当前位置:文档之家› Simufact.welding 7.0 - 接触设置

Simufact.welding 7.0 - 接触设置

帮助-接触类型Simufact.forming 14.0 Simufact.welding 7.0 Simufact.additive 2.0

接触类型

Simufact软件针对不同的工艺类型,提供了不同接触类型及参数的定义设置。每一种接触类型均支持node-to-segment以及segment-to-segment的接触方式。Touch(接触)

当我们指定接触类型为Touch

的时候,两个不同物体之间

是接触的。在下一个子步计算中,这个接触关系可能分

离。接触分离的主要参数是分离力:separation stress,

也就是节点从接触体中分离出来所需要受到的力。在这

种情况下,节点会发生相对位移。

Glue(粘连)

当我们指定接触类型为Glue的时候,表示这种粘连的关

系是至始至终存在的。接触体之间不会发生相对位移。

当且仅当设置了“breaking glue”选项卡时,粘连定义才会

失效。

Glue on peak temperature(基于峰值温度的粘连)

在这种接触类型下,我们需要定义一个判断粘连的阈值。

一般来讲,这个阈值就是材料的固相线温度。在到达该

阈值之前,接触类型是Touch;在到达该阈值之后,接触

类型自动变为Glue。此时,材料的力学性能、热传导系

数和电阻特性均大幅增加,软件以此来仿真熔化现象。

在Simufact.welding中,接触类型就是这种,并且是默认

的。

Advanced glue on peak temperature(高级粘连)

与上面一种接触方式(Glue on peak temperature)不同

的是,这种粘连判断不仅仅是温度超过固相线温度,还

需要同时满足另一个条件,即降温到熔点以下。

通常,我们在Simufact.welding的求解器高级设置选项里

头可以找到这种接触方式。

基于Ansys Workbench的圆柱销接触分析

前面一篇基于Ansys经典界面得接触分析例子做完以后,不少朋友希望了解该例子在Workbench中就是如何完成得。我做了一下,与大家共享,不一定正确。毕竟这种东西,教科书上也没有,我只就是按照自己得理解在做,有错误得地方,恳请指正。 1.问题描述 一个钢销插在一个钢块中得光滑销孔中。已知钢销得半径就是0、5 units, 长就是2、5units,而钢块得宽就是4 Units,长4 Units,高为1Units,方块中得销孔半径为0、49units,就是一个通孔。钢块与钢销得弹性模量均为36e6,泊松比为0、3、由于钢销得直径比销孔得直径要大,所以它们之间就是过盈配合。现在要对该问题进行两个载荷步得仿真。 (1)要得到过盈配合得应力。 (2)要求当把钢销从方块中拔出时,应力,接触压力及约束力。 2.问题分析 由于该问题关于两个坐标面对称,因此只需要取出四分之一进行分析即可。 进行该分析,需要两个载荷步:

第一个载荷步,过盈配合。求解没有附加位移约束得问题,钢销由于它得几何尺寸被销孔所约束,由于有过盈配合,因而产生了应力。 第二个载荷步,拔出分析。往外拉动钢销1、7 units,对于耦合节点上使用位移条件。打开自动时间步长以保证求解收敛。在后处理中每10个载荷子步读一个结果。 本篇只谈第一个载荷步得计算。 3.生成几何体 上述问题就是ANSYS自带得一个例子。对于几何体,它已经编制了生成几何体得命令流文件。所以,我们首先用经典界面打开该命令流文件,运行之以生成四分之一几何体;然后导出为一个IGS文件,再退出经典界面,接着再到WORKBENCH中,打开该IGS文件进行操作。 (3、1)首先打开ANSYSAPDL14、5、 (3、2)然后读入已经做好得几何体。从【工具菜单】-->【>【Read Input From】打开导入文件对话框

各种接触角区分

1.平衡接触角/本征接触角/化学接触角/材料原始接触角e θ: 图1理想平面的平衡接触示意图 在理想的光滑平整表面上,表面接触角与三个界面张力之间存在以下关系: cos LG e SG SL γθγγ=-(cos e SG SL σθγγ=-) 式中,SG γ、SL γ和LG γ分别表示气-固、液-固和气-液的界面张力,e θ是气-液-固三相平衡时的接触角,成为平衡接触角或本征接触角,此方程即Young ’s 方程,也称润湿方程。 2.表面微观接触角/实际接触角e θ: Betelu 等发现表面微观接触角不仅与表面相互作用有关,而且与气-液-固三相接触线长度也有密切关系,这主要是由于线张力(Line tension, τ) 的存在增加了液滴的超额自由能。由热力学方法可以得出: cos SG SL LG e B r τγγγθ=++ 结合Young ’s 方程,可以变换为: 1cos cos e LG B r τθθγ∞=- τ为线张力, B r 为液滴与固体表面圆形接触面的半径,θ∞为宏观条件下的表面接触角,上式也成为修正Young ’s 方程。 3.表观接触角* θ: Wenzel 状态:cos cos w e r θθ= w θ称为表观接触角,表面粗糙度r 为粗糙表面的实际面积与其水平投影面积之比。 Cassie 状态:cos 1(1cos )c s e f θθ=-++

