当前位置:文档之家› 十种运放精密全波整流电路

十种运放精密全波整流电路

十种运放精密全波整流电路
十种运放精密全波整流电路

十种运放精密全波整流电路

图中精密全波整流电路的名称,纯属本人命的名,只是为了区分;除非特殊说明,增益均按1设计.

图1是最经典的电路,优点是可以在电阻R5上并联滤波电容.电阻匹配关系为R1=R2,R4=R5=2R3;可以通过更改R5来调节增益

图2优点是匹配电阻少,只要求R1=R2

图3的优点是输入高阻抗,匹配电阻要求R1=R2,R4=2R3

图4的匹配电阻全部相等,还可以通过改变电阻R1来改变增益.缺点是在输入信号的负半周,A1的负反馈由两路构成,其中一路是R5,另一路是由运放A2复合构成,也有复合运放的缺点.

图5 和图6 要求R1=2R2=2R3,增益为1/2,缺点是:当输入信号正半周时,输出阻抗比较高,可以在输出增加增益为2的同相放大器隔离.另外一个缺点是正半周和负半周的输入阻抗不相等,要求输入信号的内阻忽略不计

图7正半周,D2通,增益=1+(R2+R3)/R1;负半周增益=-R3/R2;要求正负半周增益的绝对值相等,例如增益取2,可以选R1=30K,R2=10K,R3=20K

图8的电阻匹配关系为R1=R2

图9要求R1=R2,R4可以用来调节增益,增益等于1+R4/R2;如果R4=0,增益等于1;缺点是正负半波的输入阻抗不相等,要求输入信号的内阻要小,否则输出波形不对称.

图10是利用单电源运放的跟随器的特性设计的,单电源的跟随器,当输入信号大于0时,输出为跟随器;当输入信号小于0的时候,输出为0.使用时要小心单电源运放在信号很小时的非线性.而且,单电源跟随器在负信号输入时也有非线性.

图7,8,9三种电路,当运放A1输出为正时,A1的负反馈是通过二极管D2和运放A2构成的复合放大器构成的,由于两个运放的复合(乘积)作用,可能环路的增益太高,容易产生振荡.

精密全波电路还有一些没有录入,比如高阻抗型还有一种把A2的同相输入端接到A1的反相输入端的,其实和这个高阻抗型的原理一样,就没有专门收录,其它采用A1的输出只接一个二极管的也没有收录,因为在这个二极管截止时,A1处于开环状态.

结论:

虽然这里的精密全波电路达十种,仔细分析,发现优秀的并不多,确切的说只有3种,就是前面的3种.

图1的经典电路虽然匹配电阻多,但是完全可以用6个等值电阻R实现,其中电阻R3可以用两个R并联.可以通过R5调节增益,增益可以大于1,也可以小于1.最具有优势的是可以在R5上并电容滤波.

图2的电路的优势是匹配电阻少,只要一对匹配电阻就可以了.

图3的优势在于高输入阻抗.

其它几种,有的在D2导通的半周内,通过A2的复合实现A1的负反馈,对有些运放会出现自激. 有的两个半波的输入阻抗不相等,对信号源要求较高.

两个单运放型虽然可以实现整流的目的,但是输入\输出特性都很差.需要输入\输出都加跟随

器或同相放大器隔离.

各个电路都有其设计特色,希望我们能从其电路的巧妙设计中,吸取有用的.例如单电源全波电路的设计,复合反馈电路的设计,都是很有用的设计思想和方法,如果能把各个图的电路原理分析并且推导每个公式,会有受益的

10种精密整流电路的详解

1.第一种得模拟电子书上(第三版442页)介绍得经典电路。A1用得就是半波整流并且放大 两倍,A2用得就是求与电路,达到精密整流得目得。(R1=R3=R4=R5=2R2) 2.第二种方法瞧起来比较简单A1就是半波整流电路,就是负半轴有输出,A2得电压跟随器 得变形,正半轴有输出,这样分别对正负半轴得交流电进行整流!(R1=R2) 3.第三种电路

仿真效果如下: 这个电路真就是她妈得坑爹,经过我半天得分析才发现就是这样得结论:Uo=-|Ui|,整出来得电路全就是负得,真想不通为什么作者放到这里,算了先把分析整理一下: 当Ui>0得时候电路等效就是这样得

放大器A就是同相比例电路,Uo1=(1+R2/R1)Ui=2Ui 放大器B就是加减运算电路,Uo2=(1+R2/R1)Ui-(R4/R3)Uo1=-Ui 当Ui<0得时候电路图等效如下: 放大器A就是电压跟随器,放大器B就是加减运算电路 式子整理:Uo2=(1+R4/(R2+R3))Ui- R4/(R2+R3)Ui=Ui 以上就是这个电路得全部分析,但就是想达到正向整流得效果就应该把二极管全部反向过来电路与仿真效果如下图所示

4.第四种电路就是要求所有电阻全部相等。这个仿真相对简单。 电路与仿真效果如下 计算方法如下: 当Ui>0时,D1导通,D2截止(如果真就是不清楚为什么就是这样分析,可以参照模拟电子技术书上对于第一种电路得分析),这就是电路图等效如下(R6就是为了测试信号源用得跟这个电路没有直接得关系,不知道为什么不加这个电阻就仿真不了)

放大器A构成反向比例电路,uo1=-ui, 这时在放大器B得部分构成加减运算电路,uo2=-uo1=-(-ui) 注意:这里放大器B得正相输入端就是相当于接地得,我刚开始一直没有想通,后来明白了,这一条线路上就是根本就没有电流得,根本就没有办法列出方程来。(不知道这么想就是不就是正确得) 当Ui<0得时候,D1截止,D2导通,电路图等效如下: 这时就需要列方程了 Ui<0时Ui/R1=-(U2/R5+U2/(R2+R3))计算得到U2=-2/3 Ui 再根据U2/(R2+R3)=(U0-U2)/R4 得到U0=3/2 U2 带入得到U0=-Ui

