当前位置:文档之家› 微机电系统及纳米技术大作业--微型光栅

微机电系统及纳米技术大作业--微型光栅

微机电系统及纳米技术大作业--微型光栅
微机电系统及纳米技术大作业--微型光栅

微机电系统及纳米技术

大作业

题目:微型光栅

目录

摘要 (2)

关键词 (3)

引言 (3)

衍射光栅 (4)

衍射光栅概念 (4)

传统衍射光栅的技术发展 (4)

硅光栅技术() (5)

硅光栅的加工制作方法 (5)

硅光栅的体硅制作工艺 (6)

硅光栅的表面硅制作工艺 (6)

硅光栅的应用 (7)

MEMS微型可编程光栅() (8)

可编程光栅结构原理 (8)

微型可编程光栅的工艺 (9)

微型可编程光栅的发展现状 (10)

总结 (11)

参考文献 (12)

摘要

基于光栅技术的光谱分析在物理、化学、天文、生物、冶金学及其他分析领域起着重要的作用。随着科学技术的发展,对光栅技术提出了更高的要求,对新型光栅的研究也受到更加广泛的重视。

随着硅微加工技术的迅速发展,带动了微电子科学的进步,计算机及其它各种电子产品已成为人类不可缺少的工具。与微电子产品相兼容的集成化、微型化的产品为传统的仪器及设备打开了新的应用空间,因而出现了微机械、微光学等在技术上与硅微加工工艺相兼容的新学科。而光栅在微观上的周期性,硅作为晶体材料结构上的特殊性及其加工工艺的兼容性,使人们开始尝试在硅基材料上制作光栅的可能性。1975年W.Tang和S.Wang首次在论文中报道了利用硅加工技术制作光栅m,从此硅光栅被应用在许多不同的领域。

MEMS技术的出现与发展提供了能根据实际情况实时改变结构参数的光栅,即MEMS微型可编程光栅。这种光栅通过静电驱动的方式实现对光栅的结构单元,微变形梁的编程控制。MEMS微型可编程光栅不仅扩展了光栅在传统领域发挥巨大作用,同时促进其在光通讯等领域的广泛应用。因此,对MEMS微型可编程光栅的研究具有重要的研究意义。

本文对硅光栅和MEMS可编程光栅进行了简单的介绍,主要包括其工作原理及结构组成,加工方法,工艺流程及其中的关键工艺,最后简单说明了微型光栅的应用领域、实际应用情况及可能的应用前景。

关键词

微机电系统,硅光栅,微型可编程光栅

引言

光谱是各个波长光波的有序排列。而光谱分析学则是研究各种物质光谱的产生及其同物质之间的相互作用的学科。一直以来,基于衍射光栅的光谱分析技术在物理研究中一直占有重要地位。特别是近年来随着科学技术的发展,光栅光谱技术在天文、生物、化学、冶金学及其他分析领域起着越来越重要的作用:物理学研究方面,光栅光谱分析仪可用于验证量子力学的氢原子光谱采集实验;天文

学研究方面,利用光栅光谱分析仪可以分析各种恒星的物质组成成分和行星上的大气组成结构:化学研究方面,基于光栅的各种分析仪器可以确定各种化学成分是否存在,甚至包括对它们的含量进行检测。

衍射光栅

衍射光栅概念

光栅光谱分析仪器的核心器件是衍射光栅,这是一种具有良好分光性能的光学器件。

衍射光栅是具有周期性空间结构或光学性能的光学元件。按制作材料特性的不同可以将衍射光栅分为反射光栅和透射光栅;按表面的形状可以分为平面光栅和凹面光栅;按用途来分可以分为:伦琴射线、紫外、红外和可见区的光栅。

目前,衍射光栅不仅仅用于光谱分析,而且已经广泛的应用于其他领域,如在计量、无线电天文学、集成光学和光通信、信息处理等领域。如在通讯领域中,基于光栅技术的波分复用器件可以大大提高光纤光学网络的容量,并提高其通讯能力。

传统衍射光栅的技术发展

最早的光栅是采用机械刻划技术制作的,这种技术由夫琅禾费于1814年发明,使用的是一种叫做镜铜的高度抛光的金属:20世纪30年代J.Strong又发明的真空镀膜技术推动了光栅刻划技术的发展。在此之后,大多数光栅都是利用在玻璃衬底上沉积铝或金膜然后再刻划而成。为了控制槽形和沟槽的位置,对光栅刻划机的运动精度、刀具的外形精度以及环境的温度、湿度等要求较高,同时在制作过程中可能由于摩擦、磨损的原因而中途失败,因此生产效率较低。

此后人们又发展了光栅复制技术,即真空镀膜复制法。真空镀膜复制法是把用机械刻划法制作的光栅作为母版,在母光栅上用真空镀膜方法蒸镀分离层和铝,然后在粘接剂作用下把这层铝附着在复制光栅的毛坯上而获得复制光栅。最早成功制出复制光栅的是英国人托浦(1899),复制光栅的出现解决了光栅批量

制作问题,满足了光栅光谱仪器发展的需要。

此外,随着科学技术的发展,人们提出了一种新型的光栅制作方法——全息法。首先是迈克耳孙在1927年提出了利用两柬相干的单色平行光产生的高度均匀的干涉条纹,记录在适当介质上以制造高精度光栅的方法。但当时既无激光那样强的光源,又无细颗粒记录材料。60年代中期,由于激光的出现,特别是高功率氩离子激光器的发展,克服了曝光时间长的困难,可使用感光速度慢的细颗粒光敏材料。1967年用光刻胶和A什激光器做出了此种光栅。用全息法制作的光栅没有鬼线,杂散光很低,可以制作大面积光栅。制作全息光栅必须有可靠的干涉仪系统,具有单模和选频的激光,以及精制的光致抗蚀剂。由于全息光栅效率较低,也有采用复杂的耦合波理论对其进行优化设计,利用干法刻蚀技术制备高效率的全息衍射光栅。

硅光栅技术

硅光栅的加工制作方法

硅光栅的加工主要采用体硅加工技术和表面微加工技术,体硅加工技术和表面硅加工技术都是基于微电子集成制作技术发展而来的。体硅加工技术是为制作微三维结构而发展起来的,通常是按照设计图形在硅片上有选择地去除一部分硅材料,形成设计的微型三维结构。体硅加工技术的关键是刻蚀技术,它包括于法和湿法两种刻蚀技术。单晶硅片由于其特殊的晶体结构,在腐蚀液中沿不同的晶向其腐蚀速率有很大差别,因此又可以分为各向同性腐蚀和各向异性腐蚀,对于硅片的(100)面的刻蚀速率可以比它的(111)面的刻蚀速率高100倍,也可以采用重掺杂法和电化学止停刻蚀法进行有选择性的刻蚀。干法刻蚀主要采用物理法(溅射、离子刻蚀)和化学等离子刻蚀(反应离子刻蚀),适用于各向同性和各向异性刻蚀。表面硅加工技术是以硅片作基片,通过电极与光刻形成多层薄膜图形,再把下面的牺牲层经刻蚀去除,保留上面结构图形的加工方法。面硅加工技术与体硅加工技术的主要区别是它不直接对硅片本身进行加工,而是对硅片上淀积的薄膜(通常是多晶硅、氧化硅和氮化硅等)进行加工,有选择地保留或去除部分薄膜材料以形成所需的图形。

硅光栅的体硅制作工艺

为利用体硅刻蚀法制作光栅的流程,以单晶硅为例制作光栅,我们可以得到闪耀角为54.74。可以选用高阻单晶硅,硅衬底使用标准化学机械抛光技术,然后双面热氧化生长二氧化硅厚度大约为一百奈米,然后涂一薄层光刻胶,将涂有光刻胶的硅片在灯下透过带有光栅图形的光刻掩模版进行接触曝光,然后是在显影液中使曝光的光刻胶显影,接着在曝光图形上去除保护层,可以使用离子刻蚀或者湿法化学腐蚀。再去除剩余的光刻胶,在氢氧化钾溶液中进行湿法腐蚀硅,得到v形凹槽,再去除掩蔽层,作为反射光栅还要在 V形凹槽的表面镀上一层增反膜。

