当前位置:文档之家› 连杆机构的类型及应用

连杆机构的类型及应用

《机械原理》

第六章平面连杆机构及其设计

——连杆机构的类型及应用

一、连杆机构及其运动特点

其特点是: 原动件1的运动要经过一个不直接与机架相联

的中间构件2才能传动从动件3。

连杆机构:由若干构件通过低副连接组成的平面机构。

——又称低副机构

A

B C

D

12

34

A

B C

1

2

34

优点:

①连杆机构为低副机构,运动副为面接触,承载能力大;②运动副元素的几何形状简单,便于加工;

③在原动件运动规律不变情况下,通过改变各构件的相对长度可以使从动件得到不同的运动规律;

④连杆曲线可以满足不同运动轨迹的设计要求;⑤可以实现远距离传动等。

A

B C

D

1

2

34

缺点:

①由于运动积累误差较大,因而影响传动精度;②由于惯性力不好平衡而不适于高速传动;③设计方法比较复杂。

A

B C

D

12

34

由四个构件组成的平面连杆机构——四杆机构

本章重点:

四杆机构的基本类型、特性及常用设计方法。

21

A

B

4

D

3

C

平面四杆机构

铰链四杆机构

含移动副的四杆机构

全部用转动副组成的平面四杆机构。

铰链四杆机构的演化机构。

机架连架杆

连杆

曲柄:整周回转

摇杆:仅在某一角度内往复摆动

A

B C

D

1

2

34

A

B

C

1

234

平面四杆机构

铰链四杆机构

含移动副的四杆机构

全部用转动副组成的平面四杆机构。

铰链四杆机构的演化机构。

摆转副以转动副相连的两构件能作

整周相对转动的转动副。如A 、B 。

以转动副相连的两构件不能作

整周相对转动的转动副。如C 、D 。

周转副

A

C

D

B

转动副

A

B C

D

12

34

铰链四杆机构的分类:

根据连架杆曲柄摇杆机构双曲柄机构双摇杆机构

1、曲柄摇杆机构两个连架杆中一个为曲柄,另一个为摇杆。

一般曲柄主动,将连续转动转换为摇杆的摆动,也可摇杆主动,曲柄从动。

铰链四杆机构的分类:

根据连架杆

曲柄摇杆机构

双曲柄机构

双摇杆机构2、双曲柄机构

两个连架杆均为曲柄

一般主动曲柄等速转动,从动曲柄变速转动。

21

A

B

4

D

3

惯性筛

铰链四杆机构的分类:

根据连架杆

曲柄摇杆机构

双曲柄机构

双摇杆机构2、双曲柄机构

两个连架杆均为曲柄

特殊双曲柄机构:平行四边形机构——特点是对边平行且相等

21

A

B

4

D

3

A

B C D

12

34

铰链四杆机构的分类:根据连架杆曲柄摇杆机构双曲柄机构双摇杆机构

2、双曲柄机构两个连架杆均为曲柄

特殊双曲柄机构:平行四边形机构

A

B C

D

1

2

3

4

2

1

A

B

4

D

3

铰链四杆机构的分类:根据连架杆曲柄摇杆机构双曲柄机构双摇杆机构

2、双曲柄机构两个连架杆均为曲柄

特殊双曲柄机构:反平行四边形机构

特点:两相对等长而不平行的双曲柄机构。短边为机架,两曲柄转向相同长边为机架,两曲柄转向相反

铰链四杆机构的分类:根据连架杆曲柄摇杆机构双曲柄机构双摇杆机构

3、双摇杆机构两个连架杆均为摇杆

鹤式起重机

铰链四杆机构的分类:根据连架杆曲柄摇杆机构双曲柄机构双摇杆机构

3、双摇杆机构两个连架杆均为摇杆

特殊双摇杆机构:等腰梯形机构特点:两摇杆长度相等

A D

B C

铰链四杆机构的分类:根据连架杆曲柄摇杆机构双曲柄机构双摇杆机构

3、双摇杆机构两个连架杆均为摇杆

特殊双摇杆机构:等腰梯形机构特点:两摇杆长度相等汽车转弯时,两前轮轴线

的交点应始终落在后轴线上,

即:两前轮的转角是不等的。

?连杆机构及其特点

若干构件通过低副连接组成的平面机构——连杆机构。

1、曲柄摇杆机构

2、双曲柄机构

3、双摇杆机构?平面四杆机构的基本型式——铰链四杆机构

特点是: 原动件的运动要经过一个不直接与机架相联

的中间构件才能传动从动件。

平行四边形机构

反平行四边形机构

——等腰梯形机构

平面连杆机构及其设计答案复习进程

第八章平面连杆机构及其设计 一、填空题: 1.平面连杆机构是由一些刚性构件用转动副和移动副连接组成的。 2.在铰链四杆机构中,运动副全部是低副。 3.在铰链四杆机构中,能作整周连续回转的连架杆称为曲柄。 4.在铰链四杆机构中,只能摆动的连架杆称为摇杆。 5.在铰链四杆机构中,与连架杆相连的构件称为连杆。 6.某些平面连杆机构具有急回特性。从动件的急回性质一般用行程速度变化系数表示。 7.对心曲柄滑块机构无急回特性。 8.平行四边形机构的极位夹角θ=00,行程速比系数K= 1 。 9.对于原动件作匀速定轴转动,从动件相对机架作往复直线运动的连杆机构,是否有急回 特性,取决于机构的极位夹角是否为零。 10.机构处于死点时,其传动角等于0?。 11.在摆动导杆机构中,若以曲柄为原动件,该机构的压力角α=00。 12.曲柄滑块机构,当以滑块为原动件时,可能存在死点。 13.组成平面连杆机构至少需要 4 个构件。 二、判断题: 14.平面连杆机构中,至少有一个连杆。(√) 15.在曲柄滑块机构中,只要以滑块为原动件,机构必然存在死点。(√) 16.平面连杆机构中,极位夹角θ越大,K值越大,急回运动的性质也越显著。(√) 17.有死点的机构不能产生运动。(×) 18.曲柄摇杆机构中,曲柄为最短杆。(√) 19.双曲柄机构中,曲柄一定是最短杆。(×) 20.平面连杆机构中,可利用飞轮的惯性,使机构通过死点位置。(√) 21.在摆动导杆机构中,若以曲柄为原动件,则机构的极位夹角与导杆的最大摆角相等。 (√) 22.机构运转时,压力角是变化的。(√) 三、选择题:

