当整体有向右的加速度a =g tan θ时,m 能在斜面上保持相对静止. 图9-4 7.在如图9-5所示的物理模型中,当回路的总电阻恒定、导轨光滑时,ab 棒所能达到的稳定 速度v m =mgR sin θ B 2L 2 .

高三物理专题复习板块模型

专题一:物理模型之“滑块--木板”模型 “滑块—木板”模型:作为力学的基本模型经常出现,是对一轮复习中直线运动和牛顿运动定律有关知识的巩固和应用。这类问题的分析有利于培养学生对物理情景的想象能力,有利于培养学生思维能力。且此模型经常在高考(2015年全国Ⅰ卷25题、2015年全国Ⅱ卷25题、2013年全国Ⅱ卷25题)或模拟考试中作为压轴题出现,所以要引起同学们的重视。 1、(2016江苏卷。多选)如图所示,一只猫在桌边猛地将桌布从鱼缸下拉出,鱼缸最终没有滑出桌面.若鱼缸、桌布、桌面两两之间的动摩擦因数均相等,则在上述过程中 A、桌布对鱼缸摩擦力的方向向左 B、鱼缸在桌布上的滑动时间和在桌面上的相等 C、若猫增大拉力,鱼缸受到的摩擦力将不变 D、若猫减小拉力,鱼缸有可能滑出桌面 2、(多选)如图所示,A、B两物块的质量分别为2 m和m,静止叠放在水平地面上。A、B间的动摩擦因 数为μ,B与地面间的动摩擦因数为 1 2 μ。最大静摩擦力等于滑动摩擦力,重力加速度为g。现对A施加一 水平拉力F,则() A、当F<2μmg时,A、B都相对地面静止 B.当F= 5 2 μmg时,A的加速度为 1 3 μg C.当F>2μmg时,A相对B滑动 D.无论F为何值,B的加速度不会超过 1 2 μg 3、(多选)如图所示,一足够长的木板静止在粗糙的水平面上,t=0时刻滑块从板的左端以速度v0水平向右滑行,木板与滑块间存在摩擦,且最大静摩擦力等于滑动摩擦力。滑块的v-t图像可能是图中的()

总结:从以上几例我们可以看到,无论物体的运动情景如何复杂,这类问题的解答有一个基本技巧和方法:在物体运动的每一个过程中,若两个物体的初速度不同,则两物体必然相对滑动; 若两个物体的初速度相同(包括初速为0)且受外力F情况下,则要先判定两个物体是否发生相对滑动,其方法是求出不受外力F作用的那个物体的最大临界加速度并用假设法求出在外力F作用下整体的加速度,比较二者的大小即可得出结论。 突破二、“滑块—木板”模型中加速度问题(纯运动学问题) 1.如图所示,一长度L=3m,高h=0.8m,质量为M=1kg的物块A静止在水平面上.质量为m=0.49kg的物块B静止在A的最左端,物块B与A相比大小可忽略不计,它们之间的动摩擦因数μ1=0.5,物块A与地之间的动摩擦因数μ2=0.1.一个质量为m0=0.01kg可视为质点的子弹,以速度v0沿水平方向射中物块B,假设在任何情况下子弹均不能穿出。g=10m/s2,问: (2)被击中的物块B在A上滑动的过程中,A、B的加速度各为多少? (3)子弹速度为多少时,能使物块B落地瞬间A同时停下? 2.(18分)如图所示,某货场需将质量m1=50kg的货物(可视为质点)从高处运送至地面,为避免货物与地面发生撞击,现利用光滑倾斜轨道SP、竖直面内弧形光滑轨道PQ,使货物由倾斜轨道顶端距底端高度h=1m处无初速度滑下.两轨道相切于P, 倾斜轨道与水平面夹角为θ=600, 弧形轨道半径R=2m,末端切线水平.地面上紧靠轨道依次排放两块完全相同的木板A、B,长度均为l=4m,质量均为m2=50kg,木板上表面与弧形轨道末端Q相切.货物与木板间的动摩擦因数为μ1,木板与地面间的动摩擦因数μ2= 0.12.(不考虑货物与各轨道相接处能量损失,最大静摩擦力与滑动摩擦力大小相等,取g=10m/s2) (1)求货物到达弧形轨道始、末端时对轨道的压力.