硅光栅的表面硅

制作工艺

加州大学伯克利传

感器与执行器研究中心

利用表面硅加工技术制

作了矩形和闪耀光栅,

单晶在KOH的各向异性

腐蚀特性结合多晶硅面

微机械工艺可以得到

54.74的闪耀光栅。这

是利用腐蚀硅得到的槽

型作为使用氧化硅沉积

多晶硅的模版,再通过

传统表面微机械方法得

到光栅结构后,将它从

硅衬底表面脱离并折叠起来,然后通过集成在同一芯片上的静电驱动器来驱动。

图中所示的闪耀光栅是利用UCB微制造实验室开发的一种新的制作工艺制作的,它包括硅的各向异性腐蚀的前处理和传统的两层结构的多晶硅面微机械工艺。光栅表面的模型是由在100硅衬底上利用各向异性KOH腐蚀的平行V性凹槽构成的。光栅周期为2微米。作为牺牲层的氧化硅沉积在闪耀光栅模型的表面上。于是在接下来的步骤里0.5微米厚的多晶硅层被沉积在这些凹槽模型的表面,并由此构成光栅的表面。为了支撑这么薄的光栅再沉积一层2微米厚的多晶硅层。

硅光栅的应用

微机械硅光栅可以应用在天文红外光谱测量中。与传统的刻划金属光栅相比有两大优点:

一是与光刻成形加工技术相比,传统的光栅刻划技术更容易制作大周期光栅,这种凹槽周期较大的光栅可以在即使范围较窄的红外波段,也能制作出覆盖连续波长范围的交叉色散光谱仪;

二是直接在硅表面制作光栅槽型,由于材料的透过损耗低,那么就有可能作为嵌入式透射阶梯光栅使用。由于硅的折射率达 3.4,透过介质材料照射光栅,我们可以得到较高光谱分率或在要求的分辨率下制作较小的光栅。

Bristol等人首次将硅光栅应用在远紫外和极紫外,从80nm - 130nm,由于

这一波长范围对于小凹槽面的表面缺陷非常敏感,极易产生散射,利用硅晶体结构在腐蚀条件下形成的光滑晶面在一定程度上可以解决该问题。光栅绝对效率定义为某一射级次光强除以入射光束光强的值。实验结果表明在天体物理学中重要的90-120nm波段,周期为1微米的光栅绝对效率通常可以达到10%-15%。以表面氧化层2nm的硅制作成光栅的光滑表面计算得到的反射效率与这一结果相比结果很乐观。这样光滑的表面在90-120nm波段内预期的反射效率可以达到20%-40%。

MEMS微型可编程光栅

微机电系统(Micro—electro—mechanical Systems,MEMS)是指那些采用集成微电子制备工艺技术批量生产的,具有模拟地提供机械,电子功能的多器件系统。它的一个很重要的特点是,可以采用微机械加工技术在硅片上制作一些可以控制的、可动的微型机械结构。利用MEMS的这个特性,我们可以在硅片上加工制作一种新型的光栅结构,这种光栅的每个结构单元可以在静电力作用下进行编程控制,这就是MEMS微型可编程光栅。

可编程光栅结构原理

MEMS微型可编程光栅结构如图所示,这里的“可编程”含义是指:通过驱动电路的编程控制,光栅的单元结构元素能够按照预期在一定程度内发生变形,使得光栅的栅距、闪耀角等参数发生改变,从而可以对光场光波进行相位控制,使得特定波长的光波空间相位按要求重新分布,产生预期的衍射和干涉能量

分布特性。

基于MEMS的微型光谱仪已经成为目前光谱仪研究的重要发展方向,而光栅正是现代光谱分析仪的主要色散器件。MEMS微型可编程光栅为微型光谱仪的发展开辟了新的道路。另外,MEMS微型可编程光栅技术还可以作为MEMS光开关

在全光网络通信的多频光合成/分离技术、光互连技术以及宇航空间光通信技术等高新技术领域大展宏图。

微型可编程光栅的工艺

MEMS表面工艺中的“成型”(Pattern)是通过光刻(Photolithography)技术来实现的。在成型的过程中,首先将光刻胶均匀地涂抹在硅片上,在将其放置在光刻掩模下进行曝光。光刻胶是一种光敏聚合物,不同种类的光刻胶,在曝光的时候产生的变化不一样,有的分子间的键合加强,有的则是减弱,。光刻之后,将硅片浸入化学溶剂里,分子键合变弱的部分被去除,再对硅片进行刻蚀时,没有光刻胶保护的地方会被刻蚀掉,此时光刻胶起到刻蚀掩模的作用,硅片上刻蚀出的图形与光刻掩模上的图形形状相同。刻蚀完成之后,光刻胶被去除掉。就完成了MEMS工艺中的一步成型工艺。由于任何成型工艺都需要先进行光刻,光刻工艺就影响到了MEMS器件的最小特征尺寸和线宽。像热处理、沉积、刻蚀方法、多晶硅层数、多晶硅厚度、多晶硅掺杂等工艺因素是区分表面加工工艺的主要准则。MUMPS工艺和SUMMIT工艺在这些方面有着显著的不同之处。对于可动的微机械结构,在表面加工工艺中通常是由悬置在基体(Substrate)上的多晶硅层(Poly Silicon Layer)形成的,用牺牲层(即光刻胶)来分隔各层多晶硅层以及基体,通过成型、刻蚀等工艺形成所需要的结构层。图是MEMS悬臂梁结构的加工过程。

微型可编程光栅的发展现状

MEMS发展的一个重要趋势是将微机电系统与光学系统相结合,研制和生产微光机电系统,也称Optical MEMS。MOEMS是指用于光学领域或采用光学原理进行工作的微机电系统。作为MOEMS发展的一个重要领域,衍射式MOEMS器件的研究也已经引起各国的关注和重视。在衍射式MOEMS器件中,MEMS衍射光栅是最具代表性的器件之一。

最早的MEMS衍射光栅的概念是光栅光阀装置,这是由斯坦福大学的David Bloom教授以及他的学生提出并获得专利的。光栅光阀的原理是通过MEMS技术在一个硅片的表面形成多个很小的像素,每个像素都是由类似于带状的结构组成。其典型应用是投影仪。美国桑地亚国家实验室与霍尼韦尔技术中心联合研制了可用于遥感化学气体的可编程衍射光栅。这种基于MEMS的可编程衍射光栅可以用来检测任何一种化学气体或多种气体的混合物,通过它的检测,系统能够立

即给出关于被测化学物质的成分,而不需要传统的光谱仪的配合。光栅由Sandia 国家实验室的五层多晶硅工艺制成,包括1024个基本元件。使用时人们可以通过编程来预先设置光栅的状态及参数,光栅根据对信号的光谱分析,鉴定出被检测的混合物中是否含有对应于此编程状态下的菜种化学气体。国内开展的基于MEMS微型可编程光栅的研究起步较晚,目前只有清华大学于1999年提出了基于微光机电系统的可编程相位光栅并展开了部分的研究工作,这是一种静电驱动的微机械元件作为可编程光栅的基本结构元素,这种结构相对来说较为简单,因此实用性不是很强。总体而言,国内从事微型可编程光栅研究的单位以及科研人员都较少,并且受各种设计、制作、加工等条件的限制,缺乏充足的基础研究和实验检测。