三相桥式全控整流电路

1主电路的原理 1.1主电路 其原理图如图1所示。 图1 三相桥式全控整理电路原理图 习惯将其中阴极连接在一起的3个晶闸管(VT1、VT3、VT5)称为共阴极组;阳极连接在一起的3个晶闸管(VT4、VT6、VT2)称为共阳极组。此外,习惯上希望晶闸管按从1至6的顺序导通,为此将晶闸管按图示的顺序编号,即共阴极组中与a、b、c三相电源相接的3个晶闸管分别为VT1、VT3、VT5,共阳极组中与a、b、c三相电源相接的3个晶闸管分别为VT4、VT6、VT2。从后面的分析可知,按此编号,晶闸管的导通顺序为VT1-VT2-VT3-VT4-VT5-VT6。 1.2主电路原理说明 整流电路的负载为带反电动势的阻感负载。假设将电路中的晶闸管换作二极管,这种情况也就相当于晶闸管触发角α=0o时的情况。此时,对于共阴极组的3个晶闸管,阳极所接交流电压值最高的一个导通。而对于共阳极组的3个晶闸管,则是阴极所接交流电压值最低(或者说负得最多)的一个导通。这样,任意时刻共阳极组和共阴极组中各有1个晶闸管处于导通状态,施加于负载上的电压为某一线电压。此时电路工作波形如图2所示。

图2 反电动势α=0o时波形 α=0o时,各晶闸管均在自然换相点处换相。由图中变压器二绕组相电压与线电压波形的对应关系看出,各自然换相点既是相电压的交点,同时也是线电压的交点。在分析ud的波形时,既可从相电压波形分析,也可以从线电压波形分析。从相电压波形看,以变压器二次侧的中点n为参考点,共阴极组晶闸管导通时,整流输出电压ud1为相电压在正半周的包络线;共阳极组导通时,整流输出电压ud2为相电压在负半周的包络线,总的整流输出电压ud = ud1-ud2是两条包络线间的差值,将其对应到线电压波形上,即为线电压在正半周的包络线。

单相桥式全控整流电路Matlab仿真(完美)资料-共18页

目录 完美篇 单相桥式全控整流电路仿真建模分析 (1) (一)单相桥式全控整流电路(纯电阻负载) (2) 1.电路的结构与工作原理 (2) 2.建模 (3) 3仿真结果与分析 (4) 4小结 (6) (二)单相桥式全控整流电路(阻-感性负载) (7) 1.电路的结构与工作原理 (7) 2.建模 (8) 3仿真结果与分析 (10) 4.小结 (12) (三)单相桥式全控整流电路(反电动势负载) (13) 1.电路的结构与工作原理 (13) 2.建模 (14) 3仿真结果与分析 (16) 4小结 (18) 单相桥式全控整流电路仿真建模分析 一、实验目的 1、不同负载时,单相全控桥整流电路的结构、工作原理、波形分析。 2、在仿真软件Matlab中进行单相可控整流电路的建模与仿真,并分析其波形。 二.实验内容

(一)单相桥式全控整流电路(纯电阻负载) 1.电路的结构与工作原理 1.1电路结构 U1U2Ud Id + - T VT3 VT1 VT2VT4 a b R 单相桥式全控整流电路(纯电阻负载)的电路原理图(截图) 1.2工作原理 用四个晶闸管,两只晶闸管接成共阴极,两只晶闸管接成共阳极,每一只晶闸管是一个桥臂。 (1)在u2正半波的(0~α)区间: 晶闸管VT1、VT4承受正压,但无触发脉冲。四个晶闸管都不通。假设四个晶闸管的漏电阻相等,则u T1.4= u T2.3=1/2 u2。 (2)在u2正半波的ωt=α时刻: 触发晶闸管VT1、VT4使其导通。电流沿a→VT1→R→VT4→b→Tr的二次绕组→a流通,负载上有电压(u d=u2)和电流输出,两者波形相位相同且u T1.4=0。此时电源电压反向施加到晶闸管VT2、VT3上,使其承受反压而处于关断状态,则u T2.3=1/2 u2。晶闸管VT1、VT4—直导通到ωt=π为止,此时因电源电压过零,晶闸管阳极电流下降为零而关断。 (3)在u2负半波的(π~π+α)区间: 晶闸管VT2、VT3承受正压,因无触发脉冲,VT2、VT3处于关断状态。此时,u T2.3=u T1.4=1/2 u2。 (4)在u2负半波的ωt=π+α时刻: 触发晶闸管VT2、VT3,元件导通,电流沿b→VT3→R→VT2→a→Tr的二次绕组→b流通,电源电压沿正半周期的方向施加到负载电阻上,负载上有输出电压(u d=-u2)和电流,且波形相位相同。此时电源电压反向加到晶闸管VT1、VT4上,使其承受反压而处于关断状态。晶闸管VT2、VT3一直要导通到ωt=2π为止,此时电源电压再次过零,晶闸管阳极电流也下降为零而关断。晶闸管VT1、

三相桥式全控整流电路分析

一、三相桥式全控整流电路分析 三相桥式全控整流电路原理图如图所示。三相桥式全控整流电路是由三相半波可控整流电路演变而来的,它由三相半波共阴极接法(VT1,VT3,VT5)和三相半波共阳极接法(VT1,VT6,VT2)的串联组合。 其工作特点是任何时刻都有不同组别的两只晶闸管同时导通,构成电流通路,因此为保证电路启动或电流断续后能正常导通,必须对不同组别应到导通的一对晶闸管同时加触发脉冲,所以触发脉冲的宽度应大于π/3的宽脉冲。宽脉冲触发要求触发功率大,易使脉冲变压器饱和,所以可以采用脉冲列代替双窄脉冲;每隔π/3换相一次,换相过程在共阴极组和共阳极组轮流进行,但只在同一组别中换相。接线图中晶闸管的编号方法使每个周期内6个管子的组合导通顺序是VT1-VT2-VT3-VT4-VT5-VT6;共阴极组T1,T3,T5的脉冲依次相差2π/3;同一相的上下两个桥臂,即VT1和VT4,VT3和VT6,VT5和VT2的脉冲相差π,给分析带来了方便;当α=O时,输出电压Ud一周期内的波形是6个线电压的包络线。所以输出脉动直流电压频率是电源频率的6倍,比三相半波电路高l倍,脉动减小,而且每次脉动的波形都一样,故该电路又可称为6脉动整流电路。