c θ为非均相润湿下的表观接触角,s f 为与液体接触的固体表面占投影面积的比例。 4.表面临界转换接触角Crit θ: Crit 11(1)()f r f θ=-- 如果材料表面原始接触角小于公式中的临界接触角,那么液体和固体接触部分所包含的空气是不稳定的,Cassie 接触状态很容易转变成Wenzel 接触状态。为获得稳定的空气层, 固体表面必须足够的疏水,临界转变角足够小,因为Cassie 接触状态只有在*θ>Crit θ或 *cos 1r θ<-时候是稳定的。 5. 前进角A θ和后退角R θ: 考虑放置在一个固体上的一滴液体。如果液滴被注水,则它会变大,它的接触角会逐渐增大直到达到临界值A θ,在临界值接触线开始前进。相反的,如果液滴中的水被抽离,它的接触角会逐渐减小直到达到临界值R θ,在临界值接触线开始后退。 6. 接触角滞后/滚动角θ?: 观察到的静态接触角θ可能位于由前移和后移接触角所限定范围A R θθθ>>内的任意位置。对于给定的三相系统,这一静态值的限定范围称为接触角滞后=-A R θθθ?。θ?与液体在固体上的附着力相关,表征液滴在固体表面滚动的难易程度。 7. 静态接触角:静止平衡态时刻的接触角。 8. 动态接触角:接触线具有一定的速度,非静止平衡态时刻的接触角。 表面湿润性与接触角密切相关, 湿润动力学研究的目的是揭示接触角(此时常称为动态接触角) 与接触线(或者固体衬底) 移动速度、液体物性和固体衬底物性之间的关系。

接触角

原理概述 1 接触角定义 当液滴自由地处于不受力场影响的空间时,由于界面张力的存在而呈圆球状。但是,当液滴与固体平面接触时,其最终形状取决于液滴内部的内聚力和液滴与固体间的粘附力的相对大小。当一液滴放置在固体平面上时,液滴能自动地在固体表面铺展开来,或以与固体表面成一定接触角的液滴存在,如图1所示。 图1 接触角 假定不同的界面间力可用作用在界面方向的界面张力来表示,则当液滴在固体平面上处于平衡位置时,这些界面张力在水平方向上的分力之和应等于零,即 θγγγcos ///A L L S A S += (1) 式中γS/A 、γL/A 、γS/L 分别为固-气、液-气和固-液界面张力;θ为液体与固体间的界面和液体表面的切线所夹(包含液体)的角度,称为接触角(contact angle ),θ在00-1800之间。接触角是反应物质与液体润湿性关系的重要尺度,θ=90o 可作为润湿与不润湿的界限,θ<90o 时可润湿,θ>90o 时不润湿。 2 润 湿 润湿(wetting)的热力学定义是,若固体与液体接触后体系(固体和液体)的自由能G 降低,称为润湿。自由能降低的多少称为润湿度,用W S/L 来表示。润湿可分为三类:粘附润湿(adhesional wetting )、铺展润湿(spreading wetting )和浸湿(immersional wetting )。可从图2看出。

图2 三类润湿 (1)粘附润湿 如果原有的1m2固面和1m2液面消失,形成1m2固-液界面,则此过程的 W A S/L为: W A S/L=γS/A+γL/A-γS/L (2) (2)铺展润湿 当一液滴在1m2固面上铺展时,原有的1m2固面和一液滴(面积可忽略不 计)均消失,形成1m2液面和1m2固-液界面,则此过程的W S S/L为: W S S/L=γS/A-γL/A-γS/L (3) (3)浸湿 当1m2固面浸入液体中时,原有的1m2固面消失,形成1m2固-液界面, 则此过程的W I S/L为: W I S/L=γS/A-γS/L (4) 对上述三类润湿,γS/A和γS/L无法测定,如何求W S/L?分别讨论如下: ①粘附润湿 将(1)式代入(2)式,可得:W A S/L=γL/A(1+cosθ)(5) 因液体表面张力γL/A为已知,故只需测定接触角θ即可求出W A S/L。 ②铺展润湿 将(1)式代入(3)式,可得:W S S/L=γL/A(cosθ-1) 因cos≤1,故W S S/L≤0。但W S/L是自由能降低,结果表示可以有一个自由能增加或不变的自发过程。这显然违反热力学第二定律。错误在于误用了(1)式,此式只适用于平衡态。若液滴自动铺展以完全盖住固面,这就表示液滴与固面不成平衡态,所以不能将(1)式代入(3)式中。这里应该指出,不能将铺展润湿认为θ=00,而在此情况下根本没有接触角。θ=00的正确理解应是有一个角,恰好等于 0o。 设有固体与压力逐渐增加的蒸气接触以吸附此蒸气,当压力达到饱和蒸气压P0时,固面上即有一层极薄的液体。由Gibbs吸附原理知,表面自由能降低= RT?Γ0 0ln P P d。因此,W S S/L=γS/A-γL/A-γS/L =RT?Γ0 0ln P P d(6)③浸湿 将式(6)中的γL/A去掉,即得W I S/L:

接触角仪器的操作步骤

一、测试样品的制备: 1.尽量保持测试样品本身的洁净度。 2.尽量保持测试样品表面的水平度。固体粉末样经充分干燥后,压成片状;粘稠状样先溶解在强挥发性溶剂中后成膜,干燥后再测试。 3.确认测试样品的尺寸是否符合要求。最好是直径小于150mm。 4.测试过程中,不可用手接触测试区域。 5.为保证测试结果更符合实际值,测试过程会进行多次测试。 二、测试过程: 1.参数的设置: 启动程序→选择测试向导→普通接触角→选择图像来源→新建一个测试报告(如图一所示)→校正测量界面(如图二所示)→类型1(平面样品)→测量方法(悬滴法)→测试环境(标准环境如图三所示)→测试模式(如图四所示)→测试实时窗口控制主界面(如图五所示) 图一图二 图三图四

图五 2. 吸取测试液体、完成液滴转移过程: 具体操作步骤如下: A 从进样器中滴出液滴,体积为2ul左右。 B 从镜头内可以看到液滴会形成如图1所示图像。然后,将针头向下移动。直到接触到样品表面如图2。注意,不要过度向下,以免压弯针头。 C 移动针头向上。由于表面张力体系的作用,液体会留在样品表面如图3所示。继续移动针头,直到从镜头内消失,通常为3mm左右。 D 通过如上过程,我们完成了一次进样过程。如果您需要再次测第二个位置,请重复如上操作即可。 E 调整水平线位置。通过鼠标选中实时窗口内的红色水平线,然后通过键盘上下键或鼠标调整水平线的位置。请对比图4与图3,前者已经调到水平接触位置。 3. 完成测试液滴转移后,按“测试”,即进入实际测试过程 测试过程,会弹出如下界面:

三、数据的处理及保存 1. 测试数据分析及管理界面如下所示: 2.进入θ/2 法人手修改接触角界面,如下所示: 调整接触角点位置的具体步骤: A 通过逐个选中3个点,将上点位于液滴最上面,左点位于液滴最左边,右点位于液滴最右边。如图所示

LS-DYNA中的接触理论讲解

LS-DYNA中的接触界面模拟 1 引言 接触-碰撞问题属于最困难的非线性问题之一,因为在接触-碰撞问题中的响应是不平滑的。当发生碰撞时,垂直于接触界面的速度是瞬时不连续的。对于Coulcomb摩擦模型,当出现粘性滑移行为时,沿界面的切向速度也是不连续的。接触-碰撞问题的这些特点给离散方程的时间积分带来明显的困难。因此,方法和算法的适当选择对于数值分析的成功是至关重要的。 虽然通用商业程序LS-DYNA提供了大量的接触类型,可以对绝大多数接触界面进行合理的模拟,但用户在具体的工程问题中,面临接触类型的选择及棘手的接触参数控制等问题。 基于以上,本文对LS-DYNA中的接触-碰撞算法作了简要的阐述,对接触类型作了详尽的总结归纳,并对接触界面的模拟提出了一些建议。 2 基本概念 基本概念:“slave”、“master”、“segment”。 在绝大多数的接触类型中,检查slave nodes是否与master segment产生相互作用(穿透或滑动,在Tied Contacts 中slave限定在主面上滑动)。因此从节点的连接方式(或从面的网格单元形式)一般并不太重要。 非对称接触算法中主、从定义的一般原则: 粗网格表面定义为主面,细网格表面为从面; 主、从面相关材料刚度相差悬殊,材料刚度大的一面为主面。 平直或凹面为主面,凸面为从面。 有一点值得注意的是,如有刚体包含在接触界面中,刚体的网格也必须适当,不可过粗。 3 接触算法 在LS-DYNA中有三种不同的算法处理碰撞、滑动接触界面,即: 动态约束法(kinematic constraint method) 罚函数法(penalty method) 分布参数法(distributed paramete method) 3.1 Kinematic Constraint Method 采用碰撞和释放条件的节点约束法由Hughes 等于1976年提出,同年被Hallquit 首先应用在 DYNA2|D中,后来扩展应用到 DYNA3D中。 其基本原理是:在每一时间步Δt修正构形之前,搜索所有未与主面(master surface)接触的从节点(slave node),看是否在此Δt内穿透了主面。如是,则缩小Δt,使那些穿透主面的从节点都不贯穿主面,而使其正好到达主面。在计算下一Δt之前,对所有已经与主面接触的从节点都施加约束条件,以保持从节点与主面接触而不贯穿。此外还应检查那些和主面接触的从节点所属单元是否受到拉应力作用。如受到拉应力,则施加释放条件,使从节点脱离

接触角的概念所谓接触角就是固一液界面与气一液界面之切线在三相

接触角的概念: 所谓接触角就是固一液界面与气一液界面之切线在三相点处的夹角。接触角的大小决定了润湿程度,接触角本身取决于界面张力的相对大小。 固体表面能被液体润湿,接触角越小.润湿性越大,铺展性也愈大,当接触角为零时,叫完全润湿;固体表面不被液体润湿,说明接触角越大,润湿性越小,辅展性越小,液面易收缩成球形。当接触角等于180度时,叫完全不润湿。必须指出,润湿与不润湿是一种相对的概念,没有绝对不润湿酌物质,它们只是程度上的差异。习惯上是这样区分的:接触角<90度称为润湿;接触角>90度,称为不润湿;接触角等于零度,叫完全润湿;接触角=180度,叫完全不润湿。 以上所指的接触角也叫平衡接触角,它没有考虑表面上的阻力,对一个弯曲液面,由于表面张力的作用。迫使弯曲液面向内收缩而产生一种额外的压力,这种额外的压力叫做附加压力。附加压力的方向始终指向曲率中心。注意附加压力只发生在弯曲液面上。 众所周知,纳米材料科学与工程已经成为世界性的研究热点,在研究纳米材料的表面改性时,往往要涉及润湿接触角这个概念。所谓接触角是指在一固体水平平面上滴一液滴,固体表面上的固-液-气三相交界点处,其气-液界面和固-液界面两切线把液相夹在其中时所成的角。 接触角测量仪仪器介绍: 本公司仪器采用现代化工艺制造,仪器采用先进的专用CMOS数字摄像机,配倍高分辨率变焦式显微镜和高亮度LED背景光源系统,搭配三维样品台,可进行工作台上下、左右、前后等方向移动。实现微量进样及上下、左右精密移动。同时还设计了伸缩杆结构工作台,能适应在不同用户材料厚度加大的场合。仪器框架可以根据式样的大小适量调节,扩大了仪器的使用范围。软件搭配修正功能,测试多次后的结果可以同时保存在同一报告下,能让用户更好的对材料数据进行管控。该仪器设计美观大方、操作简单、符合用户所需。适用于各种行业测定接触角的用户

ansys workbench接触分析

Workbench -Mechanical Introduction Introduction 作业3.1 31 接触控制

作业3.1 –目标 Workshop Supplement ?作业3.1调查了一个简单组件的接触行为。目的是为了说明由于不适当接触导致的刚体运动是怎么产生的。 ?问题描述: 问题描述 –模型从一个简单Parasolid组件文件获得 –我们的目标是在组件的各部件中建立接触,查看非对称加载对结果有何影响 我们的目标是在组件的各部件中建接触,查看非对称加载对结果有何影响