总结

光栅是一种应用非常广泛的衍射元件,在光栅近两个世纪的发展过程中,光栅的制备方法和选择材料都在不断地改进和更新以满足光栅日益增长的需求。采用硅制作光栅,由于硅材料本身的晶体结构以及微加工方法的日益成熟。在近2 0年里有了很大发展。我们可以发现随着硅微加工技术的发展,制作硅光栅的技术也相应得到提高,硅光栅的周期可以从几十个微米到亚微米,硅光栅的应用也相应地从红外扩展到可见光,甚至是紫外。硅光栅的另一个吸引人们去研究的原因是制作工艺与微电子、微机械制作工艺的兼容性,这就使得制作集成式微型光谱仪成为可能。硅光栅不可能替代用传统方法刻划或复制的衍射光栅,但是由于它利用了正在迅速发展的微加工技术制作而成并且在技术上与微电子、微机械工艺相兼容,在可以利用其特点的应用领域将会代替传统的光栅。可以预想随着微加工技术的进一步发展以及其它相关科学技术的进步,硅光栅的制作工艺也将得到进一步的完善,硅光栅的应用也会得到新的开发,硅光栅也因此将成为一种很有发展前途的衍射元件。

相对于传统衍射光栅,MEMS微型可编程光栅具有根据实际需要对结构参数进行改变,从而可以对光场光波进行相位控制,使得特定波长的光波空间相位按要求重新分布,产生预期的衍射和干涉能量分布特性,这可以大大增强光栅的应

用范围。同时,基于MEMS技术的微型可编程光速具有谐振频率高,响应时间短,能耗低,质量轻,成本低,易于单片集成和易于实现大规模阵列等优点。

因此,MEMS微型可编程光栅的发展是光栅技术的一次重要飞跃。本文对MEMS微型可编程光栅的设计、加工工艺、光学和机械性能的研究,为我国MEMS微型可编程光栅的研究与应用技术提供了一些基本的参考,具有重要的研究意义。

参考文献

虞益挺,苑伟政。MEMS微型可编程光栅的研究现状。

鞠挥,吴一辉,王立鼎。硅光栅的制作与应用。

李全臣,蒋月娟。光谱仪原理。

黄庆安。硅微机械加工技术。

章吉良,杨春生。微机电系统及相关技术。

哈工大机电控制技术 大作业1

《机电控制技术》 课程大作业一 基于MATLAB的直流电机双闭环调速系统的设计与仿真 学院:机电工程学院 专业:机械设计制造及其自动化 班级:1108110 学号:1110811005 姓名:崔晓蒙 2013-06-17

设一转速、电流双闭环直流调速系统,采用双极式H 桥PWM 方式驱动,已知电动机参数为: 设一转速、电流双闭环直流调速系统,采用双极式H 桥PWM 方式驱动,已知电动机参数为: 额定功率200W ; 额定电压48V ; 额定电流4A ; 额定转速n=500r/min ; 电枢回路总电阻R=0.8Ω;(本次选为8Ω) 允许电流过载倍数λ=2; 电势系数=e C 0.04Vmin/r ; 电磁时间常数=L T 0.008s ; 机电时间常数=m T 0.5; 电流反馈滤波时间常数=oi T 0.2ms ; 转速反馈滤波时间常数=on T 1ms ; 要求转速调节器和电流调节器的最大输入电压==* * im nm U U 10V ; 两调节器的输出限幅电压为10V ; PWM 功率变换器的开关频率=f 10kHz ; 放大倍数=s K 4.8。 试对该系统进行动态参数设计,设计指标: 稳态无静差; 电流超调量≤i σ5%; 空载起动到额定转速时的转速超调量σ ≤ 25%; 过渡过程时间=s t 0.5 s 。

1.计算电流和转速反馈系数 电流反馈系数:) (A V I U nom im /25.14210 *=?==λβ 转速反馈系数:)/min (02.0500 10 *r V n U nom nm ===α 2.电流环的动态校正过程和设计结果 2.1确定时间常数 由题给电流反馈滤波时间常数s ms T oi 0002.02.0==, 调制周期s f T s 0001.010 1 14=== , 按电流环小时间常数的近似处理方法,有 s T T T oi s i 0003.00002.00001.0=+=+=∑ 2.2选择电流调节器结构 电流环可按Ⅰ型系统进行设计。电流调节器选用PI 调节器,其传递函数为 s s K s G i i i ACR ττ1 )(+= 2.3选择调节器参数 超前时间常数:s T l i 008.0==τ。 电流超调量由题给为%5≤i σ,电流环开环增益:取5.0=∑i I T K ,因此 6667.16660003 .05 .05.0=== ∑i I T K 于是,电流调节器的比例系数为 .7778718 .425.18 008.06667.1666=???==s i I i K R K K βτ 2.4检验近似条件 电流环的截止频率1/s 6667.1666==I ci K ω。 1)近似条件一:s ci T 31≤ ω

计算机控制技术复习大作业及答案

《计算机控制技术》复习大作业及参考答案 ========================================================== 一、选择题(共20题) 1、由于计算机只能接收数字量,所以在模拟量输入时需经( A )转换。 A.A/D转换器 B.双向可控硅 C.D/A转换器 D.光电隔离器 2、若系统欲将一个D/A转换器输出的模拟量参数分配至几个执行机构,需要接入( D )器件完成控制量的切换工作。 A.锁存器锁存 B.多路开关 C.A/D转换器转换 D.反多路开关 3、某控制系统中,希望快速采样,保持器的保持电容CH应取值( A )。 A. 比较小 B.比较大 C.取零值 D.取负值 4、在LED显示系统中,若采用共阳极显示器,则将段选模型送至( B )。 A. 阳极 B. 阴极 C.阴极或阳极 D.先送阴极再送阳极 5、电机控制意味着对其转向与转速的控制,微型机控制系统的作法就是通过( B )实现的。 A.改变定子的通电方向与通电占空比 B.改变转子的通电方向与通电占空比 C.改变定子的通电电压幅值 D.改变转子的通电电压幅值 6、计算机监督系统(SCC)中,SCC计算机的作用就是( B ) A.接收测量值与管理命令并提供给DDC计算机 B.按照一定的数学模型计算给定植并提供给DDC计算机 C.当DDC计算机出现故障时,SCC计算机也无法工作 D.SCC计算机与控制无关 7、键盘锁定技术可以通过( C )实现。 A.设置标志位 B.控制键值锁存器的选通信号 C.A与B都行 D.定时读键值 8、RS-232-C串行总线电气特性规定逻辑“1”的电平就是(C)。 A.0.3 伏以下 B.0.7伏以上 C.-3伏以下 D.+3伏以上 9、在工业过程控制系统中采集的数据常搀杂有干扰信号,( D )提高信/躁比。 A.只能通过模拟滤波电路 B、只能通过数字滤波程序 C、可以通过数字滤波程序/模拟滤波电路 D、可以通过数字滤波程序与模拟滤波电路 10.步进电机常被用于准确定位系统,在下列说法中错误的就是( B )。 A.步进电机可以直接接受数字量 B.步进电机可以直接接受模拟量 C.步进电机可实现转角与直线定位 D.步进电机可实现顺时针、逆时针转动

微机电系统作业

研究生课程考试成绩单(试卷封面) 院系电子科学与工程学院专业微电子学与固体 电子学 学生姓名李艳学号121225 课程名称微电子机械系统 授课时间2014年3月至2014年4 月周学时 2 学分 2 简 要 评 语 考核论题[微电子机械系统] 作业 总评成绩 (含平时成绩) 备注 任课教师签名: 日期: 注:1. 以论文或大作业为考核方式的课程必须填此表,综合考试可不填。“简要评语”栏缺填无效。 2. 任课教师填写后与试卷一起送院系研究生秘书处。 3. 学位课总评成绩以百分制计分。