在第(1)段期间,a相电压最高,而共阴极组的晶闸管VT1被触发导通,b相电位最低,所以供阳极组的晶闸管KP6被触发导通。这时电流由a相经VT1流向负载,再经VT6流入b 相。变压器a、b两相工作,共阴极组的a相电流为正,共阳极组的b相电流为负。加在负载上的整流电压为ud=ua-ub=uab 经过60°后进入第(2)段时期。这时a相电位仍然最高,晶闸管VTl继续导通,但是c 相电位却变成最低,当经过自然换相点时触发c相晶闸管VT2,电流即从b相换到c相,VT6承受反向电压而关断。这时电流由a相流出经VTl、负载、VT2流回电源c相。变压器a、c 两相工作。这时a相电流为正,c相电流为负。在负载上的电压为ud=ua-uc=uac 再经过60°,进入第(3)段时期。这时b相电位最高,共阴极组在经过自然换相点时,触发导通晶闸管VT3,电流即从a相换到b相,c相晶闸管VT2因电位仍然最低而继续导通。此时变压器bc两相工作,在负载上的电压为ud=ub-uc=ubc 余相依此类推。 仿真实验 “alpha_deg”是移相控制角信号输入端,通过设置输入信号给它的常数模块参数便可以得到不同的触发角α,从而产生给出间隔60度的双脉冲。 二、MATLAB仿真 (1)MATLAB simulink模型如图 (2)参数设置 电源参数设置:电压设置为380V,频率设为50Hz。注意初相角的设置,a相电压设为0,b相电压设为-120,a相电压设为-240。

半波精密整流电路、8种类型精密全波整流电路及详细分析

精密全波整流电路 图中精密全波整流电路的名称,纯属本人命的名,只是为了区分;除非特殊说明,增益均按1设计.图1是最经典的电路,优点是可以在电阻R5上并联滤波电容.电阻匹配关系为R1=R2,R4=R5=2R3;可以通过更改R5来调节增益 图2优点是匹配电阻少,只要求R1=R2 图3的优点是输入高阻抗,匹配电阻要求R1=R2,R4=2R3 图4的匹配电阻全部相等,还可以通过改变电阻R1来改变增益.缺点是在输入信号的负半周,A1的负反馈由两路构成,其中一路是R5,另一路是由运放A2复合构成,也有复合运放的缺点. 图5 和图6 要求R1=2R2=2R3,增益为1/2,缺点是:当输入信号正半周时,输出阻抗比较高,可以在输出增加增益为2的同相放大器隔离.另外一个缺点是正半周和负半周的输入阻抗不相等,要求输入信号的内阻忽略不计 图7正半周,D2通,增益=1+(R2+R3)/R1;负半周增益=-R3/R2;要求正负半周增益的绝对值相等,例如增益取2,可以选R1=30K,R2=10K,R3=20K 图8的电阻匹配关系为R1=R2 图9要求R1=R2,R4可以用来调节增益,增益等于1+R4/R2;如果R4=0,增益等于1;缺点是正负半波的输入阻抗不相等,要求输入信号的内阻要小,否则输出波形不对称. 图10是利用单电源运放的跟随器的特性设计的,单电源的跟随器,当输入信号大于0时,输出为跟随器;当输入信号小于0的时候,输出为0.使用时要小心单电源运放在信号很小时的非线性.而且,单电源跟随器在负信号输入时也有非线性. 图7,8,9三种电路,当运放A1输出为正时,A1的负反馈是通过二极管D2和运放A2构成的复合放大器构成的,由于两个运放的复合(乘积)作用,可能环路的增益太高,容易产生振荡. 精密全波电路还有一些没有录入,比如高阻抗型还有一种把A2的同相输入端接到A1的反相输入端的,其实和这个高阻抗型的原理一样,就没有专门收录,其它采用A1的输出只接一个二极管的也没有收录,因为在这个二极管截止时,A1处于开环状态. 结论: 虽然这里的精密全波电路达十种,仔细分析,发现优秀的并不多,确切的说只有3种,就是前面的3种. 图1的经典电路虽然匹配电阻多,但是完全可以用6个等值电阻R实现,其中电阻R3可以用两个R并联.可以通过R5调节增益,增益可以大于1,也可以小于1.最具有优势的是可以在R5上并电容滤波. 图2的电路的优势是匹配电阻少,只要一对匹配电阻就可以了.

半波整流,全波整流,桥式整流二极管

一、半波整流电路 图1 图1是一种最简单的整流电路。它由电源变压器B、整流二极管D和负载电阻Rfz组成。变压器把市电电压变换为所需要的交变电压e2,D 再把交流电变换为脉动直流电。 下面从图2的波形图上看看二极管是怎样整流的。 图2 变压器次级电压e2,是一个方向和大小都随时间变化的正弦波电压,它的波形如图2(a)所示。在0~π时间内,e2 为正半周即变压器上端为正下端为负。此时整流二极管承受正向电压而导通,e2 通过它加在负载电阻Rfz上,在π~2π时间内,e2 为负半周,变压器次级下端为正,上端为负。这时D承受反向电压,不导通,Rfz上无电压。在2π~3π时间内,重复0~π时间的过程,而在3π~4π时间内,又重复π~2π时间的过程…这样反复下去,交流电的负半周就被"削"掉了,只有正半周通过Rfz,在Rfz上获得了一个单一右向(上正下负)的电压,如图2(b)所示,达到了整流的目的,但是,负载电压Usc 。以及负载电流的大小还随时间而变化,因此,通常称它为脉动直流。 这种除去半周、留下半周的整流方法,叫半波整流。不难看出,半波整说是以"牺牲"一半交流为代价而换取整流效果的,电流利用率很低(计算表明,整流得出的半波电压在整个周期内的平均值,即负载上的直流电压Usc =0.45e2 )因此常用在高电压、小电流的场合,而在一般无线电装置中很少采用。 二、全波整流电路 如果把整流电路的结构作一些调整,可以得到一种能充分利用电能的全波整流电路。图3是全波整流电路的电原理图。 图3 全波整流电路,可以看作是由两个半波整流电路组合成的。变压器次级线圈中间需要引出一个抽头,把次组线圈分成两个对称的绕组,从而引出大小相等但极性相反的两个电压e2a 、e2b ,构成e2a 、D1、Rfz与e2b 、D2 、Rfz ,两个通电回路。

