当前位置:文档之家› 超精密切削加工技术的历史

超精密切削加工技术的历史

超精密切削加工技术的历史

超精密切削加工技术的历史

超精密加工技术是适应现代高科技的需要而发展起来的先进制造技术, 是高科技尖端产品开发中不可或缺的关键技术, 是一个国家制造业水平重要标志, 是先进制造技术基础和关键, 也是装备现代化不可缺少的关键技术之一, 在军用和民用工业中有着十分广阔的应用前景。金刚石超精密切削技术, 是超精密加工技术发展最早的、应用最为广泛的技术之一。

超精密切削加工技术

1、超精密切削的历史

60年代初,由于宇航用的陀螺,计算机用的磁鼓、磁盘,光学扫描用的多面棱镜,大功率激光核聚变装置用的大直径非圆曲面镜,以及各种复杂形状的红外光用的立体镜等等,各种反射镜和多面棱镜精度要求极高,使用磨削、研磨、抛光等方法进行加工,不但加工成本很高,而且很难满足精度和表面粗糙度的要求。为此,研究、开发了使用高精度、高刚度的机床和金刚石刀具进行切削加工的方法加工。

2、超精密切削加工的应用

(1)平面镜的切削

平面度

金刚石刀具

1、金刚石刀具特点

金刚石刀具拥有很高的高温强度和硬度,而且材质细密,经过精细研磨,切削刃可磨得极为锋利,表面粗糙度值很小,因此可进行镜面切削。

金刚石刀具超精密切削主要用于加工铜、铝等有色金属,如高密度硬磁盘的铝合金基片、激光器的反射镜、复印机的硒鼓、光学平面镜,凹凸镜、抛物面镜等。超精切削刀具材料有天然金刚石,人造单晶金刚石。

金刚石刀具磨损的常见形式为机械磨损和破损。机械磨损——机械摩擦、非常微小;破损

超精密加工技术的发展现状是怎么样的

超精密加工技术的发展现状是怎么样的 自从中国将“装备制造业”列为国家发展战略后,中国的装备制造业取得了突飞猛进的发展,很多大型装备的制造能力都已经跃居世界先进水平,甚至成为世界的顶级水平,但中国制造业总体还是落后的,其落后就在于精密制造的落后。 超精密加工技术是现代高技术战争的重要支撑技术,是现代高科技产业和科学技术的发展基础,是现代制造科学的发展方向。 现代科学技术的发展以试验为基础,所需试验仪器和设备几乎无一不需要超精密加工技术的支撑。由宏观制造进入微观制造是未来制造业发展趋势之一,当前超精密加工已进入纳米尺度,纳米制造是超精密加工前沿的课题。世界发达国家均予以高度重视。 超精密加工的发展阶段 目前的超精密加工,以不改变工件材料物理特性为前提,以获得极限的形状精度、尺寸精度、表面粗糙度、表面完整性(无或极少的表面损伤,包括微裂纹等缺陷、残余应力、组织变化)为目标。 超精密加工的研究内容,即影响超精密加工精度的各种因素包括:超精密加工机理、被加工材料、超精密加工设备、超精密加工工具、超精密加工夹具、超精密加工的检测与误差补偿、超精密加工环境(包括恒温、隔振、洁净控制等)和超精密加工工艺等。一直以来,国内外学者围绕这些内容展开了系统的研究。超精密加工的发展经历了如下三个阶段。1)20世纪50年代至80年代,美国率先发展了以单点金刚石切削为代表的超精密加工技术,用于航天、国防、天文等领域激光核聚变反射镜、球面、非球面大型零件的加工。2)20世纪80年代至90年代,进入民间工业的应用初期。美国的摩尔公司、普瑞泰克公司,日本的东芝和日立,以及欧洲的克兰菲尔德等公司在政府的支持下,将超精密加工设备的商品化,开始用于民用精密光学镜头的制造。单超精密加工设备依然稀少而昂贵,主要以专用机的形式订制。在这一时期还出现了可加工硬质金属和硬脆材料的超精密金刚石磨削技术及磨床,但其加工效率无法和金刚石车床相比。

精密和超精密加工技术复习思考题答案

精密和超精密加工技术复习思考题答案 第一章 1.试述精密和超精密加工技术对发展国防和尖端技术的重要意义。 答:超精密加工技术在尖端产品和现代化武器的制造中占有非常重要的地位。国防方面,例如:对于导弹来说,具有决定意义的是导弹的命中精度,而命中精度是由惯性仪表的精度所决定的。制造惯性仪表,需要有超精密加工技术和相应的设备。 尖端技术方面,大规模集成电路的发展,促进了微细工程的发展,并且密切依赖于微细工程的发展。因为集成电路的发展要求电路中各种元件微型化,使有限的微小面积上能容纳更多的电子元件,以形成功能复杂和完备的电路。因此,提高超精密加工水平以减小电路微细图案的最小线条宽度就成了提高集成电路集成度的技术关键。 2.从机械制造技术发展看,过去和现在达到怎样的精度可被称为精密和超精密加工。 答:通常将加工精度在0.1-lμm,加工表面粗糙度在Ra 0.02-0.1μm之间的加工方法称为精密加工。而将加工精度高于0.1μm,加工表面粗糙度小于Ra 0.01μm的加工方法称为超精密加工。 3.精密和超精密加工现在包括哪些领域。 答:精密和超精密加工目前包含三个领域: 1)超精密切削,如超精密金刚石刀具切削,可加工各种镜面。它成功地解决了高精度陀螺仪,激光反射镜和某些大型反射镜的加工。 2)精密和超精密磨削研磨。例如解决了大规模集成电路基片的加工和高精度硬磁盘等的加工。 3)精密特种加工。如电子束,离子束加工。使美国超大规模集成电路线宽达到0.1μm。 4.试展望精密和超精密加工技术的发展。 答:精密和超精密加工的发展分为两大方面:一是高密度高能量的粒子束加工的研究和开发;另一方面是以三维曲面加工为主的高性能的超精密机械加工技术以及作为配套的三维超精密检测技术和加工环境的控制技术。 5.我国的精密和超精密加工技术和发达国家相比情况如何。 答:我国当前某些精密产品尚靠进口,有些精密产品靠老工人于艺,因而废品率极高,例如现在生产的某种高精度惯性仪表,从十几台甚至几十台中才能挑选出一台合格品。磁盘生产质量尚未完全过关,激光打印机的多面棱镜尚不能生产。1996年我国进口精密机床价值达32亿多美元(主要是精密机床和数控机床)。相当于同年我国机床的总产值,某些大型精密机械和仪器国外还对我们禁运。这些都说明我国必须大力发展精密和高精密加工技术。 6.我目要发展精密和超精密加工技术,应重点发展哪些方面的内容。

