当前位置:文档之家› 细胞生物学资料

细胞生物学资料

细胞生物学资料
细胞生物学资料

第一章绪论

1.*细胞生物学:是从细胞的显微、亚显微和分子三个水平对细胞的各种生命活动开展研究的学科

2.细胞学说:一切生物,从单细胞生物到高等动物和植物都由细胞组成,细胞是生物形态结构和功能的基本单位

3.细胞分化:是指在个体发育中,由单个受精卵产生的细胞在形态结构,生化组成和功能等方面形成明显和稳定差异的过程

4.基因组:是指细胞或生物体的一套完整的单倍体遗传物质,是所有不同染色体上全部基因和基因间的DNA总和

5.蛋白质组:是指由一个细胞,一个组织或生物的基因组所表达的全部蛋白质

第四章细胞膜与物质的跨膜运输

1.*生物膜的组成及作用

生物膜:质膜(细胞膜)和内膜系统(内质网、高尔基复合体、溶酶体等)的统称

作用:(1)细胞膜不仅为细胞的生命活动提供了稳定的内环境,还行使着物质转运、信号传递、细胞识别等多种复杂功能(2)细胞内的生物膜把细胞分割成一个个小的区室,使胞内不同的生理、生化反应过程得以彼此独立、互不干扰地在特定的区域内进行和完成(3)有效增大了细胞内有限空间的表面积,从而极大地提高了细胞整体的代谢水平和功能效率

2.细胞膜:又称质膜,是包围在细胞质表面的一层薄膜,主要由脂类、蛋白质和糖类组成。它既将细胞中的生命物质与外界环境分隔开,为其生命活动提供了稳定的内环境,同时还行使着物质转运、信号传递、细胞识别等多种复杂功能。

3.细胞膜的特性:(1)*膜的不对称性决定膜功能的方向性。不对称性是指细胞膜中各种成分(膜脂、膜蛋白、膜糖)的分布是不均匀的,包括种类和数量上都有很大差异(2)膜的流动性是膜功能活动的保证。流动性主要是指膜脂的流动性和膜蛋白的运动性。

4.*什么是膜的流动性?它体现在哪些方面?

膜的流动性是指膜脂与膜蛋白处于不断的运动状态,它是保证正常膜功能的重要条件。在生理状态下,生物膜既不是晶态也不是液态,而是液晶态,即介于液态与晶态的过渡状态。在这种状态下,其既具有液态分子的流动性,又具有固态分子的有序排列。表现在(1)膜脂的流动性(侧向扩散运动、翻转运动、旋转运动、伸缩和振荡运动、烃链的旋转异构运动(2)膜蛋白的流动性(侧向扩散运动、旋转运动)

5.流动镶嵌模型:这一模型认为膜中脂双层构成膜的连贯主题,它既具有晶体分子排列的有序性,又具有液体的流动性。膜中蛋白质分子以不同形式与脂双层分子结合,有的镶嵌在脂双层分子中,有的附着在脂双层表面。它是一种动态的,不对称的具有流动性的结构。

6.脂筏模型:脂质双层内含有由特殊脂质和蛋白质组成的微区,微区中富含胆固醇和鞘脂,其中聚集一些特定种类的膜蛋白。这些区域比膜的其他部分厚,更有秩序且较少流动,被称为“脂筏”。脂筏周围则是富含不饱和磷脂的流动性较高的液态区。

7.膜的选择性通透:不同分子通过脂双层的扩散速率不同,主要取决于分子的大小和它在脂质中的相对溶解度。分子量越小,脂溶性越强,通过脂双层膜的速率越快。脂双层对所有带电荷的分子,不管它多么小,都是高度不通透的

8.简单扩散:是小分子物质跨膜运输的最简单的方式。溶质分子直接溶解于膜脂双层中,通过质膜进行自由扩散,不需要跨膜运输蛋白协助。转运是由高浓度向低浓度方向进行,所需要的能量来自高浓度本身所包含的势能,不需细胞提供能量,故也称被动扩散。必须满足两个条件:一是溶质在膜两侧保持一定的浓度差,二是溶质必须能透过膜。

9.膜转运蛋白介导的跨膜运输:包括(1)离子通道高效转运各种离子:在膜上形成亲水性地跨膜通道,快速并有选择的让某些离子通过而扩散到质膜的另一侧(被动运输)(2)载体蛋白介导的异化扩散:一些非脂溶性物质在载体蛋白的介导下,不消耗细胞的代谢能量,顺物质浓度梯度或电化学梯度进行转运。(被动运输)(3)载体蛋白介导的主动运输

10.胞吞作用:又称内吞作用,是质膜内陷,包围细胞外物质形成胞吞泡,脱离脂膜进入细胞内的转运过程。包括吞噬作用、吞饮作用及受体介导的内吞作用。(1)吞噬作用:吞噬入侵的微生物,清除损伤和死亡的细胞等功能(2)吞(胞)饮作用:细胞非特异地摄取细胞外液滴的过程(3)受体介导的内吞作用:是细胞通过受体的介导摄取细胞外专一性蛋白质或其他化合物的过程

11.胞吐作用:又称外排作用,是指细胞内合成的物质通过囊泡转运至细胞膜,与质膜融合后将物质排除出细胞外的过程。分为结构性分泌途径和调节性分泌途径。

12.*细胞胞吐途径有哪几种?各有何特点?

结构性分泌途径:是指分泌蛋白在粗面内质网合成之后,转运至高尔基复合体经修饰、浓缩、分选,装入分泌囊泡,随即被运送至细胞膜,与质膜融合将分泌物排出细胞外的过程。普遍存在于所有动物细胞中。调节性分泌途径:是指细胞分泌蛋白合成后被储存于分泌囊泡内,只有当细胞接受到细胞外信号的刺激,引起细胞内Ca2+浓度瞬时升高,才能启动胞吐过程,使分泌囊泡与细胞膜融合,将分泌物释放到细胞外。只存在于特化的细胞中。

13.*细胞表面:包围在细胞质外层的一个结构复合体系和多功能体系,多细胞生物体重的大多数细胞表面是同它的相邻细胞或细胞外基质联系在一起的,是细胞与外界环境相互作用并产生各种复杂功能的单位。以质膜为主体,包括质膜外的细胞外被和质膜内侧的胞质溶胶。

14.细胞表面的特化结构:(1)微绒毛:细胞膜与细胞质共同突向腔面的细小指状突起(2)纤毛和鞭毛:是细胞表面向外伸出的细长突起(3)褶皱:是细胞表面的临时性扁状突起

15.主动运输:由载体蛋白通过各种不同的方式,介导各类小分子物质逆浓度梯度或电化学梯度由低到高进行的跨膜转运,需要与某种释放能量的过程相偶联。

16.*协同运输:由Na泵与载体蛋白协同作用,依靠间接消耗ATP形成离子梯度,完成物质的跨膜转运,分为同向运输与对向运输。

第五章细胞的内膜系统与囊泡转运

1.*内膜系统:包括内质网、高尔基复合体、溶酶体等,在结构、功能和发生上相互密切关联的膜性结构细胞器的总称

2.*内质网的生理功能

粗面内质网与外源性蛋白质分泌合成加工修饰及转运过程密切相关(1)作为核糖体附着的支架(2)为新生多肽链的正确折叠和装配提供了有利环境(3)参与蛋白质的糖基化(4)参与蛋白质的胞内运输

滑面内质网是作为胞内脂类物质合成主要场所的多功能细胞器(1)参与脂质的合成与转运(2)参与糖原的代谢(3)是细胞解毒的主要场所(4)是肌细胞钙离子的储存场所(5)与胃酸胆汁的合成与分泌密切相关

3.*说明高尔基复合体的超微结构及主要功能

高尔基复合体是一种膜性的囊、泡结构复合体,一般非为扁平囊泡、小囊泡、大囊泡三个组成部分,具有显著极性,在不同的组织细胞中呈现不同的分布形式。

功能:(1)是细胞内蛋白质运输分泌的中转站(2)是胞内物质加工合成的重要场所(3)参与糖蛋白的加工合成和蛋白质的水解加工(4)是胞内蛋白质的分选和膜泡定向运输的枢纽

扁平囊泡:是高尔基复合体中最具特征的主体结构部分,每3-8个略成弓形弯曲的扁平囊泡整齐的排列层叠在一起

小囊泡:聚集分布于高尔基复合体形成面,是一些直径为40-80nm的膜泡结构,是由其附近的粗面内质网芽生分化而来,并通过这种形式把内质网中的蛋白质转运到高尔基复合体中来

大囊泡:鉴于扁平囊泡成熟面,系由扁平囊泡末端膨大、断裂形成

4.*溶酶体的种类及生理功能

按功能不同:初级溶酶体、次级溶酶体、三级溶酶体;按形成过程不同:内体性溶酶体、吞噬性溶酶体

功能:(1)分解胞内的外来物质及清除衰老、残存的细胞器(2)具有物质消化与细胞营养功能(3)是机体防御保护功能的组成部分(4)参与某些腺体组织细胞分泌过程的调节(5)在生物个体发生与发育过程

中起重要作用

5.溶酶体的形成与成熟过程?

*内体性溶酶体是由运输小泡和内体合并形成的:(1)酶蛋白的N-糖基化与内质网转运(2)酶蛋白在高尔基复合体内的加工与转移(3)酶蛋白的分选与转运(4)前溶酶体的形成(5)溶酶体的成熟

吞噬性溶酶体是内体性溶酶体与来源于包内外的作用底物融合形成的

第六章线粒体与细胞的能量转换

1.*说明线粒体的超微结构与主要功能

双层膜套叠而成的封闭性膜囊结构(1)外膜:1/2为脂类1/2为蛋白质。外膜的蛋白质包括多种转运蛋白,它们形成较大的水相通道跨越脂质双层,使外膜出现直径2-3nm的小孔,允许通过分子量在10000以下的物质,包括一些小分子多肽(2)内膜:有大量向内腔突起的折叠,形成嵴。内膜将线粒体的内部空间分成内、外两腔。内膜通透性很小,但有高度的选择通透性,膜上的转运蛋白控制内外腔的物质交换,以保证活性物质的代谢(3)内外膜转位接触点:是蛋白质等物质进出线粒体的通道(4)基质:充满了电子密度较低的可溶性蛋白质和脂肪等成分;含有催化三羧酸循环、脂肪酸氧化、氨基酸分解、蛋白质合成等有关的酶,此外还含有双链环状DNA、核糖体,构成了线粒体相对独立的遗传信息复制、转录和翻译系统(5)基粒:线粒体内膜的内表面上突起的圆球形颗粒,化学本质是ATP合酶复合体

2.线粒体起源的内共生学说:线粒体可能起源于与古老厌氧真核细胞共生的早期细菌,在之后的长期进化过程中,二者共生联系更加密切,共生物的大部分遗传信息转移到细胞核上,这样留在线粒体上的遗传信息大大减少。