高考经典物理模型_传送带模型(一)

传送带模型(一) ——传送带与滑块 滑块与传送带相互作用的滑动摩擦力,是参与改变滑块运动状态的重要原因之一。其大小遵从滑动摩擦力的计算公式,与滑块相对传送带的速度无关,其方向取决于与传送带的相对运动方向,滑动摩擦力的方向改变,将引起滑块运动状态的转折,这样同一物理环境可能同时出现多个物理过程。因此这类命题,往往具有相当难度。 滑块与传送带等速的时刻,是相对运动方向及滑动摩擦力方向改变的时刻,也是滑块运动状态转折的临界点。按滑块与传送带的初始状态,分以下几种情况讨论。 一、滑块初速为0,传送带匀速运动 [例1]如图所示,长为L 的传送带AB 始终保持速度为v 0的水平向右的速度运动。今将一与皮带间动摩擦因数为μ的滑块C ,轻放到A 端,求C 由A 运动到B 的时间t AB 解析:“轻放”的含意指初速为零,滑块C 所受滑动摩擦 力方向向右,在此力作用下C 向右做匀加速运动,如果传送带够长,当C 与传送带速度相等时,它们之间的滑动摩擦力消失,之后一起匀速运动,如果传送带较短,C 可能由A 一直加速到B 。 ,设它能加速到为 时向前运动的距离为 。 若 ,C 由A 一直加速到B ,由 。 若 ,C 由A 加速到 用时 ,前进的距离 距离以 速度匀速运动 C 由A 运动到B 的时间 。 [例2]如图所示,倾角为θ的传送带,以 的恒定速度按图示方向匀速运动。已知传送带上下两端相距L 今将一与传送带间动摩擦因数为μ的滑块A 轻放于传送带上端,求A 从上端运动到下端的时间t 。 解析:当A 的速度达到 时是运动过程的转折点。A 初始下滑的加速度 若能加速到 ,下滑位移(对地)为 。 (1)若 。A 从上端一直加速到下端 。 (2)若 ,A 下滑到速度为 用时 之后 距离摩擦力方向变为沿斜面向上。又可能有两种情况。 (a )若 ,A 达到 后相对传送带停止滑动,以 速度匀速, 总时间 (b )若 ,A 达到 后相对传送带向下滑, ,到达末端速度 用时

(完整版)高中物理模型及方法

◆1.连接体模型:是指运动中几个物体或叠放在一起、或并排挤放在一起、或用细绳、细杆联系在一起的物体组。解决这类问题的基本方法是整体法和隔离法。 整体法是指连接体内的物体间无相对运动时,可以把物体组作为整体,对整体用牛二定律列方程 隔离法是指在需要求连接体内各部分间的相互作用(如求相互间的压力或相互间的摩擦力等)时,把某物体从连接体中隔离出来进行分析的方法。 连接体的圆周运动:两球有相同的角速度;两球构成的系统机械能守恒(单个球机械能不守恒) 与运动方向和有无摩擦(μ相同)无关,及与两物体放置的方式都无关。 平面、斜面、竖直都一样。只要两物体保持相对静止 记住:N= 211212 m F m F m m ++ (N 为两物体间相互作用力), 一起加速运动的物体的分子m 1F 2和m 2F 1两项的规律并能应用?F 2 12m m m N += 讨论:①F 1≠0;F 2=0 122F=(m +m )a N=m a N= 2 12 m F m m + ② F 1≠0;F 2≠0 N= 211212 m F m m m F ++ (20F =就是上面的情 况) F=211221m m g)(m m g)(m m ++ F=122112 m (m )m (m gsin )m m g θ++ F=A B B 12 m (m )m F m m g ++ F 1>F 2 m 1>m 2 N 1

经典高考物理解题模型(吐血整理)