金属材料与金属切削加工原理

第一章金属材料的性能 第一节金属材料的主要性能 两大类: 1 使用性能:机械零件在正常工作情况下应具备的性能。 包括:力学性能、物理、化学性能 2 工艺性能:铸造性能、锻造性能、焊接性能、热处理性能、切削性能等。Ⅰ、金属材料的力学性能: 力学性能---受外力作用反映出来的性能。 一弹性和塑性: 1弹性:金属材料受外力作用时产生变形,当外力去掉后能恢复其原来形状的性能。力和变形同时存在、同时消失。如弹簧:弹簧靠弹性工作。 2 塑性:金属材料受外力作用时产生永久变形而不至于引起破坏的性能。(金属之间的连续性没破坏)塑性大小以断裂后的塑性变形大小来表示。塑性变形:在外力消失后留下的这部分不可恢复的变形。 3 拉伸图:金属材料在拉伸过程中弹性变形、塑性变形直到断裂的全部力学性能可用拉伸图形象地表示出来。 1)弹性阶段σe ——塑性极限,s——屈服点,过s点水2)屈服阶段:过e点至水平段右端σ s

平段——说明载荷不增加,式样仍继续伸长。(P一定,σ=P/F一定,但真实应力P/F1↑因为变形,F1↓)发生永久变形 3)强化阶段:水平线右断至b点 P↑变形↑,σ b ——强度极限,材料能承受的最大载荷时的应力。 4)局部变形阶段b k 过b点,试样某一局部范围内横向尺寸突然急剧缩小。“缩颈”(试样横截面变小,拉力↓) 4 延伸率和断面收缩率:——表示塑性大小的指标 1)延伸率:δ= l 0——试样原长,l 1 ——拉深后长 2)断面收缩率: F 0——原截面,F 1 —拉断后截面 (1)δ、ψ越大,材料塑性越好 (2)ε与δ区别:拉伸图中ε=ε 弹+ε 塑, δ=εmas塑 (3)一般δ〉5%为塑性材料,δ〈5%为脆性材料。 5 条件屈服极限σ 0。2 有些材料在拉伸图中没有明显的水平阶段。通常规定产生0.2塑性变形的应力作为屈服极限,称为条件屈服极限. 二刚度: 金属材料在受力时抵抗弹性变形的能力。 1 材料本质 弹性模量—在弹性范围内,应力与应变的比值.其大小主要决定材料本身. 相当于单位元元变形所需要的应力。σ=Εε, Ε=σ/ε=tgα 2 几何尺寸、形状、受力 相同材料的E相同,但尺寸不同,则其刚度也不同.所以考虑材料刚度时要把E\形状\尺寸同时考虑.还要考虑受力情况. 三强度: 强度指金属材料在外力作用下抵抗塑性变形和断裂的能力。 按作用力性质的不同,可分为:抗拉强度σ + 抗压强度σ - 抗弯强度σ w 抗剪 强度τ b 抗扭强度σ

超精密加工技术论文

超精密加工技术简介论文 学校:XXXXX 学院:XXXX 班级:XXXXX 专业:XXXXX 姓名:XXXX 学号:XXXX 指导教师:XXX

目录 目录 .......................................................................................................................................... - 2 - 一、概述................................................................................................................... - 1 - 1、超精密加工的内涵...................................................................................... - 1 - 2.、发展超精密加工技术的重要性................................................................. - 1 - 二、超精密加工所涉及的技术范围....................................................................... - 2 - 三、超精密切削加工............................................................................................... - 3 - 1、超精密切削对刀具的要求.......................................................................... - 3 - 2、金刚石刀具的性能特征.............................................................................. - 3 - 3、超精密切削时的最小切削厚度.................................................................. - 3 - 四、超精密磨削加工............................................................................................... - 4 - 1、超精密磨削砂轮.......................................................................................... - 4 - 2、超精密磨削砂轮的修整.............................................................................. - 4 - 3、磨削速度和磨削液...................................................................................... - 5 - 五、超精密加工的设备........................................................................................... - 5 - 六、超精密加工的支撑环境................................................................................... - 6 - 1、净化的空气环境.......................................................................................... - 6 - 2、恒定的温度环境.......................................................................................... - 6 - 3、较好的抗振动干扰环境.............................................................................. - 7 - 七、超精密加工的运用领域................................................................................... - 7 - 八、超精密加工的现状及未来发展....................................................................... - 7 - 1、超精密加工的现状...................................................................................... - 7 - 2、超精密加工的发展前景.............................................................................. - 8 - 总结:....................................................................................................................... - 9 - 参考文献:.....................................................................................错误!未定义书签。

