当前位置:文档之家› 高考物理直线运动题20套(带答案)

高考物理直线运动题20套(带答案)

高考物理直线运动题20套(带答案)
高考物理直线运动题20套(带答案)

高考物理直线运动题20套(带答案)

一、高中物理精讲专题测试直线运动

1.倾角为θ的斜面与足够长的光滑水平面在D 处平滑连接,斜面上AB 的长度为3L ,BC 、

CD 的长度均为3.5L ,BC 部分粗糙,其余部分光滑。如图,4个“— ”形小滑块工件紧挨在一起排在斜面上,从下往上依次标为1、2、3、4,滑块上长为L 的轻杆与斜面平行并与上一个滑块接触但不粘连,滑块1恰好在A 处。现将4个滑块一起由静止释放,设滑块经过D 处时无机械能损失,轻杆不会与斜面相碰。已知每个滑块的质量为m 并可视为质点,滑块与粗糙面间的动摩擦因数为tan θ,重力加速度为g 。求

(1)滑块1刚进入BC 时,滑块1上的轻杆所受到的压力大小; (2)4个滑块全部滑上水平面后,相邻滑块之间的距离。 【答案】(1)3sin 4

F mg θ=(2)43d L =

【解析】 【详解】

(1)以4个滑块为研究对象,设第一个滑块刚进BC 段时,4个滑块的加速度为a ,由牛顿第二定律:4sin cos 4mg mg ma θμθ-?=

以滑块1为研究对象,设刚进入BC 段时,轻杆受到的压力为F ,由牛顿第二定律:

sin cos F mg mg ma θμθ+-?=

已知tan μθ= 联立可得:3

sin 4

F mg θ=

(2)设4个滑块完全进入粗糙段时,也即第4个滑块刚进入BC 时,滑块的共同速度为v 这个过程, 4个滑块向下移动了6L 的距离,1、2、3滑块在粗糙段向下移动的距离分别为3L 、2L 、L ,由动能定理,有:

21

4sin 6cos 32)4v 2

mg L mg L L L m θμθ?-??++=

?( 可得:v 3sin gL θ=

由于动摩擦因数为tan μθ=,则4个滑块都进入BC 段后,所受合外力为0,各滑块均以速度v 做匀速运动;

第1个滑块离开BC 后做匀加速下滑,设到达D 处时速度为v 1,由动能定理:

()22111sin 3.5v v 22

mg L m m θ?=

- 可得:1v 4sin gL θ=

当第1个滑块到达BC 边缘刚要离开粗糙段时,第2个滑块正以v 的速度匀速向下运动,且运动L 距离后离开粗糙段,依次类推,直到第4个滑块离开粗糙段。由此可知,相邻两个滑块到达BC 段边缘的时间差为v L t ?=

,因此到达水平面的时间差也为v

L

t ?= 所以滑块在水平面上的间距为1v d t =? 联立解得4

3

d L =

2.汽车在路上出现故障时,应在车后放置三角警示牌(如图所示),以提醒后面驾车司机,减速安全通过.在夜间,有一货车因故障停车,后面有一小轿车以30m/s 的速度向前驶来,由于夜间视线不好,驾驶员只能看清前方50m 的物体,并且他的反应时间为0.5s ,制动后最大加速度为6m/s 2.求:

(1)小轿车从刹车到停止所用小轿车驾驶的最短时间;

(2)三角警示牌至少要放在车后多远处,才能有效避免两车相撞.