十种运放精密全波整流电路

十种运放精密全波整流电路 图中精密全波整流电路的名称,纯属本人命的名,只是为了区分;除非特殊说明,增益均按1设计. 图1是最经典的电路,优点是可以在电阻R5上并联滤波电容.电阻匹配关系为R1=R2,R4=R5=2R3;可以通过更改R5来调节增益 图2优点是匹配电阻少,只要求R1=R2 图3的优点是输入高阻抗,匹配电阻要求R1=R2,R4=2R3

图4的匹配电阻全部相等,还可以通过改变电阻R1来改变增益.缺点是在输入信号的负半周,A1的负反馈由两路构成,其中一路是R5,另一路是由运放A2复合构成,也有复合运放的缺点. 图5 和图6 要求R1=2R2=2R3,增益为1/2,缺点是:当输入信号正半周时,输出阻抗比较高,可以在输出增加增益为2的同相放大器隔离.另外一个缺点是正半周和负半周的输入阻抗不相等,要求输入信号的内阻忽略不计 图7正半周,D2通,增益=1+(R2+R3)/R1;负半周增益=-R3/R2;要求正负半周增益的绝对值相等,例如增益取2,可以选R1=30K,R2=10K,R3=20K

图8的电阻匹配关系为R1=R2 图9要求R1=R2,R4可以用来调节增益,增益等于1+R4/R2;如果R4=0,增益等于1;缺点是正负半波的输入阻抗不相等,要求输入信号的内阻要小,否则输出波形不对称. 图10是利用单电源运放的跟随器的特性设计的,单电源的跟随器,当输入信号大于0时,输出为跟随器;当输入信号小于0的时候,输出为0.使用时要小心单电源运放在信号很小时的非线性.而且,单电源跟随器在负信号输入时也有非线性. 图7,8,9三种电路,当运放A1输出为正时,A1的负反馈是通过二极管D2和运放A2构成的复合放大器构成的,由于两个运放的复合(乘积)作用,可能环路的增益太高,容易产生振荡. 精密全波电路还有一些没有录入,比如高阻抗型还有一种把A2的同相输入端接到A1的反相输入端的,其实和这个高阻抗型的原理一样,就没有专门收录,其它采用A1的输出只接一个二极管的也没有收录,因为在这个二极管截止时,A1处于开环状态. 结论: 虽然这里的精密全波电路达十种,仔细分析,发现优秀的并不多,确切的说只有3种,就是前面的3种. 图1的经典电路虽然匹配电阻多,但是完全可以用6个等值电阻R实现,其中电阻R3可以用两个R并联.可以通过R5调节增益,增益可以大于1,也可以小于1.最具有优势的是可以在R5上并电容滤波. 图2的电路的优势是匹配电阻少,只要一对匹配电阻就可以了. 图3的优势在于高输入阻抗. 其它几种,有的在D2导通的半周内,通过A2的复合实现A1的负反馈,对有些运放会出现自激. 有的两个半波的输入阻抗不相等,对信号源要求较高. 两个单运放型虽然可以实现整流的目的,但是输入\输出特性都很差.需要输入\输出都加跟随

半波整流全波整流桥式整流的详细介绍适合入门者

半波整流全波整流桥式整流的详细介绍适合入门者 The Standardization Office was revised on the afternoon of December 13, 2020

半波整流、全波整流、桥式整流 整流,就是把交流电变为直流电的过程。利用具有单向导电特性的器件,可以把方向和大小交变的电流变换为直流电。下面介绍利用晶体二极管组成的各种整流电路。 一、半波整流电路 图(1)是一种最简单的整流电路。它由 电源变压器B 、整流二极管D 和负载电阻 Rfz ,组成。变压器把市电电压(多为220 伏)变换为所需要的交变电压E2 ,D 再把 交流电变换为脉动直流电。 下面从右图(2)的波形图上看着二 极管是怎样整流的。 变压器砍级电压E2 ,是一 个方向和大小都随时间变化的正 弦波电压,它的波形如图(2)(a) 所示。在0~π时间内,E2 为正 半周即变压器上端为正下端为 负。此时二极管承受正向电压面 导通,E2 通过它加在负载电阻 Rfz上,在π~2π时间内,E2 为负半周,变压器次级下端为正,上端为负。这时D 承受反向电压,不导通,Rfz,上无电压。在2π~3π时间内,重复0~π时间的过程,而在3π~4π时间内,又重复π~2π时间的过程…这样反复下去,交流电的负半周就被"削"掉了,只有正半周通过Rfz,在Rfz上获得了一个单一右向(上正下负)的电压,如图5-2(b)所示,达到了整流的目的,但是,负载电压Usc 。以及负载电流的大小还随时间而变化,因此,通常称它为脉动直流。 这种除去半周、图下半周的整流方法,叫半波整流。不难看出,半波整说是以"牺牲"一半交流为代价而换取整流效果的,电流利用率很低(计算表明,整流得出的半波电压在整个周期内的平均值,即负载上的直流电压Usc = )因此常用在高电压、小电流的场合,而在一般无线电装置中很少采用。