《金属切削原理与刀具》期末复习题

一、填空题(作业、考试、实验报告和考试名单) 1.刀具材料的种类很多,常用的金属材料有、 等。碳素工具钢、高速钢、硬质合金;金刚石、立方氮化硼 3.切削用量要素包括、、三个。 4 前角。 5.刀具的磨损有正常磨损的非正常磨损两种。其中正常磨损有、和三种。前刀面磨损、后刀面磨损、前后刀面同时磨损 6.防止积削瘤形成,切削速度可采用或加以避免。高速;低速 7三大类。采用硬质合金刀具时,由于,故一般不使用切削液。水溶液、乳化液、切削油; 8.乳化液主要起作用,油溶液主要起作用。冷却,润滑 9.切削液的作用有________________、_________________、_____________和_______________等。冷却作用、润滑作用、防锈作用、清洗作用和排屑 10.用圆柱铣刀加工平面时有:逆铣和顺铣两种铣削方式。其中顺铣方式可以提高刀具耐用度;逆铣方式多用于粗加工。 11.车床的切削时的三个切削分力F Z、 F X和 F Y,在一般情况下, F Z、 F Y、 F X力最大。磨削呢? 径向分力大于切向分力 (FP=(1.6-3.2)Fc),Fc大于轴向分力Ff(Ff=(0.1-0.2)Fc)。 12.麻花钻切削性能最差的部位是在处;钻头最易磨损部位是在处。钻削加工时轴向 二、判断题 1.钨钴类硬质合金(YG)因其韧性、磨削性能和导热性好,主要用于加工脆性材料,有色金属及非金属。()√2.刀具寿命的长短、切削效率的高低与刀具材料切削性能的优劣有关。()√3.安装在刀架上的外圆车刀切削刃高于工件中心时,使切削时的前角增大,后角减小。()√4.刀具磨钝标准VB表中,高速钢刀具的VB值均大于硬质合金刀具的VB值,所以高速钢刀具是耐磨损的。()× 5.刀具几何参数、刀具材料和刀具结构是研究金属切削刀具的三项基本内容。()√6.由于硬质合金的抗弯强度较低,冲击韧度差,所取前角应小于高速钢刀具的合理前角。()√7.积屑瘤的产生在精加工时要设法避免,但对粗加工有一定的好处。()√ 8.刀具主切削刃上磨出分屑槽目的是改善切削条件,提高刀具寿命,可以增加切削用量,提高生产效率。()√ 9.所谓前刀面磨损就是形成月牙洼的磨损,一般在切削速度较高,切削厚度较大情况下,加工塑性金属材料时引起的。()√ 10.刀具材料的硬度越高,强度和韧性越低。()√11.立方氮化硼是一种超硬材料,其硬度略低于人造金刚石,但不能以正常的切削速度切削淬火等硬度较高的材料。()√ 12.当粗加工、强力切削或承冲击载荷时,要使刀具寿命延长,必须减少刀具摩擦,所以后角应取大些。()×

我对精密超精密加工技术的认识

我对精密超精密加工技 术的认识 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

我对精密超精密加工技术的认识目前,精密、超精密技术在我国的应用已不再局限于国防尖端和航空航天等少数部门,它已扩展到了国民经济的许多领域,应用规模也有较大增长。计算机、现代通信、影视传播等行业,现都需要精密、超精密加工设备,作为其迅速发展的支撑条件。计算机磁盘、录像机磁头、激光打印机的多面棱镜、复印机的感光筒等零部件的精密、超精密加工,采用的都是高效的大批量自动化生产方式。 传统的精密加工方法有砂带磨削、精密切削、珩磨、精密研磨与抛光等。砂带磨削是用粘有磨料的混纺布为磨具对工件进行加工,属于涂附磨具磨削加工的范畴,有生产率高、表面质量好、使用范围广等特点。精密切削,也称金刚石刀具切削(SPDT),用高精密的机床和单晶金刚石刀具进行切削加工,主要用于铜、铝等不宜磨削加工的软金属的精密加工,如计算机用的磁鼓、磁盘及大功率激光用的金属反光镜等,比一般切削加工精度要高1~2个等级。珩磨,用油石砂条组成的珩磨头,在一定压力下沿工件表面往复运动,加工后的表面粗糙度可达~μ;m,最好可到μ;m,主要用来加工铸铁及钢,不宜用来加工硬度小、韧性好的有色金属。精密研磨与抛光通过介于工件和工具间的磨料及加工液,工件及研具作相互机械摩擦,使工件达到所要求的尺寸与精度的加工方法。精密研磨与抛光对于金属和非金属工件都可以达到其他加工方法所不能达到的精度和表面粗糙度,被研磨表面的粗糙度Ra≤μ;m加工变质层很小,表面质量高,精密研磨的设备简单,主要用于平面、圆柱面、齿轮齿面及有密封要求的配偶件的加工,也可用于量规、量块、喷油嘴、阀体与阀芯的光整加工。抛光是利用机

数控车切削加工三要素

不少数控车床的操作者,对车床的切削原理知道得很少,常常不知道如何正确选择主轴转速S、进刀量F,以及进刀的深度,希望这篇文章能对他们有所帮助。 主轴转速S、进刀量F,进刀的深度,在切削原理课程中称为切削加工三要素,如何正确选择这三个要素是金属切削原理课程的一个主要内容,我这里想尽可能简单地介绍一下选择这三个要素的基本原则: (一) 切削速度(线速度、园周速度)V(米/分) 要选择主轴每分钟转数,必须首先知道切削线速度V应该取多少。 V的选择:取决于刀具材料、工件材料、加工条件等。 刀具材料: 硬质合金,V可以取得较高,一般可取100米/分以上,一般购置刀片时都提供了技术参数:加工什么材料时可选择多少大的线速度。 高速钢:V只能取得较低,一般不超过70米/分,多数情况下取20~30米/分以下。 陶瓷分几个大类,每个大类又分为若干小类,再按成分组分比例、添加物、金相结构、表面处理等,可分出无数具体牌号,加工对象又千变万化,很难在一个较小的范围给到楼主:大致的线速度可以认为在200~1200m/min的范围之内。 工件材料: 硬度高,V取低;铸铁,V取低,刀具材料为硬质合金时可取70~80米/分;低碳钢,V可取100米/分以上,有色金属,V可取更高些(100~200米/分).淬火钢、不锈钢,V应取低一些。 加工条件: 粗加工,V取低一些;精加工,V取高些。 机床、工件、刀具的刚性系统差,V取低。 如果数控程序使用的S是每分钟主轴转数,那么应根据工件直径,及切削线速度V计算出S:S(主轴每分钟转数)=V(切削线速度)*1000/(3.1416*工件直径)