第一章 运动和力 解题模型: 一、追及、相遇模型 模型讲解: 1. 火车甲正以速度v 1向前行驶,司机突然发现前方距甲d 处有火车乙正以较小速度v 2同 向匀速行驶,于是他立即刹车,使火车做匀减速运动。为了使两车不相撞,加速度a 应满足什么条件? 解析:设以火车乙为参照物,则甲相对乙做初速为)(21v v -、加速度为a 的匀减速运动。若甲相对乙的速度为零时两车不相撞,则此后就不会相撞。因此,不相撞的临界条件是:甲 车减速到与乙车车速相同时,甲相对乙的位移为d 。 即:d v v a ad v v 2)(2)(02 212 21-=-=--,, 故不相撞的条件为d v v a 2)(2 21-≥ 2. 甲、乙两物体相距s ,在同一直线上同方向做匀减速运动,速度减为零后就保持静止不 动。甲物体在前,初速度为v 1,加速度大小为a 1。乙物体在后,初速度为v 2,加速度大小为a 2且知v 1 ,说明乙物体先停止运动那么两物体在运动过程中总存在速度相等的时刻,此时两物体相距最近,根据t a v t a v v 2211-=-=共,求得

1 21 2a a v v t --= 在t 时间内 甲的位移t v v s 21 1+= 共 乙的位移t v v s 2 2 2+= 共 代入表达式21s s s s -+=? 求得) (2) (1212a a v v s s --- =? 3. 如图1.01所示,声源S 和观察者A 都沿x 轴正方向运动,相对于地面的速率分别为S v 和 A v 。空气中声音传播的速率为P v ,设P A P S v v v v <<,,空气相对于地面没有流动。 图1.01 (1) 若声源相继发出两个声信号。时间间隔为t ?,请根据发出的这两个声信号从声 源传播到观察者的过程。确定观察者接收到这两个声信号的时间间隔't ?。 (2) 请利用(1)的结果,推导此情形下观察者接收到的声波频率与声源发出的声波 频率间的关系式。 解析:作声源S 、观察者A 、声信号P (P 1为首发声信号,P 2为再发声信号)的位移—时间图象如图2所示图线的斜率即为它们的速度P A S v v v 、、则有:

高中物理模型解题

高中物理模型解题 模型解题归类 一、刹车类问题 匀减速到速度为零即停止运动,加速度a突然消失,求解时要注意确定其实际运动时间。如果问题涉及到最后阶段(到速度为零)的运动,可把这个阶段看成反向、初速度为零、加速度不变的匀加速直线运动。 【题1】汽车刹车后,停止转动的轮胎在地面上发生滑动,可以明显地看出滑动的痕迹,即常说的刹车线。由刹车线长短可以得知汽车刹车前的速度的大小,因此刹车线的长度是分析交通事故的一个重要依据。若汽车轮胎跟地面的动摩擦因数是0.7,刹车线长是14m,汽车在紧急刹车前的速度是否超过事故路段的最高限速50km/h? 【题2】一辆汽车以72km/h速率行驶,现因故紧急刹车并最终终止运动,已知汽车刹车过程加速度的大小为5m/s2,则从开始刹车经过5秒汽车通过的位移是多大 二、类竖直上抛运动问题 物体先做匀加速运动,到速度为零后,反向做匀加速运动,加速过程的加速度与减速运动过程的加速度相同。此类问题要注意到过程的对称性,解题时可以分为上升过程和下落过程,也可以取整个过程求解。 【题1】一滑块以20m/s滑上一足够长的斜面,已知滑块加速度的大小为5m/s2,则经过5秒滑块通过的位移是多大? 【题2】物体沿光滑斜面匀减速上滑,加速度大小为4m/s2,6s后又返回原点。那么下述结论正确的是() A物体开始沿斜面上滑时的速度为12m/s B物体开始沿斜面上滑时的速度为10m/s C物体沿斜面上滑的最大位移是18m D物体沿斜面上滑的最大位移是15m 三、追及相遇问题 两物体在同一直线上同向运动时,由于二者速度关系的变化,会导致二者之间的距离的变化,出现追及相撞的现象。两物体在同一直线上相向运动时,会出现相遇的现象。解决此类问题的关键是两者的位移关系,即抓住:“两物体同时出现在空间上的同一点。分析方法有:物理分析法、极值法、图像法。常见追及模型有两个:速度大者(减速)追速度小者(匀速)、速度小者(初速度为零的匀加速直线运动)追速度大者(匀速)、 1、速度大者(减速)追速度小者(匀速):(有三种情况)