3.*简述线粒体的半自主性

线粒体独特的双链环状DNA、核糖体构成了线粒体相对独立的遗传信息复制、转录和翻译系统。每个线粒体中可有一个或多个DNA拷贝。形成线粒体自身的基因组及其遗传体系。所有mtDNA编码的蛋白质也是在线粒体的核糖体上翻译的。线粒体编码的RNA和蛋白质并不运出线粒体外。相反,构成线粒体核糖体的蛋白质则是由细胞质进入线粒体内的。因此,线粒体具有自己相对独立的遗传体系,但又依赖于核遗传体系,所以具有半自主性

4.细胞呼吸:在细胞内特定的细胞器内,在氧气的参与下,分解各种大分子物质,产生二氧化碳;与此同时,分解代谢所释放出的能量储存于A TP中,这一过程称细胞呼吸

细胞呼吸的特点:(1)其本质上是线粒体中进行的一些列由酶系所催化的氧化还原反应(2)所产生的能量储存于ATP的高能磷酸键中(3)整个反应过程是分步进行的,能量也是逐步释放的(4)反应是在恒温和恒压条件下进行的(5)反应过程中需要水的参与

第七章细胞骨架与细胞的运动

1.*细胞骨架:是指真核细胞质中的蛋白质纤维网架体系,它对于细胞的形状、细胞的运动、细胞内物质的运输、染色体的分离和细胞分裂等均起着重要作用。

2.*微管如何体外组装?P148

3.影响微管组装和解聚的因素:GTP浓度、压力、温度、PH、离子浓度、微管蛋白临界浓度、药物。药物主要有:紫杉醇(加速聚合)、秋水仙素(引起解聚)和长春新碱(抑制聚合)

4.微管的功能:(1)构成细胞内的网状支架,支持和维持细胞的形态(2)参与中心粒、纤毛、鞭毛的形成(3)参与细胞内物质运输(4)支持细胞内细胞器的定位和分布(5)参与染色体的运动,调节细胞分裂(6)参与细胞内信号转导

5.*简述微丝的组装过程及其影响因素

组装过程分为三个阶段:成核期、聚合期、稳定期

成核期是微丝组装的限速过程,需要一定的时间,此期球状肌动蛋白开始聚合,其二聚体不稳定,易水解,只有形成三聚体才稳定,即核心形成。一旦核心形成,球状肌动蛋白便迅速地在核心两端聚合,进入聚合期。微丝两端的组装速度有差异,正端约为负端的10倍以上。微丝延长到一定时期,肌动蛋白渗入微丝的速度与其从微丝上解离的速度达到平衡,此时即进入平衡期,微丝长度基本不变,正端延长长度等于负

端缩短长度,并仍在进行着聚合与解聚活动

影响因素:(1)G-肌动蛋白临界浓度(2)A TP、Ca2+、Na+、K+浓度和药物(3)微丝结合蛋白

6.微丝的功能:(1)构成细胞的支架并维持细胞的形态(2)参与细胞运动(3)参与细胞分裂(4)参与肌肉收缩(5)参与细胞内物质运输(6)参与细胞内信号传递

7.中间纤维的功能:(1)在细胞内形成一个完整的网状骨架系统(2)为细胞提供机械强度支持(3)参与细胞连接(4)参与细胞内信息传递及物质运输(5)维持细胞核膜稳定(6)参与细胞分化

8.*何为中心粒和中心体,它的结构和功能如何?

中心粒:由微管构成的细胞器,成对出现中心体:是一种复合结构,包括中心粒和中心球

中心体在间期位于细胞核附近,有丝分裂器则在纺锤体的两极。功能:微管组织中心,在这里产生微管,在低等植物和动物的细胞的中心体为无定形区,围绕在一对中心粒的周围

中心粒功能:组织形成鞭毛和纤毛,并参与细胞的有丝分裂,中心粒与微管蛋白的合成及微管的聚合有关,中心粒存在A TP酶,因而与细胞代谢有关,为细胞运动和染色体移动提供能量

第八章细胞核

1.*间期核的结构和功能

结构:核被膜、核仁、染色质、基质

功能:为间期细胞积极的准备提供了一个良好的环境保证DNA复制有序地发生和细胞以稳定的速率生长2.核膜的结构:核膜由两层平行但不连续的非对称性单位膜构成。外核膜与粗面内质网相连续;内核膜靠近核质、表面光滑;内外膜之间有核周间隙,与粗面内质网有临时通道,内含多种蛋白质和酶;内外核膜融合成为核孔,电镜下是由蛋白质构成的复杂结构,即*核孔复合体

3.*蛋白质入核运输机制P174

入核过程:核质蛋白与细胞质蛋白质结合→引导核孔复合体结合纤丝→进入核孔复合体→+ATP进入细胞核内

特点:(1)核孔复合体可调节(2)运输具有选择性(3)核质蛋白局部有核定位信号

4.*如何理解核膜的功能?

(1)核膜的区域化作用使转录和翻译在空间上分离,核膜构成了核质间的一道天然屏障,将细胞分为细胞核与细胞质两大结构区与功能区,使细胞核有相对稳定的内环境,保证DNA复制,RNA转录与加工在核内进行,而蛋白质的合成则局限在细胞质中完成,使遗传信息的传递在不同的空间进行,确保了真核生物基因表达的准确性与高效性

(2)核膜控制着细胞核与细胞质间的物质交换,核质间频繁的物质交换是细胞活动所必须的,其交换方式与物质交换的类型密切相关。无机离子及小分子物质均可自由通过细胞膜,而绝大多数大分子物质及一些小分子颗粒则主要通过核孔复合体以选择性的运输方式实现核质间的物质交换。

5.核纤层的结构和功能:(1)结构:是附着于内核膜下的纤维蛋白网,与中间纤维及核骨架相互连接,形成贯穿于细胞核与细胞质的骨架系统。核纤层位于内核膜与染色质之间,纵横排列整齐,整体观呈球形或笼形网络,切面观呈片层结构(2)功能:在细胞核中起支架作用;与核膜重建及染色质凝集关系密切;参与了细胞核构建与DNA复制

6.*染色质分为几类?各有何特点?

常染色质:间期核内碱性染料染色时着色较浅,螺旋换程度较低,处于伸展状态的染色质细丝,含有基因转录活跃部位。

*异染色质:间期核中出于凝缩状态,结构致密,无转录活性,用碱性染料染色时着色较深。包括结构异染色质和兼性异染色质两大类。

7.核仁:是真核细胞间期核中最明显的结构,光镜下为均匀、海绵状的球体。在蛋白质合成旺盛的细胞中核仁很大(1)是rRNA基因转录和加工的场所(2)rRNA与核糖体蛋白在核仁内组装成核糖体的大小亚基

8.核骨架:又称核基质,是指真核细胞间期核中除核膜、染色质和核仁以外的部分,是一个以非组蛋白为

主构成的纤维网架结构(1)是DNA复制的支架(2)在基因转录中发挥重要作用(3)参与染色体和核膜的构建

9.*细胞核的功能:是真核细胞中最重要的细胞器,是遗传物质DNA存在的主要部位,主要功能是遗传信息的贮存、复制和转录,是细胞生命活动的控制中心

第十章细胞连接与细胞粘连

1.*什么是细胞连接?细胞连接如何分类分布?各有何主要特点?

细胞连接是维系细胞间相对稳定的特化连接装置,也是相邻细胞之间协同作用的重要组织形式

(1)封闭连接:广泛分布于各种上皮细胞,如消化道上皮、膀胱上皮、曲细精管生精上皮的支持细胞基部和腺体的上皮细胞管腔面的顶端区域;此外,脑毛细血管内皮细胞之间也存在紧密连接结构

结构特点:相邻细胞膜形成封闭链,两个相邻细胞质膜以断续的点连接在一起,点状接触部位没有缝隙*功能特点:(1)封闭上皮细胞的间隙,形成一道与外界隔离的封闭带,防止细胞外物质无选择地通过细胞间隙进入组织,或组织中的物质回流入腔中,保证组织内环境的稳定(2)形成上皮细胞质膜蛋白与膜脂分子侧向扩散的屏障,从而维持上皮细胞的极性。

(2)锚定连接:是一类由细胞骨架纤维参与,存在于相互接触的细胞之间或细胞与细胞外基质之间的细胞连接。其主要作用是形成能够抵抗机械张力的牢固黏合,参与组织器官形态和功能的维持、细胞的迁移运动以及发育和分化等多种过程。广泛分布于动物各种组织中,特别是在上皮、心肌和子宫颈等需要承受机械压力的组织中尤为丰富。可分为两大类A.黏合连接:与肌动蛋白纤维相连(细胞与细胞之间的黏合连接称为黏合带,细胞与细胞外基质间的黏合连接称为黏着斑)B.桥粒连接:与中间纤维相连(细胞与细胞之间的连接称为桥粒,细胞与细胞外基质间的连接称为半桥粒)

(3)通讯连接:存在于生物体大多数组织相邻细胞膜上,以实现细胞间电信号和化学信号的通讯联系,从而完成群体细胞间的合作和协调。

2.细胞粘附因子:是广泛存在于细胞膜上的一类跨膜糖蛋白,是介导细胞与细胞之间、细胞与细胞外基质之间相互结合并起粘附作用的一类细胞表面因子

3.钙粘素的功能:(1)介导与细胞之间的同亲性细胞粘附(2)在个体发育过程中影响细胞的分化,参与组织器官的形成(3)是参与细胞之间的特化连接结构

4.整联蛋白的功能:(1)介导细胞间相互作用(2)介导细胞与细胞外基质间的相互作用(3)在信号传递中发挥重要作用

第十一章细胞外基质及其与细胞间的相互作用

1.细胞外基质:是由细胞分泌到细胞外空间,由细胞分泌蛋白和多糖构成的精密有序的网络结构。细胞通过细胞外基质行使多种功能,两者之间相互依存,使细胞与细胞、细胞与基底膜之间紧密联系,构成了各种组织与器官,使之成为一个完整有机整体

2.氨基聚糖与蛋白聚糖的功能:(1)使组织具有弹性和抗压性(2)对物质转运由选择渗透性(3)角膜中蛋白聚糖具有透光性(3)氨基聚糖有抗凝血作用(5)细胞表面的蛋白聚糖由有传递信息作用(6)与组织老化有关

3.胶原的合成装配与降解过程:胶原的合成与组装始于内质网,并在高尔基体中进行修饰,最后以前胶原分子形式被包进分泌小泡,分泌到细胞外组装成胶原纤维。胶原分子可被胶原酶降解,胶原酶的活化与抑制对于调节胶原的转换率具有重要作用。创伤组织、癌变组织中胶原酶活性显著增高。

4.胶原的功能:(1)胶原在不同组织中行使不同的功能:哺乳动物皮肤中的胶原纤维编织成网,具有抗衡来自不同方向的拉力的作用;肌腱中的胶原纤维沿着肌腱的长轴平行排列,使肌腱具有很强的韧性,能够承受巨大的压力(2)胶原纤维与细胞的增殖与分化有关(3)哺乳动物在发育的不同阶段表达不同类型的胶原