如果数控程序使用了恒线速,那么S可直接使用切削线速度V(米/分) (二)进刀量(走刀量)F 主要取决于工件加工表面粗糙度要求。精加工时,表面要求高,走刀量取小:0.06~0.12mm/主轴每转。 粗加工时,可取大一些。主要决定于刀具强度,一般可取0.3以上,刀具主后角较大时刀具强度差,进刀量不能太大。 另外还应考虑机床的功率,工件与刀具的刚性。 数控程序使用二种单位的进刀量:mm/分、mm/主轴每转,上面用的单位都是mm/主轴每转,如使用mm/分,可用公式转换: 每分钟进刀量=每转进刀量*主轴每分钟转数 (三)吃刀深度(切削深度) 精加工时,一般可取0.5(半径值)以下。 粗加工时,根据工件、刀具、机床情况决定,一般小型车床(最大加工直径在400mm以下)车削正火状态下的45号钢,半径方向切刀深度一般不超过5mm。 另外还要注意,如果车床的主轴变速采用的是普通变频调速,那么当主轴每分钟转速很低时(低于100~200转/分),电机输出功率将显著降低,此时吃刀深度及进刀量只能取得很小。

现代超精密加工技术

现代超精密加工技术 字体:小中大 | 打印发布: 2008-3-19 10:53 作者: webmaster 来源: 本站原创查看: 50次 机械制造技术从提高精度与生产率两个方面同时迅速发展起来。在提高生产率方面,提高自动化程度是各国致力发展的方向,近年来,从C N C到C I M S发展迅速,并且在一定范围内得到了应用。从提高精度方面,从精密加工发展到超精密加工,这也是世界各主要发达国家致力发展的方向。其精度从微米到亚微米,乃至纳米,其应用范围日趋广泛,在高技术领域和军用工业以及民用工业中都有广泛应用。如激光核聚变系统、超大规模集成电路、高密度磁盘、精密雷达、导弹火控系统、惯导级陀螺、精密机床、精密仪器、录象机磁头、复印机磁鼓、煤气灶转阀等都要采用超精密加工技术。 它与当代一些主要科学技术的发展有密切的关系,是当代科学发展的一个重要环节,超精密加工技术的发展促进了机械、液压、电子、半导体、光学、传感器和测量技术以及材料科学的发展。 1超精密加工技术概述 超精密加工目前就其质来说是要实现以现有普通精密加工手段还达不到的高精度加工,就其量来说是要加工出亚微米乃至毫微米级的形状与尺寸赖皮并获得纳米级的表面粗糙度,但究竟多少精度值才算得上超精密加工一段要视零件大小、复杂程度以及是否容易变形等因素而定。 超精密加工主要包括超精密切削(车、铣) 超精密磨削、超精密研磨 (机械研磨、机械化学研磨、研抛、非接触式浮动研磨、弹性发射加工等)以及超精密特种加工(电子束、离子束以及激光束加工等)。上述各种方法均能加工出普通精密加工所达不到的尺寸精度、形状精度和表面质量。每种超精密加工方法都是针对不同零件的要求而选择的。1.1超精密切削加工 超精密切削加工的特点是采用金刚石刀具。金刚石刀具与有色金属亲和力小,其硬度、耐磨性以及导热性都非常优越,且能刃磨得非常锋利(刃口圆弧半径可小于ρ0.01 μm,实际应用一般ρ0,05 μm) 可加工出优于Ra0.01 μm的表面粗糙度。此外,超精密切削加工还采用了高精度的基础元部件(如空气轴承、气浮导轨等)、高精度的定位检测元件(如光栅、激光检测系统等)以及高分辨率的微量进给机构。机床本身采取恒温、防振以及隔振等措施,还要有防止污染工件的装置。机床必须安装在洁净室内。进行超精密切削加工的零件材料必须质地均匀,没有缺陷。在这种情况下加工无氧铜,表面粗糙度可达到Ba0.005μm,加工

《金属切削原理》作业(二)

1.主剖面(正交平面)标注角度参考系中三个坐标平面是指基面正交平面(或主剖面)切削平面,它们之间关系为相互垂直 2.切屑形成过程实质上是工件材料的剪切滑移与挤压摩擦过程。为了便于测量,切 削过程中的变形程度近似可用变形系数指标来度量。 3.外圆车削时,在刀具6个标注角度中,对切削温度影响较大的角度是γo 和Kr。4.在工艺系统刚性好的情况下,刀具有磨钝标准应规定得较大;精加工时应规 定较小的磨钝标准。 5.一般在精加工时,对加工表面质量要求高时,刀尖圆弧半径宜取较大。 6.一般在精加工时,对加工表面质量要求高时,刀尖圆弧半径宜取较大7.在加工细长轴类零件时,刀具的刃倾角λs常取为正值,这是因为λs使背吃刀力减小。 8.加工钢件时常选用什么牌号的硬质合金YT5或YT30 ,加工铸铁件时,常选用什么牌号的硬质合金YG3或YG8。 9.刃倾角的作用有改变切屑流向,影响刀尖强度;、影响切削平稳性,砂轮磨损形式有 磨粒变钝、磨粒溃落、表面堵塞。 10.在切削用量三要素中,对刀具耐用度影响最大的是切削速度、对切削力影响最大的 是背吃刀量。 11.在金属切削过程中,一般衡量切削变形的方法有变形系数法、剪切角法 和相对滑移法。 12.在硬质合金中,YG类一般用于加工铸铁等脆性材料;YT类硬质合金一般用于加 工钢料等塑性材料而YW类硬质合金它的加工范围为铸铁、钢料等塑、脆性材料13.在切削过程中,当系统刚性不足时为避免引起振动,刀具的前角与主偏角应选大