高三物理水平双杆模型

例1 如图,M 和N 为平行的水平放置的光滑金属导轨,导轨电阻不计,a 、b 为两根质量均为m 的导体杆垂直于导轨,导体杆有一定电阻,整个装置处于竖直向上的匀强磁场中,原来两导体杆都静止,当a 杆开始以v0速度向右运动后,(设导轨足够长,磁场范围足够大,两杆不相碰)则: A 、a 杆先向右做加速运动,然后做减速运动 B 、b 杆运动过程的最大速度为 C 、回路的电流逐渐增大 D 、从开始到a 、b 都做匀速运动为止,在两杆的电阻上消耗的电能是 杆b 杆a 加速度速度大小方向运动情况安培力 感应电动势运动方向研究对象a a BLv E =0 向右 向左向右 减小向右 总 回v v BL I b a ) (-= 总 R v v L B F b a b )(22-= 增大 减小减小 顺时针方向 回 I 总b a a R )v (v L B F -= 22b b BLv E =回路中的感应电流a F b F v-t 图像?

最大电流最小电流   最终两杆具有共同速度 总 R BLv I0 max = min = I v0 v共 t 当时: = b v 当时: a b v v= 此时杆a的速度最大,加速度最大.杆b的速度最小,加速度最大. 此时杆a的速度最小,加速度最小.杆b的速度最大,加速度最小.

(1)动量守恒定律 (2)能量守恒定律 系统机械能的减小量等于产生的焦耳热 所以系统动量守恒. 0()a a b m v m m v =+共 b b a a a a v m v m v m '+'=22 2212121b b a a a a v m v m v m Q '-'-=2 202 121共 )(v m m v m Q b a a +-= 金属棒的运动过程可分为 个阶段;第一阶段为 模型;第二阶段为 模型。在分析第一阶段所适用模型中常用的规律有 , 。 在分析第二阶段所适用模型中常用的规律有 , 。两圆弧轨道水平双杆动能定理牛顿第二定律动量守恒定律 能量守恒定律 动能定理或 机械能守恒定律圆弧轨道 动量守恒定律 水平双杆 思路分析: ab 法拉第电磁感应定律及闭合电路欧姆定律 能量守恒定律 cd v 'Q

高考物理主要模型

专题(一):常见的物理模型 一、斜面问题; 在每年各地的高考卷中几乎都有关于斜面模型的试题.如2009年高考全国理综卷Ⅰ第25题、北京理综卷第18题、天津理综卷第1题、上海物理卷第22题等,2008年高考全国理综卷Ⅰ第14题、全国理综卷Ⅱ第16题、北京理综卷第20题、江苏物理卷第7题和第15题等.在前面的复习中,我们对这一模型的例举和训练也比较多,遇到这类问题时,以下结论可以帮助大家更好、更快地理清解题思路和选择解题方法. 1.自由释放的滑块能在斜面上(如图9-1甲所示)匀速下滑时,m与M之间的动摩擦因数μ=g tanθ. 图9-1甲 2.自由释放的滑块在斜面上(如图9-1甲所示): (1)静止或匀速下滑时,斜面M对水平地面的静摩擦力为零; (2)加速下滑时,斜面对水平地面的静摩擦力水平向右; (3)减速下滑时,斜面对水平地面的静摩擦力水平向左. 3.自由释放的滑块在斜面上(如图9-1乙所示)匀速下滑时,M对水平地面的静摩擦力为零,这一过程中再在m上加上任何方向的作用力,(在m停止前)M对水平地面的静摩擦力依然为零(见一轮书中的方法概述). 图9-1乙 4.悬挂有物体的小车在斜面上滑行(如图9-2所示): 图9-2 (1)向下的加速度a=g sinθ时,悬绳稳定时将垂直于斜面; (2)向下的加速度a>g sinθ时,悬绳稳定时将偏离垂直方向向上; (3)向下的加速度a<g sinθ时,悬绳将偏离垂直方向向下. 5.在倾角为θ的斜面上以速度v0平抛一小球(如图9-3所示): 图9-3 (1)落到斜面上的时间t=; (2)落到斜面上时,速度的方向与水平方向的夹角α恒定,且tanα=2tanθ,与初速度无关; (3)经过t c=小球距斜面最远,最大距离d=. 6.如图9-4所示,当整体有向右的加速度a=g tanθ时,m能在斜面上保持相对静止. 图9-4 7.在如图9-5所示的物理模型中,当回路的总电阻恒定、导轨光滑时,ab棒所能达到的稳定速度v m=. 图9-5 8.如图9-6所示,当各接触面均光滑时,在小球从斜面顶端滑下的过程中,斜面后退的位移s=L. 图9-6 ●例1有一些问题你可能不会求解,但是你仍有可能对这些问题的解是否合理进行分析和判断.例如从解的物理量单位,解随某些已知量变化的趋势,解在一些特殊条件下的结果等方面进行分析,并与预期结果、实验结论等进行比较,从而判断解的合理性或正确性.