23.铰链四杆机构存在曲柄的必要条件是最短杆与最长杆长度之和 A 其他两杆之和。 A ≤ B ≥ C > 24.铰链四杆机构存在曲柄的必要条件是最短杆与最长杆长度之和小于或等于其他两杆之和,而 充分条件是取 A 为机架。 A 最短杆或最短杆相邻边 B 最长杆 C 最短杆的对边。 25.铰链四杆机构中,若最短杆与最长杆长度之和小于其余两杆长度之和,当以 B 为机架时, 有两个曲柄。 A 最短杆相邻边 B 最短杆 C 最短杆对边。 26.铰链四杆机构中,若最短杆与最长杆长度之和小于其余两杆长度之和,当以 A 为机架时, 有一个曲柄。 A 最短杆相邻边 B 最短杆 C 最短杆对边。 27.铰链四杆机构中,若最短杆与最长杆长度之和小于其余两杆长度之和,当以 C 为机架时, 无曲柄。 A 最短杆相邻边 B 最短杆 C 最短杆对边。 28.铰链四杆机构中,若最短杆与最长杆长度之和 B 其余两杆长度之和,就一定是双摇杆 机构。 A < B > C = 29.对曲柄摇杆机构,若曲柄与连杆处于共线位置,当 C 为原动件时,此时机构处在死点位 置。 A 曲柄 B 连杆 C 摇杆 30.对曲柄摇杆机构,若曲柄与连杆处于共线位置,当 A 为原动件时,此时为机构的极限 位置。 A 曲柄 B 连杆 C 摇杆 31.对曲柄摇杆机构,当以曲柄为原动件且极位夹角θ B 时,机构就具有急回特性。 A <0 B >0 C =0 32.对曲柄摇杆机构,当以曲柄为原动件且行程速度变化系数K B 时,机构就具有急 回特性。 A <1 B >1 C =1 33.在死点位置时,机构的压力角α= C 。 A 0 o B 45o C 90o 34.若以 B 为目的,死点位置是一个缺陷,应设法通过。 A 夹紧和增力B传动 35.若以 A 为目的,则机构的死点位置可以加以利用。 A 夹紧和增力;B传动。

平面连杆机构及其设计与分析

第二章平面连杆机构及其设计与分析 §2-1 概述 平面连杆机构(全低副机构):若干刚性构件由平面低副联结而成的机构。 优点: (1)低副,面接触,压强小,磨损少。 (2)结构简单,易加工制造。 (3)运动多样性,应用广泛。 曲柄滑块机构:转动-移动 曲柄摇杆机构:转动-摆动 双曲柄机构:转动-转动 双摇杆机构:摆动-摆动 (4)杆状构件可延伸到较远的地方工作(机械手) (5)能起增力作用(压力机) 缺点: (1)主动件匀速,从动件速度变化大,加速度大,惯性力大,运动副动反力增加,机械振动,宜于低速。 (2)在某些条件下,设计困难。 §2-2平面连杆机构的基本结构与分类 一、平面连杆机构的基本运动学结构 铰链四杆机构的基本结构 1.铰链四杆机构 所有运动副全为回转副的四杆机构。 AD-机架 BC-连杆 AB、CD-连架杆 连架杆:整周回转-曲柄 往复摆动-摇杆

2.三种基本型式 (1)曲柄摇杆机构 定义:两连架杆一为曲柄,另一为摇杆的铰链四杆机构。 特点:?、β0~360°, δ、ψ<360° 应用:鳄式破碎机缝纫机踏板机构揉面机 (2)双曲柄机构 定义:两连架杆均作整周转动的铰链四杆机构。 由来:将曲柄摇杆机构中曲柄固定为机架而得。 应用特例:双平行四边形机构(P35),天平 反平行四边形机构(P45) 绘图机构 (3)双摇杆机构 定义:两连架杆均作往复摆动的铰链四杆机构。 由来:将曲柄摇杆机构中摇杆固定为机架而得。 应用:翻台机构,夹具,手动冲床 飞机起落架,鹤式起重机 二.铰链四杆机构具有整转副和曲柄存在的条件 上述机构中,有些机构有曲柄,有些没有曲柄。机构有无曲柄,不是唯一地由取哪个构件为机架决定,机构有曲柄的首要条件是:机构中各构件长度间应满足一定的尺寸关系,该条件是首要条件。 然后,再看以哪个构件作为机架。

(完整版)平面四杆机构的基本类型及其演化

第三讲 课题:§3-1 平面四杆机构的基本类型及其演化 教学目的:理解平面四杆机构的各种类型及其应用。 教学重点:铰链四杆机构类型及其演化,理解曲柄存在条件。 教学难点:导杆机构 教学方法:课堂演示、多媒体 教学互动:每个知识点后提问或讨论。 教学安排: §3-1 平面四杆机构的基本类型及其演化 复习旧课:机构组成,运动副,运动简图等。 平面连杆机构是常用的低副机构,其中以由四个构件组成的四杆机构应用最广泛,而且是组成多杆机构的基础。因此本章着重讨论四杆机构的基本类型、性质及常用设计方法。 一、四杆机构的类型 1.曲柄摇杆机构 两连架杆一为曲柄,一为摇杆。 功能:将等速转动转换为变速摆动或将摆动转换为连续转动。 应用:雷达天线机构、缝纫机踏板机构。 2.双曲柄机构 两连架杆都为曲柄 功能:将等速转动转换为等速同向、不等速同向、不等速反向转动。 应用:惯性筛机构 若两曲柄的长度相等,连杆与机架的长度也相等,则该机构称为平行双曲柄机构。如铲斗机构

还有反平行四边形机构,例:公共汽车车门启闭机构。3.双摇杆机构 两连架杆都为摇杆 功能:一种摆动转换为另一种摆动。 应用:鹤式起重机、飞机起落架 二、铰链四杆机构的曲柄存在条件 证明: 结论:铰链四杆机构存在一个曲柄的条件是: 1.最短杆与最长杆长度之和小于或等于其余两杆长度之和。2.曲柄为最短杆。 铰链四杆机构存在曲柄的条件是: 1.最短杆与最长杆长度之和小于或等于其余两杆长度之和。2.机架或连架杆为最短杆。 三、四杆机构类型判别 否Lmax+Lmin≤L′+L″是 不可能有曲柄可能有曲柄 最短杆对边最短杆 最短杆邻边 双摇杆机构曲柄摇杆机构双曲柄机构 四、铰链四杆机构的演化 1.曲柄滑块机构 2.偏心轮机构 3.导杆机构 ①摆动导杆机构(牛头刨床)

7.实验七 机构创新组合设计实验

实验七机构创新组合设计实验 一、实验目的 1、加深学生对平面机构的组成原理认识,进一步了解机构组成及运动特性。 2、训练学生的工程实践动手能力。培养学生创新意识及综合设计的能力。 二、实验设备及工具 1、JKZB-Ⅱ机构创新组合设计实验台。附件:齿轮、齿条、槽轮、凸轮、转动轴、连杆、各种连接组合零部件等。 2、装拆工具:十字起子、活动扳手、内六角扳手、钢板尺、卷尺等。 3、学生自备草稿纸、笔、绘图工具等。 三、实验要求 1、每2~3人一组,每一组实验前拟一份机构运动设计方案,实验后提交新设计方案. 2、完成实验后各组将机械零部件“物还原位”,老师验收后方可离去. 3、每人完成一份实验报告。 四、实验原理和方法 根据平面机构的组成原理:任何平面机构都可以由若干个基本杆组依次联接到原动件和机架上而构成,故可通过选定的机构类型,拼装该机构并进行分析。 1