14.确定刀具几何角度的参考坐标系有两大类:一类称为标注参考系和另一类称为工作参考系。 15.刀具磨损的主要原因有:磨粒磨损、粘结磨损、扩散磨损、化学磨损 16影响切削力的主要因素包括工件材料、刀具几何角度、切削用量、切削液等 17.切削液的作用包括四方面: 冷却、润滑、清洗、防锈。 二、单项选择题: 1.切削用量v 、f、a p对切削温度的影响程度是( C ) A、a p最大、f次之、v最小 B、f最大、v次之、a p最小 C、v最大、f次之、ap最小 D、v最大、a p次之、f最小 2.一般情况,刀具的后角主要根据( C )来选择。 A、切削宽度 B、切削厚度 C、工件材料 D、切削速度 3.刀具的选择主要取决于工件的结构、材料、加工方法和( B )。 A、加工设备 B、加工精度 C、加工余量 D、被加工工件表面粗糙度4.在切削平面内测量的车刀角度有(A )。 A、刃倾角 B、后角 C、锲角 D、前角 5.切削力主要来源于( D ) A、第一变形区 B、第二、三变形区的挤压与摩擦力 C、前刀面与切屑的摩擦力 D、三个变形区的变形抗力与摩擦力 6.在加工塑性材料时,常产生的切屑是( A )。 A、带状切屑 B、崩碎切屑 C、挤裂切屑 D、单元切屑

超精密加工技术的发展与展望

精密与特种加工技术 结课论文 题目:超精密加工技术的发展与展望指导教师:沈浩 学院:机电工程学院 专业:机械工程 姓名:司皇腾 学号:152085201020

超精密加工技术的发展与展望 摘要:超精密加工是多种技术综合的一种加工技术,是获得高形状精度、表面精度和表面完整性的必要手段。根据当前国内外超精密加工技术的发展状况,对超精密切削、磨削、研磨以及超精密特种加工及复合加工技术进行综述,简单地对超精密加工的发展趋势进行预测。精密加工技术发展方向是:向高精度、高效率方向发展;向大型化、微型化方向发展;向加工检测一体化方向发展;机床向多功能模块化方向发展。本世纪的精密加工发展到超精密加工历程比较复杂且难度大,目前超精密加工日趋成熟,已形成系列,它包括超精密切削、超精密磨削、超精密研磨、超精密特种加工等。在不久的将来,精密加工也必将实现精密化、智能化、自动化、高效信息化、柔性化、集成化。创新思想及先进制造模式的提出也必将为精密与超精密技术发展提供策略。环保也是机械制造业发展的必然趋势。 关键词:加工精度;超精密加工技术;超精密特种加工;纳米技术;复合加工 【引言】 精密加工和超精密加工代表了加工精度发展的不同阶段,往往我们一提到超精密这个词,就会觉得它很神秘,但同任何复杂的高新技术一样,经过一段时间的熟悉和掌握,都会被大众所了解,也就不再是所谓的高科技了,超精密加工也是这样。实际上,如果拥有超精密的加工设备,并且在其它相关技术和工艺上能匹配,经过一段时间的实践之后,就能很好地掌握它,但这需要一个过程。超精密加工领域集成了很多IT、机械以及电气控制方面的技术,设备方面的操作和使用也非常复杂,所以,只有在对它有很深的理解之后才能把它用好。 通常按加工精度划分,可将机械加工分为一般加工、精密加工、超精密加工。在不同的历史阶段,不同的科学技术水平下,对超精密加工有不同的定义,由于生产技术的不断发展,划分的界限不断变化。过去的超精密加工对今天来说可能已经是普通加工了,所以对其划分的界限是相对的,而且在具体数值上至今没有确切的界限。现阶段通常把被加工零件的尺寸精度和形位精度达到零点几微米,表面粗糙度优于百分之几微米的加工技术称为超精密加工技术[1],也可以理解为超精密加工就是在超精密机床设备上,利用零件与刀具之间产生的具有严格约束的相对运动,对材料进行微量切削,以获得极高形状精度和表面光洁度的加工过程,其精度从微米到亚微米,乃至纳米。超精密加工技术是现代高技术战争的重要支撑技术,是现代高科技产业和科学技术的发展基础,是现代制造科学的发展方向[2]。 超精密加工技术综合应用了机械技术发展的新成果及现代光电技术、计算机技术、测量技术和传感技术等先进技术。同时,作为现代高科技的基础技术和重要组成部分,它推动着现代机械、光学、半导体、传感技术、电子、测量技术以及材料科学的发展进步。超精密加工在现代武器和一些尖端产品制造中具有举足轻重的地位,是其它一些加工方法无可替代的,它不仅可以应用于国防,而且可以广泛地应用于比较高端的民用产品中,是衡量一个国家科学技术发展水平的重要标志。 1、超精密加工技术的发展历史 精密超精密加工技术的起源从一定意义上可以上溯到原始社会:当原始人类学会了制作具有一定形状且锋利的石器工具时,可以认为出现了最原始的手工研

金属切削原理与刀具(第5版课后习题答案)