单相全控桥式晶闸管整流电路的设计

电力电子技术课程设计报告题目:单相全控桥式晶闸管整流电路的设计

目录 第1章绪论 (3) 1.1 电力电子技术的发展 (3) 1.2 电力电子技术的应用 (3) 1.3 电力电子技术课程中的整流电路 (4) 第2章系统方案及主电路设计 (5) 2.1 方案的选择 (5) 2.2 系统流程框图 (6) 2.3 主电路的设计 (7) 2.4 整流电路参数计算 (9) 2.5 晶闸管元件的选择 (10) 第3章驱动电路设计 (12) 3.1 触发电路简介 (12) 3.2 触发电路设计要求 (12) 3.3 集成触发电路TCA785 (13) 3.3.1 TCA785芯片介绍 (13) 3.3.2 TCA785锯齿波移相触发电路 (17) 第4章保护电路设计 (18) 4.1 过电压保护 (18) 4.2 过电流保护 (19) 4.3 电流上升率di/dt的抑制 (19) 4.4 电压上升率du/dt的抑制 (20) 第5章系统仿真 (21) 5.1 MATLAB主电路仿真 (21) 5.1.1 系统建模与参数设置 (21) 5.1.2 系统仿真结果及分析 (22) 5.2 proteus 触发电路仿真 (26) 设计体会 (28) 参考文献 (29) 附录A 实物图 (30) 附录B 元器件清单 (31)

第1章绪论 1.1 电力电子技术的发展 晶闸管出现前的时期可称为电力电子技术的史前期或黎明时期。晶闸管由于其优越的电气性能和控制性能,使之很快就取代了水银整流器和旋转变流机组。并且,其应用范围也迅速扩大。电力电子技术的概念和基础就是由于晶闸管及晶闸管变流技术的发展而确立的。晶闸管是通过对门极的控制能够使其导通而不能使其关断的器件,属于半控型器件。对晶闸管电路的控制方式主要是相位控制式,简称相控方式。晶闸管的关断通常依靠电网电压等外部条件来实现。这就使得晶闸管的应用受到了很大的局限。70年代后期,以门极可关断晶闸管(GTO)、电力双极型晶体管(BJT)和电力场效应晶体管(Power-MOSFET)为代表的全控型器件迅速发展。全控型器件的特点是,通过对门极(基极、栅极)的控制既可使其开通又可使其关断。在80年代后期,以绝缘栅极双极型晶体管(IGBT)为表的复合型器件异军突起。它是MOSFET和BJT的复合,综合了两者的优点。与此相对,MOS控制晶闸管(MCT)和集成门极换流晶闸管(IGCT)复合了MOSFET和GTO。 1.2 电力电子技术的应用 电力电子技术是一门新兴技术,它是由电力学、电子学和控制理论三个学科交叉而成的,在电气自动化专业中已成为一门专业基础性强且与生产紧密联系的不可缺少的专业基础课。本课程体现了弱电对强电的控制,又具有很强的实践性。能够理论联系实际,在培养自动化专业人才中占有重要地位。它包括了晶闸管的结构和分类、晶闸管的过电压和过电流保护方法、可控整流电路、晶闸管有源逆变电路、晶闸管无源逆变电路、PWM控制技术、交流调压、直流斩波以及变频电路的工作原理。 在电力电子技术中,可控整流电路是非常重要的内容,整流电路是将交流电变为直流电的电路,其应用非常广泛。工业中大量应用的各种直流电动机的调速均采用电力电子装置;电气化铁道(电气机车、磁悬浮列车等)、电动汽车、

种精密整流电路的详解

1.第一种的模拟电子书上(第三版442页)介绍的经典电路。A1用的是半波整流并且放 大两倍,A2用的是求和电路,达到精密整流的目的。(R1=R3=R4=R5=2R2) 2.第二种方法看起来比较简单A1是半波整流电路,是负半轴有输出,A2的电压跟随器的 变形,正半轴有输出,这样分别对正负半轴的交流电进行整流!(R1=R2) 3.第三种电路

仿真效果如下: 这个电路真是他妈的坑爹,经过我半天的分析才发现是这样的结论:Uo=-|Ui|,整出来的电路全是负的,真想不通为什么作者放到这里,算了先把分析整理一下: 当Ui>0的时候电路等效是这样的

放大器A是同相比例电路,Uo1=(1+R2/R1)Ui=2Ui 放大器B是加减运算电路,Uo2=(1+R2/R1)Ui-(R4/R3)Uo1=-Ui 当Ui<0的时候电路图等效如下: 放大器A是电压跟随器,放大器B是加减运算电路 式子整理:Uo2=(1+R4/(R2+R3))Ui- R4/(R2+R3)Ui=Ui 以上是这个电路的全部分析,但是想达到正向整流的效果就应该把二极管全部反向过来电路和仿真效果如下图所示

4.第四种电路是要求所有电阻全部相等。这个仿真相对简单。 电路和仿真效果如下 计算方法如下: 当Ui>0时,D1导通,D2截止(如果真是不清楚为什么是这样分析,可以参照模拟电子技术书上对于第一种电路的分析),这是电路图等效如下(R6是为了测试信号源用的跟这个电路没有直接的关系,不知道为什么不加这个电阻就仿真不了)

放大器A构成反向比例电路,uo1=-ui, 这时在放大器B的部分构成加减运算电路,uo2=-uo1=-(-ui) 注意:这里放大器B的正相输入端是相当于接地的,我刚开始一直没有想通,后来明白了,这一条线路上是根本就没有电流的,根本就没有办法列出方程来。(不知道这么想是不是正确的) 当Ui<0的时候,D1截止,D2导通,电路图等效如下: 这时就需要列方程了 Ui<0时Ui/R1=-(U2/R5+U2/(R2+R3))计算得到U2=-2/3 Ui 再根据U2/(R2+R3)=(U0-U2)/R4 得到U0=3/2 U2 带入得到U0=-Ui