作业3.1 –假设 Workshop Supplement ?假设arm shaft 和side plate上的孔间的摩擦忽略不计,同样arm shaft 和stop shaft 之间的接触也忽略不计。最后假设stop shaft固定在两个side plate之间。 之间 Arm Shaft Side Plate Side Plate p Stop Shaft

作业3.1 –Project Schematic Workshop Supplement ?打开Project page(项目页) ?通过“Units” 菜单确定: –Project单位设置为“US Customary (lbm, in, s, F, A, lbf, V). –选择“Display Values in Project Units”

. . .作业3.1 –Project Schematic Workshop Supplement 1.在Toolbox(工具箱)中双击 Static Structural建立新的分析系 统 1. 2.Geometry上点击鼠标右键选择 2在 Import Geometry导入 2. Contact_Arm.x_t文件

接触角原理

2.1 接触角定义 当液滴自由地处于不受力场影响的空间时,由于界面张力的存在而呈圆球状。但是,当液滴与固体平面接触时,其最终形状取决于液滴内部的内聚力和液滴与固体间的粘附力的相对大小。当一液滴放置在固体平面上时,液滴能自动地在固体表面铺展开来,或以与固体表面成一定接触角的液滴存在,如图1所示。 图1 接触角 假定不同的界面间力可用作用在界面方向的界面张力来表示,则当液滴在固体平面上处于平衡位置时,这些界面张力在水平方向上的分力之和应等于零,即 θγγγcos ///A L L S A S += (1) 式中γS/A 、γL/A 、γS/L 分别为固-气、液-气和固-液界面张力;θ为液体与固体间的界面和液体表面的切线所夹(包含液体)的角度,称为接触角(contact angle ),θ在00-1800之间。接触角是反应物质与液体润湿性关系的重要尺度,θ=90o 可 作为润湿与不润湿的界限,θ<90o 时可润湿,θ>90o 时不润湿。 2.2 润 湿 润湿(wetting)的热力学定义是,若固体与液体接触后体系(固体和液体)的自由能G 降低,称为润湿。自由能降低的多少称为润湿度,用W S/L 来表示。润湿可分为三类:粘附润湿(adhesional wetting )、铺展润湿(spreading wetting )和浸湿(immersional wetting )。可从图2看出。 图2 三类润湿

(1)粘附润湿 如果原有的1m2固面和1m2液面消失,形成1m2固-液界面,则此过程的 W A S/L为: W A S/L=γS/A+γL/A-γS/L (2) (2)铺展润湿 当一液滴在1m2固面上铺展时,原有的1m2固面和一液滴(面积可忽略 不计)均消失,形成1m2液面和1m2固-液界面,则此过程的W S S/L为: W S S/L=γS/A-γL/A-γS/L (3) (3)浸湿 当1m2固面浸入液体中时,原有的1m2固面消失,形成1m2固-液界面,则此过程的W I S/L为: W I S/L=γS/A-γS/L (4) 对上述三类润湿,γS/A和γS/L无法测定,如何求W S/L?分别讨论如下: ①粘附润湿 将(1)式代入(2)式,可得:W A S/L=γL/A(1+cosθ)(5) 因液体表面张力γL/A为已知,故只需测定接触角θ即可求出W A S/L。 ②铺展润湿 将(1)式代入(3)式,可得:W S S/L=γL/A(cosθ-1) 因cos≤1,故W S S/L≤0。但W S/L是自由能降低,结果表示可以有一个自由能增加或不变的自发过程。这显然违反热力学第二定律。错误在于误用了(1)式,此式只适用于平衡态。若液滴自动铺展以完全盖住固面,这就表示液滴与固面不成平衡态,所以不能将(1)式代入(3)式中。这里应该指出,不能将铺展润湿认为θ=00,而在此情况下根本没有接触角。θ=00的正确理解应是有一个角,恰好等于0o。 设有固体与压力逐渐增加的蒸气接触以吸附此蒸气,当压力达到饱和蒸气压P0时,固面上即有一层极薄的液体。由Gibbs吸附原理知,表面自由能降低= RT?Γ0 0ln P P d。因此,W S S/L=γS/A-γL/A-γS/L =RT?Γ0 0ln P P d(6) ③浸湿 将式(6)中的γL/A去掉,即得W I S/L: W I S/L=γS/A -γS/L =RT?Γ0 0ln P P d(7) 由(5)式可知,当θ=0o时,cosθ=1,W A S/L=2γL/A,自由能降低为最大,则认为固体完全被液体润湿;当θ=180o时,cosθ=-1,W A S/L=0,自由能降低为0,则固体完全不被液体润湿,即完全不润湿。这种情况是理想的,因为液体与固体之间多少有一些相互吸引力存在。