第一章:刀具几何角度及切削要素 1-1 车削直径80mm ,长200mm 棒料外圆,若选用ap=4mm ,f=,n=240r/min ,试计算切削速度vc ,机动切削时间tm ,材料去除率Q 是多少 答:切削速度 机动时间 材料去除率Q 1-2 正交平面参考系中参考平面pr ,ps ,po 及刀具角度γo ,αo ,κr ,λs 如何定义 答:基面pr :过切削刃上选定点,平行或垂直与刀具上的安装面(轴线)的平面 切削平面Ps :过切削刃上选定点,与切削刃相切并垂直于基面的平面 正交平面po :过切削刃上选定点,同时垂直于基面和切削平面的表面 前角γo :在正交平面中测量的,基面和前刀面的夹角 后角αo :在正交平面中测量的,切削平面和后刀面的夹角,主偏角κr :在切削平面中测量的,切削刃和进给运动方向的夹角。 刃倾角λs :在切削平面中测量的,切削刃和基面的夹角。 1-3法平面参考系与其基本角度的定义与正交平面参考系及其刀具角度的定义有何异同在什么情况下, γo= γn 答:法平面参考系和正交平面参考系的相同点:都有基面和切削平面。不同点:法平面参考系的法平面是过切削刃选定点垂直于切削刃的表面,法平面不一定垂直于几面;正交平面参考系中的正交平面是过切削刃选定点同时垂直于切削平面和基面的表面。 刀具角度定义的相同点为:都有偏角,刃倾角。不同点是:法平面参考系中定义前角和后角分别为法平面中测量的法前角和法后角;而正交平面参考系定义的前角和后角为正交平面中测量的前角和后角。 只有当刀具的刃倾角为0时,γo= γn 1-4假定进给工作平面pf ,背平面pp ,假定工作平面参考系刀具角度是如何定义的在什么情况下γf= γo , γp= γo 答:假定工作平面Pf :过切削刃选定点,平行与假定进给运动方向并垂直于基面的平面 背平面Pp :过切削刃上选定点,同时垂直于假定工作平面和基面的平面。 假定工作平面参考系刀具角度定义了在基面中测量的主偏角和副偏角,在假定工作平面Pf 中测量的侧前角和侧后角,背平面Pp 中测量的背前角和背后角。 当刀具的主偏角为90度时, γf= γo ,当刀具的主偏角为0度时γp= γo 1-6 poe 系平面poe ,pse ,pre 及工作角度γoe ,αoe ,κre ,λse 如何定义 答:工作基面pre :过切削刃上选定点,垂直于合成切削速度的平面。 工作切削表面pse :过切削刃上选定点,和切削刃相切并垂直于工作基面的平面。 工作正交表面poe :过切削刃上选定点,同时垂直于工作基面和工作切削表面的平面。 γoe ,αoe :在工作正交表面中测量的前刀面和工作基面的夹角为γoe ,后刀面和工作切削表面 的夹角为αoe 。 κre :在工作基面中测量的切削刃和进给运动方向的夹角。λse :在工作切削表面中测量的切削刃和工作基面的夹角。 min /32.601000240801000m dn v c =??==ππmin 67.15 .0432.6010004 200801000=??????== ππf a v dlA t p c m min /12064032.605.0410*******mm fv a Q c p =???==

精密与特种加工作业

1.目前精密和超精密加工的精度范围分别为多少? 答:精密加工:加工精度为0.1~1μm,加工表面粗糙度为Ra=0.02~0.1μm; 超精密加工:加工精度为>0.1μm,加工表面粗糙度为Ra<0.01μm。 2.超精密切削对刀具有什么要求? 答:为实现超精密切削,刀具应具有如下性能: 1)极高的硬度、极高的耐磨性和极高的弹性模量,以保证刀具有很长的寿命和尺寸耐用度。 2)切削刃钝圆半径要极小才能实现超薄切削厚度。 3)切削刃无缺陷,切削时刃形将复印在加工表面上,能得到超光滑的镜面。 4)工件材料的抗粘结性好、化学亲和性小、摩擦因数低,能得到极好的加工表面完整性。 3.超精密磨削主要用于加工哪些材料?为什么超精密磨削一般多采用金刚石砂轮? 答:超精密磨削主要用来加工各种高硬度、高脆性金属材料和非金属材料,如陶瓷、玻璃、半导体材料、宝石等。 多采用金刚石砂轮的原因: 1)可以加工各种高硬度高脆性的材料。 2)磨削能力强,耐磨性好,耐用度高,易于控制加工尺寸及实现加工自动化。 3)磨削力小,磨削温度低,加工表面质量好,无烧伤、裂纹和组织变化。 4)磨削效率高,由于金刚石有锋利的刃口,耐磨性高,因此有较高的切除率和磨削比。 5)加工成本低,虽然金刚石砂轮比较昂贵,但其寿命长,加工效率高,工时少,综合成本低。 4.固结磨料加工与游离磨料加工相比有什么特点? 答:固结磨料加工与游离磨料加工相比其特点如下: 1)可用来加工各种高硬度、高脆性金属材料和非金属材料,如玻璃、陶瓷、半导体材料、宝石、石材、硬质合金、铜铝等有色金属及合金等。 2)磨削能力强、耐磨性好、耐用度高,易于控制加工尺寸及实现加工自动化。 3)磨削力小,磨削温度低,加工表面质量好,无烧伤、裂纹和组织变化。 4)磨削效率高,有锋利的刃口,耐磨性高,因此有较高切除率和磨削比。 5)加工成本低,加工效率高,工时少,综合成本低。 5.简述精密磨削获得高精度和低粗糙度表面的机理。

超精密加工的主要方法

研究生课程考核试卷 科目:先进制造技术教师:周忆 姓名:张林刚学号:20110713312 专业:机械设计及理论 上课时间:2011年12 月至2012 年 1 月 阅卷评语: 阅卷教师(签名)