5.纤连蛋白的功能:(1)介导细胞与细胞外基质间的粘附:通过黏着斑的作用,调节细胞的形状和细胞骨架的支配,促进细胞的铺展,加速细胞的增殖与分化(2)纤连蛋白与细胞的迁移:通过黏着斑的形成与解离,影响细胞骨架的组成与去组装,促进细胞迁移运动(3)在组织创伤修复中的作用:血浆中的纤连

蛋白能促进血液凝固和创伤面的修复。

6.层粘连蛋白的功能:(1)层粘连蛋白是基底膜的主要组分,在基底膜的基本框架的构建和组装中起了关键作用(2)是细胞粘附固定在基底膜上,促进细胞的生长并使细胞铺展而保持一定的形态(3)层粘连蛋白通过与细胞间的相互作用,可直接或间接控制细胞的活动。层粘连蛋白在早期胚胎中对于细胞间的粘附、细胞的极性及细胞的分化具有重要意义

7.基底膜的生物学功能:是上皮细胞的支撑垫,在上皮组织与结缔组织之间起结构连接作用;是细胞选择性屏障,对分子通透具有高度选择性

8.细胞外基质对细胞生物学行为的影响:(1)影响细胞的形态结构:当一种细胞在不同的细胞外基质上粘附和铺展时,可呈现不同的形状,只有在细胞外基质存在的条件下,组织中的细胞才能维持正常形态和行使各种生物学功能(2)影响细胞的生存和死亡:人体内大多数类型的细胞需要粘附在一定的细胞外基质上才能存活,细胞外基质对细胞的生存与死亡起着非常重要的作用(3)影响细胞的增殖和分化(4)影响细胞的迁移

第十二章细胞的信号转导

1.信号转导:胞外信号分子与细胞膜上或胞内的受体特异性结合,将信号转导后传给相应的胞内系统,使细胞对外界信号作出适当反应的过程

2.受体:一类存在于细胞膜或细胞内的特殊蛋白质,能特异性地识别并结合胞外信号分子,进而激活胞内的一系列生物化学反应,使细胞对外界刺激产生相应的效应

3.G蛋白:指在信号转导过程中,与受体偶联的并能与鸟苷酸结合的一类蛋白质,位于细胞膜胞质面,为可溶性的膜外周蛋白,由α、β、γ三种蛋白亚基组成。G蛋白的主要功能是通过其自身的构象变化激活效应蛋白,进而实现信号从胞外向胞内的传递。α亚基上存在GDP或GTP结合位点,有GTP酶活性。静息状态下,α亚基与β、γ亚基形成三聚体形式后与GDP结合

G蛋白作用全过程:

当配体与受体结合时:受体与α亚基相互作用→α亚基与GDP解离,与GTP结合→G蛋白解体→β、γ二聚体沿细胞膜自由扩散,激活下游效应蛋白

当配体与受体解离时:α亚基分解GTP生成GDP→与GDP结合→α亚基与效应蛋白分离,重新与β、γ亚基构成三聚体→G蛋白回到静息状态

4.第二信使:又称细胞内信使,指受体被激活后在细胞内产生的,能介导信号转导的活性物质。包括cAMP、cGMP、DAG、IP3,Ca2+等

5.*cAMP信号转导途径

cAMP的主要作用是激活依赖cAMP的蛋白激酶A,从而使下游信号蛋白丝氨酸/苏氨酸残基的磷酸化被激活或钝化。当PKA与4分子cAMP结合后,C亚基以单体的形式从PKA中游离出来后,即具有了蛋白激酶活性,通过使其蛋白底物磷酸化,进一步调节细胞的代谢反应

第十三章细胞分裂与细胞周期

1.*说明细胞的增殖方式有几种?细胞增殖的生物学意义是什么?

无丝分裂、有丝分裂、减数分裂

意义:(1)是细胞生命活动的重要特征之一(2)亲代细胞的遗传物质和某些细胞组分可以相对均等地分配到两个细胞当中,有效地保证了生物遗传的稳定性(3)不仅是单细胞生物个体繁殖的重要方式,也是多细胞生物组织生长及个体形成的基础,与新个体的发生以及与个体器官组织的维持和更新密切相关

2.减数分裂:发生于配子成熟过程中的一种特殊的有丝分裂,由两次连续的分裂组成,因整个分裂过程中DNA只复制一次,所产生的子细胞中染色体数目与亲代细胞相比减少一半,这有利于维持有性生殖的生物上下代遗传的稳定性

3.细胞周期:细胞从上次分裂结束到下次分裂结束所经历的规律性变化称为一个细胞周期

4.细胞周期是如何划分的,S期的主要特点是什么?

据染色体的形态分为分裂期和分裂间期

分裂期根据细胞的形态和结构的变化,有丝分裂可被分为前、中、后、末期

分裂间期根据DNA合成的情况,可分为G1,S,G2期

S期特点:进行大量的DNA复制,同时也合成组蛋白及非组蛋白,最后完成染色体的复制

5.细胞周期蛋白:真核细胞中的一类蛋白质,能随细胞周期的进程周期性地出现及消失。如果用秋水仙素抑制细胞分裂,该类蛋白质的降解不会发生或被延缓。

6.细胞周期蛋白依赖性激酶:一类必须与细胞周期蛋白结合才具有激酶活性的蛋白激酶,通过磷酸化多种与细胞周期相关的蛋白,CDK可在细胞周期调控中起关键作用。

7.泛素途径降解过程

泛素是一种由76个氨基酸组成的高度保守的蛋白质,当其C端与非特异性泛素活化酶E1的半胱氨酸残基以硫酯键共价结合后,泛素被活化。E1-泛素复合体可将泛素转移到泛素结合酶E2的胱氨酸残基上,在一种特异性的,由多种蛋白亚基构成的泛素连接酶E3(APC)的催化下,泛素连接于cyclinA、B分子破坏框附近的赖氨酸残基上,其他的泛素分子对吼相继与前一个泛素分子的赖氨酸残基相连,这样在cyclinA、B上构成一条多聚泛素链。此链可作为标记物被蛋白酶体所识别,进而被其降解

8.为什么S期细胞DNA只能复制一次?

在DNA复制启动后,预复制复合体中的蛋白质可在cyclinA-Cdk复合物作用下发生分离,预复制复合体解体,在原复制起始点上DNA将不能再次进行复制。cyclinA-Cdk复合物还可进一步对组成预复制复合体的蛋白质进行磷酸化,导致其降解或向核外转运,阻止了预复制复合体在其他复制起始点的重新聚合装配,使DNA复制不会再启动

9.*MPF如何调节细胞增殖?P296-297

G2晚期形成的cyclinB-Cdk复合物在促进G2期向M期转化的过程中起着关键作用,该复合物又被称为*成熟促进因子(MPF),意为能促进M期启动的调控因子

(1)G2期晚期,MPF活性显著增高,促进G2期向M期转换,若MPF激酶活性失活,可促进细胞从M 期向G1期转化(2)MPF还可促进中期细胞向后期的转换(3)在有丝分裂后期末,cyclinB在激活的APC 作用下,经多聚泛素化途径被降解,MPF解聚、失活、促使细胞转向末期。

第十四章细胞分化

1.*细胞分化:个体发育中,由单个受精卵产生的细胞在形态结构、生化组成等方面形成明显的稳定性差异的过程。

.2细胞决定:在个体发育过程中,细胞在发生可识别的分化特征之前就已经确定了未来的发育命运,只能向特定方向分化的状态,称之为细胞决定

3.去分化:在某些条件下,分化了的细胞也不稳定,其基因活动模式也可发生可逆性的变化,而又回到未分化状态

4.转分化:高度分化的动物细胞,从一种分化状态转变为另一种分化状态

5.奢侈基因:编码组织细胞特异性蛋白的基因,仅存在于特定的分化细胞中

6.管家基因:编码维持细胞生存所必需蛋白的基因,存在于所有分化类型的细胞中

7.母源效应基因产物:在卵质中呈极性分布,在受精后被翻译为在胚胎发育中起重要作用的转录因子和翻译调节蛋白的mRNA分子

8.*细胞分化的分子性质

细胞分化使同一来源的细胞产生形态结构、生化特性、生理功能上的差异,从分子水平来看,这是由于特定基因活化的结果。特定基因表达后合成某些特异性蛋白质,执行特殊的功能。因此,细胞分化的问题本质上就是基因表达调控的问题,是管家基因和奢侈基因在胚胎发育过程中差异表达的结果。这些差异表达酶存在着调控,这些调控是在转录水平上进行的,而以转录水平为主

9.基因选择性表达的转录水平调控都有哪些?

1.组织细胞特异性转录因子和活性染色质结构区决定了细胞特异性蛋白的表达

2.转录因子的顺序表达启动

特定谱系细胞的分化3.染色质成分的共价修饰制约基因的转录(1)DNA甲基化在转录水平上调控细胞分化的基因表达(2)组蛋白的乙酰化和去乙酰化影响转录因子与DNA的结合4.同源盒基因规划机体前-后体轴结构的分化与发育蓝图

10.胚胎诱导:在胚胎发育过程中,一部分细胞对邻近细胞产生影响并决定其分化方向的现象

11.发育过程中常见的旁分泌因子:(1)成纤维细胞生长因子(FGF)(2)Hedgehog家族蛋白:shh、dhh、ihh(3)Wnt家族蛋白(4)TGF-β超家族

12.近分泌相互作用:需要相互作用细胞的细胞膜并置在一起的诱导现象

13.侧向抑制:细胞在启动分化指令的同时也发出另一个信号去抑制邻近细胞的分化

14.*举例说明影响细胞分化的外在因素

物理、化学和生物性因素均可对细胞的分化与发育产生重要影响。如:孵化温度可以决定某些爬行动物(如鳄鱼)的性别;哺乳类动物B淋巴细胞的分化和发育则依赖于外来性抗原的刺激,如碘缺乏将引起甲状腺肿、精神发育和生长发育迟缓;妊娠时感染风湿病毒易引起发育畸形。

15.再生:动物的整体或器官受外界因素作用发生创伤而部分丢失时,在剩余部分的基础上又生长出与丢失部分在形态结构和功能上相同的组织或器官的过程。3种再生方式:(1)微变态再生(两栖类)(2)变形再生(水螅)(3)补偿性再生(哺乳动物肝脏)

第十五章细胞衰老与细胞死亡

1.细胞衰老:是指细胞在正常条件下发生的细胞的胜利功能衰退和增殖能力减弱,以及细胞形态发生改变并趋向死亡的现象

2.*说明细胞衰老出现哪些变化?