五、实验内容 1、自行到实验室熟悉本实验中的实验装置,各种零部件、装拆工具的功能;了解机构的拼接方法,拟订自已的机构运动方案的拼接步骤。 2、自拟或课本提供的机构运动方案做为拼接对象。 3.拼接机构,将各基本杆组按运动传递规律顺序拼接到原动件和机架上。 4.绘制运动简图,分析所拼接的平面机构。 5.根据平面机构的组成原理,利用常用的零部件拼接调整,设计一种具有新型的带发明创造性的组合机构。每一组提交一份机构创新设计方案。 6.最后把组合机构安装在实验平台上,进行测试分析、运动分析、实验结果分析、拟定这次实验的步骤,并写出实验报告。 六、实验方法与步骤 1.学生使用“机构创新组合设计实验台”提供的各种零件。按照自己的运动方案简图,先在桌面上进行机构的初步试验组装,这一步的目的是杆件分层。一方面为了使各个杆件在互相平行的平面内运动,一一方面为了避免各个杆件,各个运动副之间发生运动干涉。 2.按照上一步骤试验好的分层方案,从最里层开始,依次将各个杆件组装连接到机架上。选取构件杆,连接转动副或移动副。凸轮。齿轮。齿条与杆件用转动副连接,凸轮。齿轮。齿条与杆件用移动副连接,杆件以转动副的形式与机架相连,杆件以移动副的形式与机架相连,最后组装连接输入转动的原动件或输入移动的原动件。 3.根据输入运动的形式选择原动件。若输入运动为转动(工程实际中以柴油机,电动机等为动力的情况),则选用双轴承式主动定铰链轴或蜗杆为原动件,并使用电机通过软轴联轴器进行驱动。若输入运动为移动(工程实际中以油缸,气缸等为动力的情况),可选用适当行程的气缸驱动,用软管连接好气缸,气控组件和空气压缩机并进行空载形成实验。 4.试用手动的方式摇动或推动原动件,观察整个机构各个杆,副的运动,确定运动没有干涉后,安装电动机,用柔性联轴节将电机与机构相连,或安装气缸,用附件将气缸与机构相连。 5.检查无误后,接通电源试机 6.观察机构系统的运动,对机构系统的工作到位情况,运动学及动力学特性作出定性的分析和评价。一般包括如下几个方面: ①各个杆、副是否发生干涉 ②有无形成运动副的两构件的运动不在一个平面,因而出现摩擦力过大的现象 ③输入转动的原动件是否为曲柄。 2

机构运动创新设计..

课程设计报告 学生姓名:________________ 学号:_________________ 学院: ______________________________________________ 班级: ______________________________________________ 题目: _______________ 机构运动创新设计______________

2015年1月5日 目录 、概述................................. 1 .....................................................

一、概述: 机构运动方案创新设计是各类复杂机械设计中决定性的一步,机构的设计选型一般先通过作图和计算来进行,一般比较复杂的机构都有多个方案,需要制作模型来试验和验证,多次改进后才能得到最佳的方案和参数。本实验所用搭接试验台能够任意选择平面机构类型,组装调整机构尺寸等功能,能够比较直观、方便的搭接、验证、调试、改进、确定设计方案,较好地改善了在校学生对平面机构的学习和设计一般只停留在理论设计“纸上谈兵”的状况二、课程设计目的: 1、培养学生对连杆机构的理解掌握与创新设计能力,加强学生的工程实践背景的训练,拓宽学生的知识面,培养学生的创新意识、综合设计及工程实践动手能力。 2 、通过机构的拼接,在培养工程实践动手能力的同时,要求学生在拼装一个已有模型之外,自己通过对现实生产和生活中的连杆机构机械产品的观察和理解,通过试验台设备进行拼装和仿真。通过解决实际问题,促进学生理论联系实际,学以致用;锻炼学生独立思考能力和动手能力。 3 、加深学生对连杆机构组成原理的认识,进一步掌握连杆机构的创新设计方法。 4、学习机构运动简图的测绘与自由度的计算。 三、课程设计要求和内容: 实验设备和工具 CQJP-D 机构运动创新设计方案拼装及仿真实验台,包括组成机构的各种运动副、构件、动力源及一套实验工具(扳手、螺丝刀)。其中构件包括机架、连杆、圆柱齿轮、齿条、凸轮及从动件、槽轮及拨盘和皮带轮等;运动副包括转动副、移动副、齿轮副、槽轮副等。 实验原理 平面机构是由各个杆组依次联结到机架和原动件上形成的。机构具有确定运动的条件是机构的自由度大于零,且原动件数和机构的自由度相等。所拼接的机构必须满足以上两个条件。将主要由连杆构成的连杆机构(可加入一个其他类型构件如齿轮、凸轮、槽轮等)进行拼装,计算分析其自由度后,输入动力源进行 机构运行。实验内容与步骤

平面连杆机构类型和应用讲解顺序

平面连杆机构 主要内容:平面连杆机构的类型和应用 1.平面连杆机构的特点:优点和缺点 在运动副的类型、接触方式上分析优缺点 2.平面连杆机构的类型: 铰链四杆机构、含有一个移动副的四杆机构、含有两个移动副的四杆机构 3.介绍铰链四杆机构组成和类型 由机架、连架杆、连杆组成铰链四杆机构。如图所示、介绍如何运动4.曲柄摇杆机构运动过程 相互转换、两图对比说明 5.举例说明曲柄摇杆机构,缝纫机踏板机构 分析缝纫机运动过程 6.雷达天线俯仰机构。实体图和结构简图 7.双曲柄机构,运动形式和平行四边形机构简图 一般形式的双曲柄机构,当主动曲柄作等速转动时,从动曲柄作变速转动。在双曲柄机构中,若相对两杆的长度相等且平行,则称其为平行四边形机构.如图所示 8.通过添加虚约束使机构保持平行四边形机构,如图所示 9.逆平行四边形机构,车门启闭机构如图 该机构特点两曲柄转向相反 10.双摇杆机构运动形式介绍等腰梯形机构 两杆长度相等时称为等腰梯形机构,通过图例说明运动形式 11.双摇杆机构应用实例,风扇摇头机构和汽车前轮转向机构结构简图 12.含有一个移动副的四杆机构,介绍曲柄滑块机构 一个连架杆为曲柄,另一个连架杆为相对机架作往复移动的滑块,该机构称为曲柄滑块机构.曲柄滑块机构可实现曲柄整周转动和滑块的往复移动的相互转换. 当滑块的导路线通过曲柄的转动中心时,这种曲柄滑块机构称为对心曲柄滑块机构.当滑块的导路线不通过曲柄的转动中心,而是距离曲柄转动中心有偏距e时,称为偏置曲柄滑块机构. 13.对心曲柄滑块机构和偏置曲柄滑块机构的结构简图和生活中的应用 14.导杆机构的转变 通过图例表示两形式的转变 15.摆动导杆机构在牛头刨床中的应用.如图所示 在导杆机构中,当机构的长度小于曲柄的长度,导杆能作整周转动,这种导杆机构称为转动导杆机构.当机架的长度大于曲柄的长度时,导杆仅能作往复摆动,这种导杆机构称为摆动导杆机构.