超精密加工的主要方法 -机设一班张林刚20110713312 超精密加工技术是20世纪60年代发展和完善起来的,现已成为当代高技术产品的关键制造技术。近20年来,超精密加工不仅进入到国民经济的各个领域,而且正从单件小批生产方式走向规模生产,可以预见,随着新产品的不断涌现,超精密加工的应用范围将进一步扩大。而我国超精密加工技术起步较晚,技术水平与发达国家相比也有一定差距,因此,寻求超精密加工新的方法并探讨其影响因素就成为目前迫在眉睫的问题。 一、超精密加工技术简介 目前,超精密加工是指精度在0.1~0.01μm,表面粗糙度Ra 值在0.03~0.05μm 的加工技术,如金刚石刀具超精密切削、超精密磨料加工、超精密特种加工和复合加工等。它适用于精密元件、计量标准元件、大规模和超大规模集成电路的制造。而且,超精密加工的精度正处在亚纳米级工艺,日趋向纳米级工艺发展。 二、超精密加工方法 根据加工方法的机理和特点,超精密加工方法可以分为去除加工、结合加工和变形加工三大类,如表1 所示。 下面对三类超精密加工方法分别加以分析。 (一)去除加工 去除加工又称为分离加工,是从工件上去除一部分材料,传统的机械加工方法,如车削、铣削、磨削、研磨和抛光,以及特种加工中的电火花加工、电解加工等,均属这种加工方法。 (二)结合加工 结合加工利用物化方法,将不同材料结合在一起。按结合的机理不同,它又分为附着、注入和连接加工三种。1.附着加工又称为沉积加工,是在工件表面上覆盖一层物质,是一种弱结合,其中典型的加工方法是镀;2.注入加工又称为渗入加工,是在工件表面上注入某些元素,使之与基体材料产生物理化学反应,是具有共价键、离子键、金属键的强结合,用以改变工件表层材料的力学机械性质,如渗碳、渗氮等;3.连接加工将两种相同或不同材料通过物化方法连接在一起。

精密及超精密加工技术作业

精密及超精密加工技术专题作业 一、精密超精密加工的发展 精密、超精密加工技术是20 世纪50 年代末、60 年代初发展起来的一项新技术,由于电子技术、计算机技术、宇航和激光技术发展的需要,美国组织有关公司和研究机构对微米级加工技术进行研究,在美国诞生的金刚石刀具镜面车削技术催生了超精密加工技术。1962 年美国首先研制出了超精密车床,在该机床上使用单刃金刚石车刀加工直径的铝合金半球面,成功实现了镜面车削,迈出了微米级超精密加工的第一步。 在工业发达国家,一般工厂已经可以稳定掌握1 微米的加工精度。现代机械工业之所以致力于提高加工精度,其主要原因在于,提高制造精度之后可以提高产品的性能和质量,可以提高其稳定性和可靠性。精密和超精密加工技术在尖端产品和现代化武器制造中占有十分重要的位置。 精密和超精密加工技术发展到目前,已经取得了重大的进展,精密和超精密加工已经不再是一个孤立的加工方法或者单纯的工艺的问题,而成为一个包含内容十分广泛的系统工程。实现精密和超精密切削加工,不仅需要精密的机床设备和刀具,也需要稳定的环境条,还需要运用计算机技术进行实时的误差测量和补偿反馈。只有将各个领域的技术结合在一起,才有可能实现经济和超精密加工技术。 通过使用天然的单晶金刚石刀具对超精密零件进行超精密的切削,源自于20 世纪50 年代的末期,初期被加工的工件多为形状简单的圆柱表面等。金刚石刀具的超精密切削加工技术,主要应用于单件的大型超精密零件和批量生产的中小型零件的超精密切削技术两个方面。单件大型零件的超精密金刚石刀具切削,以美国最为发达,居于世界的领先位置。超精密切削是一项内容广泛的新技术,它的加工精度和表面质量是由所使用的超精密设备、金刚石刀具以及切削工艺和误差补偿技术等因素的综合结果。 二、简述研磨抛光的机制

《金属切削原理》作业(一)答案

《金属切削原理》作业(一) 一、填空题: 1.刀具材料的种类很多,常用的金属材料有碳素工具钢、合金工具钢、高速钢、硬质合金;非金属材料有陶瓷、金刚石、立方氮化硼等。 2.刀具的几何角度中,常用的角度有前角、后角、副后角、主偏角、副偏角和刃倾角六个。 3.切削用量要素包括切削速度、进给量、背吃刀量三个。 4.由于工件材料和切削条件的不同,所以切屑类型有带状切屑、挤裂切屑、 单元切屑和崩碎切屑四种。 5.刀具的磨损有正常磨损的非正常磨损两种。其中正常磨损有前刀面磨损、后刀面磨损 和边界磨损三种。 6.一般在精加工时,对加工表面质量要求高时,刀尖圆弧半径宜取较小。 7.加工脆性材料时,刀具切削力集中在刀尖附近,宜取较小前角和较小后角。8.刀具切削部分材料的性能,必须具有高的硬度、良好的强度和韧性、良好的耐磨性和 良好的工艺性及经济性。 9.防止积屑瘤形成,切削速度可采用高速或低速。 10.常用的切削液有水溶液、乳化液和切削油三大类。采用硬质合金 刀具时,由于刀具红硬性,故一般不使用切削液。 二、判断题:(在题末括号内作记号:“√”表示对,“×”表示错) 1.钨钴类硬质合金(YG)因其韧性、磨削性能和导热性好,主要用于加工脆性材料, 有色金属及非金属。(√) 2.刀具寿命的长短、切削效率的高低与刀具材料切削性能的优劣有关。(√)3.安装在刀架上的外圆车刀切削刃高于工件中心时,使切削时的前角增大,后角减小。(√) 4.刀具磨钝标准VB表中,高速钢刀具的VB值均大于硬质合金刀具的VB值,所以高 速钢刀具是耐磨损的。(×) 5.刀具几何参数、刀具材料和刀具结构是研究金属切削刀具的三项基本内容。(√)