1. 习题1.9 A:查找至少来自两家公司的两种压力传感器的产品性能表。根据1.3.2节所列的传感器性能标准,总结这两种产品的性能。至少从转换原理、灵敏度、动态范围、噪声、销售价格及功耗等方面进行比较。 B:比较至少来自两家独立公司的两种压力传感器(或者其他传感器)。上网搜索这两家公司的两种主要专利,并对专利的保护内容和授权日期进行对比,写一份两页的总结。(提示:可以在下列免费网站搜索,如US Patent、Trademark Office Web、Google patent或者在线专利搜索网站)。 答:A:美国飞思卡尔公司的MPX5010压力传感器与德国JUMO公司的MIDAS C18 SW –OEM压力传感器比较如下: MPX5010 MIDAS C18 SW –OEM 型号 性能 转换原理压电材料三氧化二铝陶瓷薄膜 灵敏度450mV/kPa 动态范围75kPa压力差 1.6—100bar相对压力 最大误差 5.0% 1.6bar 销售价格约65元 功耗≤0.05W ≤0.6W 前者为集成传感器体积较小,功耗较低;后者为机械式的传感器,体积和功耗都较大。两者的应用领域也不同。 B:专利一:

大作业1(机电控制系统时域频域分析)

《机电系统控制基础》大作业一 基于MATLAB的机电控制系统响应分析 哈尔滨工业大学 2013年11月4日

1 作业题目 1. 用MATLAB 绘制系统2 ()25()() 425 C s s R s s s Φ== ++的单位阶跃响应曲线、单位斜坡响应曲线。 2. 用MATLAB 求系统2 ()25 ()()425 C s s R s s s Φ==++的单位阶跃响应性能指标:上升时间、峰值时间、调节时间和超调量。 3. 数控直线运动工作平台位置控制示意图如下: X i 伺服电机原理图如下: L R (1)假定电动机转子轴上的转动惯量为J 1,减速器输出轴上的转动惯量为J 2,减速器减速比为i ,滚珠丝杠的螺距为P ,试计算折算到电机主轴上的总的转动惯量J ; (2)假定工作台质量m ,给定环节的传递函数为K a ,放大环节的传递函数为K b ,包括检测装置在内的反馈环节传递函数为K c ,电动机的反电势常数为K d ,电动机的电磁力矩常数为K m ,试建立该数控直线工作平台的数学模型,画出其控制系统框图; (3)忽略电感L 时,令参数K a =K c =K d =R=J=1,K m =10,P/i =4π,利用MATLAB 分析kb 的取值对于系统的性能的影响。

2 题目1 单位脉冲响应曲线 单位阶跃响应曲线

源代码 t=[0:0.01:1.6]; %仿真时间区段和输入 nC=[25]; dR=[1,4,25]; fi=tf(nC,dR); %求系统模型 [y1,T]=impulse(fi,t); [y2,T]=step(fi,t); %系统响应 plot(T,y1); xlabel('t(sec)'),ylabel('x(t)'); grid on; plot(T,y2); xlabel('t(sec)'),ylabel('x(t)'); grid on; %生成图形 3 题目2 借助Matlab,可得: ans = 0.4330 0.6860 25.3826 1.0000 即

第二讲 表面微机械加工技术应用

牺牲层技术 刻蚀与选择性 etch:To cut into the surface of (glass, for example) by the action of acid. Etching:The art of preparing etched plates, especially metal plates, from which designs and pictures are printed. Corrode:To destroy a metal or alloy gradually, especially by oxidation or chemical action 其实刻蚀还包含分解、转化、溶解等一系列含义。 半导体技术的刻蚀并不仅仅局限于金属材料,半导体、化合物、包括有机物薄膜才是刻蚀研究的重点。 Etching还有一个特征:选择性或者局部队有控制刻蚀。 干法刻蚀也是半导体技术赋予Etching的新内涵。 选择性源于化学反应的热力学选择性和刻蚀过程度动力学因素控制。 下面这张表格概括了一些简单物质与常用反应物之间相互作用的规律,其中既有热力学因素控制的结果,也有动力学因素促成。它们都是湿法反应机制度结果

MUMPS工艺概况 The MUMPS process is a three-layer polysilicon surface micromachining process derived from work performed at the Berkeley Sensors and Actuators Center (BSAC) at the University of California.Several modifications and enhancements have been made to increase the flexibility and versatility of the process for the multi-user environment. The process flow described below is designed to introduce inexperienced users to polysilicon micromachining. The text is supplemented by detailed drawings that show the process flow in the context of building a typical micromotor. 工艺流程详解 衬底:100 mm n-type (100) silicon wafers of 1-2 ohm-cm resistivity.

纳米材料用在哪方面

纳米技术是新世纪一项重要的技术,为多个行业带来了深远影响。纳米技术包含几个方面:纳米电子学,纳米生物学,纳米药物学,纳米动力学,以及纳米材料。其中,纳米材料主要集中在纳米功能性材料的生产,性能的检测。其独特性使它应用很广,那么,纳米材料用在哪方面呢 1、特殊性能材料的生产 材料科学领域无疑会是纳米材料的重要应用领域。高熔点材料的烧结纳米材料的小尺寸效应(即体积效应)使得其在低温下烧结就可获得质地优异的烧结体(如SiC、WC、BC等),且不用添加剂仍能保持其良好的性能。另一方面,由于纳米材料具有烧结温度低、流动性大、渗透力强、烧结收缩大等烧结特性,所以它又可作为烧结过程的活化剂使用,以加快烧结过程、缩短烧结时间、降低烧结温度。例如普通钨粉需在3 000℃高温时烧结,而当掺入%%的纳米镍粉后,烧结成形温度可降低到1200℃-1311℃。复合材料的烧结由于不同材料的熔点和相变温度各不相同,所以把它们烧结成复合材料是比较困难的。 纳米材料的小尺寸效应和表面效应,不仅使其熔点降低,且相变温度也降低了,从而在低温下就能进行固相反应,获得烧结性能好的复合材料。纳米陶瓷材料的制备通常的陶瓷是借助于高温高压使各种颗粒融合在一起制成的。由于纳米材料粒径非常小、熔点低、相变温度低,故在低温低压下就可用它们作原料生产出质地致密、性能优异的纳米陶瓷。纳米陶瓷具有塑性强、硬度高、耐高温、耐腐蚀、耐磨的性能,它还具有高磁化率、高矫顽力、低饱和磁矩、低磁耗以及光吸收效应,这些都将成为材料开拓应用的一个崭新领域,并将会对高技术和新材料的开发产生重要作用。 2、生物医学中的纳米技术应用 从蛋白质、DNA、RNA到病毒,都在1-100nm的尺度范围,从而纳米结构也

计算机控制技术复习大作业及答案

2014年上学期《计算机控制技术》复习大作业及参考答案========================================================== 一、选择题(共20题) 1.由于计算机只能接收数字量,所以在模拟量输入时需经( A )转换。 A.A/D转换器B.双向可控硅 C.D/A转换器D.光电隔离器 2.若系统欲将一个D/A转换器输出的模拟量参数分配至几个执行机构,需要接入( D )器件完成控制量的切换工作。 A.锁存器锁存B.多路开关 C.A/D转换器转换D.反多路开关 3.某控制系统中,希望快速采样,保持器的保持电容CH应取值( A )。 A.比较小B.比较大C.取零值D.取负值 4. 在LED显示系统中,若采用共阳极显示器,则将段选模型送至( B )。 A.阳极B.阴极 C.阴极或阳极D.先送阴极再送阳极 5. 电机控制意味着对其转向和转速的控制,微型机控制系统的作法是通过(B )实现的。 A.改变定子的通电方向和通电占空比 B.改变转子的通电方向和通电占空比 C.改变定子的通电电压幅值 D.改变转子的通电电压幅值 6.计算机监督系统(SCC)中,SCC计算机的作用是(B) A.接收测量值和管理命令并提供给DDC计算机 B.按照一定的数学模型计算给定植并提供给DDC计算机 C.当DDC计算机出现故障时,SCC计算机也无法工作 D.SCC计算机与控制无关 7. 键盘锁定技术可以通过(C)实现。 A.设置标志位 B.控制键值锁存器的选通信号 C.A和B都行 D.定时读键值 8. RS-232-C串行总线电气特性规定逻辑“1”的电平是(C)。 A.0.3 伏以下B.0.7伏以上 C.-3伏以下D.+3伏以上 9. 在工业过程控制系统中采集的数据常搀杂有干扰信号,(D)提高信/躁比。 A.只能通过模拟滤波电路 B.只能通过数字滤波程序 C.可以通过数字滤波程序/模拟滤波电路 D.可以通过数字滤波程序和模拟滤波电路 10.步进电机常被用于准确定位系统,在下列说法中错误的是(B )。 A.步进电机可以直接接受数字量 B.步进电机可以直接接受模拟量 C.步进电机可实现转角和直线定位 D.步进电机可实现顺时针、逆时针转动