连杆机构创新设计在机械工程实际中的应用

连杆机构创新设计在机械工程实际中的应用 发表时间:2017-07-05T11:21:33.760Z 来源:《防护工程》2017年第4期作者:陶海涛 [导读] 本文作者裁判能够连杆机构的定义出发,分析了连杆机构创新设计在机械工程实际中的应用。 浙江红旗机械有限公司浙江 313200 摘要:连杆机构的常用方法连杆机构的运动学分析包括位置分析、速度分析和加速度分析三个方面,其基础是力学中的运动学,现在己形成了较为成熟的连杆机构分析方法。机械产品通过创新设计,利用换代从根本解决产品更新问题。本文作者裁判能够连杆机构的定义出发,分析了连杆机构创新设计在机械工程实际中的应用。 关键词:连杆机构;创新设计;机械工程;应用 1 连杆机构及平面连杆机构 1.1 连杆机构概述 连杆机构又称低副机构,是机械的组成部分中的一类,指由若干有确定相对运动的构件用低副联接组成的机构。 平面连杆机构中最基本也是应用最广泛的一种型式是由四个构件组成的平面四杆机构。由于机构中的多数构件呈杆状,所以常称杆状构件为杆。低副是面接触,耐磨损;加上转动副和移动副的接触表面是圆柱面和平面,制造简便,易于获得较高的制造精度。连杆机构广泛应用于各种机械和仪表中。根据构件之间的相对运动为平面运动或空间运动,连杆机构可分为平面连杆机构和空间连杆机构。根据机构中构件数目的多少分为四杆机构、五杆机构、六杆机构等,一般将五杆及五杆以上的连杆机构称为多杆机构。当连杆机构的自由度为1时,称为单自由度连杆机构;当自由度大于1时,称为多自由度连杆机构。 根据形成连杆机构的运动链是开链还是闭链,亦可将相应的连杆机构分为开链连杆机构(机械手通常是运动副为转动副或移动副的空间开链连杆机构)和闭链连杆机构。单闭环的平面连杆机构的构件数至少为4,因而最简单的平面闭链连杆机构是四杆机构,其他多杆闭链机构无非是在其基础上扩充杆组而成;单闭环的空间连杆机构的构件数至少为3,因而可由三个构件组成空间三杆机构。 1.2 平面连杆机构 最简单的平面连杆机构是由四个构件组成的,称为平面四杆机构。它的应用非常广泛,而且是组成多杆机构的基础。 由若干个刚性构件通过低副(转动副、移动副))联接,且各构件上各点的运动平面均相互平行的机构,又称平面低副机构。低副具有压强小、磨损轻、易于加工和几何形状能保证本身封闭等优点,故平面连杆机构广泛用于各种机械和仪器中。与高副机构相比,它难以准确实现预期运动,设计计算复杂。 平面连杆机构中最常用的是四杆机构,它的构件数目最少,且能转换运动。多于四杆的平面连杆机构称多杆机构,它能实现一些复杂的运动,但杆多且稳定性差。 2 连杆机构运动学分析的常用方法 连杆机构的平面机构的机构,是将平面机构的位置分析问题归纳为求解三角形问题,并利用矢量方法来描述平面连杆机构的运动及动力分析,以机构中的“阿苏尔杆组”为基本单元,根据基本单元编制运动分析子程序,对每一基本杆组进行运动分析,解决了机械杆组的机构分析问题。同时把平面机构看成由一些相互约束的基点构成的系统,建立起数学模型,通过及诶额的运动分析,建立约束非线性方程组,需要引用数值解法各有特点,。针对连杆机构创新设计虚拟仿真的需要,选择基本杆组,调用相应的杆组程序对整个机构进行分析,在分析机构运动时,通过逐次求解各基本杆组来完成。建立不同机械运动分析的数学模型,随后编制成通用子程序,对速度及加速度等运动参数进行求解。快速求解出各点的运动参数。机构运动分析中构件之间应该满足装配条件,否则将不能进行正常的运动,为此建立构件库,形成机构运动简图符号库,由机构三维参数化实体模型库组成,如连杆的厚度。构件之间的拼接通过机构运动简图中构件之间的拼接关系直接生成,显示机械构件的编辑窗口进行参数的编辑。取两个构件上需要拼接的运动副来进行,把构件节点与提供的树映射 TreeMap 类,对所涉及的机构进行干涉检测。 3 连杆机构在机械工程实际工作中的具体应用 3.1 ANSYS软件对于机械工程结构的设计 合理的设计应该确保在各种环境下,使机械精确地保持形状和姿态。采用经验类比设计与简化计算相结合的方法,防止出现机械加工的产品成本高的问题,在当前客户要求越来越多样化的情况下,采用功能强大的ANSYS软件进行设计分析已成为可能,对建立的实体模型自动进行有限元网格的划分,提供了有限元计算的优异分析功能,可获得良好的计算精度。建立设计模型。进行有限元机械划分。建立边界条件,计算节点载荷,组成整体刚阵,求解有限元方程。建立实体模型,并输入需要产品材料特性,减少数量级的偏差。确定坐标系,可以完成计算中所有的前处理过程。 3.2 基于功能分析的创新设计机构系统设计 分析执行构件的运动形式,机械的连续旋转运动,往复摆动,往复移动和特殊功能运动,记录每分钟转位次数,运动系间歇转动数每分钟转角大小,满足机械运动规律的要求,适当设置调整环节。利用基本杆组法以机构中不可再分的运动链作为机构的基本单元,按单元编制通用的运动分析子程序,在分析进行机构运动后,将机构划分成基本杆组后对每一基本杆组进行运动分析,对整个根据工艺受力大小,制造加工难易进行比较,然后择优而取。曲柄摇杆机构的齿条齿轮机构及输出运动能够实现往复摆动,间歇往复摆动的组合机构可以实现间歇往复摆动,通过控制驱动液压缸,实现间歇往复摆动。利用连杆曲线的平面连杆机构,从动件凸轮机构,实现机械间歇往复移动。 3.3 在产品设计系统方面的创新 随着计算机辅助概念设计的研究,一些大型的CAD商品化软件中,生成高精度的曲面几何模型,并直接传送到机械设计和原型制造中,实现从符号描述到几何表示的映射,并对产品的相似实例进行评价与修改,进而获得产品概念设计的优化解。识别机构中的构件是否等于机构的原动件的数目,判定机构的运动确定性,构件中要对局部自由度、虚约束适当处理以便正确计算出机构的自由度。机械主动件做有规律运动,位置确定的运动时,每一个位置机构所有构件都是可行的。程序在计算位置并绘制机构运动过程中,评估机构运动分析中构件之间装配条件,杆