形态学改变(1)细胞皱缩(2)膜通透性和脆性增加(3)核膜内陷(4)细胞器数量特别是线粒体数量减少(5)胞内出现脂褐素等异常物质沉积

生物大分子改变(1)DNA复制与转录收到抑制(2)RNA含量降低(3)蛋白质含量下降(4)酶失活(5)不饱和脂肪酸被氧化

3.细胞死亡:是指细胞生命现象的终结,有两种形式:细胞坏死、细胞凋亡

细胞坏死:指在外来致病因子作用下,细胞生命活动被强行终止所致的病理性、被动性的死亡过程。

*细胞凋亡(程序性细胞死亡):指细胞在一定的生理或病理条件下,遵循自身的程序,自己结束其生命的过程。意义:去除不需要的结构、细胞,有害细胞,产生特化细胞,自我保护。

4.细胞凋亡特征性形态学变化

1.细胞核的变化:凋亡细胞的核DNA在核小体连接处断裂成核小体片段,并向核膜下或中央部异染色质区聚集,使细胞核呈现新月状、花瓣状等多种形态2细胞质的变化:由于脱水作用,胞质明显浓缩,线粒体增大,内质网腔扩张膨大,细胞骨架结构变得致密和紊乱3.细胞膜的变化:细胞表面原有的特化结构逐渐消失4.凋亡小体的形成

5.*细胞凋亡与细胞坏死的比较

细胞凋亡是一种主动的、由基因决定的细胞自杀。细胞坏死是指细胞受到激烈的物理、化学刺激或严重的病理性刺激后,引起的细胞损伤和死亡。细胞坏死时,细胞膜发生渗透,细胞内容物释放到细胞外,导致炎症反应;而在细胞凋亡过程中,凋亡小体被吞噬细胞吞噬破坏,细胞膜完整性保持良好,死亡细胞的内容物不会逸散到胞外环境中,因此并不引发炎症反应。

第十七章干细胞

1.干细胞:指一类具有自我更新和多向分化潜能的细胞,存在于人体或动物个体发育各个阶段的组织器官中,是各种分化细胞或特化细胞的起始来源

2.成体干细胞的分类及表面标志

(1)造血干细胞:CD34+(2)间充质细胞:SH2、SH3(3)神经干细胞:nestin(4)皮肤干细胞:表皮干细胞、毛囊干细胞(5)肠干细胞(6)肝干细胞

细胞生物学试题整理

细胞生物学与细胞工程试题 一:填空题(共40小题,每小题分,共20分) 1:现在生物学“三大基石”是:_,__。 2:细胞的物质组成中,_,_,_,_四种。 3:膜脂主要包括:_,_,_三种类型。 4:膜蛋白的分子流动主要有_扩散和_扩散两种运动方式。 5:细菌视紫红质蛋白结构的中部有几个能够吸光的_基因,又称发色基因。6:受体是位于膜上的能够石碑和选择性结合某种配体的_。 7:信号肽一般位于新合成肽链的_端,有的可位于中部。 8:次级溶酶体是正在进行或完成消化作用的溶酶体,可分为_,_,及_。 9狭义的细胞骨架(指细胞质骨架)包括_,_,_,_及_。 10:高等动物中,根据等电点分为3类:α肌动蛋白分布于_;β和γ肌动蛋白分布于所有的_和_。 11:染色质的化学组成_,_,_,少量_。 12:随体是指位于染色体末端的球形染色体节段,通过_与_相连。 13:弹性蛋白的结构肽链可分为两个区域:富含_,_,_区段。 14:细胞周期可分为G1期,S期,G2期,G2期主要合成_,_,_等。 二:名词解释(每个1分,共20小题) 1:支原体 2:组成型胞吐作用 3:多肽核糖体 4:信号斑 5:溶酶体 6:微管 7:染色单体 8:细胞表面 9:锚定连接 10:信号分子 11:荧光漂白技术

12:离子载体 13:受体 14:细胞凋亡 15:全能性 16:常染色质 17:联会复合体 18组织干细胞 19:分子伴侣 20:E位点 三:选择题(每题一分,共20小题) 1:细胞中含有DNA的细胞器有() A:线粒体B叶绿体C细胞核D质粒 2:细细胞核主要由()组成 A:核纤层与核骨架B:核小体C:染色质和核仁 3:在内质网上合成的蛋白质主要有() A:需要与其他细胞组分严格分开的蛋白B:膜蛋白C:分泌性蛋白 D:需要进行修饰的pro 4:细胞内进行蛋白修饰和分选的细胞器有() A:线粒体 B:叶绿体 C:内质网 D:高尔基体5微体中含有() A:氧化酶 B:酸性磷酸酶 C:琥珀酸脱氢酶 D:过氧化氢酶6:各种水解酶之所以能够选择性的进入溶酶体是因为它们具有()A:M6P标志 B:导肽 C:信号肽 D:特殊氨基序列7:溶酶体的功能有() A:细胞内消化 B:细胞自溶 C:细胞防御 D:自体吞噬8:线粒体内膜的标志酶是() A:苹果酸脱氢酶 B:细胞色素 C:氧化酶 D:单胺氧化酶9:染色质由以下成分构成() A:组蛋白 B:非组蛋白 C:DNA D:少量RNA

细胞生物学复习全资料1

细胞生物学复习资料 第一章绪论 1.什么叫细胞生物学 细胞生物学是研究细胞基本生命活动规律的科学,它是在不同层次(显微、亚显微与分子水平)上以研究细胞结构与功能、细胞增殖、分化、衰老与凋亡、细胞信号传递、真核细胞基因表达与调控、细胞起源与进化等为主要容。核心问题是将遗传与发育在细胞水平上结合起来。 第二章细胞基本知识概要 一、名词解释 1.古核细胞:也称古细菌,是一类很特殊的细菌,多生活在极端的生态环境中。具有原核生物的某些特征,如无核膜及膜系统;也有真核生物的特征。 2.含子:是基因不编码蛋白质的核苷酸序列,不出现在成熟的RNA分子中,在转录后通过加工被切除。大多数真核生物的基因都有含子。在古细菌中也有含子。 3.外显子:指真核细胞的基因在表达过程中能编码蛋白质的核苷酸序列。 二、简答 1.真核细胞的三大基本结构体系 (1)以脂质及蛋白质成分为基础的生物膜结构系统; (2)以核酸(DNA或RNA)与蛋白质为主要成分的遗传信息表达系统 (3)由特异蛋白分子装配构成的细胞骨架系统。 2.细胞的基本共性 (1)所有的细胞都有相似的化学组成 (2)所有的细胞表面均有由磷脂双分子层与镶嵌蛋白质构成的生物膜,即细胞膜。 (3)所有的细胞都含有两种核酸:即DNA与RNA作为遗传信息复制与转录的载体。 (4)作为蛋白质合成的机器─核糖体,毫无例外地存在于一切细胞。 (5)所有细胞的增殖都以一分为二的方式进行分裂。 3.病毒与细胞在起源与进化中的关系并说出证明 病毒是非细胞形态的生命体,它的主要生命活动必须要在细胞实现。病毒与细胞在起源上的关系,目前存在3种主要观点: 生物大分子→病毒→细胞 病毒 生物大分子→ 细胞 生物大分子→细胞→病毒(最有说服力) 认为病毒是细胞的演化产物的观点,其主要依据和论点如下: (1)由于病毒的彻底寄生性,必须在细胞复制和增殖,因此有细胞才能有病毒 (2)有些病毒(eg腺病毒)的核酸和哺乳动物细胞DNA某些片段的碱基序列十分相似。病毒癌基因起源于细胞癌基因 (3)病毒可以看做DNA与蛋白质或RNA与蛋白质的复合大分子,与细胞核蛋白分子有相似之处

细胞生物学简答题整理

1.简述G蛋白偶联受体所介导的信号通路的异同G蛋白偶联受体所介导信号通路分为三类: ①激活离子通道;②激活或抑制腺苷酸环化酶,以cAMP 为第二信使;③激活磷脂酶C ,以IP3 和DAG 作为双信使 激活离子通道: 当受体与配体结合被激活后,通过偶联G蛋白的分子开关作用,调控跨膜离子通道的开启和关闭,进而调节靶细胞的活性。 激活或抑制腺苷酸环化酸的cAMP信号通路: 细胞外信号(激素,第一信使)与相应G蛋白偶联的受体结合,导致细胞内第二信使cAMP的水平变化而引起细胞反应的信号通路。腺苷环化酶调节胞内cAMP的水平,cAMP被环腺苷酸磷酸二酯酶降解清除。 cAMP信号通路主要是通过活化cAMP依赖性蛋白激酶A (PKA) ,激活靶酶开启基因表达,从而表现出不同的效应。蛋白激酶A 由2个催化亚基和2个调节亚基组成,cAMP的结合可改变调节亚基的构象,释放催化亚基产生活性。 蛋白激酶A被激活后,一方面通过对底物蛋白的磷酸化,引起细胞对胞外信号的快速反应;另一方面,其催化亚基可进入细胞核,磷酸化cAMP应答元件结合蛋白 (CREB) 的丝氨酸残基。磷酸化的CREB蛋白被激活,它作为基因转录的调节蛋白识别并结合到靶细胞的cAMP应答元件 (CRE) 启动靶基因的转录,引起细胞缓慢的应答反应。 cAMP信号通路中的缓慢反应过程:激素→G-蛋白偶联受体→G-蛋白→腺苷酸环化酶→ cAMP→ cAMP依赖的蛋白激酶A→基因调控蛋白→基因转录。 cAMP是由腺苷酸环化酶 (adenylyl cyclase,AC) 催化合成的,腺苷酸环化酶为跨膜12次的糖蛋白,在Mg2+或Mn2+存在下能催化ATP生成cAMP;细胞内的环腺苷酸磷酸二酯酶 (PDE) 可降解cAMP生成5’-AMP,导致细胞内cAMP水平