2019年高三二模高三物理模型

建立物理模型 【典型易混的物理模型】 1、弹簧、弹性绳子、绳子、轻杆、内侧轨道、外侧轨道、光滑管子、小环套在光滑大环上…… 2、匀强磁场、随时间均匀减小的匀强磁场、沿x轴方向均匀减小的磁场。 3. 理想的物理学对象模型: 质点、点电荷、理想气体、 理想弹簧、细绳、轻杆(不计质量)、 光滑平面、光滑斜面、光滑导轨、…… 4. 物理学解题模型: 绳与杆模型、弹簧模型、滑轮模型、斜面模型、 等时圆模型、类单摆模型、类平抛模型、 简谐运动模型(对称性)、等效电源模型、 线框在磁场中的运动模型、…… 5. 理想的物理学过程模型: 匀速直线运动、匀加速直线运动、 自由落体运动、竖直上抛运动、平抛运动、 匀速圆周运动、简谐运动、理想单摆、 等温变化、等容变化、等压变化、…… 【高中物理中涉及到的科学思想方法】 1、理想化的方法:理想化物理模型;理想化物理过程;理想实验:伽利略的斜面实验。 2、控制变量:牛顿第二定律的证明,理想气体的状态方程。 3、等效替代:力、运动的合成和分解,求等效电阻,平均速度等。 4、科学假说:爱因斯坦的光子说,卢瑟福的原子核式结构模型等。 5、类比法:电场强度与重力场强度,平抛与类平抛规律的形式类似,解决问题的方法类似 6、对称思想:质量均匀分布的球壳对球内任一质点的引力为零。 7、外推法:查理定律外推得到绝对零度。 8、守恒的思想:自然界普遍遵循的规律,如物质守恒、能量守恒等。 9、归纳法:从个别到一般的抽象概括。 10、演绎:从一般到个别的逻辑推理。 例1. 在如图所示的四图中,AB、CD均为轻质杆,各图中杆的A、C端都通过铰链与墙连接,两杆都在B处由铰链相连接.图中的AB杆可以用与之等长的轻绳代替的有(ACD );图中的BC杆可以用与之等长的轻绳代替的有( C ).

高中物理模型汇总大全

高中物理模型汇总大全 模型组合讲解——爆炸反冲模型 [模型概述] “爆炸反冲”模型是动量守恒的典型应用,其变迁形式也多种多样,如炮发炮弹中的化学 能转化为机械能;弹簧两端将物块弹射将弹性势能转化为机械能;核衰变时将核能转化为动 能等。 [模型讲解] 例. 如图所示海岸炮将炮弹水平射出,炮身质量(不含炮弹)为M ,每颗炮弹质量为m , 当炮身固定时,炮弹水平射程为s ,那么当炮身不固定时,发射同样的炮弹,水平射程将是多 少? 解析:两次发射转化为动能的化学能E 是相同的。第一次化学能全部转化为炮弹的动能; 第二次化学能转化为炮弹和炮身的动能,而炮弹和炮身水平动量守恒,由动能和动量的关系 式m p E k 22=知,在动量大小相同的情况下,物体的动能和质量成反比,炮弹的动能E m M M mv E E mv E +====2222112121,,由于平抛的射高相等,两次射程的比等于抛出时初速度之比,即:m M M v v s s +==122,所以m M M s s 2+=。 思考:有一辆炮车总质量为M ,静止在水平光滑地面上,当把质量为m 的炮弹沿着与水 平面成θ角发射出去,炮弹对地速度为0v ,求炮车后退的速度。 提示:系统在水平面上不受外力,故水平方向动量守恒,炮弹对地的水平速度大小为 θcos 0v ,设炮车后退方向为正方向,则m M mv v mv v m M -==--θθcos 0cos )(00, 评点:有时应用整体动量守恒,有时只应用某部分物体动量守恒,有时分过程多次应用动 量守恒,有时抓住初、末状态动量即可,要善于选择系统,善于选择过程来研究。