哈工大机械原理考研-第2章 连杆机构分析与设计(理论部分)

第2章连杆机构分析和设计 2.1内容要求 1.掌握平面四杆机构的基本型式、特点及其演化方法。 2.熟练掌握和推导铰链四杆机构曲柄存在条件,并灵活运用来判断铰链四杆机构的类型; 掌握曲柄滑块机构及导杆机构等其他四杆机构的曲柄存在条件的推导过程。 3.掌握平面四杆机构的压力角、传动角、急回运动、极位夹角、行程速比系数、等基本概 念;掌握连杆机构最小传动角出现的位置及计算方法;掌握极位夹角与行程速比系数的关系式;掌握掌握死点在什么情况下出现及死点位置在机构中的应用。 4.掌握速度瞬心的概念及如何确定机构中速度瞬心的数目;掌握“三心定理”并应用“三 心定理”确定机构中速度瞬心的位置及对机构进行速度分析。 5.了解建立Ⅰ级机构、RRR杆组、RRP杆组、RPR杆组、PRP杆组、RPP杆组的运动分 析数学模型;掌握相对运动图解法及杆组法机构运动分析的方法。 6.掌握移动副、转动副中摩擦力的计算和自锁问题的讨论;掌握计及摩擦时平面连杆机构 受力分析的方法;掌握计算机械效率的几种方法;掌握从机械效率的观点研究机械自锁条件的方法和思想。 7.掌握平面四杆机构的运动特征及其设计的基本问题;了解“函数机构”、“轨迹机构”、 “导引机构”的设计思想、方法;掌握按给定行程速比系数设计四杆机构的方法。 2.2内容提要 一、本章重点 本章重点是铰链四杆机构曲柄存在条件,并灵活运用来判断铰链四杆机构的类型;连杆机构最小传动角出现的位置及计算方法;速度瞬心法对机构进行速度分析;计及摩擦时平面连杆机构受力分析的方法;按给定行程速比系数设计四杆机构的方法。 1.平面四杆机构的基本型式及其演化型式 平面四杆机构的基本型式是平面铰链四杆机构。在此机构中,与机架相联的构件称为连架杆;能作整周回转的连架杆称为曲柄,而不能作整周回转的连架杆称为摇杆;与机架不相连的中间构件称为连杆。能使两构件作整周相对转动的转动副称为周转副;而不能作整周相对转动的转动副称为摆转副。平面铰链四杆机构又根据两连架杆运动形式不同分为曲柄摇杆机构、双曲柄机构及双摇杆机构。 平面四杆机构的演化型式是在平面铰链四杆机构的基础上,通过一些演化方法演化而成其他型式的四杆机构。平面四杆机构的演化方法有: (1)改变构件的形状及运动尺寸; (2)改变运动副尺寸; (3)取不同构件为机架。

连杆机构在机械装备中的应用

研究生课程考核试卷 (适用于课程论文、提交报告) 科目:机电系统设计与分析教师:江桂云 姓名:沈振宇学号:146 专业:机械工程领域类别:课程论文上课时间:2016年9月至2016年11月 考生成绩: 卷面成绩平时成绩课程综合成绩 阅卷教师(签名) 重庆大学研究生院制

连杆机构在机械装备中的应用摘要:连杆机构是机械设备中常见的一种机构,它往往由若干根杆状机构组成,有时还会用凸轮和滑块来代替其中一部分连杆,因为其制造简便,易于获得较高的制造精度以及其灵活多样的组合方式而广泛应用于机械行业。 关键词:连杆机构、工业生产、运动学原理 1连杆机构的基本介绍 常见的四杆机构 连杆机构中最基本的单元被称为运动副[1],由四个运动副可以构成最简单的连杆机构,即四杆机构。许多机械设备中的结构都可以看作是由若干个四杆机构组成的,因此,了解四杆机构是了解连杆机构的第一步。 四连杆机构一般由四根杆状构件组成,四根杆状机构一般分为曲柄、摇杆、连杆和机架。而根据选取不同的机构作为原动件和从动件时,四杆机构又可以分为双曲柄机构、曲柄摇杆机构和双摇杆机构(如图)。 图四种常见的连杆机构 曲柄滑块机构 这些四杆机构的共同特点是将由电机所提供的扭矩,即平面圆周运动转化为平面曲线往复运动,倘若用滑块来代替四杆机构中的摇杆,还能获得平面直线往复运动,这种机构被称之为曲柄滑块机构(如图) 图曲柄滑块机构

2连杆机构的应用 在工程实际中,机械设备不会只是单纯四杆机构,它们往往由很多根杆状构件以及滑轮、滑块等其他非杆状构建组成,但其原理仍然是使原动机运动的运动方式发生改变,以获得人们所期望的运动方式。 牛头刨床 例如用滑块代替四杆机构中的连杆,可以获得不同于曲柄滑块机构的另一种机构,摆动导杆机构,与曲柄滑块机构不同的是,摆动导杆机构可以在有限的空间内获得更大的行程,牛头刨床正是基于这一原理而被设计出来的[2]。 图牛头刨床工作原理 如图为头牛刨床的工作示意图,电动机经过减速器带动导杆机构和凸轮机构完成刨刀的往复运动和间歇移动。刨床工作时,刨头6由曲柄2带动右行,刨刀进行切削,称为工作行程。在切削行程H中,前后各有一段的空刀距离,工作阻力为常数;刨刀左行时,即为空回行程,此行程无工作阻力。在刨刀空回行程时,凸轮8通过四杆机构带动棘轮机构,棘轮机构带动螺旋机构使工作台连同工件在垂直纸面方向上做一次进给运动,以便刨刀继续切削。 牛头刨床的设计充分利用了连杆机构能够改变运动方式的特性,将原动件的回转运动转变为从动件的直线往复运动,即使电动机提供的扭矩转化为刀具的切削力,从而实现对工件进行平面加工的目的。