【答案】(1)5s (2)40m 【解析】 【分析】 【详解】

(1)从刹车到停止时间为t 2,则 t 2=

0v a

-=5 s① (2)反应时间内做匀速运动,则 x 1=v 0t 1② x 1=15 m③

从刹车到停止的位移为x 2,则

x 2=2

002v a -④

x 2=75 m⑤

小轿车从发现物体到停止的全部距离为 x=x 1+x 2=90m ⑥ △x=x ﹣50m=40m ⑦

3.一个物体从塔顶上自由下落,在到达地面前的最后1s 内通过的位移是整个位移的925

,求塔高,取g =10m/s 2. 【答案】125m 【解析】 【分析】 【详解】

设物体下落总时间为t ,塔高为h ,根据自由落体公式:212

h gt = 最后(t -1)s 下落的高度为:()21112

h g t =- 位移间的关系为:11625

h h = 联立解得:125h m =

4.如图,MN 是竖直放置的长L=0.5m 的平面镜,观察者在A 处观察,有一小球从某处自由下落,小球下落的轨迹与平面镜相距d=0.25m ,观察者能在镜中看到小球像的时间△t=0.2s .已知观察的眼睛到镜面的距离s=0.5m ,求小球从静止开始下落经多长时间,观察者才能在镜中看到小球的像.(取g=10m/s 2)

【答案】0.275s ; 【解析】

试题分析:由平面镜成像规律及光路图可逆可知,人在A 处能够观察到平面镜中虚像所对应的空间区域在如图所示的直线PM 和QN 所包围的区域中,小球在这一区间里运动的距离为图中ab 的长度L /.由于⊿aA /b ∽MA /N ⊿bA /C ∽NA /D 所以L //L=bA //NA /bA //NA /=(s+d )/s

联立求解,L /=0.75m 设小球从静止下落经时间t 人能看到,则/

2211()22

L g t t gt =+⊿- 代入数据,得t=0.275s

考点:光的反射;自由落体运动

【名师点睛】本题是边界问题,根据反射定律作出边界光线,再根据几何知识和运动学公式结合求解;要知道当小球发出的光线经过平面镜反射射入观察者的眼睛时,人就能看到小球镜中的像.

5.近年来隧道交通事故成为道路交通事故的热点之一.某日,一轿车A 因故障恰停在某隧道内离隧道入口50m 的位置.此时另一轿车B 正以v 0=90km/h 的速度匀速向隧道口驶来,轿车B 到达隧道口时驾驶员才发现停在前方的轿车A 并立即采取制动措施.假设该驾驶员的反应时间t 1=0.57s ,轿车制动系统响应时间(开始踏下制动踏板到实际制动)t 2=0.03s ,轿车制动时加速度大小a=7.5m/s 2.问: (1)轿车B 是否会与停在前方的轿车A 相撞?

(2)若会相撞,撞前轿车B 的速度大小为多少?若不会相撞,停止时轿车B 与轿车A 的距离是多少?

【答案】(1)轿车B 会与停在前方的轿车A 相撞;(2)10m/s 【解析】

试题分析:轿车的刹车位移由其反应时间内的匀速运动位移和制动后匀减速运动位移两部分构成,由此可得刹车位移,与初始距离比较可判定是否相撞;依据(1)的结果,由运动可判定相撞前B 的速度.

(1)轿车B 在实际制动前做匀速直线运动,设其发生的位移为s 1,由题意可知:

s 1=v 0(t 1+t 2)=15 m ,实际制动后,轿车B 做匀减速运动,位移为s 2, 由2

022v as =代入数

据得:s 2=41.7 m ,

轿车A 离隧道口的距离为d =50 m ,因s 1+s 2>d ,故轿车B 会与停在前方的轿车A 相撞

(2)设撞前轿车B 的速度为v ,由运动学公式得22

002v v ax -=,代入数据解得:v =10

m/s .

点睛:本题主要考查相遇问题,关键要掌握刹车位移的判定:反应时间内的匀速运动位移;制动后匀减速运动位移.

6.A 、B 两列火车,在同一轨道上同向行驶,A 车在前,其速度v A =10 m/s ,B 车在后,速

度v B =30 m/s ,因大雾能见度很低,B 车在距A 车x 0=75 m 时才发现前方有A 车,这时B 车立即刹车,但B 车要经过180 m 才能停止,问:B 车刹车时A 车仍按原速率行驶,两车是否会相撞?若会相撞,将在B 车刹车后多长时间相撞?若不会相撞,则两车最近距离是多少?

【答案】会相撞;6 s

【解析】B车刹车至停下来的过程中,由v2-v02=2ax得2

2

2.5/

2

B

B

v

a m s

x

==

假设不相撞,依题意画出运动过程示意图,如下图所示.