ls-dyna 接触介绍

第六章接触表面 ANSYS/LS-DYNA中的接触表面可以使用户在模型中诸Component之间定义多种接触类型,本章将概要地讲述一下显式动态分析中定义物理上的真实接触。 必须注意的是显式动态分析中的接触与其它类型的ANSYS分析中的接触类型不同,在其它分析中,接触是由实际接触单元表示。而在显式动态分析中没有接触单元。只需定义接触表面,它们之间的接触类型以及相应的参数。 6.1接触的定义 因为在显式动态分析中会发生复杂的大变形,所以确定模型内component之间的接触是非常困难的。基于此原因,ANSYS/LS-DYNA程序中包含许多功能以使接触表面间的接触定义更容易些。在 ANSYS/LS-DYNA中采用EDCGEN命令来定义所有接触表面。 使用EDCGEN命令时遵循下列步骤: 第一步;确定哪种接触类型最适合你的物理模型。 第二步:定义接触实体。 第三步:定义摩擦系数参数。 第四步:为给定的接触类型给定一些附加输入。 第五步:定义接触的杀死和激活时间。 第一步:定义接触类型 为了充分地描述在大变形接触和动态撞击中的复杂几何体之间的相互作用,在ANSYS/LS-DYNA中引入了许多种接触类型。这些接触类型,包括节点-表面,表面-表面,单面,单边,侵蚀,固连,固连断开,压延筋和刚性体接触,将在本章标题为“接触选项”中详细讨论,对于一般的分析而言,建议使用自动单面(ASSC),自动原则(AG),节点-表面(NTS),表面-表面(STS)接触选项。 第二步:定义接触实体 除单面接触(ASSC,SS和ESS)、自动通用(AG)和单边接触(SE)外,所有的接触类型都必须在发生接触的地方定义contact表面和target表面,这可用节点components, PART ID 或部件集合ID 定义。当使用contact component和target component 时,使用选择项并用CM命令把节点组合在一起(仅节点component有效),然后用下面的输入列表,说明如何使用EDCGEN命令在component之间定义接触,如第四章例题的球和球棒表面间的component. NSEL,S,NODE,....!在球面上选择节点 CM,BALLSURF,NODE!把被选的节点放在component BALLSURF中 NSEL,S,NODE,....!选择球面上的节点 CM,BATSURF,NODE!把被选节点放在component BATSURF中 EDCGEN,NTS,BALLSURF,BATSURF,.25,.23!在组元component BALLSURF和component BATSURF间定义为节点-表面接触。 此外,还可以用有限元模型内当前定义的部件号或部件集合号来定义接触表面。部件集合号可以用EDASMP命令定义。 下面的命令行说明了怎样使用EDCGEN命令在模型中定义不同部件或部件集合间的接触; EDCGEN,STS,1,2,.25,.23!在部件1和部件2间生成面面接触 另外,结合PART/部件集合和组元定义,也可以定义接触和目标表面间的接触,表述如下: EDCGEN,NTS,N1,2,.3,.28!在组元N1和PART2间生成点面接触 EDCGEN,ESTS,1,N2,.15,.15!在PART1和组元N2间生成侵蚀面面接触

ansys workbench接触分析习题

)间的球形界面的压力形貌。

上机实验报告: 软件版本:ANSYS workbench 19.2 1.主要分析过程及注意事项 分析过程: ●打开workbench,从左侧的“analysis system”中拖入“static structural”到中间空白区域 ●由于材料已经是默认的结构钢,所以我们不用修改,但是单位和它的显示模式我们要改 成像下图中的(Tonne,mm,…)和“display values in project units”。 ●在geometry中导入“ball-socket.x_t ”之前,先在右边的属性栏里,找到analysis type, 将3D改为2D,改完之后再导入“ball-socket.x_t ”。

●双击model进去“mechanical”,选中Geometry,在Definition中把2D Behavior改为 Axisymmetric。同时检查工作单位制是否是Metric (mm,kg,N,s,mV,mA) ●选中“contacts”,插入“Frictional” Frictional Coefficient设为0.4,behavior改为auto asymmetric(自动非对称),formulation改为augmented lagrange(后面的试验结果表明,formulation设为program controlled,结果都一样)

●在analysis setting里把Large Deflection改为ON ●鼠标选中mesh,我们可以在下面的element size 改变网格大小,本上机实验中会分别试验 1.0mm和0.5mm,修改完后右键generate mesh可观看效果 ●选中static structural,插入fixed support ,选中socket的上边线,并apply,然后在插入loads 里的force,这时选择ball的下边线,并apply,在define by里选择component,并在y方向上输入-1000。

WorkBench 接触变形分析教程

前言 WokBench是众所周知的好东西,以下是自己琢磨的一个小应用,肯定有不对的地方,欢迎指出,便于大家共同提高。 问题描述 这是一个塑料小卡扣的例子,主要想使用WorkBench了解在使用中,塑料件的变形是否足够。模型是用ProE制作的,为了简化,只切取了关于变形的部分,如下图: 其中蓝色的部分是活动的,只有一个方向的运动,红色的部分是固定的。 大体的尺寸如下,单位是毫米:

进入WorkBench 本人使用的是ProE/WF3.0,直接通过菜单上的WorkBenck即可进入WorkBench了。 接下来,按照图中的1、2、3操作: 材料设置 之后进入Simulation界面。 第一个事情是设置材质,考虑到蓝色部件没有必要考察变形,因此将它设置为默认的结构钢。红色部件可以直接选个聚乙烯的材料,如果今后有了明确的材质信息,可以再更改。

接触设置 在接触(Connections)中,添加一个手动接触区域 注意:在模型中,蓝色和红色部件的距离要控制好(这是由ProE中,模型装配关系决定的),如果太近,软件将自动计算出一个接触区域,但对于这个例子,还需要手动扩大接触区域。如果距离太远,在手动设置Pinball类型的接触区域时,Pinball的半径要设得很大,可能导致无法计算。请参考上面的尺寸图纸调节两个部件之间的距离。 之后,设置接触面(2、3):需要将两个部件在运动过程中,会接触的地方一一标出,千万不要加无用的面。 将Pinball Region设置为Radius方式(4),并将Radius设置一个合适的值(5),本例设置了3毫米(如图,会形成一个蓝色的大圆球),求解的时候软件会使用这个PinBall 自动探测接触。 还需要将接触方式设置为无摩擦的(6)。 最后将接触面计算方式设置为Adjust To Touch(7)。也可以尝试其他的方式,不过对于这个仅研究红色部件变形的例子就无所谓了。 关于单元格