十种精密全波整流电路图

十种精密全波整流电路图 图中精密全波整流电路的名称,纯属本人命的名,只是为了区分;除非特殊说明,增益均按1设计. 图1是最经典的电路,优点是可以在电阻R5上并联滤波电容.电阻匹配关系为R1=R2,R4=R5=2R3;可以通过更改R5来调节增益。 图2优点是匹配电阻少,只要求R1=R2

图3的优点是输入高阻抗,匹配电阻要求R1=R2,R4=2R3 图4的匹配电阻全部相等,还可以通过改变电阻R1来改变增益.缺点是在输入信号的负半周,A1的负反馈由两路构成,其中一路是R5,另一路是由运放A2复合构成,也有复合运放的缺点。 图5 和图6 要求R1=2R2=2R3,增益为1/2,缺点是:当输入信号正半周时,输出阻抗比较高,可以在输出增加增益为2的同相放大器隔离.另外一个缺点是正半周和负半周的输入阻抗不相等,要求输入信号的内阻忽略不计。

图7正半周,D2通,增益=1+(R2+R3)/R1;负半周增益=-R3/R2;要求正负半周增益的绝对值相等,例如增益取2,可以选R1=30K,R2=10K,R3=20K 图8的电阻匹配关系为R1=R2 图9要求R1=R2,R4可以用来调节增益,增益等于1+R4/R2;如果R4=0,增益等于1;缺点是正负半波的输入阻抗不相等,要求输入信号的内阻要小,否则输出波形不对称。

图10是利用单电源运放的跟随器的特性设计的,单电源的跟随器,当输入信号大于0时,输出为跟随器;当输入信号小于0的时候,输出为0.使用时要小心单电源运放在信号很小时的非线性.而且,单电源跟随器在负信号输入时也有非线性。 图7,8,9三种电路,当运放A1输出为正时,A1的负反馈是通过二极管D2和运放A2构成的复合放大器构成的,由于两个运放的复合(乘积)作用,可能环路的增益太高,容易产生振荡。 精密全波电路还有一些没有录入,比如高阻抗型还有一种把A2的同相输入端接到A1的反相输入端的,其实和这个高阻抗型的原理一样,就没有专门收录,其它采用A1的输出只接一个二极管的也没有收录,因为在这个二极管截止时,A1处于开环状态。 结论: 虽然这里的精密全波电路达十种,仔细分析,发现优秀的并不多,确切的说只有3种,就是前面的3种。 图1的经典电路虽然匹配电阻多,但是完全可以用6个等值电阻R实现,其中电阻R3可以用两个R并联.可以通过R5调节增益,增益可以大于1,也可以小于1.最具有优势的是可以在R5上并电容滤波。 图2的电路的优势是匹配电阻少,只要一对匹配电阻就可以了。 图3的优势在于高输入阻抗。 其它几种,有的在D2导通的半周内,通过A2的复合实现A1的负反馈,对有些运放会出现自激. 有的两个半波的输入阻抗不相等,对信号源要求较高。

桥式整流电路分析

1、桥式整流 桥式整流电路是使用最多的一种整流电路。这种电路,只要增加两只二极管口连接成"桥"式结构,便具有全波整流电路的优点,而同时在一定程度上克服了它的缺点。 桥式整流电路如图Z0705所示,其中图(a)、(b)、(c)是它的 三种不同画法。它是由电源变压器、四只整流二极管D1~4 和负载 电阻R L组成。四只整流二极管接成电桥形式,故称桥式整流。 桥式整流电路的工作原理如图Z0706所示。在u2的正半周,D1、 D3导通,D2、D4截止, 电流由T R次级上端经 D1→R L →D3回到 TR次级下端,在负载 RL上得到一半波整流 电压。 在u2的负半周,D1、 D3截止,D2、D4导通, 电流由Tr次级的下端 经D2→R L→D4回到 Tr次级上端,在负载RL 上得到另一半波整流 电压。 这样就在负载RL上得到一个与全波整流相同的电压波形,其电 流的计算与全波整流相同,即 UL = 0.9U2 GS0709 I L = 0.9U2/R L GS0710 流过每个二极管的平均电流为 I D= I L/2 = 0.45 U2/R L 每个二极管所承受的最高反向电压为 2、半波整流电路 半波整流电路,由电源变压器Tr整流二极管D和负载电阻RL组成,如下图所示。电路的工作过程是:在u2的正半周(ωt=0~π),二极管因加正向偏压而导通,有电流iL流过负载电阻RL。由于将二极管看作理想器件,故RL上的电压uL与u2的正半周电压基本相同。

市电(交流电网)变为稳定的直流电需经过变压、整流、滤波和稳压四个过程。利用二极管的单向导电性,将大小和方向都随时间变化的工频交流电变换成单方向的脉动直流电的过程称为整流。有时将变压器、整流电路和滤波电路一起统称为整流器。 (1)正半周u2瞬时极性a(+),b(-),VD正偏导通,二极管和负载上有电流流过。若向压降UF忽略不计,则uo=u2。 (2)负半周u2瞬时极性a(-),b(+),VD反偏截止,IF≈0,uD=u2。

单相桥式全控整流电路 (1)

电力电子技术实验报告 实验名称:单相桥式全控整流电路_______班级:自动化_________________ 组别:第组___________________分工: 金华职业技术学院信息工程学院 年月日 目录

一.单项全控整流电路电阻负载工作分 析..................................................- 1 - 1.电路的结构与工作原 理............................................................ ...............- 1 - 2.建 模…………….................................................. ...........................................- 3 - 3.仿真结果与分 析............................................................ ...........................- 5 - 4.小 结…………….................................................. ...........................................- 5 - 二.单项全控整流电路组感负载工作分 析..................................................- 6 - 1.电路的结构与工作原 理............................................................ ...............- 6 - 2.建 模…………….................................................. ............................................- 8 - 3.仿真结果与分 析............................................................ ..........................- 10- 4.小 结…………….................................................. ...........................................- 10 - 三.单项全控整流电路带反电动势阻感负载工作分 析...............................- 11 - 1.电路的结构与工作原 理............................................................ ...............- 11 - 2.建 模…………….................................................. ............................................- 13 - 3.仿真结果与分 析............................................................ ............................- 15 - 4.小 结…………….................................................. ............................................- 15 -