细胞生物学资料整理汇总

Cell Biology:广泛采用现代生物学的实验技术和手段,应用分析和综合的方法,将细胞的整体活动水平,亚细胞水平和分子水平三方面的研究有机地结合起来,以动态的观点观察细胞和细胞器的结构和功能,以期最终阐明生命的基本规律。 脂筏(lipid raft)是质膜上富含胆固醇和鞘磷脂的微结构域(microdomain)。大小约70nm左右,是一种动态结构,位于质膜的外小叶。 质膜主要由膜脂和膜蛋白组成,另外还有少量糖,主要以糖脂和糖蛋白的形式存在。 膜骨架membrane associated skeleton 细胞膜下与膜蛋白相连的由纤维蛋白组成的网架结构,它参与维持细胞膜的形状并协助质膜完成多种生理功能。 被动运输(passive transport):通过简单扩散或协助扩散实现物质由高浓度向低浓度方向的跨膜转运。动力来自物质的浓度梯度,不需要细胞提供代谢能量。 简单扩散(simple diffusion)疏水的小分子或小的不带电荷的极性分子的热运动可以使分子从膜的一侧通过细胞膜到另一侧,其结果是分子沿着浓度梯度降低的方向转运。因无需细胞提供能量,也没有膜蛋白的协助,故名。 协助扩散(facilitated diffusion) 小分子物质沿其浓度梯度(或电化学梯度)减小方向的跨膜运动,是由膜转运蛋白“协助”完成的。 主动运输active transport 由载体蛋白所介导的物质逆着浓度梯度或电化学梯度由低浓度侧到高浓度侧转运,需要供给能量。ATP 直接供能、间接供能、光能。 协同运输(cotransport):由离子泵与载体蛋白协同作用,利用跨膜的离子浓度梯度或电化学梯度,使特定离子的顺梯度运动与被转运分子或离子的逆梯度运输相偶联。直接动力是膜两侧的离子浓度梯度。 胞吞作用:质膜内陷形成囊泡将外界大分子裹进并输入细胞的过程。 胞吐作用:与胞吞作用的顺序相反,将细胞内的分泌泡或其它某些膜泡中的物质通过细胞膜运出细胞的过程。 外膜(outer membrane):单位膜结构,厚约6nm。含40%的脂类和60%的蛋白质,具有孔蛋白(porin)构成的直径 2-3nm 的亲水通道,10KD 以下的分子包括小型蛋白质可自由通过。 内膜(inner membrane):厚约6-8nm。含100种以上的多肽,蛋白质和脂类的比例高于3:1。心磷脂含量高(达20%)、缺乏胆固醇,类似于细菌。 膜间隙(intermembrane space):内外膜之间的腔隙,延伸到嵴的轴心部。宽约6-8nm。其中含有许多可溶性酶类,底物和辅助因子。标志酶为腺苷酸激酶。 基质(matrix):内膜之内侧,类似胶状物,含有很多Pr.和脂类。三羧酸循环,脂肪酸和丙酮酸氧化的酶类都在其中。另外还有线粒体DNA、核糖体、tRNA、rRNA、DNA 聚合酶、AA 活化酶等。其标志酶为苹果酸脱氢酶。 外被(outerenvelop):双层膜,每层厚6~8nm,膜间隙为10~20nm。外膜通透性大,细胞质中大多数营养分子可自由进入膜间隙。内膜对物质透过的选择性比外膜强,其上有特殊载体称为转运体,可运载物质过膜。 类囊体(Thylakoid):在叶绿体基质中由单位膜所形成的封闭扁平小囊。 光合磷酸化(photophosphorylation):由光照所引起的电子传递与磷酸化作用相偶联而生成ATP的过程。 细胞质膜系统(cytoplasmic membrane system):是指细胞内那些在生物发生上与质膜相关的细胞器,显然不包括线粒体、叶绿体和过氧化物酶体,因为这几种细胞器的膜是逐步长大的,而不直接利用质膜。 膜结合细胞器(membrane-bound organelles)或膜结合区室(membrane-bound compartments):指细胞质中所有具有膜结构的细胞器,包括细胞核、内质网、高尔基体、溶酶体、分泌泡、线粒体、叶绿体和过氧化物酶体等。由于它们都是封闭的膜结构,内部都有一定的空间,所以又称为膜结合区室。 溶酶体(lysosome):是单层膜包围的,含有各种酸性水解酶类的囊泡状细胞器。 信号肽(signal peptide):是引导新合成肽链转移到内质网上的一段多肽,位于新合成肽链的N端,一般16~26个氨基酸残基,其中包括疏水核心区、信号肽的C 端和N 端。由于信号肽又是引导肽链进入内质网腔的一段序列,又称开始转移序列(start transfer sequence)。 跨膜运输(transmembrane transport):蛋白质通过跨膜通道进入目的地。如细胞质中合成的蛋白质在信号序列的引导下,进入ER;进入线粒体、叶绿体和过氧化物酶体,都是通过膜上的蛋白质转运体(转位因子),以解折叠的线性分子进入。

最新细胞生物学知识点总结

细胞通讯的方式 (1)细胞通过分泌化学信号进行细胞间通讯,这是多细胞生物普遍采用的通讯方式。 (2)细胞间接触依赖性的通讯,指细胞间直接接触,通过与质膜结合的信号分子影响其它细胞。 (3)动物相邻细胞间形成间隙连接以及植物细胞间通过胞间连丝使细胞间相互沟通,通过交换小分子来实现代谢耦联或电耦联。 细胞分泌化学信号可长距离或短距离发挥作用,其作用方式分为: (1)内分泌,由内分泌细胞分泌信号分子到血液中,通过血液循环运送到体内各个部位,作用于靶细胞。 (2)旁分泌,细胞通过分泌局部化学介质到细胞外液中,经过局部扩散作用于邻近靶细胞。在多细胞生物中调节发育的许多生长因子往往是通过旁分泌起作用的。此外,旁分泌方式对创伤或感染组织刺激细胞增殖以恢复功能也具有重要意义。 (3)自分泌,细胞对自身分泌的物质产生反应。自分泌信号常存在于病理条件下,如肿细胞合成并释放生长因子刺激自身,导致肿瘤细胞的持续增殖。 (4)通过化学突触传递神经信号,当神经元接受刺激后,神经信号以动作电位的形式沿轴突快速传递至神经末梢,电压门控的Ca2+通道将电信号转换为化学信号。 通过胞外信号介导的细胞通讯步骤 (1)产生信号的细胞合成并释放信号分子。 (2)运送信号分子至靶细胞。 (3)信号分子与靶细胞受体特异性结合并导致受体激活。 (4)活化受体启动胞内一种或多种信号转导途径。 (5)引发细胞功能、代谢或发育的改变。 (6)信号的解除并导致细胞反应终止。 核被膜所具有的功能

一方面,核被膜构成了核、质之间的天然选择性屏障,将细胞分成核与质两大结构与功能区域,使得DNA复制、RNA转录与加工在核内进行,而蛋白质翻译则局限在细胞质中。这样既避免了核质问彼此相互干扰,使细胞的生命活动秩序更加井然,同时还能保护核内的DNA分子免受损伤。 另一方面,核被膜调控细胞核内外的物质交换和信息交流。核被膜并不是完全封闭的,核质之间进行着频繁的物质交换与信息交流。这些物质交换与信息交流主要是通过核被膜上的核孔复合体进行的。 核被膜的结构组成及特点 (1)核被膜由内外两层平行但不连续的单位膜构成。面向核质的一层膜被称作内(层)核膜,而面向胞质的另一层膜称为外(层)核膜。两层膜厚度相同,约为7。5 nm。两层膜之间有20~40nm的透明空隙,称为核周间隙或核周池。核周间隙宽度随细胞种类不同而异,并随细胞的功能状态而改变。 (2)核被膜的内外核膜各有特点:①外核膜表面常附有核糖体颗粒,且常常与糙面内质网相连,使核周间隙与内质网腔彼此相通。从这种结构上的联系出发,外核膜可以被看作是糙面内质网的一个特化区域。②内核膜表面光滑,无核糖体颗粒附着,但紧贴其内表面有一层致密的纤维网络结构,即核纤层。内核膜上有一些特有的蛋白成分,如核纤层蛋白B受体。③双层核膜互相平行但并不连续,内、外核膜常常在某些部位相互融合形成环状开口,称为核孔,:在核孔上镶嵌着一种复杂的结构,叫做核孔复合体。核孔周围的核膜特称为孔膜区,它也有一些特有的蛋白成分。

细胞生物学复习题 含答案

1.简述细胞生物学的基本概念,以及细胞生物学发展的主要阶段。 以细胞为研究对象,经历了从显微水平到亚显微和分子水平的发展过程,研究细胞结构与功能从而探索细胞生长发育繁殖遗传变异代谢衰老及进化等各种生命现象的规律的科学;主要阶段:①细胞的发现与细胞学说的创立②光学显微镜下的细胞学研究③实验细胞学研究 ④亚显微结构与分子水平的细胞生物学. 2.简述细胞学说的主要内容。 施莱登和施旺提出一切生物,从单细胞生物到高等动物和植物均有细胞组成,细胞是生物形态结构和功能活动的基本单位.魏尔肖后来对细胞学说作了补充,强调细胞只能来自原来的细胞。 3.简述原核细胞的结构特点。 1). 结构简单 DNA为裸露的环状分子,无膜包裹,形成拟核。 细胞质中无膜性细胞器,含有核糖体. 2). 体积小直径约为1到数个微米。 4.简述真核细胞和原核细胞的区别。 5.简述DNA的双螺旋结构模型. ① DNA分子由两条相互平行而方向相反的多核苷酸链组成。②两条链围绕着同一个中心轴 以右手方向盘绕成双螺旋结构。③螺旋的主链由位于外侧的间隔相连的脱氧核糖和磷酸组

成,内侧为碱基构成。④两条多核苷酸链之间依据碱基互补原则相连螺旋内每一对碱基均位于同一平面上并且垂直于螺旋纵轴,相邻碱基对之间距离为0。34nm,双螺旋螺距为3。4nm。 6.蛋白质的结构特点。 以独特的三维构象形式存在,蛋白质三维构象的形成主要由其氨基酸的顺序决定,是氨基酸组分间相互作用的结果。一级结构是指蛋白质分子氨基酸的排列顺序,氨基酸排列顺序的差异使蛋白质折叠成不同的高级结构。二级结构是由主链内氨基酸残基之间氢键形成,有两种主要的折叠方式a-螺旋和β—片层。在二级结构的基础上进一步折叠形成三级结构,不同侧键间互相作用方式有氢键,离子键和疏水键,具有三级结构既表现出了生物活性。三级结构的多肽链亚单位通过氢键等非共价键可形成更复杂的四级结构。 7.生物膜的主要化学组成成分是什么? 膜脂(磷脂,胆固醇,糖脂),膜蛋白,膜糖 8.什么是双亲性分子(兼性分子)?举例说明。 既含有亲水头部又含有疏水的尾部的分子,如磷脂一端为亲水的磷酸基团,另一端为疏水的脂肪链尾. 9.膜蛋白的三种类型。 膜内在蛋白(整合蛋白),膜外在蛋白,脂锚定蛋白 10.细胞膜的主要特性是什么?膜脂和膜蛋白的运动方式分别有哪些? 细胞膜的主要特性:膜的不对称性和流动性;膜脂翻转运动,旋转运动,侧向扩散,弯曲运动,伸缩和振荡运动。膜蛋白旋转运动和侧向扩散. 11.影响膜脂流动的主要因素有哪些? ①脂肪酸链的饱和程度,不饱和脂肪酸越多,相变温度越低其流动性也越大。 ②脂肪酸链的长短,脂肪酸链短的相变温度低,流动性大。 ③胆固醇的双重调节,当温度在相变温度以上时限制膜的流动性起稳定质膜的作用,在相变 温度以下时防止脂肪酸链相互凝聚,干扰晶态形成。 ④卵磷脂与鞘磷脂的比例,比值越大流动性越大. ⑤膜蛋白的影响,嵌入膜蛋白越多,膜脂流动性越小 ⑥膜脂的极性基团、环境温度、pH值、离子强度及金属离子等均可对膜脂的流动性产生一 定的影响。 12.简述生物膜流动镶嵌模型的主要内容及其优缺点。 膜中脂双层构成膜的连贯主体,他们具有晶体分子排列的有序性,又有液体的流动性,膜中蛋白质以不同的方式与脂双层结合.优点,强调了膜的流动性和不对称性.缺点,但不能说明具有流动性性的质膜在变化过程中怎样保持完整性和稳定性,忽视了膜的各部分流动性的不均匀性。 13.小分子物质的跨膜运输方式有哪几种? 被动运输:简单扩散,易化扩散,离子通道扩散.主动运输:ATP直接供能,ATP间接供能。 14.简述被动运输与主动运输的区别。 被动运输不消耗细胞能量,顺浓度梯度或电化学梯度。主动运输逆电化学梯度运输,需要消耗能量,都有载体蛋白介导。 15.大分子和颗粒物质的跨膜运输方式有哪几种? 胞吞作用(吞噬作用,胞饮作用,受体介导的胞吞作用)。胞吐作用(连续性分泌作用,受调性分泌作用) 16.简述小肠上皮细胞吸收葡萄糖的过程. 小肠上皮细胞顶端质膜中的Na+/葡萄糖协同运输蛋白,运输2个Na+的同时转运1个葡萄糖分子,使胞质内产生高葡萄糖浓度;质膜基底面和侧面的葡萄糖易化扩散运输蛋白,转运葡萄糖离开细胞,形成葡萄糖的定向转运.Na+—K+泵将回流到细胞质中的Na+转运出细胞,维持Na+穿膜浓度梯度。