实验五 平面连杆机构创新设计实验

实验五平面连杆机构创新设计实验 一、实验目的 设计平面机构,并对所设计的机构进行拼接,完成机构特有的运动特性。二、实验仪器 8个创新组合实验台 三、实验要求 (1)每组设计两种不同的机构,其中一种机构从选题部分设计题目中进行选择,另一种机构自行命题,可以来源于参考书、网络或者现实生活中的机构,要求至少有两种基本连杆机构。要求在设计过程中利用一种创新设计方法对方案进行分析。 (2)每种机构都能实现其特定的运动特性。例如,牛头刨床要实现急回运动。通过查阅资料确定机构的运动特性。 (3)在报告上绘制初始方案的机构运动简图。 (4)实验报告请自行打印,将设计方案在课前准备好,填写到报告上。 (5)每班分成7-8组,每组3-4人。 (6)实验时自备三角板、圆规和草稿纸等文具。 四、选题部分设计题目:(每组任选一个) 蒸汽机机构、精压机机构、牛头刨床机构、插床机构、筛料机构、行程放大机构。 机构具体要求: (一)蒸汽机机构: 要求:1.实现活塞的往复运动; 2.运动传递由电机→曲柄→……→滑块。 (二)精压机机构 要求:构件平稳下压,物料受载均衡 (三)牛头刨床主切削运动机构 要求:具有急回特性,运动传递由电机→齿轮减速→导杆→……→滑块 (四)插床机构

要求:1.具有急回特性。 2.插刀实现大行程往复运动。 3. 运动传递由电机→齿轮减速→原动件曲柄→……→输出件插刀 (五)筛料机构 要求:1.具有急回特性。 2.加速度变化较大。 (六)行程放大机构: 要求:实现行程放大 五、报告要求 选题报告要求: (一)选题机构名称; (二)选题机构运动要求及特点; (三)利用功能分析法及设计目录对设计方案进行简单分析; (四)设计的机构简图; (五)实验中机构运动状况分析; (六)改进后的机构简图。 自命题报告要求: (一)命题机构名称; (二)命题机构运动要求及特点; (三)对设计方案进行简单分析; (四)所设计的结构简图; (五)实验中机构运动状况分析; (六)改进后的结构简图。

机构运动创新设计..

课程设计报告 学生姓名:学号: 学院: 班级: 题目: 机构运动创新设计 指导教师:苏天一 2015 年 1 月5日

目录 一、概述 1 二、课程设计目的 1 三、课程设计要求和内容 1 四、原始数据及技术参数 2 五、设计原理及设备 2 六、机构自由度计算 5 七、机构动力分析与计算 7 八、机构运动分析与计算 9 十、参考文献 12

一、概述: 机构运动方案创新设计是各类复杂机械设计中决定性的一步,机构的设计选型一般先通过作图和计算来进行,一般比较复杂的机构都有多个方案,需要制作模型来试验和验证,多次改进后才能得到最佳的方案和参数。本实验所用搭接试验台能够任意选择平面机构类型,组装调整机构尺寸等功能,能够比较直观、方便的搭接、验证、调试、改进、确定设计方案,较好地改善了在校学生对平面机构的学习和设计一般只停留在理论设计“纸上谈兵”的状况 二、课程设计目的: 1、培养学生对连杆机构的理解掌握与创新设计能力,加强学生的工程实践背景的训练,拓宽学生的知识面,培养学生的创新意识、综合设计及工程实践动手能力。 2、通过机构的拼接,在培养工程实践动手能力的同时,要求学生在拼装一个已有模型之外,自己通过对现实生产和生活中的连杆机构机械产品的观察和理解,通过试验台设备进行拼装和仿真。通过解决实际问题,促进学生理论联系实际,学以致用;锻炼学生独立思考能力和动手能力。 3、加深学生对连杆机构组成原理的认识,进一步掌握连杆机构的创新设计方法。 4、学习机构运动简图的测绘与自由度的计算。 三、课程设计要求和内容: 实验设备和工具 CQJP-D机构运动创新设计方案拼装及仿真实验台,包括组成机构的各种运动副、构件、动力源及一套实验工具(扳手、螺丝刀)。其中构件包括机架、连杆、圆柱齿轮、齿条、凸轮及从动件、槽轮及拨盘和皮带轮等;运动副包括转动副、移动副、齿轮副、槽轮副等。 实验原理 平面机构是由各个杆组依次联结到机架和原动件上形成的。机构具有确定运动的条件是机构的自由度大于零,且原动件数和机构的自由度相等。所拼接的机构必须满足以上两个条件。将主要由连杆构成的连杆机构(可加入一个其他类型构件如齿轮、凸轮、槽轮等)进行拼装,计算分析其自由度后,输入动力源进行

平面连杆机构及其设计(参考答案)

一、填空题: 1.平面连杆机构是由一些刚性构件用低副连接组成的。 2.由四个构件通过低副联接而成的机构成为四杆机构。 3.在铰链四杆机构中,运动副全部是转动副。 4.在铰链四杆机构中,能作整周连续回转的连架杆称为曲柄。 5.在铰链四杆机构中,只能摆动的连架杆称为摇杆。 6.在铰链四杆机构中,与连架杆相连的构件称为连杆。 7.某些平面连杆机构具有急回特性。从动件的急回性质一般用行程速度变化系数表示。 8.对心曲柄滑快机构无急回特性。9.偏置曲柄滑快机构有急回特性。 10.对于原动件作匀速定轴转动,从动件相对机架作往复运动的连杆机构,是否有急回特性,取决于机构的极位夹角是否大于零。 11.机构处于死点时,其传动角等于0。12.机构的压力角越小对传动越有利。 13.曲柄滑快机构,当取滑块为原动件时,可能有死点。 14.机构处在死点时,其压力角等于90o。 15.平面连杆机构,至少需要4个构件。 二、判断题: 1.平面连杆机构中,至少有一个连杆。(√) 2.平面连杆机构中,最少需要三个构件。(×) 3.平面连杆机构可利用急回特性,缩短非生产时间,提高生产率。(√) 4.平面连杆机构中,极位夹角θ越大,K值越大,急回运动的性质也越显著。(√) 5.有死点的机构不能产生运动。(×) 6.机构的压力角越大,传力越费劲,传动效率越低。(√) 7.曲柄摇杆机构中,曲柄为最短杆。(√) 8.双曲柄机构中,曲柄一定是最短杆。(×) 9.平面连杆机构中,可利用飞轮的惯性,使机构通过死点位置。(√) 10.平面连杆机构中,压力角的余角称为传动角。(√) 11.机构运转时,压力角是变化的。(√) 三、选择题: 1.铰链四杆机构存在曲柄的必要条件是最短杆与最长杆长度之和 A 其他两杆之和。 A <=; B >=; C > 。 2.铰链四杆机构存在曲柄的必要条件是最短杆与最长杆长度之和小于或等于其他两杆之和,而充分条件是取 A 为机架。 A 最短杆或最短杆相邻边; B 最长杆; C 最短杆的对边。3.铰链四杆机构中,若最短杆与最长杆长度之和小于其余两杆长度之和,当以 B 为机架时,有两