10种全波精密整流电路

十种精密全波整流电路 图中精密全波整流电路的名称,纯属本人命的名,只是为了区分;除非特殊

说明,增益均按1设计。 图1是最经典的电路,优点是可以在电阻R5上并联滤波电容。电阻匹配关系为R1=R2,R4=R5=2R3;可以通过更改R5来调节增益 图2优点是匹配电阻少,只要求R1=R2 图3的优点是输入高阻抗,匹配电阻要求R1=R2,R4=2R3 图4的匹配电阻全部相等,还可以通过改变电阻R1来改变增益。缺点是在输入信号的负半周,A1的负反馈由两路构成,其中一路是R5,另一路是由运放A2复合构成,也有复合运放的缺点。 图5 和图6 要求R1=2R2=2R3,增益为1/2,缺点是:当输入信号正半周时,输出阻抗比较高,可以在输出增加增益为2的同相放大器隔离。另外一个缺点是正半周和负半周的输入阻抗不相等,要求输入信号的内阻忽略不计 图7正半周,D2通,增益=1+(R2+R3)/R1;负半周增益=-R3/R2;要求正负半周增益的绝对值相等,例如增益取2,可以选R1=30K,R2=10K,R3=20K 图8的电阻匹配关系为R1=R2 图9要求R1=R2,R4可以用来调节增益,增益等于1+R4/R2;如果R4=0,增益等于1;缺点是正负半波的输入阻抗不相等,要求输入信号的内阻要小,否则输出波形不对称。 图10是利用单电源运放的跟随器的特性设计的,单电源的跟随器,当输入信号大于0时,输出为跟随器;当输入信号小于0的时候,输出为0。使用时要小心单电源运放在信号很小时的非线性。而且,单电源跟随器在负信号输入时也有非线性。 图7,8,9三种电路,当运放A1输出为正时,A1的负反馈是通过二极管D2和运放A2构成的复合放大器构成的,由于两个运放的复合(乘积)作用,可能环路的增益太高,容易产生振荡。 精密全波电路还有一些没有录入,比如高阻抗型还有一种把A2的同相输入端接到A1的反相输入端的,其实和这个高阻抗型的原理一样,就没有专门收录,其它采用A1的输出只接一个二极管的也没有收录,因为在这个二极管截止时,A1处于开环状态。 结论: 虽然这里的精密全波电路达十种,仔细分析,发现优秀的并不多,确切的说只有3种,就是前面的3种。 图1的经典电路虽然匹配电阻多,但是完全可以用6个等值电阻R实现,

单相桥式全控整流电路仿真建模分析

单相桥式全控整流电路仿真建模分析 一、单相桥式全控整流电路(电阻性负载) 1电路的结构与工作原理 1.1电路结构 R id 图 1 单相桥式全控整流电路(纯电阻负载)的电路原理图 1.2 工作原理 在电源电压正半波,在wt <α时,晶闸管VT1,VT4承受正向电压,晶闸管VT2,VT3承受反向电压,此时4个晶闸管都不导通,且假设4个晶闸管的漏电阻相等,则ut1(4)=ut2(3)=1/2U2;在wt=α时,晶闸管VT1,VT4满足晶闸管导通的两条件,晶闸管VT1,VT4导通,负载上的电压等于变压器两端的电压U2;在wt= π时,因电源电压过零,通过晶闸管VT1,VT4的阳极电流小于维持晶闸管导通的条件下降为零,晶闸管关断;在电源负半波,在wt <α+π时,触发晶闸管VT2,VT3使其元件导通,电源电压沿正半周期的方向施加到负载电阻上,负载上有输出电压(Ud=-U2)和电流,且波形相位相同。此时电源电压反向施加到晶闸管VT1,VT4,使其承受反向电压而处于关断状态;在wt=2π时,因电源电压过零,通过晶闸管VT2,VT3的阳极电流小于维持晶闸管导通的条件下降为零,晶闸管关断。 2单相桥式全控整流电路建模 在MATLAB 新建一个Model ,同时模型建立如下图所示: 图2 单相桥式全控整流电路(电阻性负载)的MATLAB 仿真模型

2.1模型参数设置 在此电路中,输入电压的电压设置为220V,频率设置为50Hz,电阻阻值设置为1欧姆,电感设置为1e-3H,脉冲输入的电压设置为3V,周期设置为0.02(与输入电压一致周期),占空比设置为10%,触发角分别设置为20°,60°,90°,150°因为两个晶闸管在对应时刻不断地周期性交替导通,关断,所以脉冲出发周期应相差180°。 晶闸管参数 脉冲参数

精密整流电路

实验 精密整流电路 一、实验目的 (1) 了解精密半波整流电路及精密全波整流电路的电路组成、工作原理及参数估算; (2) 学会设计、调试精密全波整流电路,观测输出、输入电压波形及电压传输特性。 二、知识点 半波精密整流、全波精密整流 三、实验原理 将交流电压转换成脉动的直流电压,称为整流。众所周知,利用二极管的单向导电性,可以组成半波及全波整流电路。在图1(a )中所示的一般半波整流电路中,由于二极管的伏安特性如图1(b )所示,当输入电压 幅值小于二极管的开启电压 时,二极管在信 号的整个周期均处于截止状态,输出电压始终为零。即使幅值足够大,输出电压也只反 映 大于 的那部分电压的大小,故当用于对弱信号进行整流时,必将引起明显的误差, 甚至无法正常整流。如果将二极管与运放结合起来,将二极管置于运放的负反馈回路中,则 可将上述二极管的非线性及其温漂等影响降低至可以忽略的程度,从而实现对弱小信号的精密整流或线性整流。 1.精密半波整流 图2给出了一个精密半波整流电路及其工作波形与电压传输特性。下面简述该电路的工作原理: 当输入>0时,<0,二极管D 1导通、D 2截止,由于N 点“虚地”,故≈0(≈-0.6V )。 图1 一般半波整流电路 V i V O