微机电系统及纳米技术大作业--微型光栅

微机电系统及纳米技术 大作业 题目:微型光栅 目录 摘要 (2)

关键词 (3) 引言 (3) 衍射光栅 (4) 衍射光栅概念 (4) 传统衍射光栅的技术发展 (4) 硅光栅技术() (5) 硅光栅的加工制作方法 (5) 硅光栅的体硅制作工艺 (6) 硅光栅的表面硅制作工艺 (6) 硅光栅的应用 (7) MEMS微型可编程光栅() (8) 可编程光栅结构原理 (8) 微型可编程光栅的工艺 (9) 微型可编程光栅的发展现状 (10) 总结 (11) 参考文献 (12) 摘要 基于光栅技术的光谱分析在物理、化学、天文、生物、冶金学及其他分析领域起着重要的作用。随着科学技术的发展,对光栅技术提出了更高的要求,对新型光栅的研究也受到更加广泛的重视。

随着硅微加工技术的迅速发展,带动了微电子科学的进步,计算机及其它各种电子产品已成为人类不可缺少的工具。与微电子产品相兼容的集成化、微型化的产品为传统的仪器及设备打开了新的应用空间,因而出现了微机械、微光学等在技术上与硅微加工工艺相兼容的新学科。而光栅在微观上的周期性,硅作为晶体材料结构上的特殊性及其加工工艺的兼容性,使人们开始尝试在硅基材料上制作光栅的可能性。1975年W.Tang和S.Wang首次在论文中报道了利用硅加工技术制作光栅m,从此硅光栅被应用在许多不同的领域。 MEMS技术的出现与发展提供了能根据实际情况实时改变结构参数的光栅,即MEMS微型可编程光栅。这种光栅通过静电驱动的方式实现对光栅的结构单元,微变形梁的编程控制。MEMS微型可编程光栅不仅扩展了光栅在传统领域发挥巨大作用,同时促进其在光通讯等领域的广泛应用。因此,对MEMS微型可编程光栅的研究具有重要的研究意义。 本文对硅光栅和MEMS可编程光栅进行了简单的介绍,主要包括其工作原理及结构组成,加工方法,工艺流程及其中的关键工艺,最后简单说明了微型光栅的应用领域、实际应用情况及可能的应用前景。 关键词 微机电系统,硅光栅,微型可编程光栅 引言 光谱是各个波长光波的有序排列。而光谱分析学则是研究各种物质光谱的产生及其同物质之间的相互作用的学科。一直以来,基于衍射光栅的光谱分析技术在物理研究中一直占有重要地位。特别是近年来随着科学技术的发展,光栅光谱技术在天文、生物、化学、冶金学及其他分析领域起着越来越重要的作用:物理学研究方面,光栅光谱分析仪可用于验证量子力学的氢原子光谱采集实验;天文

机电系统控制技术大作业

哈尔滨工业大学工业工程系 机电系统控制技术大作业 班级:1008401班 学号:1100800807 姓名:匡野 日期:2013.7.14 指导教师:崔贤玉成绩:

机电系统控制技术大作业要求 根据PI 、PD 、PID 调节器的频率特性简述其校正的作用;以近似PID 调节器为例详述其校正的过程;最后以下题的指标要求为例详细设计校正网络及参数。 题:某单位反馈系统的开环传递函数为 ()11(1)(1)1060K G s s s s =++ 当输入速度为1rad/s 时,稳态位置误差为 e ss ≤1 126rad ,相位裕度,0()30c γω≥,幅值穿越频率,20c ω≥rad/s 。

(1)根据稳态精度位置误差求出系统开环放大系数 原系统为I型系统,所以 。 做出原系统的图,如图所示。由图可得,错误!未找到引用源。,错误!未找到引用源。,原系统不稳定。 (2)选择校正方式 虽然采用一级超前校正,无法实现如此大的相位超前;若采用两级超前校正,虽可以实现需要的相位超前,但响应速度将远远超出性能指标的要求,带宽过大,抗高频干扰能力变差,同时需要放大器,系统结构复杂,故不宜采用两级超前校正。如采用串联滞后校正,虽

可实现相位裕量的要求,但响应速度又不能满足要求,同时之后校正装置的转折频率必须远离错误!未找到引用源。,则校正装置的时间常数错误!未找到引用源。将大大增加,物理上难以实现,故也不宜采取滞后校正。因此,现拟采用无源串联滞后-超前网络来校正。(3)设计滞后-超前校正装置 首先选择校正后系统的幅值穿越频率错误!未找到引用源。。从原系统的博德图可以看出,当错误!未找到引用源。时,原系统的相角为错误!未找到引用源。。故选择校正后的系统幅值穿越频率错误!未找到引用源。较为方便。这样在错误!未找到引用源。处,所需相位超前角应大于或等于错误!未找到引用源。。当错误!未找到引用源。选定之后,下一步确定滞后-超前校正网络的相位滞后部分打的转折频率错误!未找到引用源。,选错误!未找到引用源。。且取错误!未找到引用源。,则滞后部分的另一转折频率错误!未找到引用源。,故滞后-超前校正网络的滞后部分的传递函数错误!未找到引用源。就可确定为 滞后-超前校正网络网络超前部分可确定如下:因为校正后的幅值穿越频率错误!未找到引用源。,从图1可以找出,未校正系统在错误!未找到引用源。处的对数幅值错误!未找到引用源。。因此,如果滞后-超前校正网络在错误!未找到引用源。处产生错误!未找到引用源。幅值,则校正后的幅值穿越频率即为所求。根据这一要求,