设经过时间t两车速度相等,对B车有:v A=v B+a B t

解得8

A B

B

v v

t s

a

-

== .

此时B车的位移x B=v B t+

1

2

a B t2=30×8 m-

1

2

×2.5×82 m=160 m.

A车的位移x A=v A t=10×8 m=80 m.

因x B>x A+x0,故两车会相撞.

设B刹车后经过时间t x两车相撞,则有v A t x+x0=v B t x+

1

2

a B t x2,

代入数据解得,t x=6 s或t x=10 s(舍去).

7.一长木板置于粗糙水平地面上,木板左端放置一小物块;在木板右方有一墙壁,木板右端与墙壁的距离为4.5m,如图(a)所示.t=0时刻开始,小物块与木板一起以共同速度向右运动,直至t=1s时木板与墙壁碰撞(碰撞时间极短).碰撞前后木板速度大小不变,方向相反;运动过程中小物块始终未离开木板.已知碰撞后1s时间内小物块的v﹣t图线如图(b)所示.木板的质量是小物块质量的15倍,重力加速度大小g取10m/s2.求

(1)木板与地面间的动摩擦因数μ1及小物块与木板间的动摩擦因数μ2;

(2)木板的最小长度;

(3)木板右端离墙壁的最终距离.

【答案】(1)0.1和0.4.(2)6.0m(3)6.5m

【解析】试题分析:(1)根据图像可以判定碰撞前木块与木板共同速度为4/

v m s

=

碰撞后木板速度水平向左,大小也是4/

v m s

=

木块受到滑动摩擦力而向右做匀减速,

根据牛顿第二定律有2240

/1

g m s μ-=

,解得20.4μ= 木板与墙壁碰撞前,匀减速运动时间t=1s ,位移 4.5x m =, 末速度v=4m/s ,其逆运动则为匀加速直线运动可得2

12

x vt at =+

,带入可得21/a m s = 木块和木板整体受力分析,滑动摩擦力提供合外力,即2g a μ=,可得10.1μ= (2)碰撞后,木板向左匀减速,依据牛顿第二定律有()121M m g mg Ma μμ++=,可得

214

/3

a m s =

对滑块,则有加速度2

24/a m s =,滑块速度先减小到0,

此时,木板向左的位移为2111111023x vt a t m =-=, 末速度18

/3

v m s = 滑块向右位移2140

22

x t m +=

= 此后,木块开始向左加速,加速度仍为2

24/a m s =

木块继续减速,加速度仍为214

/3

a m s =

假设又经历2t 二者速度相等,则有22112a t v a t =-,解得20.5t s =

此过程,木板位移23121217

26

x v t a t m =-

=。末速度31122/v v a t m s =-= 滑块位移此后木块和木板一起匀减速。

二者的相对位移最大为12346x x x x x m ?=++-= 滑块始终没有离开木板,所以木板最小的长度为6m

(3)最后阶段滑块和木板一起匀减速直到停止,整体加速度2

11/a g m s μ==

位移23

522v x m a

== 所以木板右端离墙壁最远的距离为125 6.5x x x m ++= 考点:考查了牛顿第二定律与运动学公式的综合应用

【名师点睛】连接牛顿第二定律与运动学公式的纽带就是加速度,所以在做这一类问题时,特别又是多过程问题时,先弄清楚每个过程中的运动性质,根据牛顿第二定律求加速度然后根据加速度用运动学公式解题或者根据运动学公式求解加速度然后根据加速度利用牛顿第二定律求解力

视频

8.如图所示,质量为m=1kg 的滑块,在水平力F 作用下静止在倾角为θ=30°的光滑斜面上,斜面的末端处与水平传送带相接(滑块经过此位置滑上皮带时无能量损失),传送带的运行速度为v 0=3m/s ,长为L=1.4m ,今将水平力撤去,当滑块滑到传送带右端C 时,恰好

与传送带速度相同.滑块与传送带间的动摩擦因数μ=0.25,g=10m/s2.求

(1)水平作用力F的大小;

(2)滑块开始下滑的高度h;

(3)在第(2)问中若滑块滑上传送带时速度大于3m/s,求滑块在传送带上滑行的整个过程中产生的热量Q.