当输入<0 时,>0,二极管D2导通、D1 截止,运放组成反相比例运算器,故,若R1=R2,则=-。其工作波形及电压传输特性如图所示。电路的输出电压可表示为 v0 = 0 v i>0 -v i v i<0 (a)电路(b)波形 (c)电压传输特性 图2 精密半波整流电路

这里,只需极小的输入电压,即可有整流输出,例如,设运放的开环增益为105 ,二 极管的正向导通压降为0.6V ,则只需输入为 μV 以上,即有整流输出了。同 理,二极管的伏安特性的非线性及温漂影响均被压缩了105 倍。 2.精密全波整流 图3给出一个具有高输入阻抗的精密全波整流电路及其工作波形与电压传输特性。 当输入 >0时, <0,二极管D 1导通、D 2截止,故 = = 。运放A 2为差分输入 放大器,由叠加原理知。 v o v i V OM (b )工作波形 (c ) 电压传输特性 图3 精密全波整流电路 v i R - + A 1 +15V -15V N D 1 R D 2 v o1 - + A 2 +15V -15V N R 2R R L v o (a )电路 t v i v o t

单相桥式全控整流电路Matlab仿真

目录 单相桥式全控整流电路仿真建模分析............................... 错误!未定义书签。(一)单相桥式全控整流电路(纯电阻负载)......................... 错误!未定义书签。 1.电路的结构与工作原理 ........................................................ 错误!未定义书签。 2.建模 ........................................................................................ 错误!未定义书签。 3仿真结果与分析 (4) 4小结 (6) (二)单相桥式全控整流电路(阻-感性负载) (7) 1.电路的结构与工作原理 (7) 2.建模 (8) 3仿真结果与分析 (10) 4.小结 ........................................................................................ 错误!未定义书签。(三)单相桥式全控整流电路(反电动势负载).. (13) 1.电路的结构与工作原理 ........................................................ 错误!未定义书签。 2.建模 (14) 3仿真结果与分析 (16) 4小结 (18) 单相桥式全控整流电路仿真建模分析 一、实验目的 1、不同负载时,单相全控桥整流电路的结构、工作原理、波形分析。 2、在仿真软件Matlab中进行单相可控整流电路的建模与仿真,并分析其波形。 二.实验内容 (一)单相桥式全控整流电路(纯电阻负载) 1.电路的结构与工作原理 电路结构 单相桥式全控整流电路(纯电阻负载)的电路原理图(截图) 工作原理 用四个晶闸管,两只晶闸管接成共阴极,两只晶闸管接成共阳极,每一只晶闸管是一个桥臂。 (1)在u2正半波的(0~α)区间: 晶闸管VT1、VT4承受正压,但无触发脉冲。四个晶闸管都不通。假设四个晶闸管的漏电阻相等,则==1/2 u2。 (2)在u2正半波的ωt=α时刻:

简单学电路——半波与全波,半波整流、全波整流、桥式整流(原创)

一、半波整流电路 图 5-1 、是一种最简单的整流电路。它由电源变压器 B 、整流二极管 D 和负载电阻Rfz ,组成。变压器把市电电压(多为220 伏)变换为所需要的交变电压e2 , D 再把交流电变 换为脉动直流电。 下面从图5-2 的波形图上看着二极管是怎样整流的。 变压器砍级电压e2 ,是一个方向和大小都随时间变化的正弦波电压,它的波形如图5-2(a)所示。在 0 ~K 时间内, e2 为正半周即变压器上端为正下端为负。此时二极管承受正 向电压面导通, e2 通过它加在负载电阻 Rfz 上,在π~ 2π时间内, e2 为负半周,变压器

次级下端为正,上端为负。这时 D 承受反向电压,不导通,Rfz,上无电压。在π~2π 时间内,重复0 ~π时间的过程,而在3π~ 4π时间内,又重复π~2π 时间的过程? 这样反复下去,交流电的负半周就被"削 "掉了,只有正半周通过Rfz,在 Rfz 上获得了一个单一右 向(上正下负)的电压,如图5-2 ( b )所示,达到了整流的目的,但是,负载电压Usc 。以及负载电流的大小还随时间而变化,因此,通常称它为脉动直流。 这种除去半周、图下半周的整流方法,叫半波整流。不难看出,半波整说是以"牺牲 "一半交流为代价而换取整流效果的,电流利用率很低(计算表明,整流得出的半波电压在整个 周期内的平均值,即负载上的直流电压Usc =0.45e2)因此常用在高电压、小电流的场合, 而在一般无线电装置中很少采用。 二、全波整流电路 如果把整流电路的结构作一些调整,可以得到一种能充分利用电能的全波整流电路。图5-3 是全波整流电路的电原理图。 全波整流电路,可以看作是由两个半波整流电路组合成的。变压器次级线圈中间需要引 出一个抽头,把次组线圈分成两个对称的绕组,从而引出大小相等但极性相反的两个电压 e2a 、e2b ,构成 e2a 、 D1 、 Rfz 与 e2b 、 D2 、 Rfz ,两个通电回路。 全波整流电路的工作原理,可用图5-4所示的波形图说明。在0 ~π间内, e2a 对 Dl 为正向电压, D1 导通,在Rfz 上得到上正下负的电压;e2b对D2为反向电压,D2 不导通(见图5-4 (b )。在π- 2π时间内, e2b 对 D2 为正向电压,D2 导通,在Rfz 上得到的仍然是上正下负的电压;e2a对D1为反向电压,D1 不导通(见图5-4 ( C)。

相关主题
文本预览
相关文档 最新文档