最新细胞生物学翟中和第四版课后习题答案

第四章:细胞膜与细胞表面 1、生物膜的基本结构特征是什么?这些特征与它的生理功能有什么联系? 以极性尾部相对,极性头部朝向水相的磷脂双分子层是组成生物膜的基本结构成分,蛋白分子以不同的方式镶嵌在脂双分子层中或结合在其表而。生物膜具有两个显著的特征,即膜的不对称性和膜的流动性:D、生物膜结构的不对称性保证了膜功能的方向性,使膜两侧具有不同的功能,有的功能只发生在膜外侧,有的则在膜内侧,这是生物膜发生作用所必不可少的。如调节.细胞内外Na+、K+的Na+-K+ATP酶,其运转时所需的ATP是细胞内产生的,该酶的ATP结合点正是处于膜的内侧面:许多激素受体等接受细胞外信号的则处于细胞外侧。2)、膜的流动性与物质运输、能量转换、细胞识别、药物对细胞的作用密切相关。可以说,一切膜的基本活动均在生物膜的流动状态下进行。 2、何为内在膜蛋白?它以什么方式与膜脂相结合? 内在膜蛋白又称整合膜蛋白,这类蛋白部分或全部插入脂双层中,多数为横跨整个膜的跨膜蛋白。它与膜结合的主要方式有:1)、膜蛋白的跨膜结构域与脂双层分子的疏水核心的相互作用。2)、跨膜结构域两端携带正电荷的纨基酸残基,如精敏酸、赖缎酸等与磷脂分子带负电的极性头形成离子键,或带负电的氨基酸残基通过Ca+、Mg+等阳离子与带负电的磷脂极性头相互作用。3)、某些膜蛋白通过自身在细胞质基质一侧的半胱织酸残基上共价结合的脂肪酸分子,插到膜双层之间,进一步加强膜蛋白与脂双层的结合力,还有少数蛋白与糖脂共价结合。 3、从生物膜结构模型的演化,谈谈人们对生物膜的认识过程。 生物膜结构模型的演化是人类认识细胞膜的一个循序渐进的过程,是随着实验技术和方法的改进而不断完善的:D、1925年:质膜是由双层脂分子构成的;2)、1935年:提出“蛋白质一脂质一蛋白质”的三明治式的质膜结构模型,这一模型影响达20年之久:3)、1959 年提出单位膜模型,并大胆推测所有的生物膜都是由“蛋白质一脂质一蛋白质”的单位膜构成:4)、1972年桑格和尼克森提出了生物膜的流动镶嵌模型,强调:①膜的流动性,膜蛋白和膜脂均可侧向运动:②膜蛋白分布的不对称性,有的镶嵌在膜表面,有的嵌入或横跨脂双层分子。5)、“液态晶模型”和“板块镶嵌模型”等的提出,可看作是对流动镶嵌模型的补充。6)、1988年“脂筏模型”。从生物膜结构模型的演化过程可知,人们对事物的认识是在实践中不断深入、逐渐完善的过程。 4、红细胞膜骨架的基本结构与功能是什么? 膜骨架是细胞质膜与膜内的细胞卅架纤维形成的复合结构。红细胞膜骨架蛋白主要包括:血影蛋白或称红膜肽,锚蛋白,带4、1蛋白和肌动蛋白。血影蛋白和肌动蛋白在维持膜的形状和固定其它膜蛋白的位置方而起重要作用。功能:参与维持细胞的形态,并协助细胞质膜完成多种的生理功能。 第五章、物质的跨膜运输 1、比较载体蛋白与通道蛋白的特点。 1)、膜转运蛋白可以分为两类:载体蛋白和通道蛋白(又称离子通道)。它们以不同的方式辨别溶质。2)、载体蛋白是几乎所有类型的生物膜上普遍存在的多次跨膜的蛋白质分子。每种载体蛋白能与特定的溶质分子结合,通过一系列构象改变介导溶质分子的跨膜转运。具有高度选择性:具有类似于酶与底物作用的饱和动力学特征:对PH有依赖性。3)、离子通道有3个显著特征:①极高的转运速率②没有饱和值③非连续性开放而是门控的。离子通道无需与溶质分子结合。它的开或关两种构象的调方,应答于适当的信号。根据应答信号的不同,离子通道又分为电压门通道、配体门通道、压力激活通道。 2、比较主动运输与被动运输的特点及其生物学意义。 主动运输和被动运输的特点:(1)浓度梯度:主动运输是物质逆浓度梯度或电化学梯度由低浓度一侧向高浓度一侧跨膜转运的方式;而被动运输是物质顺浓度梯度或电化学梯度由高浓度向低浓度方向的跨膜转运。(2)是否需能主动播需要代谢能(由ATP水解直接提供能量)或与释放能量的过程相偶联(协同运输):而被动运输不需

细胞生物学复习题与详细答案

第一章绪论 六、论述题 1、什么叫细胞生物学?试论述细胞生物学研究的主要容。 答:细胞生物学是研究细胞基本生命活动规律的科学,它是在三个水平(显微、亚显微与分子水平)上,以研究细胞的结构与功能、细胞增殖、细胞分化、细胞衰老与凋亡、细胞信号传递、真核细胞基因表达与调控、细胞起源与进化等为主要容的一门科学。 细胞生物学的主要研究容主要包括两个大方面:细胞结构与功能、细胞重要生命活动。涵盖九个方面的容:⑴细胞核、染色体以及基因表达的研究;⑵生物膜与细胞器的研究;⑶细胞骨架体系的研究;⑷细胞增殖及其调控;⑸细胞分化及其调控;⑹细胞的衰老与凋亡;⑺细胞的起源与进化;⑻细胞工程;⑼细胞信号转导。 第二章细胞的统一性与多样性 一、名词解释 1、细胞;由膜转围成的、能进行独立繁殖的最小原生质团,是生物体电基本的开矿结构和生理功能单位。其基本结构包括:细胞膜、细胞质、细胞核(拟核)。 2、原核细胞;没有由膜围成的明确的细胞核、体积小、结构简单、进化地位原始的细胞。 8、原核细胞和真核细胞核糖体的沉降系数分别为70S和 80S 。 9、细菌细胞表面主要是指细胞壁和细胞膜及其特化结构间体,荚膜和 鞭毛等。 10、真核细胞亚显微水平的三大基本结构体系是生物膜结构系统、遗传信息表达系统,和细胞骨架系统。 三、选择题 1、大肠杆菌的核糖体的沉降系数为( B ) A、80S B、70S C、 60S D、50S 3、在病毒与细胞起源的关系上,下面的( C )观战越来越有说服力。 A、生物大分子→病毒→细胞 B、生物大分子→细胞和病毒 C、生物大分子→细胞→病毒 D、都不对 8、原核细胞的呼吸酶定位在( B )。 A、细胞质中 B、质膜上 C、线粒体膜上 D、类核区 7、细菌核糖体的沉降系数为70S,由50S大亚基和30S小亚基组成。(√) 五、简答题 1、为什么说支原体是目前发现的最小、最简单的能独立生活的细胞生物? 答:支原体的的结构和机能极为简单:细胞膜、遗传信息载体DNA与RNA、进行蛋白质合成的一定数量的核糖体以及催化主要酶促反应所需要的酶。这些结构及其功能活动所需空间

细胞生物学题库(含答案)

1、胡克所发现的细胞是植物的活细胞。X 2、细胞质是细胞内除细胞核以外的原生质。√ 3、细胞核及线粒体被双层膜包围着。√ 一、选择题 1、原核细胞的遗传物质集中在细胞的一个或几个区域中,密度低,与周围的细胞质无明确的界限,称作(B) A、核质 B拟核 C核液 D核孔 2、原核生物与真核生物最主要的差别是(A) A、原核生物无定形的细胞核,真核生物则有 B、原核生物的DNA是环状,真核生物的DNA是线状 C、原核生物的基因转录和翻译是耦联的,真核生物则是分开的 D、原核生物没有细胞骨架,真核生物则有 3、最小的原核细胞是(C) A、细菌 B、类病毒 C、支原体 D、病毒 4、哪一项不属于细胞学说的内容(B) A、所有生物都是由一个或多个细胞构成 B、细胞是生命的最简单的形式 C、细胞是生命的结构单元 D、细胞从初始细胞分裂而来 5、下列哪一项不是原核生物所具有的特征(C) A、固氮作用 B、光合作用 C、有性繁殖 D、运动 6、下列关于病毒的描述不正确的是(A) A、病毒可完全在体外培养生长 B、所有病毒必须在细胞内寄生 C、所有病毒具有DNA或RNA作为遗传物质 D、病毒可能来源于细胞染色体的一段 7、关于核酸,下列哪项叙述有误(B) A、是DNA和RNA分子的基本结构单位 B、DNA和RNA分子中所含核苷酸种类相同 C、由碱基、戊糖和磷酸等三种分子构成 D、核苷酸分子中的碱基为含氮的杂环化合物 E、核苷酸之间可以磷酸二酯键相连 8、维持核酸的多核苷酸链的化学键主要是(C) A、酯键 B、糖苷键 C、磷酸二酯键 D、肽键 E、离子键 9、下列哪些酸碱对在生命体系中作为天然缓冲液?D A、H2CO3/HCO3- B、H2PO4-/HPO42- C、His+/His D、所有上述各项 10、下列哪些结构在原核细胞和真核细胞中均有存在?BCE A、细胞核 B、质膜 C、核糖体 D、线粒体 E、细胞壁 11、细胞的度量单位是根据观察工具和被观察物体的不同而不同,如在电子显微镜下观察病毒,计量单位是(C) A、毫米 B、微米 C、纳米 D、埃 四、简答题 1、简述细胞学说的主要内容