接触角原理概述

实验项目:用接触角测量仪测量材料表面的接触角 一.实验目的: 1.认识和掌握接触角测量仪测量材料表面的接触角的基本原理 2.熟悉接触角测量仪JC2000D1的操作技术 二.实验容: 1.掌握JC2000D1型接触角测量仪的工作原理和操作步骤 2.测量几种材料的表面接触角 三.实验仪器,设备及材料 设备JC2000D1型接触角测量仪,蒸馏水,解玻片,食盐水,样品木板几个 四.基本原理概述 1.接触角定义及应用 当液滴自由地处于不受力场影响的空间时,由于界面力的存在而呈圆球状。但是,当液滴与固体平面接触时,其最终形状取决于液滴部的聚力和液滴与固体间的粘附力的相对大小。当一液滴放置在固体平面上时,液滴能自动地在固体表面铺展开来,或以与固体表面成一定接触角的液滴存在,接触角通俗地说,就是液滴在固体表面自然形成的半圆形态相对于固体平面的外切线,如图1所示。 接触角的应用非常广泛,甚至可以说涉及到身边的每个细节,我们希望汽车玻璃上不沾雨水,但反之我们希望汽车钢板上的油漆永不脱落。其他比如农药和蔬菜叶面;涂料和外墙面,绝缘材料,纳米材料表面化改性等等,从教学科研工农业生产到日常生活。 图1 接触角 假定不同的界面间力可用作用在界面方向的界面力来表示,则当液滴在固体平面上处于平衡位置时,这些界面力在水平方向上的分力之和应等于零,即 (1) 式中、、分别为固-气、液-气和固-液界面力;为液体与固体间的界面和液体表面的切线所夹(包含液体)的角度,称为接触角 (contact angle),在之间。接触角是反应物质与液体润湿性关系

的重要尺度,可作为润湿与不润湿的界限,时可润湿, 时不润湿。 2.润湿 润湿(wetting)的热力学定义是,若固体与液体接触后体系(固体和液体)的自由能G降低,称为润湿。自由能降低的多少称为润湿度,用来表示。润 湿可分为三类:粘附润湿(adhesional wetting)、铺展润湿 (spreading wetting)和浸湿(immersional wetting)。可从图2看出。 图2 三类润湿 (1)粘附润湿 如果原有的1固面和1液面消失,形成1固-液界面,则此过程的 为: (2) (2)铺展润湿 当一液滴在1固面上铺展时,原有的1固面和一液滴(面积可忽略不计)均消失,形成1液面和1固-液界面,则此过程的为: (3) (3)浸湿 当1固面浸入液体中时,原有的1固面消失,形成1固-液界面,则此过程的为: (4) 对上述三类润湿,和无法测定,如何求?分别讨论如下: (1)粘附润湿

LSDYNA的接触定义V

LS-DYNA接触定义介绍 Engineering Technology Associates, Inc. (China) 彭冰元 2014.11.12

?Contact ●LS-DYNA中接触发展历史; ●接触中的某些概念; ●接触的类型; ●参数介绍; ●Tied 接触; ●接触控制参数; ●接触结果的输出; ●初始穿透; ●定义接触的注意事项;

?Contact ●发展历程: LS-DYNA,1976年引入接触设置 一开始3d接触算法只能在显式算法中使用 初始接触设置主要为了武器开发 现在己经广泛应用于各个领域 参考: “Sliding interface with contact-impact in large-scale lagrangian computations” -dr. Johnhallquist, etal,1984

?Contact中的一些概念 ●接触的重要性: 基础力学所分析的对像均只考虑「力的受体」,故输入条件皆为外力量值 然而在真实情况下物体受力通常是因为与其它的物体发生「接触」(Contact) 才受力,此时外力量值是无法预期的,应该输入的条件往往都是几何上的接触 条件Parts 之间的碰撞/推压/滑移/摩擦,因为有完备的接触力学演算方式,LS- DYNA才得以真实的仿真现实环境的复杂结构行为, 允许分开的单元之间产生相 互作用

?Contact中的一些概念 ●接触的作用: 允许分开的单元之间产生相互作用 Parts 之间的碰撞/推压/滑移/摩擦 Parts绑定在一起 允许相互作用的单元分开 相互作用结束时,接触的单元能顺利分开 绑定在一起的单元在失效设置后能顺利分开

workbench荷载 约束 接触定义相关概念解释

目录 workbench荷载的含义 (1) Workbench约束的含义 (3) 接触 (4)

workbench荷载的含义 1)方向载荷 对大多数有方向的载荷和支撑,其方向多可以在任意坐标系中定义: –坐标系必须在加载前定义而且只有在直角坐标系下才能定义载荷和支撑的方向. –在Details view中, 改变“Define By”到“Components”. 然后从下拉菜单中选择合适的直角坐标系. –在所选坐标系中指定x, y, 和z分量 –不是所有的载荷和支撑支持使用坐标系。 2)加速度(重力) –加速度以长度比上时间的平方为单位作用在整个模型上。 –用户通常对方向的符号感到迷惑。假如加速度突然施加到系统上,惯性将阻止加速度所产生的变化,从而惯性力的方向与所施加的加速度的方向相反。 –加速度可以通过定义部件或者矢量进行施加。 标准的地球重力可以作为一个载荷施加。 –其值为9.80665 m/s2 (在国际单位制中) –标准的地球重力载荷方向可以沿总体坐标轴的任何一个轴。 –由于“标准的地球重力”是一个加速度载荷,因此,如上所述,需要定义与其实际相反的方向得到重力的作用力。 3)旋转速度 旋转速度是另一个可以实现的惯性载荷 –整个模型围绕一根轴在给定的速度下旋转 –可以通过定义一个矢量来实现,应用几何结构定义的轴以及定义的旋转速度 –可以通过部件来定义,在总体坐标系下指定初始和其组成部分 –由于模型绕着某根轴转动,因此要特别注意这个轴。 –缺省旋转速度需要输入每秒所转过的弧度值。这个可以在路径“Tools > Control Panel >Miscellaneous > Angular V elocity” 里改变成每分钟旋转的弧度(RPM)来代替。 4)压力载荷: –压力只能施加在表面并且通常与表面的法向一致 –正值代表进入表面(例如压缩);负值代表从表面出来(例如抽气等) –压力的单位为每个单位面积上力的大小 5)力载荷: –力可以施加在结构的最外面,边缘或者表面。 –力将分布到整个结构当中去。这就意味着假如一个力施加到两个同样的表面上,每个表面将承受这个力的一半。力单位为质量乘以长度比上时间的平方。 –力可以通过定义矢量,大小以及分量来施加。