[模型要点] 内力远大于外力,故系统动量守恒21p p =,有其他形式的能单向转化为动能。所以“爆 炸”时,机械能增加,增加的机械能由化学能(其他形式的能)转化而来。 [误区点拨] 忽视动量守恒定律的系统性、忽视动量守恒定律的相对性、同时性。 [模型演练] ( 物理高考科研测试)在光滑地面上,有一辆装有平射炮的炮车,平射炮固定在炮车上, 已知炮车及炮身的质量为M ,炮弹的质量为m ;发射炮弹时,炸药提供给炮身和炮弹的总机 械能E 0是不变的。若要使刚发射后炮弹的动能等于E 0,即炸药提供的能量全部变为炮弹的动 能,则在发射前炮车应怎样运动? 答案:若在发射前给炮车一适当的初速度v 0,就可实现题述的要求。 在这种情况下,用v 表示发射后炮弹的速度,V 表示发射后炮车的速度,由动量守恒可知: ><+=+1)(0MV mv v M m 由能量关系可知: ><+=++22 121)(2122020MV mv E v M m 按题述的要求应有><=32102E mv 由以上各式得: ><++++=+-+= 4)() )((2)()(2000m M m m M M m M mE M m M M m mE v

2018年高考物理典型物理模型及方法总结

高中典型物理模型及方法总结 ◆1.连接体模型:是指运动中几个物体或叠放在一起、或并排挤放在一起、或用细绳、细 杆联系在一起的物体组。解决这类问题的基本方法是整体法和隔离法。 整体法是指连接体内的物体间无相对运动时,可以把物体组作为整体,对整体用牛二定律列方程 隔离法是指在需要求连接体内各部分间的相互作用(如求相互间的压力或相互间的摩擦力等)时,把某物体从连接体中隔离出来进行分析的方法。 ) 2 F=就是上面的 F= 2 1 1 2 2 1 m m (m m g) (m m + + F=1221 12 m(m)m(m m m g+ + F=A B B 12 m(m)m m m g+ + 121212 N5对6= F M m(m为第6个以后的质量) 第12对13的作用力N12对13=F nm 12)m - (n ◆2.水流星模型(竖直平面内的圆周运动——是典型的变速圆周运动) (圆周运动实例) ①火车转弯 ②汽车过拱桥、凹桥 3 ③飞机做俯冲运动时,飞行员对座位的压力。 ④物体在水平面内的圆周运动(汽车在水平公路转弯,水平转盘上的物体,绳拴着的物体 在光滑水平面上绕绳的一端旋转)和物体在竖直平面内的圆周运动(翻滚过山车、水流星、杂技节目中的飞车走壁等)。

⑤万有引力——卫星的运动、库仑力——电子绕核旋转、洛仑兹力——带电粒子在匀强磁场中的偏转、重力与弹力的合力——锥摆、(关健要搞清楚向心力怎样提供的) (1)火车转弯:设火车弯道处内外轨高度差为h ,内外轨间距L ,转弯半径R 。由于外轨略高于内轨,使得火车所受重力和支持力的合力F 合提供向心力。 为转弯时规定速度)(得由合002 0sin tan v L Rgh v R v m L h mg mg mg F ===≈=θθR g v ?=θtan 0 (是内外轨对火车都无摩擦力的临界条件) ①当火车行驶速率V 等于V 0时,F 合=F 向,内外轨道对轮缘都没有侧压 力 ②当火车行驶V 大于V 0时,F 合F 向,内轨道对轮缘有侧压力,F 合-N'=R 2 m v 即当火车转弯时行驶速率不等于V 0时,其向心力的变化可由内外轨道对轮缘侧压力自行调)

相关主题
文本预览
相关文档 最新文档