最新医学0000细胞生物学资料整理

医学0000细胞生物学资料整理

医学细胞生物学资料整理 0000000第三章细胞的分子基础 生物小分子: 1、无机化合物:水(游离水、结合水) 无机盐:离子状态 2、有机化合物:单糖、脂肪酸、氨基酸、核苷酸 细胞大分子:细胞的蛋白质、核酸、多糖(由小分子亚基装配而成) 蛋白质一级结构:多肽链仲氨基酸的种类、数目和排列顺序形成的线性结构,化学键主要是肽键蛋白质功能:①细胞的结构成分。②运输和传导。③收缩运动。④免疫保护。⑤催化作用—酶核酸: DNA:双螺旋结构 RNA:信使RNA(Mrna)、转运RNA(tRNA)、核糖体RNA(rRNA) 功能:1、携带和传递遗传信息。2、复制。3、转录。 第四章细胞生物学的研究技术 第一节细胞形态结构的观察 光学显微镜技术------显微结构的观察 一、普通光学显微镜---染色标本 二、荧光显微镜---(紫外线)细胞结构观察、细胞化学成分研究、DNA&RNA含量变化 三、相差显微镜---(光的衍射和干涉效应)活细胞结构、活动观察 四、微分干涉差显微镜 ---(平面偏振光的干涉)活细胞结构观察、细胞工程显微操作(三维立 体投影)

五、暗视野显微镜---(特殊的聚光器)观察活细胞外形 六、激光共聚焦扫描显微境 ---(激光作光源)立体图像,组织光学切片;三维图像重建电子显微镜技术------亚微结构的观察 分:透射、扫描、高压 透射电子显微镜: 电子束穿透样品而成像,观察细胞超显微结构,荧光屏上成像 亚微结构观察---电子显微镜技术、扫描隧道显微镜 光镜与电镜的区别 第二节细胞的分离与培养 一、细胞培养 是指在体外适宜条件下使细胞继续生长、增殖的过程。 优点: 1、容易在较短的时间内获得大量的细胞 2、有利于研究单一类型的细胞 3、通过人为控制培养条件,可以减少一些未知的因素影响 细胞培养的条件

细胞生物学答题资料

历届细胞生物学考试大题汇总(修订版) ----仅供参考 黄色部分与准确答案区别较大,不方便改动,最好自己在书本上总结,很重要;蓝色部分还未确认是否准确;红色字体的是修改部分,仅供 参考 1.GC对蛋白质进行哪方面的加工修饰? ⑴蛋白质的糖基化:N-连接的糖链合成起始于内质网,完成于高尔基复合体,在高尔基复合体内,原来的糖链变成形态各异的寡糖链,O-连接的糖基化也在高尔基复合体内完成。 ⑵蛋白水解活化:高尔基复合体的膜结合着很多类糖蛋白水解酶,可以将某些蛋白质N端或 C端切除,成为成熟的多肽,具有生物活性. 2.※试述内质网的形态结构、类型及功能 形态结构:由一层单位膜围成的细胞器。是一种封闭的扁平囊状、管状和泡状结构。具有两个面,外表面称为细胞质基质面,内表面称腔面。 类型:分为粗面内质网和滑面内质网 粗面内质网(即颗粒内质网):常由扁平囊构成。排列比较整齐,表面附有大量核糖体且粗糙。功能: ①蛋白质的合成 ②蛋白质的修饰 ③新生肽链的折叠和装配 ④蛋白质的转运 滑面内质网:多是管泡状 功能: ①参与脂质的合成和转运 ②参与解毒作用 ③参与糖原的代谢 ④是肌细胞Ca2+的储存场所 ⑤与胃酸、胆汁的合成与分泌密切相关 3.※什么是信号肽?试述蛋白质合成的信号假说 答:蛋白质合成时,首先在游离核糖体上由信号密码翻译出的一段肽链,成为信号肽(signal peptide) ①游离核糖体上合成信号肽 ②细胞质基质中SRP识别信号肽,形成SRP-核糖体复合体,翻译暂停。

③核糖体与粗面内质网结合,形成SRP-SRP受体-核糖体复合物 ④SRP脱离核糖体,再参与SRP循环,核糖体上的多肽链继续合成,并向内质网腔转运。 ⑤信号肽被信号肽酶切除,在内质网腔内降解 ⑥蛋白质合成结束,附着核糖体脱离内质网膜,大小亚基分离,参与核糖体再循环。 4.简述高尔基体的形态结构和功能 答:高尔基体是由一层单位膜围成的泡状复合结构,膜表面光滑,无核糖体附着,形态上可分为扁平囊、小囊泡、大囊泡3部分。 功能: ①参与蛋白质的加工; ②参与糖类和脂质的合成和修饰; ③参与细胞的分泌活动; ④进行膜的转化功能 ⑤参与形成溶酶体。 5.※溶酶体是怎样形成的?分几类?各有和特点?具有哪些功能? 答:溶酶体的酶类首先在内质网上合成,跨膜进入内质网的腔。在顺面高尔基体带上甘露糖-6-磷酸标记后在高尔基体反面网络形成溶酶体分泌小泡,最后通过脱磷酸形成成熟的溶酶体。 分为3类: 初级溶酶体:含多种水解酶,但无活性 次级溶酶体:含水解酶和相应底物 三级溶酶体:含不能被消化、分解的物质 功能: ①能够清除无用的大分子物质、衰老的细胞器及衰老损伤或死亡的细胞 ②是机体防御保护功能的组成部分 ③具有消化物质和提供营养的功能 ④参与某些腺体组织和细胞分泌的调节 ⑤协助器官组织的变态和退化 ⑥协助精子和卵细胞受精 6.※分泌蛋白在细胞内是如何合成和运输的? 答:蛋白质首先在内质网合成和修饰,然后在高尔基体进行再修饰和归类,最后达到细胞膜。此过程中,囊泡运输始终受到监控,只有正确折叠和组装的分泌蛋白才能运至细胞表面与质膜融合将分泌蛋白排出细胞外。否则将在细胞内降解。 7.什么叫做液态镶嵌模型? 答:主要特点: 膜中脂双层构成膜的连贯主体,既具有晶体分子排列的有序性,又具有液体的流动性。膜中蛋白质分子以不同形式与脂双层分子结合,有的镶嵌在脂双分子中,有的则附在脂双层的表面。它是一种动态的、不对称的、具有流动性的结构。 8.膜的流动性及其影响因素

细胞生物学》复习资料与答案

《细胞生物学》复习资料与答案 一、选择题 1、在真核细胞中,含量稳定,mRNA寿命短而蛋白质寿命又很长的一类蛋白质是 A.基因调控蛋白; B.非组蛋白; C.组蛋白; D.核糖体蛋白。 2、核仁的大小随细胞代谢状态而变化,下列4种细胞中,核仁最大的是 A.肌细胞; B.肝细胞; C.浆细胞; D.上皮细胞。 3、动物细胞培养中最常用的细胞消化液是 A.胃蛋白酶 B. 胰蛋白酶 C. 组织蛋白酶 D. 枯草杆菌蛋白酶 4、过量TdR可以阻止动物细胞分裂停止在 A. G0 B. G0/G1 C. G1/S D. G2/M 5、动物体内各种类型的细胞中,具有最高全能性的细胞是 A.体细胞; B.生殖细胞; C.受精卵; D.干细胞。 1---5 C C B C C 二、不定项选择题 1.细胞中含有DNA的细胞器有: A.线粒体B.叶绿体C.细胞核D.质粒 2.胞质骨架主要由组成。 A.中间纤维B.胶原纤维C.肌动蛋白D.微管 3.细胞内具有质子泵的细胞器包括: A.内体B.溶酶体C.线粒体D.叶绿体 4.细胞内能进行蛋白质修饰和分选的细胞器有: A.核糖体B.细胞核C.内质网D.高尔基体 5.各种水解酶之所以能够选择性地运入溶酶体是因为它们具有:A.M6P标志B.导肽C.信号肽D.酸性 6.介导桥粒形成的细胞粘附分子desmoglein及desmocollin属: A.钙粘素B.选择素C.整合素D.透明质酸粘素 7.线粒体内膜的标志酶是: A.苹果酸脱氢酶B.细胞色素C氧化酶C.腺苷酸激酶D.单胺氧化酶8.具有极性的细胞结构有: A.微丝B.中间纤维C.高尔基体D.微管 9.在电子传递链的NADH至CoQ之间可被阻断。 A.鱼藤酮B.抗霉素AC.氰化物D.阿米妥 10.染色质由以下成分构成: A.组蛋白B.非组蛋白C.DNA D.少量RNA

细胞生物学期末复习简答题及答案

细胞生物学期末复习简答题及答案 五、简答题 1、细胞学说的主要内容是什么?有何重要意义? 答:细胞学说的主要内容包括:一切生物都是由细胞构成的,细胞是组成生物体的基本结构单位;细胞通过细胞分裂繁殖后代。细胞学说的创立参当时生物学的发展起了巨大的促进和指导作用。 其意义在于:明确了整个自然界在结构上的统一性,即动、植物的各种细胞具有共同的基本构造、基本特性,按共同规律发育,有共同的生命过程;推进了人类对整个自然界的认识;有力地促进了自然科学与哲学的进步。 2、细胞生物学的发展可分为哪几个阶段? 答:细胞生物学的发展大致可分为五个时期:细胞质的发现、细胞学说的建立、细胞学的经典时期、实验细胞学时期、细胞生物学时期。 3、为什么说19世纪最后25年是细胞学发展的经典时期? 答:因为在19世纪的最后25年主要完成了如下的工作: ⑴原生质理论的提出;⑵细胞分裂的研究;⑶重要细胞器的发现。这些工作大大地推动了细胞生物学的发展。 1、病毒的基本特征是什么? 答:⑴病毒是“不完全”的生命体。病毒不具备细胞的形态结构,但却具备生命的基本特征(复制与遗传),其主要的生命活动必需在细胞内才能表现。⑵病毒是彻底的寄生物。病毒没有独立的代谢和能量系统,必需利用宿主的生物合成机构进行病毒蛋白质和病毒核酸的合成。⑶病毒只含有一种核酸。⑷病毒的繁殖方式特殊称为复制。 2、为什么说支原体是目前发现的最小、最简单的能独立生活的细胞生物? 答:支原体的的结构和机能极为简单:细胞膜、遗传信息载体DNA与RNA、进行蛋白质合成的一定数量的核糖体以及催化主要酶促反应所需要的酶。这些结构及其功能活动所需空间不可能小于100nm。因此作为比支原体更小、更简单的细胞,又要维持细胞生命活动的基本要求,似乎是不可能存在的,所以说支原体是最小、最简单的细胞。 1、超薄切片的样品制片过程包括哪些步骤? 答案要点:固定,包埋,切片,染色。 2、荧光显微镜在细胞生物学研究中有什么应用? 答案要点:荧光显微镜是以紫外线为光源,照射被检物体发出荧光,在显微镜下观察形状及所在位置,图像清晰,色彩逼真。 荧光显微镜可以观察细胞内天然物质经紫外线照射后发荧光的物质(如叶绿体中的叶绿素能发出血红色荧光);也可观察诱发荧光物质(如用丫啶橙染色后,细胞中RNA发红色荧光,DNA发绿色荧光),根据发光部位,可以定位研究某些物质在细胞内的变化情况。 3、比较差速离心与密度梯度离心的异同。 答案要点:二者都是依靠离心力对细胞匀浆悬浮液中的颗粒进行分离的技术。差速离心是一种较为简便的分离法,常用于细胞核和细胞器的分离。因为在密度均一的介质中,颗粒越大沉降越快,反之则沉降较慢。这种离心方法只能将那些大小有显著差异的组分分开,而且所获得的分离组分往往不很纯;而密度梯度离心则是较为精细的分离手段,这种方法的关键是先在离心管中制备出蔗糖或氯化铯等介质的浓度梯度并将细胞匀浆装在最上层,密度梯度的介质可以稳定沉淀成分,防止对流混合,在此条件下离心,细胞不同组分将以不同速率沉降并形成不同沉降带。 4、为什么电子显微镜不能完全替代光学显微镜?