微机械加工

微机械加工应用趋势与前沿技术简述

摘要:微机电系统(MEMS)是由电子和机械组成的集成化器件或系统,采用与集成电路兼容的大批量处理工艺制造,尺寸在微米到毫米之间。尤其将计算、传感和执行融为一体,从而改变了感知和控制自然界的方式。本文介绍了微机电系统近几年应用领域及前景展望,并简单阐述了关于微制造的几种前言加工技术,从而对MEMS系统有一个粗略的了解。 关键字:MEMS 应用领域前景前沿技术 LIGA技术 前言 微型机械加工或称微机电系统(MEMS),早在1959年就由著名的物理学家理查德·范蔓(Richard·Feynman)提出其概念,然而此后数十年间的发展并未受到过多的关注,直到近年来才逐渐发展成为一门交叉学科。 MEMS主要包括微型传感器、微型执行器以及相应地处理电路三部分。作为输入信号的各种信号首先通过微传感器转换成电信号,经过信号处理以后,再通过微执行器对外部世界发生作用。传感器可以把能量从一种形式转换成另一种形式,从而将现实世界的信号(热、化学、运动等)转换成系统可以处理的信号(如电信号)。信号处理器则可以对信号进行转换、放大和计算等处理。执行器根据信号处理电路发出的指令来完成人们所需要的操作。 MEMS的快速发展只不过是10多年的时间,却已在各个应用领域显示出强大的生命力,甚至单个领域的MEMS器件就已经形成了一个较大规模的产业。面向21世纪,MEMS将逐步走向实用化,并被广泛应用于国防、航空、航天、通信、环保、生物工程、医疗、制造业、农业和家庭。在某种意义上,可认为MEMS是“信息化带动工业化”的一个典范。 一、应用领域与前景展望 作为信息获取关键的传感MEMS,已成功应用于汽车、电子等行业和军事领域;在令人瞩目的信息技术和生命技术的发展中,MEMS更将发挥不可估量的作用:光MEMS被认为是开启通信之门的钥匙;RF MEMS将成为移动通信的一项核心技术;高密度MEMS生物芯片将强有力地推动生命科学和生物技术的发展。近几年,采用MEMS的发展将对人类生产和生活方式产生革命性的影响,将关系到国民经济发展和国家发展安全保障的战略高技术,已引起了广泛的关注。 微机电系统在国防中的应用 美国和西方国家为了掌握现代战争的主动权,大力发展微型飞行器、战场侦察传感器、智能军用机器人,以增加武器效能,军用武器装备的小型化是重要的发展趋势。MEMS是未来武器中最精华的部分,为了适应这一发展的需要,主要采用的是MEMS技术制造的传感器和微系统。大量采用MEMS器件,以改进武器性能,已成为美国发展新型高科技武器装备的方向。根据美国防卫高级研究计划署(Defense Advanced Research Projects Agency)公布的资料,MEMS在武器装备中的主要应用领域包括以下几个方面:武器制导和个人导航的惯性导航组合;超小型、超低功率无线通信(RF MEMS)的机电信号处理;军备跟踪、环境监控、安全勘测的无人值守分布式传感器;小型分布式仪器、推进和燃烧控制的集成流量系统;武器安全、保险和引信;有条件保养的嵌入式传感器和执行器;高密度、低功耗的大规模数据存储器件;敌友识别系统、显示和光纤开关的集成微光学器件,以及飞机分布式空气动力学控制和自适应光学的主动和共型表面。 航天领域对器件的功能密度要求很高。因此,MEMS的发展,从一开始就受到航天部门的重视并得到应用。目前,微型飞行器的研究主要集中在美、日、德等发达国家。美国LMB公司研制出翼展为45cm的微型飞行器Bat,该机飞行时间20min,飞行速度大约为64km/h,飞行高度457m,1995年,日本东北大学利用MEMS技术,制造出一个靠磁力矩驱动的飞行装置,该装置宽30mm,长20mm,重5.3mg,等等。美国五角大楼认为,军用

纳米科技与纳米技术

纳米技术 1510700224 韦甜甜纳米技术(nanotechnology)是用单个原子、分子制造物质的科学技术,也称毫微技术,研究结构尺寸在0.1至100纳米范围内材料的性质和应用。 1981年扫描隧道显微镜发明后,诞生了一门以0.1到100纳米长度为研究分子世界,它的最终目标是直接以原子或分子来构造具有特定功能的产品。因此,纳米技术其实就是一种用单个原子、分子射程物质的技术。 利用纳米技术将氙原子排成IBM纳米技术是一门交叉性很强的综合学科,研究的内容涉及现代科技的广阔领域。纳米科学与技术主要包括:纳米体系物理学、纳米化学、纳米材料学、纳米生物学、纳米电子学、纳米加工学、纳米力学等。这七个相对独立又相互渗透的学科和纳米材料、纳米器件、纳米尺度的检测与表征这三个研究领域。纳米材料的制备和研究是整个纳米科技的基础。其中,纳米物理学和纳米化学是纳米技术的理论基础,而纳米电子学是纳米技术最重要的内容。 在我国,纳米技术早已融入到大众的生活了,包括很多涂料、纤维材料、燃料、高分子合成和纺织品加工处理技术等等。其实纳米技术是一门交叉性很强的综合学科,研究的内容涉及现代科技的广阔领域。 纳米技术内容 1、纳米材料 当物质到纳米尺度以后,大约是在0.1—100纳米这个范围空间,物质的性能就会发生突变,出现特殊性能。这种既具不同于原来组成的原子、分子,也不同于宏观的物质的特殊性能构成的材料,即为纳米材料。 如果仅仅是尺度达到纳米,而没有特殊性能的材料,也不能叫纳米材料。 过去,人们只注意原子、分子或者宇宙空间,常常忽略这个中间领域,而这个领域实际上大量存在于自然界,只是以前没有认识到这个尺度范围的性能。第一个真正认识到它的性能并引用纳米概念的是日本科学家,他们在20世纪70年代用蒸发法制备超微离子,并通过研究它的性能发现:一个导电、导热的铜、银导体做成纳米尺度以后,它就失去原来的性质,表现出既不导电、也不导热。磁性材料也是如此,像铁钴合金,把它做成大约20—30纳米大小,磁畴就变成单磁畴,它的磁性要比原来高1000倍。80年代中期,人们就正式把这类材料命名为纳米材料。 为什么磁畴变成单磁畴,磁性要比原来提高1000倍呢?这是因为,磁畴中的单个原子排列的并不是很规则,而单原子中间是一个原子核,外则是电子绕其旋转的电子,这是形成磁性的原因。但是,变成单磁畴后,单个原子排列的很规则,对外显示了强大磁性。 这一特性,主要用于制造微特电机。如果将技术发展到一定的时候,用于制造磁悬浮,可以制造出速度更快、更稳定、更节约能源的高速度列车。 2、纳米动力学 主要是微机械和微电机,或总称为微型电动机械系统(MEMS),用于有传动机械的微型传感器和执行器、光纤通讯系统,特种电子设备、医疗和诊断仪器等.

(整理)微机电课后作业

小组成员:郑晨晨刘心纪辉强 方璐刘超朱剑锋 2011.05.31 第二章 1.MEMS的设计涉及哪些学科?简述MEMS的设计方法及特点。 答:MEMS的设计涉及到系统设计、微传感器设计、微执行器设计、接口设计和能量供给的设计。 3种设计方法:(1)从系统功能设计开始,展开到系统设计。在进行系统设计时,将元件及功能模块作为一个黑盒子,只对其影响特性进行分析。(2)从系统设计展开到子系统、元器件设计。对于系统优化设计应该由系统设计转向子系统、元器件设计。首先确定系统应该完成的功能、技术条件;其次是确定功能模块的功能要求、技术条件;最后确定元器件的技术条件。(3)中间相遇法(Meet-in-the-Middle)。它利用宏观模块,对于元件简化模型进行分析,只要模型能描述不同物理状态中的特性,就能够在系统中进行合理的仿真。 2.工程系统设计通常有几种方法?其主要思路是什么?试举例说明。 答:通常有五种方法:J.Kawasaki法简称KJ法。KJ法是由底向上处理大量数据之间关系的一种假设,对于复杂问题进行分析,使用这种方法,可以使问题得到满意的解决。它还可以应用来处理其他类

型的问题,这种问题可以是个别的群体,单一的或者连续的;M.Nakayama法简称NM法。NM法是在自然是日常生活中寻找比拟法创造和开发新技术观点,应用到不同的问题模式中。NM法是根据人脑功能的一种假设,在Nakayama的“人脑计算机模型(HBC)”中描述。这种方法试图解释当问题如理性思考,存在僵局,情感思考,演绎和引导等解决的时候,人类思想行为的模式;Key-Needs法,中文称为关键需要法,它是一种创造与使用者需要一致的新产品概念的工具。这种方法用列出日常生活的需要,以及不被满足原因的描述,用于产品观点的发明。关键需要法是实用主义,具有需要分析和概念评估技术的扩展。为了消费者取得好感,而且不受限制,关键需要法几乎不是根据人类需要的任何理论或者寻找任何概念,而是从实际经验中得到;Kepener-Tregoe法分析问题、解决分析、位能问题分析和位置评价的4种技术结合。它的目的在于应用标准模式一步一步处理的方法,进行工业合理化管理。朱钟淦-捤谷城方法,是针对机械电子产品系统设计时应用,包括四个步骤:产品功能分析;为实施各模块的功能,选择可实施的方案;多种方案的综合评价,优化设计;产品芯片设计。 5,在MEMS产品中如何应用尺度效应进行设计?其根据是什么?对于一阶尺度,如表面-体积尺度变化规律是什么? 通常,尺度的变化规律遵循着两个方面.第一种规律是严格依据物体的尺寸,如几何结构的尺度,物体行为可以有物理规律所决定,这种尺度