接触角原理概述

实验项目:用接触角测量仪测量材料表面得接触角 一.实验目得: 1.认识与掌握接触角测量仪测量材料表面得接触角得基本原理 2.熟悉接触角测量仪JC2000D1得操作技术 二.实验内容: 1.掌握JC2000D1型接触角测量仪得工作原理与操作步骤 2.测量几种材料得表面接触角 三.实验仪器,设备及材料 设备JC2000D1型接触角测量仪,蒸馏水,解玻片,食盐水,样品木板几个 四.基本原理概述 1.接触角定义及应用 当液滴自由地处于不受力场影响得空间时,由于界面张力得存在而呈圆球状。但就是,当液滴与固体平面接触时,其最终形状取决于液滴内部得内聚力与液滴与固体间得粘附力得相对大小。当一液滴放置在固体平面上时,液滴能自动地在固体表面铺展开来,或以与固体表面成一定接触角得液滴存在,接触角通俗地说,就就是液滴在固体表面自然形成得半圆形态相对于固体平面得外切线,如图1所示。 接触角得应用非常广泛,甚至可以说涉及到身边得每个细节,我们希望汽车玻璃上不沾雨水,但反之我们希望汽车钢板上得油漆永不脱落。其她比如农药与蔬菜叶面;涂料与内外墙面,绝缘材料,纳米材料表面化改性等等,从教学科研工农业生产到日常生活。 图1 接触角 假定不同得界面间力可用作用在界面方向得界面张力来表示,则当液滴在固体平面上处于平衡位置时,这些界面张力在水平方向上得分力之与应等于零,即 (1) 式中、、分别为固气、液气与固液界面张力;为液体与固体间得界面与液体表面得切线所夹(包含液体)得角度,称为接触角(contact angle),在之间。接触角就是反应物质与液体润湿性关系得重要尺度,可作为润湿与不润湿得界限,时可润湿, 时不润湿。 2. 润湿 润湿(wetting)得热力学定义就是,若固体与液体接触后体系(固体与液体)得自由能G降低,称为润湿。自由能降低得多少称为润湿度,用来表示。润湿可分为三类:粘附润湿(adhesional wetting)、铺展润湿(spreading wetting)与浸湿

LS-DYNA中的接触界面模拟_整理版

LS-DYNA中的接触界面模拟(3) LS-DYNA中的接触允许从节点与主段间压缩载荷的传递。如接触摩擦激活,也允许切向载荷的传递。Coulomb摩擦列式用来处理从静到动摩擦的转换,这种转换要求一个衰减系数、静摩擦系数大于动摩擦系数。 关于接触搜索方法,这里仅给出几个简单的要点,DYNA中有两种搜索方法:Incremental Search Technique与Bucket Sort。 Incremental Search Algorithms 搜索方向仅在主段正方向从节点的穿透 搜索步骤对每一个从节点的:找出最接近的主节点;搜索相邻的主段;穿透检查;施加作用力。 主面要求主面连续 特点简单、速度快 Global Bucket Sort 搜索方向主面正、负方向检查穿透 搜索步骤搜索接近的主段(不止一个);局部利用Incremental Search确定最接近的主段;穿透检查;施加作用力。 主面要求主面可以不连续 特点非常有效,但耗时大所有的非自动 LS-DYNA中的接触类型大体上可以分为五大类: One-Way Contact (单向接触) Two-Way Contact(双向接触) Single Contact(单面接触) Entity Tied Contac(固-连接触) 在以上接触类型中,前四种接触类型的接触算法均采用罚函数法。固-连接触有的采用的罚函数法,有的采用动约束法,少部分采用分布参数法。 4.1 One-Way Treatment of Contact One-Way、Two-Way是对接触搜索来讲的。One-way仅检查从节点是否穿透主面,而不检查主节点。在Two-Way Contact中从节点与主节点是对称的,从节点与主节点都被检查是否穿透相应的主面或从面。 LS-DYNA中的_Node_To_Surface接触类型都属于单向接触,另外还有特别注明为单向接触的_Surface_To_Surface接触类型: *Contact_Nodes_To_surface *Contact_Automatic_Nodes_To_Surface *Contact_Froming_Nodes_To_Surface(自动接触类型、主要用于金属拉压成形) *Contact_Constraint_Nodes_To_Surface(现已很少用) *Contact_Eroding_Nodes_To_Surface *Contact_One_Way_Surface_To_Surface *Contact_One_Way_Automatic_Surface_To_Surface 由于在单向接触中,仅有从节点被检查是否穿透主面,而不考虑主节点,因此在使用时必须注意,应保证在接触过程中主节点不会穿过从面。同样的原因,单向接触要比双向接触运行速度快得多,因此仍被广泛应用。在以下情况中使用单向接触是合适的:

ansysworkbench接触实例分析

前言 WokBench 是众所周知的好东西,以下是自己琢磨的一个小应用,肯定有不对的地方, 欢迎指出,便于大家共同提高。 问题描述 这是一个塑料小卡扣的例子,主要想使用WorkBench 了解在使用中,塑料件的变形是否足够。模型是用ProE 制作的,为了简化,只切取了关于变形的部分,如下图: 其中蓝色的部分是活动的,只有一个方向的运动,红色的部分是固定的。 大体的尺寸如下,单位是毫米:

注意:在模型中,蓝色和红色部件的距离要控制好(这是由ProE 中,模型装配关系 决定的),如果太近,软件将自动计算出一个接触区域,但对于这个例子,还需要手 动扩大接触区域。如果距离太远,在手动设置Pinball 类型的接触区域时,Pinball 的 半径要设得很大,可能导致无法计算。请参考上面的尺寸图纸调节两个部件之间的距 离。 之后,设置接触面(2、3):需要将两个部件在运动过程中,会接触的地方一一标出, 千万不要加无用的面。 将Pinball Region 设置为Radius 方式(4),并将Radius 设置一个合适的值(5),本例设置了3 毫米(如图,会形成一个蓝色的大圆球),求解的时候软件会使用这个PinBall 自动探测接触。 还需要将接触方式设置为无摩擦的(6)。 最后将接触面计算方式设置为Adjust To Touch(7)。也可以尝试其他的方式,不过对 于这个仅研究红色部件变形的例子就无所谓了。

关于单元格 WorkBench 中可以不自行划分单元格(在解算的时候,如果没有手动的设置,软件就会先自动划分),软件帮你自动产生。如果你的其他设置正确,即便是这个自动的值也能很精确了。 添加分析 这个分析用静力学就可以了(1)。 之后要设置Analysis Setting(2)。将Nuber Of Step 设置为2(3)。 注意: 1)蓝色部件在运动的过程中,先压迫红色部件,再逐渐松开,因此必须将这个过 程至少分解为至少两个阶段(阶段指“Step”)。 2)对于一个阶段而言,Ansys 求解时,会先考察它的开始和结束两个点的状态。

液-固界面接触角的测量

液-固界面接触角的测量 一、实验目的 1. 了解液体在固体表面的润湿过程以及接触角的含义与应用。 2. 掌握用JC2000C1静滴接触角/界面张力测量仪测定接触角和表面张力的方法。 二、实验原理 润湿是自然界和生产过程中常见的现象。通常将固-气界面被固-液界面所取代的过程称为润湿。将液体滴在固体表面上,由于性质不同,有的会铺展开来,有的则粘附在表面上成为平凸透镜状,这种现象称为润湿作用。前者称为铺展润湿,后者称为粘附润湿。如水滴在干净玻璃板上可以产生铺展润湿。如果液体不粘附而保持椭球状,则称为不润湿。如汞滴到玻璃板上或水滴到防水布上的情况。此外,如果是能被液体润湿的固体完全浸入液体之中,则称为浸湿。上述各种类型示于图1。 图1 各种类型的润湿 当液体与固体接触后,体系的自由能降低。因此,液体在固体上润湿程度的大小可用这一过程自由能降低的多少来衡量。在恒温恒压下,当一液滴放置在固体平面上时,液滴能自动地在固体表面铺展开来,或以与固体表面成一定接触角的液滴存在,如图2所示。 图2 接触角 假定不同的界面间力可用作用在界面方向的界面张力来表示,则当液滴在固体平面上处于平衡位置时,这些界面张力在水平方向上的分力之和应等于零,这个平衡关系就是著名的Young方程,即 γSG- γSL= γLG·cosθ(1)

式中γSG,γLG,γSL分别为固-气、液-气和固-液界面张力;θ是在固、气、液三相交界处,自固体界面经液体内部到气液界面的夹角,称为接触角,在0o-180o之间。接触角是反应物质与液体润湿性关系的重要尺度。 在恒温恒压下,粘附润湿、铺展润湿过程发生的热力学条件分别是: 粘附润湿W a=γSG - γSL + γLG≥0 (2) 铺展润湿S=γSG-γSL-γLG≥0 (3) 式中W a,S分别为粘附润湿、铺展润湿过程的粘附功、铺展系数。 若将(1)式代入公式(2)、(3),得到下面结果: W a=γSG+γLG-γSL=γLG(1+cosθ) (4) S=γSG-γSL-γLG=γLG(cosθ-1) (5)以上方程说明,只要测定了液体的表面张力和接触角,便可以计算出粘附功、铺展系数,进而可以据此来判断各种润湿现象。还可以看到,接触角的数据也能作为判别润湿情况的依据。通常把θ=90°作为润湿与否的界限,当θ>90°,称为不润湿,当θ<90°时,称为润湿,θ越小润湿性能越好;当θ角等于零时,液体在固体表面上铺展,固体被完全润湿。 接触角是表征液体在固体表面润湿性的重要参数之一,由它可了解液体在一定固体表面的润湿程度。接触角测定在矿物浮选、注水采油、洗涤、印染、焊接等方面有广泛的应用。 决定和影响润湿作用和接触角的因素很多。如,固体和液体的性质及杂质、添加物的影响,固体表面的粗糙程度、不均匀性的影响,表面污染等。原则上说,极性固体易为极性液体所润湿,而非极性固体易为非极性液体所润湿。玻璃是一种极性固体,故易为水所润湿。对于一定的固体表面,在液相中加入表面活性物质常可改善润湿性质,并且随着液体和固体表面接触时间的延长,接触角有逐渐变小趋于定值的趋势,这是由于表面活性物质在各界面上吸附的结果。 接触角的测定方法很多,根据直接测定的物理量分为四大类:角度测量法、长度测量法、力测量法,透射测量法。其中,液滴角度测量法是最常用的,也是最直截了当的一类方法。它是在平整的固体表面上滴一滴小液滴,直接测量接触角的大小。为此,可用低倍显微镜中装有的量角器测量,也可将液滴图像投影到屏幕上或拍摄图像再用量角器测量,这类方法都无法避免人为作切线的误差。本实验所用的仪器JC2000C1静滴接触角/界面张力测量仪就可采取量角法和量高法这两种方法进行接触角的测定。 三、仪器与药品 仪器:JC2000C1界面张力测量仪,微量注射器,容量瓶,镊子,玻璃载片,涤纶薄片,聚乙烯片,金属片(不锈钢、铜等)。 试剂:蒸馏水,无水乙醇,十二烷基苯磺酸钠(或十二烷基硫酸钠)

相关主题
文本预览
相关文档 最新文档