超精密切削加工技术探析

超精密切削加工技术探析 超精密切削加工主要是由高精度的机床和单晶金刚石刀具进行的,故一般称为金刚石刀具具切削或SPDT。对超精密切削加工技术及其机理进行介绍和总结,希望对超精密加工行业同事有所指导。 标签:超精密切削;金刚石;机床 通常,按加工精度划分,可将机械加工分为一般加工、精密加工、超精密加工三个阶段。加工精度在0.1~1μm,加工表面粗糙度在Ra0.02~0.1μm之间的加工方法称为精密加工;精度高于0.1μm,表面粗糙度小于Ra0.01μm之间的称为超精密加工。因此,如果从去除单位尺寸将切削加工加以区别的话,以微米级的去除,才属于超精密加工。 1 金刚石刀具切削的机理 超精密切削加工主要是由高精度的机床和单晶金刚石刀具进行的,故一般称为金刚石刀具切削或SPDT(Single Point Diamond Turning)。金刚石刀具的超精密切削加工虽有很多优点,但要使金刚石刀具超精密切削达到预期的效果,并不是很简单的事,许多因素都对它有影响。 1.1 切削厚度与材料切应力的关系 金刚石刀具超精密切削属微量切削,其机理和普通切削有较大差别。精密切削时要达到0.1微米的加工精度和Ra0.01微米的表面粗糙度,刀具必须具有切除亚微米级以下金属层厚度的能力。由于切深一般小于材料晶格尺寸,切削是将金属晶体一部分一部分地去除。因此,精密切削在切除多余材料时,刀具切削要克服的是晶体内部非常大的原子结合力,于是刀具上的切应力就急剧增大,刀刃必须能够承受这个比普通加工大得多的切应力。 切削厚度与切应力成反比,切削厚度越小,切应力越大。当进行切深为0.1微米的普通车削时,其切应力只有500MPa;当进行切深为0.8微米的精密切削时,切应力约为10000MPa。因此精密切削时,刀具的尖端将会产生根大的应力和很大的热量,尖端温度极高,处于高应力高温的工作状态,这对于一般刀具材料是无法承受的。因为普通材料的刀具,其刀刃的刃口不可能刃磨得非常锐利,平刃性也不可能足够好,这样在高应力和高温下会快速磨损和软化,不能得到真正的镜面切削表面。而金刚石刀具却有很好的高温强度和高温硬度,能保持很好的切削性能,而不被软化和磨损。 1.2 材料缺陷及其对超精密切削的影响 金刚石刀具超精密车削是一种原子、分子级加工单位的去除(分离)加工方法,要从工件上去除材料,需要相当大的能量,这种能量可用临界加工能量密度

精密和超精密加工技术的复习题

一、名词解释 1.金刚石晶体的解理现象:金刚石晶体受到定向的机械力作用时,可以沿平行于(111) 平面平整地劈开的现象,称为解理现象。 2.精密磨削:是指加工精度为1~0.1μm,表面粗糙度达到Ra0.2~0.025μm的磨削方法, 又称为小粗糙度磨削。 3.超精密磨削:是指加工精度达到或高于0.1μm,表面粗糙度小于R a0.025μm的一种亚 微米级的加工方法,并正向纳米级发展。 4.在线检测:工件在加工过程中的同时进行检测,称之为在线检测。 5.空气洁净度:是指空气中含尘埃量多少的程度。 6.恒温精度:是指相对于平均温度所允许的偏差值。 7.恒温基数:是指空气的平均温度。 二、填空题 1.精密和超精密加工包含三个领域:超精密切削、精密和超精密磨削研磨、精密特种加工。 2.金刚石刀具有两个比较重要的问题:一是晶面的选择,再就是金刚石刀具的研磨质量— —切削刃钝圆半径r 。 n 3.隧道扫描显微镜是目前世界上精度最高的测量仪,可用于测量金属和半导体零件表面的 原子分布的外貌。 4.最新的研究证实,在扫描隧道显微镜下可移动原子,实现精密工程的最终目标——原子 级精密加工。 5.超精密切削实际选择的切削速度,经常是根据所使用的超精密机床的动特性和切削系统 的动特性选取,即选择振动最小的转速。 6.超精密切削实际能达到的最小切削厚度和金刚石刀具的锋锐度、使用的超精密机床的性 能状态、切削时的环境条件等都直接有关。 7.金刚石刀具的磨损,主要属机械磨损,其磨损本质是微观解理的积累。 8.对金刚石刀具来说,切削刃处的解理破损是磨损和破损的主要形式,故切削刃的微观强 度是刀具设计选择晶面的主要依据。 9.金刚石晶体定向方法有:人工目测定向、X射线晶体定向、激光晶体定向。 10.精密磨削机理可归纳为:微刃的微切削作用;微刃的等高切削作用;微刃的滑挤、摩擦、 抛光作用。 11.超精密磨削时有微切削作用、塑性流动和弹性破坏作用,同时还有滑擦作用。 12.从加工机理来看,砂带磨削兼有磨削、研磨和抛光的综合作用。 13.砂带磨床上的关键部件是砂带头架;在砂带磨削头架中,最重要而关键的零件是接触轮。 14.花岗岩是超精密机床的床身和导轨的热门材料,这是因为花岗岩比铸铁长期尺寸稳定性 好,热膨胀系数低,对振动的衰减能力强,硬度高、耐磨并不会生锈等。 15.微细加工技术是指制造微小尺寸零件的生产加工技术。 16.微细切削时,为保证工件尺寸精度要求,其最后一次的表面切除层厚度必须小于尺寸精 度值。 17.洁净室实现空气净化的基本要求是发尘量要小、及时排除尘埃、供给洁净的空气。 三、判断题(以下判断题都是正确的) 1.用金刚石刀具进行超精密切削,用于加工铝合金、无氧铜、黄铜、非电解镍等有色金属 和某些非金属材料。(如果说用于加工黑色、铜铁材料进行超精密切削是错误的) 2.超精密切削时,切削速度并不受刀具寿命的制约。(也就是说与速度无关) 3.在超精密切削的前提下,积屑瘤高时切削力大,积屑瘤小时切削力也小。 4.加工表面粗糙度是直接和积屑瘤的高度有关。

相关主题
文本预览
相关文档 最新文档