机电一体化系统设计大作业

6011机电一体化系统设计基础大作业 责任教师高秋红 学校:北京一轻高级技术学校学号:111100140 姓名: 一、基础知识题(每题10分,共40分) 1.机电一体化系统的定义?机电一体化产品的分类? 答:机电一体化系统是由机械技术、传感器技术、接口技术、信号变换技术等多种技术进行有机地结合,并综合应用到实际中去的综合技术。 按发展水平分:功能附加型初级系统,功能代替型中级系统,机电融合型高级系统 按应用分:民用机电一体化产品,办公机电一体化产品和产业机电一体化产品 2. 机电一体化系统的基本组成要素?试分析试说明图中的各个部分分别属于机电一体化系统的哪一基本结构要素。 答:按照机电一体化系统的基本结构要素,图示数控机床的各个部分归类如下:(1)控制及信息处理单元:键盘、计算机、显示 (2)测试传感部分:光电编码器、信号处理 (3)能源:电源 (4)驱动部分:功放、电机 (5)执行机构:联轴器、齿轮减速器、丝杠螺母机构、工作台

3. 为什么采用机电一体化技术可以提高系统的精度? 机电一体化技术使机械传动部分减少,因而使机械磨损,配合间隙及受力变形等所引起的误差大大减少,同时由于采用电子技术实现自动检测,控制,补偿和校正因各种干扰因素造成的误差,从而提高精度。 4.简述机电一体化产品设计的工程路线(主要步骤) 机电一体化产品设计的工程路线(主要步骤):拟定产品开发目标和技术规范;收集资料,市场分析,可行性分析和技术经济性分析;总体方案设计;总体方案的评审和评价;详细设计;详细设计方案的评审和评价;试制样机;样机实验,测试;技术评价与审定;小批量生产;试销;正常生产;销售。 二、综合分析设计题(60分) 1.已知电机驱动的三自由度位置控制系统,单个自由度的驱动系统如图所示。要求: (1)说明单自由度驱动系统的两种测量方案;(20分) 要求给出传感器的类型及具体安装位置。 (2)确定整个系统的控制方案、画出控制系统原理图。(40分) 要求写出两种控制方案,方案一使用工业PC机完成系统的控制和方案二使用单片机完成系统的控制。 解:依题意有两种测量方案 1)高速端测量方案: 传感器安装在电机的尾部,通过测量电机的转角实现工作台位移的间接测量。可选用光电编码器式传感器或者磁电式编码器。

微型机械加工技术发展现状和趋势分析

微型机械加工或称微型机电系统或微型系统是只可以批量制作的、集微型机构、微型传感器、微型执行器以及信号处理和控制电路、甚至外围接口、通讯电路和电源等于一体的微型器件或系统。其主要特点有:体积小(特征尺寸范围为:1μm-10mm)、重量轻、耗能低、性能稳定;有利于大批量生产,降低生产成本;惯性小、谐振频率高、响应时间短;集约高技术成果,附加值高。微型机械的目的不仅仅在于缩小尺寸和体积,其目标更在于通过微型化、集成化、来搜索新原理、新功能的元件和系统,开辟一个新技术领域,形成批量化产业。 微型机械加工技术是指制作为机械装置的微细加工技术。微细加工的出现和发展早是与大规模集成电路密切相关的,集成电路要求在微小面积的半导体上能容纳更多的电子元件,以形成功能复杂而完善的电路。电路微细图案中的最小线条宽度是提高集成电路集成度的关键技术标志,微细加工对微电子工业而言就是一种加工尺度从微米到纳米量级的制造微小尺寸元器件或薄模图形的先进制造技术。目前微型加工技术主要有基于从半导体集成电路微细加工工艺中发展起来的硅平面加工和体加工工艺,上世纪八十年代中期以后在LIGA加工(微型铸模电镀工艺)、准LIGA加工,超微细加工、微细电火花加工(EDM)、等离子束加工、电子束加工、快速原型制造(RPM)以及键合技术等微细加工工艺方面取得相当大的进展。 微型机械系统可以完成大型机电系统所不能完成的任务。微型机械与电子技术紧密结合,将使种类繁多的微型器件问世,这些微器件采用大批量集成制造,价格低廉,将广泛地应用于人类生活众多领域。可以预料,在本世纪内,微型机械将逐步从实验室走向适用化,对工农业、信息、环境、生物医疗、空间、国防等领域的发展将产生重大影响。微细机械加工技术是微型机械技术领域的一个非常重要而又非常活跃的技术领域,其发展不仅可带动许多相关学科的发展,更是与国家科技发展、经济和国防建设息息相关。微型机械加工技术的发展有着巨大的产业化应用前景。 微型机械加工技术的国外发展现状 1959年,RichardPFeynman(1965年诺贝尔物理奖获得者)就提出了微型机械的设想。1962年第一个硅微型压力传感器问世,气候开发出尺寸为50~500μm的齿轮、齿轮泵、气动涡轮及联接件等微机械。1965年,斯坦福大学研制出硅脑电极探针,后来又在扫描隧道显微镜、微型传感器方面取得成功。1987年美国加州大学伯克利分校研制出转子直径为60~12μm的利用硅微型静电机,显示出利用硅微加工工艺制造小可动结构并与集成电路兼容以制造微小系统的潜力。

北航计算机控制系统大作业

北航计算机控制系统大作业

————————————————————————————————作者:————————————————————————————————日期:

计算机控制系统 大作业 姓名:陈启航 学号: 教师:周锐 日期:2016年6月1日

综合习题1 已知: 4 4)(+= s s D , 1) 试用 Z 变换、一阶向后差分、向前差分、零极点匹配、Tus tin 变换和预修正的Tus tin (设关键频率=4)变换等方法将D (s)离散化,采样周期分别取为0.1s 和 0.4s; 2) 将 D(z )的零极点标在Z 平面图上 3) 计算D (j ω)和各个D(e j ωT )的幅频和相频特性并绘图,w由0~ 20r ad ,计算40 个点,应包括=4 点,每个T 绘一张图(Z 变换方法单画) 4) 计算 D(s)及T=0.1,T=0.4 时D (z )的单位脉冲响应,运行时间为4 秒 5) 结合所得的结果讨论分析各种离散化方法的特点 6) 写出报告,附上结果。 解: (1) Z 变换法: a.离散化: T =0.1s 时, D (z )= 4z z ?0.6703; T =0.4s 时, D (z )= 4z z ?0.2019 ; b.D (z )的零极点 c. D (jω)和D(e jωT )幅频相频特性曲线 连续系统: -1 -0.8-0.6-0.4-0.200.20.40.60.81 -1-0.8-0.6-0.4-0.200.20.40.60.81 零点 T=0.1s 时极点T=0.4s 时极点

T=0.1s时 T=0.4s时

《微机电系统基础》3-16、3-19、11-4

习题3-16 一根细长的硅梁受到纵向张应力的作用。力的大小为1mN ,横截面积为20um*1um 。纵向的杨氏模量为120GPa 。求出梁的相对伸长量(百分比)。如果硅的断裂应变为0.3%,那么要加多大力梁才会断裂? 答:伸长量 l EA Fl l 00042.010 *1*10*20*10*12010*16693 ===?--- 相对伸长量 %042.0%100*=?=l l δ 极限力 mN EA F 2.710*1*10*20*10*120*%3.0669max ===--δ 习题3-19 求出下面所示悬臂梁的惯性矩。材料是单晶硅。悬臂梁纵向的杨氏模量为140GPa 。 答:惯性矩 4193 66310*07.112 )10*40(*10*2012m wt I ---== 习题11-4