连杆机构的应用

连杆机构在生产实际中的应用 刘赛学号:020 连杆的最新应用包括以下三个方面 1.工艺方面——裂解工艺 连杆是发动机上的关键零件,在高频率疲劳载荷下作,对强度有较高的要求。连杆属于较难锻造与加工的一种零件,对其制造方法及技术,国内外都给予了极大的关注,连杆裂解(也称连杆胀断、撑断)加工新工艺是20世纪90年代初发展起来的一种连杆加工新技术,该种新工艺与装备从根本上改变了传统的连杆加工方法,是对传统连杆加工的一次重大变革。连杆裂解技术的原理是根据材料断裂理论,首先将整体锻造的连杆毛坯大头孔人为加工,形成初始断裂源,然后用特定方法控制裂痕扩展,达到连杆本体与连杆盖分离的目的。其裂解加工过程见下图 (a)初始断裂源 (b)裂解 (c)杆、盖分离 (a)在连杆锻造毛坯大头孔内,预先加工出裂解槽,形成初始断裂源; (b)在裂解专业设备上首先对连杆大头内孔侧面施加径向力,使裂纹由内孔向外不断扩展直至完全裂解; (c)连杆盖从连杆本体上分离出来。利用断裂面犬牙交错的特征,在裂解专业设备上,再将裂解分离后的连杆盖与本体精确复位,最后在断裂面完全啮合的条件下,完成上螺栓工序及其它后续与传统工艺相同的切削加工工序。 裂解加工工艺流程: 粗磨连杆两侧面→精镗大小头孔、半精镗小头孔→钻、攻螺栓孔→钻油道孔洗→拉削裂

解槽、裂解、装配、压衬套、精整衬套、倒角→精磨两侧面→半精镗、精镗大小头孔→铰珩连杆大小头孔→清洗→终检。 裂解工艺的经济性 裂解工艺改变了连杆加工的关键生产工序,以整体加工代替分体加工,省去分离面的拉削与磨削等工艺,降低螺栓孔的加工精度要求,从而显著地提高生产效率,降低生产成本,增加经济效益。据于永仁《连杆裂解工艺》文献介绍,裂解加工技术的应用,可减少机械加工工序60%,节省机床设备投资25%,减少刀具费用35%,节省能源40%,还可减少占地面积、减少废品率等,其经济效益十分显著。此外连杆裂解技术还可使连杆承载能力、抗剪能力、杆、盖的定位精度、装配质量大幅度提高,对提高发动机整体生产技术水平具有重要作用。 2.汽车方面——瓦特连杆 瓦特连杆是由英国传奇发明家兼工程师詹姆斯-瓦特所发明的。 别克英朗,奔驰A级,B级车均采用这种结构,用于扭力梁悬架上,以此来减少后轮侧向力对车轮前束的影响。也减少了在转弯时侧向力产生的离心,使两侧车轮受力始终与路面保持最适宜的接触,达到最佳的附着力。一方面提高了车辆的驾乘舒适性,也加强了车辆循迹性。 一套三链杆组成的中央控制臂被安置在一个铝制方形封盖后方,当控制臂被从左边推动, 它就向右边拉动,反之亦然。这样的话,车子的动力就在左右轮中得到了很好的平衡。当汽

第七章 机构创新设计

第七章机构创新设计 第一节同轨迹连杆机构 第二节 新型内燃 机的开发 第三节 联轴器的 创新设计 第四节 抓斗的原 理方案创 新设计 第五节 过载保护 装置的机 械结构设 计 实例 第一节同轨迹连杆机构 同轨迹四连杆机构是指自由度 f相同、输入构件的运动规律相同、输出构件上的一点轨迹相同的一组连杆机构,但这组连杆机构的运动学尺寸不同,所以其受力状态、动态性能有巨大差异。因而,同轨迹连杆机构的形成方法是机构创新设计的重要方法之一。 形成同轨迹连杆机构的罗伯特-契贝谢夫定理是由美国数学家萨姆尔·罗伯特于1875年和俄国学者契贝谢夫于1878年分别发现的,因此称为“罗伯特-契贝谢夫定理”。该定理的内容是:由一个四杆铰链机

构发生的一条连杆曲线,还可以由另外两个四杆铰链机构发生出来。或表述为同一连杆曲线,可以用三个不同的机构来实现。 1.连杆点k位于连杆两铰链连线上的同迹连杆机构 图形缩放原理如下图7-1a所示为一平行四边形机构,由平行四边形obkd与机架在o点铰接而成。a点为bk杆延长线上的一点。连接ao 得交点c。当a点沿任意给定轨迹运动时,c点将给出与a点相似但缩小了的轨迹。⑴ao除以co与ab除以kb的值是相等的为常数m(射线定理)。⑵当此四边形作为一刚体绕o转动一角度时,a点转到a',按射线定理有aa'与cc'的比值与ao与co的比例等于常数m。a点的一切运动都是这两部分运动的合成。因此c点的运动是以缩小的比例模拟a 点的运动,反之亦然。

图7-1 连杆点k在连杆线上的同还连杆机构

第一个同迹连杆机构设计如图7-1b所示,在原始机构上作平行四边形导引机构bodk。曲柄c0cdo为所示的第一个同迹连杆机构,k为连杆cd延长线上的点。所示曲柄拉摇杆机构的尺寸,如图中下面的公式。 第二个同迹连杆机构设计如图7-1c所示,在原始机构上作平行四边形导引机构a0ake。双摇杆机构a0efco为所求的第二个同迹连杆机构。第三个同迹连杆机构设计如图7-1d所示,co是两具同迹连杆机构中共同的新机架的固定铰链点,机架的三个固定铰链点a0与o,a0与co,o与co。 2.任意连杆点 k的同迹连杆机构 在图7-2a中,四杆机构a0a1b1b0为a1b1上有附加连杆点k的原始机构。由罗伯特-契贝谢夫定理决定的另两个四杆机构为a0a2c2c0