【答案】(1)(2)0.1 m或0.8 m (3)0.5 J

【解析】

【分析】

【详解】

解:(1)滑块受到水平推力F、重力mg和支持力F N处于平衡,如图所示:

水平推力①

解得:②

(2)设滑块从高为h处下滑,到达斜面底端速度为v下滑过程

由机械能守恒有:,解得:③

若滑块冲上传送带时的速度小于传送带速度,则滑块在带上由于受到向右的滑动摩擦力而

做匀加速运动;根据动能定理有:④

解得:⑤

若滑块冲上传送带时的速度大于传送带的速度,则滑块由于受到向左的滑动摩擦力而做匀

减速运动;根据动能定理有:⑥

解得:⑦

(3)设滑块在传送带上运动的时间为t ,则t 时间内传送带的位移:s =v 0t 由机械能守恒有:

滑块相对传送带滑动的位移⑩ 相对滑动生成的热量

?

?

9.风洞实验室中可产生水平方向的,大小可调节的风力.现将一套有球的细直杆放入风洞实验室.小球孔径略大于细杆直径.如图所示.

(1)当杆水平固定时,调节风力的大小,使小球在杆上做匀速运动,这时小球所受的风力为小球所受重力的0.5倍,求小球与杆间的动摩擦因数.

(2)保持小球所受风力不变,使杆与水平方向夹角为37°并固定,则小球从静止出发在细杆上滑下距离s=3.75m 所需时间为多少?(sin37°=0.6,cos37°=0.8) 【答案】(1)0.5(2)1s 【解析】 【分析】 【详解】

(1)小球做匀速直线运动,由平衡条件得:0.5mg=μmg ,则动摩擦因数μ=0.5; (2)以小球为研究对象,在垂直于杆方向上,由平衡条件得:

000.5sin 37cos37N F mg mg +=

在平行于杆方向上,由牛顿第二定律得:00

0.5cos37sin 37N mg mg F ma μ+-=

代入数据解得:a=7.5m/s 2

小球做初速度为零的匀加速直线运动,由位于公式得:s=12

at 2 运动时间为22 3.7517.5

s t s s a ?===; 【点睛】

此题是牛顿第二定律的应用问题,对小球进行受力分析是正确解题的前提与关键,应用平衡条件用正交分解法列出方程、结合运动学公式即可正确解题.

10.甲、乙两车在同一水平路面上做直线运动,某时刻乙车在前、甲车在后,相距s =6m ,从此刻开始计时,乙车做初速度大小为12m/s 加速度大小为1m/s 2的匀减速直线运动,甲车运动的s -t 图象如图所示(0-6s 是开口向下的抛物线一部分,6-12s 是直线,两部分平滑相连),

求:(1)甲车在开始计时时刻的速度v 0和加速度a (2)以后的运动过程中,两车何时相遇? 【答案】(1)16m/s 2m/s 2 (2) 2s 6s 10s 相遇三次 【解析】 【详解】

(1)因开始阶段s-t 图像的斜率逐渐减小,可知甲车做匀减速运动;由2

012

s v t at =-,由图像可知:t =6s 时,s =60m ,则60=6v 0 -

12×a ×36;6s 末的速度68060

m/s 4m/s 116

v -=

=-;则由v 6=v 0-at 可得4=v 0-6a ;联立解得 v 0=16m/s ;a =2m/s 2

(2)若甲车在减速阶段相遇,则:220011

-

-22

v t a t s v t a t +=甲甲乙乙,带入数据解得:t 1=2s ; t 2=6s ;则t 1=2s 时甲超过乙相遇一次,t 2=6s 时刻乙超过甲第二次相遇;因以后甲以速度v 甲=4m/s 做匀速运动,乙此时以v 乙=12-6×1=6m/s 的初速度做减速运动,则相遇时满足:21

-

2

v t v t a t =甲乙乙 解得t =4s ,即在10s 时刻两车第三次相遇.

相关主题
文本预览
相关文档 最新文档