下面是北京大学微系统所给出的MEMS标准工艺,以一个MEMS中最主要的结构——梁为例介绍MEMS表面加工工艺的具体流程。 1.硅片准备 2.热氧生长二氧化硅(SiO2)作为绝缘层 3.LPCVD淀积氮化硅(Si3N4)作为绝缘及抗蚀层 4.LPCVD淀积多晶硅1(POLY1)作为底电极 5.多晶硅掺杂及退火 6.光刻及腐蚀POLY1,图形转移得到POLY1图形 7.LPCVD磷硅玻璃(PSG)作为牺牲层 8.光刻及腐蚀PSG,图形转移得到BUMP图形 9.光刻及腐蚀PSG形成锚区 10.LPCVD淀积多晶硅2(POLY2)作为结构层 11.多晶硅掺杂及退火 12.光刻及腐蚀POLY2,图形转移得到POLY2结构层图形 13.溅射铝金属(Al)层 14.光刻及腐蚀铝层,图形转移得到金属层图形 15.释放得到活动的结构

2017测控专业《计算机控制技术》复习大作业资料

2017年上学期《计算机控制技术》复习大作业 ===================================================== 复习内容一:本学期每章节布置做过的习题 复习内容二:如下整理的各题型 一、选择题(共20题) 1.由于计算机只能接收数字量,所以在模拟量输入时需经()转换。 A.A/D转换器B.双向可控硅 C.D/A转换器D.光电隔离器 2.若系统欲将一个D/A转换器输出的模拟量参数分配至几个执行机构,需要接入()器件完成控制量的切换工作。 A.锁存器锁存B.多路开关 C.A/D转换器转换D.反多路开关 3.某控制系统中,希望快速采样,保持器的保持电容CH应取值()。 A.比较小B.比较大 C.取零值D.取负值 4. 在LED显示系统中,若采用共阳极显示器,则将段选模型送至()。 A.阳极B.阴极 C.阴极或阳极D.先送阴极再送阳极 5. 电机控制意味着对其转向和转速的控制,微型机控制系统的作法是通过()实现的。 A.改变定子的通电方向和通电占空比 B.改变转子的通电方向和通电占空比 C.改变定子的通电电压幅值 D.改变转子的通电电压幅值 6.计算机监督系统(SCC)中,SCC计算机的作用是() A.接收测量值和管理命令并提供给DDC计算机 B.按照一定的数学模型计算给定植并提供给DDC计算机 C.当DDC计算机出现故障时,SCC计算机也无法工作 D.SCC计算机与控制无关 7. 键盘锁定技术可以通过()实现。 A.设置标志位 B.控制键值锁存器的选通信号 C.A和B都行 D.定时读键值 8. RS-232-C串行总线电气特性规定逻辑“1”的电平是()。 A.0.3 伏以下B.0.7伏以上 C.-3伏以下D.+3伏以上 9. 在工业过程控制系统中采集的数据常搀杂有干扰信号,()提高信/躁比。 A.只能通过模拟滤波电路 B.只能通过数字滤波程序 C.可以通过数字滤波程序/模拟滤波电路 D.可以通过数字滤波程序和模拟滤波电路 10.步进电机常被用于准确定位系统,在下列说法中错误的是()。 A.步进电机可以直接接受数字量

运动控制 大作业 单闭环直流调速系统仿真 直流电机Z

目录 本科生课程论文 ........................................................................... 错误!未定义书签。 一、仿真题目 (2) 单闭环直流调速系统仿真 (2) 二、仿真过程 (2) 2.1 仿真总图 (2) 2.2 PWM模块 (3) 2.3 电机模块 (3) 2.4 仿真结果 (4) 三、心得体会 (10)

一、仿真题目 单闭环直流调速系统仿真 直流电动机:型号为Z4-132-1,额定电压400N U =V ,额定电流52.2dN I =A ,额定转速为2610 r/min ,反电动势系数e C =0.1459 V ?min/r ,允许过载倍数λ=1.5;PWM 变换器开关频率:8KHz ,放大系数:s K =107.5;(538/5=107.5),直流母线电压为538V 。 电枢回路总电阻: 0.368R =Ω; 时间常数:电枢回路电磁时间常数l T =0.0144s ,电力拖动系统机电时间常数 m T =0.18s ;转速反馈系数0.00383min/V s =?α(N n V /10≈); 对应额定转速时的给定电压V U n 10* =。 ● 在matlab/simulink 仿真平台下搭建系统仿真模型。其中PWM 变换器利用给 出的PWM 控制器模块和simulink/Powersystem 工具包中的功率封装模块搭建,不能直接利用传递函数建模。比例积分调节器进行积分和输出限幅,输出限幅值为+5和-5。 ● 给出采用比例调节器(7p K =)、比例积分调节器时(7p K =,1107 =τ )空载起动 到额定转速的转速波形,并就稳态静差和动态性能进行对比,分析说明原因。 ● 给出采用比例积分调节器时(7p K =,1107 =τ )的转速、电流、电枢电压波形, 分析空载起动过程中电流过流原因,请给出解决过流问题的方法。 ● 在4s 突加40%额定负载,给出仿真波形(包括转速、电流、转速调节器输 出),并加载过程中波形变化加以分析,比较加载前后稳态转速,说明原因。 二、仿真过程 2.1 仿真总图

机械加工技术教案

教学课程:绪论 教学目的: 1.了解课程的性质和内容 2.了解机械制造技术的发展现状 3.了解先进制造技术及其发展方向 4.了解课程的目的和要求 教学重点: 1.了解课程的性质和内容 2.了解课程的目的和要求 教学过程: 讲授新课: 一、本课程的性质和内容 本课程所讲的机械制造技术主要是指机械冷加工技术和机械装配技术。 内容包括: (1)掌握金属切削过程的基本规律和机械加工的基本知识。合理选择机械加工方法与机床、刀具、夹具及切削加工参数,并初步具备制订机械加工工艺规程的能力。 (2)掌握机械加工精度和表面质量的基本理论和基本知识。初步具备分析和解决现场工艺问题的能力。 二、机械制造技术的发展现状 我国的制造业得到长足发展,但还存在阶段性的差距。 1.数控机床在我国机械制造领域的普及率不高。 2.国产先进数控设备的市场占有率较低。

3.数控刀具、数控检测系统等数控机床的配套设备不能适应技术发展的需要。 4.机械制造行业的制造精度、生产效率、整体效益等都不能满足市场经济发展的要求。 三、先进制造技术的及其发展方向 先进制造技术是传统制造业不断吸收机械、电子、信息、材料及现代管理等方面的最新成果,将其综合应用于制造的全过程以实现优质、高效、低消耗、敏捷及无污染生产的前沿制造技术的总称。 先进制造技术的主要发展趋势 (1)制造技术向自动化、集成化和智能化的方向发展(CNC)机床、加工中心(MC)、柔性制造系统(FMS)以及计算机集成制造系统(CIMS)等自动化制造设备或系统的发展适应了多品种、小批量的生产方式,它们将进一步向柔性化、对市场快速响应以及智能化的方向发展,敏捷制造设备将会问世,以机器人为基础的可重组加工或装配系统将诞生,智能制造单元也可望在生产中发挥作用。加速产品开发过程的CAD/CAM一体化技术、快速成形(RP)技术、并行工程(CE)和虚拟制造(VM)将会得到广泛的应用。 (2)制造技术向高精度方向发展 21世纪的超精密加工将向分子级、原子级精度推进,采用一般的精密加工也可以稳定地获得亚微米级的精度。精密成形技术与磨削加工相结合,有可能覆盖大部分零件的加工。以微细加工为主要手段的微型机电系统技术将广泛应用于生物医学、航空航天、军事、农业、家庭等领域,而成为下世纪最重要的先进制造技术前沿之一。

相关主题
文本预览
相关文档 最新文档