连杆机构在机械设备中的应用

举例说明连杆机构在机械设备中的应用 ——连杆机构在插秧机中的应用 机械工程学院黄玉成摘要:本文中主要介绍国内水稻插秧机研究现状、国内外分插机构研究现状、传 统插秧机分插机构、高速插秧机分插机构。其中,主要介绍了连杆机构在插秧机中的应用。 关键词:连杆机构、插秧机、曲柄摇杆、高速插秧机分插机构 1.国内水稻插秧机研究现状 我国是首先研制并生产水稻插秧机的国家之一,我国对水稻插秧机的研究大致分为 以下三个阶段: (1)摸索阶段。1953 年原华东农业科学研究所将水稻插秧机作为一项科研课题,1956 年梳齿纵拉分秧原理初步定型,并制作出样机,1956 年 4 月全国第一届水稻插秧机试验座谈会在武昌召开,并对样机进行田间试验,证明了水稻插秧机械化可以实现,1965年广西65 型人力插秧机通过鉴定,推动了水稻插秧机的发展。 图1-1 步行式插秧机图1-2 乘坐式插秧机 (2)实用阶段。1964 年我国研制出机动插秧机,分插机构采用曲柄摇杆式分插机构和转臂滑道式分插机构,上世纪70 年代为响应农业部推广带土苗移栽技术的号召,研制了即可插带土苗,又可插洗根大苗的两用插秧机,该系列基本满足我国各地农业需求,零件通用化达80%~88%,部件通用化程度达到70%。上世纪80 年代,参照日本水稻插秧机研制了“中头日尾”式2ZT 系列机型,该机型分插频率高,最高达到260 次/min,行距300mm,总共6 行,试验证明该机适合带土中、小苗的插秧。 (3)推广阶段。我国通过大量引进和消化吸收国外先进水稻插秧机技术,结合我国基本国情和农艺要求,自主研制了高速插秧机,该机采用旋转式分插机构,旋转一周插秧 2 次,插秧效率得到明显提高。我国水稻插秧机市场不断变化,其主要特点是:一、机型样式变化快;二、需求区域和市场相对集中;三、

连杆机构的应用

连杆机构在生产实际中的应用 刘赛学号:20140702020 连杆的最新应用包括以下三个方面 1.工艺方面——裂解工艺 连杆是发动机上的关键零件,在高频率疲劳载荷下作,对强度有较高的要求。连杆属于较难锻造与加工的一种零件,对其制造方法及技术,国内外都给予了极大的关注,连杆裂解(也称连杆胀断、撑断)加工新工艺是20世纪90年代初发展起来的一种连杆加工新技术,该种新工艺与装备从根本上改变了传统的连杆加工方法,是对传统连杆加工的一次重大变革。连杆裂解技术的原理是根据材料断裂理论,首先将整体锻造的连杆毛坯大头孔人为加工,形成初始断裂源,然后用特定方法控制裂痕扩展,达到连杆本体与连杆盖分离的目的。其裂解加工过程见下图 (a)初始断裂源(b)裂解(c)杆、盖分离 (a)在连杆锻造毛坯大头孔内,预先加工出裂解槽,形成初始断裂源; (b)在裂解专业设备上首先对连杆大头内孔侧面施加径向力,使裂纹由内孔向外不断扩展直 至完全裂解; (c)连杆盖从连杆本体上分离出来。利用断裂面犬牙交错的特征,在裂解专业设备上,再将裂解分离后的连杆盖与本体精确复位,最后在断裂面完全啮合的条件下,完成上螺栓工序及其它后续与传统工艺相同的切削加工工序。 裂解加工工艺流程: 粗磨连杆两侧面→精镗大小头孔、半精镗小头孔→钻、攻螺栓孔→钻油道孔洗→拉削裂解槽、裂解、装配、压衬套、精整衬套、倒角→精磨两侧面→半精镗、精镗大小头孔→铰珩连杆大小头孔→清洗→终检。 裂解工艺的经济性 裂解工艺改变了连杆加工的关键生产工序,以整体加工代替分体加工,省去分离面的拉削与磨削等工艺,降低螺栓孔的加工精度要求,从而显著地提高生产效率,降低生产成本,增加经济效益。据于永仁《连杆裂解工艺》文献介绍,裂解加工技术的应用,可减少机械加工工序60%,节省机床设备投资25%,减少刀具费用35%,节省能源40%,还可减少占地面积、减少废品率等,其经济效益十分显著。此外连杆裂解技术还可使连杆承载能力、抗剪能力、杆、盖的定位精度、装配质量大幅度提高,对提高发动机整体生产技术水平具有重要作用。

浅谈连杆机构在生产实践中的应用

浅谈连杆机构在生产实践中的应用 摘要:连杆机构能够实现各种各样功能的运动,因此在生产实践中应用广泛。本文就一些具体的连杆机构,简单介绍了其在生产实践中的应用。 关键词:连杆机构生产实践应用 1、连杆机构简述 连杆机构能够实现多种运动轨迹曲线和运动规律。在平面连杆机构中,所有的运动副均为低副。因此,连杆机构又称为低副机构。 由于组成低副的两个构件之间是面接触,在承受相同的荷载时,其承载能力较大,耐磨损;再加上构件的形状简单,制造简便,易于获得较高的制造精度。因此,连杆机构广泛地用于各种机械和仪器中。但是,由于连杆机构的运动链较长,构件数和运动副数较多,而且在低副中存在间隙,所以会引起较大的运动积累误差,从而影响其运动精度。而且平面连杆机构的设计比较复杂,通常难以精确地实现复杂的运动规律与运动轨迹。连杆机构在生产实践中应用广泛,下面仅做一些简单的介绍。 2、连杆机构在生产实践中的应用 2.1 平面四杆机构的应用 在平面四杆机构中,若两个连架杆之一为曲柄,另一个为摇杆,则称为曲柄摇杆机构。如图1所示的雷达天线调整机构,当曲柄AB为主动件并作匀速转动时,通过连杆BC,带动摇杆CD在一定角度范围内作往复摆动,从而达到调整天线俯仰角度的目的。当摇杆CD为主动件并作往复摆动时,通过连杆BC驱使曲柄AB(从动件)作整周转动,如图2所示的缝纫机踏板机构。 图1 雷达天线调整机构图2 缝纫机踏板机构

另外,当曲柄作整周转动时,若利用连杆与摇杆之间的相对运动对外做功,如图3所示,则可设计出飞剪剪切机;若利用连杆上一点的水平轨迹作运动输出,如图4所示,则可设计出物料传送机构。如图5是矿石破碎机的简图,与大带轮固接在一起的曲柄AB为主动件,曲柄摇杆机构ABCD是该机器的主体。如图6是机构是利用连杆曲线设计的和面机的简图,曲柄摇杆机构ABCD是该机器的主体。 图3 飞剪剪切机构图4 物料传送机构 图5 矿石破碎机的简图图6 和面机的简图 如果两个连架杆均为曲柄,都能作整周转动,该铰链四杆机构称为双曲柄机构。当相对两杆平行并且相等时,该机构称为平行四边形机构。在这种机构运动中,两个曲柄以相同的角速度作同向转动,而连杆作平动。当曲柄与机架共线时,机构处于运动不确定的状态为了解决这个问题,在工程上可以利用从动件的质量或在从动件上加装飞轮以增大惯性;也可以在机构中通过添加构件带来虚约束使机构始终保持平行四边形。如图7所示的机车车轮联动的平行四边形机构,构件EF带来了一个虚约束,使得机车的各个车轮具有相同的速度,保证了机车的平稳运行。

相关主题
文本预览
相关文档 最新文档