细胞生物学资料

第一章绪论 1.*细胞生物学:是从细胞的显微、亚显微和分子三个水平对细胞的各种生命活动开展研究的学科 2.细胞学说:一切生物,从单细胞生物到高等动物和植物都由细胞组成,细胞是生物形态结构和功能的基本单位 3.细胞分化:是指在个体发育中,由单个受精卵产生的细胞在形态结构,生化组成和功能等方面形成明显和稳定差异的过程 4.基因组:是指细胞或生物体的一套完整的单倍体遗传物质,是所有不同染色体上全部基因和基因间的DNA总和 5.蛋白质组:是指由一个细胞,一个组织或生物的基因组所表达的全部蛋白质 第四章细胞膜与物质的跨膜运输 1.*生物膜的组成及作用 生物膜:质膜(细胞膜)和内膜系统(内质网、高尔基复合体、溶酶体等)的统称 作用:(1)细胞膜不仅为细胞的生命活动提供了稳定的内环境,还行使着物质转运、信号传递、细胞识别等多种复杂功能(2)细胞内的生物膜把细胞分割成一个个小的区室,使胞内不同的生理、生化反应过程得以彼此独立、互不干扰地在特定的区域内进行和完成(3)有效增大了细胞内有限空间的表面积,从而极大地提高了细胞整体的代谢水平和功能效率 2.细胞膜:又称质膜,是包围在细胞质表面的一层薄膜,主要由脂类、蛋白质和糖类组成。它既将细胞中的生命物质与外界环境分隔开,为其生命活动提供了稳定的内环境,同时还行使着物质转运、信号传递、细胞识别等多种复杂功能。 3.细胞膜的特性:(1)*膜的不对称性决定膜功能的方向性。不对称性是指细胞膜中各种成分(膜脂、膜蛋白、膜糖)的分布是不均匀的,包括种类和数量上都有很大差异(2)膜的流动性是膜功能活动的保证。流动性主要是指膜脂的流动性和膜蛋白的运动性。 4.*什么是膜的流动性?它体现在哪些方面? 膜的流动性是指膜脂与膜蛋白处于不断的运动状态,它是保证正常膜功能的重要条件。在生理状态下,生物膜既不是晶态也不是液态,而是液晶态,即介于液态与晶态的过渡状态。在这种状态下,其既具有液态分子的流动性,又具有固态分子的有序排列。表现在(1)膜脂的流动性(侧向扩散运动、翻转运动、旋转运动、伸缩和振荡运动、烃链的旋转异构运动(2)膜蛋白的流动性(侧向扩散运动、旋转运动) 5.流动镶嵌模型:这一模型认为膜中脂双层构成膜的连贯主题,它既具有晶体分子排列的有序性,又具有液体的流动性。膜中蛋白质分子以不同形式与脂双层分子结合,有的镶嵌在脂双层分子中,有的附着在脂双层表面。它是一种动态的,不对称的具有流动性的结构。 6.脂筏模型:脂质双层内含有由特殊脂质和蛋白质组成的微区,微区中富含胆固醇和鞘脂,其中聚集一些特定种类的膜蛋白。这些区域比膜的其他部分厚,更有秩序且较少流动,被称为“脂筏”。脂筏周围则是富含不饱和磷脂的流动性较高的液态区。 7.膜的选择性通透:不同分子通过脂双层的扩散速率不同,主要取决于分子的大小和它在脂质中的相对溶解度。分子量越小,脂溶性越强,通过脂双层膜的速率越快。脂双层对所有带电荷的分子,不管它多么小,都是高度不通透的 8.简单扩散:是小分子物质跨膜运输的最简单的方式。溶质分子直接溶解于膜脂双层中,通过质膜进行自由扩散,不需要跨膜运输蛋白协助。转运是由高浓度向低浓度方向进行,所需要的能量来自高浓度本身所包含的势能,不需细胞提供能量,故也称被动扩散。必须满足两个条件:一是溶质在膜两侧保持一定的浓度差,二是溶质必须能透过膜。 9.膜转运蛋白介导的跨膜运输:包括(1)离子通道高效转运各种离子:在膜上形成亲水性地跨膜通道,快速并有选择的让某些离子通过而扩散到质膜的另一侧(被动运输)(2)载体蛋白介导的异化扩散:一些非脂溶性物质在载体蛋白的介导下,不消耗细胞的代谢能量,顺物质浓度梯度或电化学梯度进行转运。(被动运输)(3)载体蛋白介导的主动运输

细胞生物学复习资料

细胞生物学复习资料 细胞生物学绪论 一、名词解释 1、细胞生物学:以细胞为研究对象,从细胞整体水平、亚显微结构水平、分子水平三个层面来研究细胞的结构及其生命活动规律的科学。 3、基因芯片:又称DNA芯片、DNA微阵列,是生物芯片中发展最成熟以及最先进入应用和商品化的领域。 二、简答题 1、精准医疗定义:以个人基因组信息为基础,结合蛋白质组,代谢组等相关内环境信息,为病人量身设计出最佳治疗方案的医疗模式。 特点:具有精准性和便捷性: 1、通过基因测序可以找出癌症的突变基因,从而迅速确定对症药物,省去患者尝试各种治疗方法的时间,提升治疗效果; 2、只需要患者的血液甚至唾液,无需传统的病理切片,因而减少诊断过程中对患者身体的损伤。 3、显著改善癌症患者的诊疗体验和诊疗效果,其发展潜力大。 目标:注重向人们提供更精准、更安全高效的医疗健康服务,建立国际一流的精准医学研究平台和保障体系,自主掌握核

心关键技术,研发国产新型防治药物、疫苗、器械和设备,形成中国制定、国际认可的疾病诊疗指南、临床路径和干预措施。 应用: 1、癌症治疗 2、药物筛选 3、疾病模型建立:(1)罕见病疾病模型建立 (2)肿瘤疾病模型建立 2、分辨率定义:区分开两个质点间最小距离的能力提高分辨率的方法:(1)增大物镜的数值孔径 (2)缩小光照的波长适宜的放大倍数:所使用的物镜数值孔径的500~1000倍 3、细胞生物学具体研究方法有哪些,有何应用? 1、细胞形态结构观察法:(1)光学显微镜技术(2)电子显微镜技术(3)扫描探针显微镜 2、细胞组分分析法 3、细胞培养 4、细胞工程与显微镜操作技术 5、功能基因组学技术 4、电镜与光镜的比较 第四章细胞膜与物质穿膜运输 一、名词解释 1、红细胞膜骨架:由膜蛋白和纤维蛋白组成的网架位于质膜内侧,参与维持质膜形状并协助质膜完成多种生理功能。

细胞生物学简答题整理

1.简述G蛋白偶联受体所介导的信号通路的异同 G蛋白偶联受体所介导信号通路分为三类: ①激活离子通道;②激活或抑制腺苷酸环化酶,以cAMP 为第二信使;③激活磷脂酶C ,以IP3 和DAG 作为双信使 激活离子通道: 当受体与配体结合被激活后,通过偶联G蛋白的分子开关作用,调控跨膜离子通道的开启和关闭,进而调节靶细胞的活性。

激活或抑制腺苷酸环化酸的cAMP信号通路: 细胞外信号(激素,第一信使)与相应G蛋白偶联的受体结合,导致细胞内第二信使cAMP的水平变化而引起细胞反应的信号通路。腺苷环化酶调节胞内cAMP的水平,cAMP被环腺苷酸磷酸二酯酶降解清除。 cAMP信号通路主要是通过活化cAMP依赖性蛋白激酶A (PKA) ,激活靶酶开启基因表达,从而表现出不同的效应。蛋白激酶A 由2个催化亚基和2个调节亚基组成,cAMP的结合可改变调节亚基的构象,释放催化亚基产生活性。 蛋白激酶A被激活后,一方面通过对底物蛋白的磷酸化,引起细胞对胞外信号的快速反应;另一方面,其催化亚基可进入细胞核,磷酸化cAMP应答元件结合蛋白(CREB) 的丝氨酸残基。磷酸化的CREB 蛋白被激活,它作为基因转录的调节蛋白识别并结合到靶细胞的cAMP应答元件(CRE) 启动靶基因的转录,引起细胞缓慢的应答反应。 cAMP信号通路中的缓慢反应过程:激素→G-蛋白偶联受体→G-蛋白→腺苷酸环化酶→ cAMP→ cAMP依赖的蛋白激酶A→基因调控蛋白→基因转录。

cAMP是由腺苷酸环化酶 (adenylyl cyclase,AC) 催化合成的,腺苷酸环化酶为跨膜12次的糖蛋白,在Mg2+或Mn2+存在下能催化ATP生成cAMP;细胞内的环腺苷酸磷酸二酯酶 (PDE) 可降解cAMP生成5’-AMP,导致细胞内cAMP水平下降。因此,细胞内cAMP的浓度受控于腺苷酸环化酶和PDE的共同作用)。 cAMP信号调控系统由质膜上的5种成分组成:刺激型激素受体(Rs)、抑制型激素受体(Ri)、刺激型G蛋白(Gs)、抑制型G蛋白(Gi)、腺苷酸环化酶(E)。Gs和Gi的β、γ亚基相同,而α亚基不同决定了对激素对腺苷酸环化酶的作用不同。 Gs的调节作用:当细胞没有受到激素刺激时,Gs处于非活化状态,G蛋白的亚基与GDP结合,此时腺苷酸环化酶没有活性;当激素配体与Rs受体结合后,导致受体构象改变,暴露出与Gs结合的位点,配体-受体复合物与Gs结合,Gs的亚基构象改变,排斥GDP 结合GTP,使G蛋白三聚体解离,暴露出的亚基与腺苷酸环化酶结合,使酶活化,催化ATP环化为cAMP。随着GTP水解使亚基恢复原来的构象并导致与腺苷酸环化酶解离,终止腺苷酸环化酶的活化作

相关主题
文本预览
相关文档 最新文档