当前位置:文档之家› 常见换热器结构及优缺点

常见换热器结构及优缺点

常见换热器结构及优缺点
常见换热器结构及优缺点

6.7 换热器

换热器是化工、石油、食品及其他许多工业部门的通用设备,在生产中占有重要地位。化工生产中,换热器可作为加热器、冷却器、冷凝器、蒸发器和再沸器等,应用甚为广泛。由于生产规模、物料的性质、传热的要求等各不相同,故换热器的类型也是多种多样。根据冷、热流体热量交换的原理和方式基本上可分为三大类:混合式、蓄热式、间壁式。

6.7.1 直接接触式(混合式)

在这类换热器中,冷热两种流体通过直接混合进行热量交换。在工艺上允许两种流体相互混合的情况下,这是比较方便和有效的,且其结构比较简单。直接接触式换热器常用于气体的冷却或水蒸汽的冷凝。

6.7.2 蓄热式

蓄热式换热器又称为蓄热器,它主要由热容量较大的蓄热室构成,室中可填耐火砖或金属带等作为填料。当冷、热两种流体交替地通过同一蓄热室时,即可通过填料将得自热流体的热量,传递给冷流体,达到换热的目的。这类换热器的结构简单,且可耐高温,常用于气体的余热及其冷量的利用。其缺点是设备体积较大,而且两种流体交替时难免有一定程度的混合。

6.7.3 间壁式

这一类换热器的特点是在冷热两种流体之间用一金属壁(或石墨等导热性好的非金属)隔开,以使两种流体在不相混合的情况下进行热量交换。由于在三类换热器中,间壁式换热器应用最多,因此下面重点讨论间壁式换热器。

(1)夹套式换热器

结构:夹套装在容器外部,在夹套和容器壁之间形成密闭空间,成为一种流体的通道。

优点:结构简单,加工方便。

缺点:传热面积A小,传热效率低。

用途:广泛用于反应器的加热和冷却。

为了提高传热效果,可在釜内加搅拌器或蛇管和外循环。

(2)沉浸式蛇管换热器

结构:蛇管一般由金属管子弯绕而制成,适应容器所需要的形状,沉浸在容器内,冷热流体在管内外进行换热。

优点:结构简单,便于防腐,能承受高压。

缺点:传热面积不大,蛇管外对流传热系数小,

为了强化传热,容器内加搅拌。

(3)喷淋式换热器

结构:冷却水从最上面的管子的喷淋装置中淋下来,沿管表面流下来,被

冷却的流体从最上面的管子流入,从最下面的管子流出,与外面的冷却水进行换热。在下流过程中,冷却水可收集再进行重新分配。

优点:结构简单、造价便宜,能耐高压,便于检修、清洗,传热效果好。

缺点:冷却水喷淋不易均匀而影响传热效果,只能安装在室外。

用途:用于冷却或冷凝管内液体。

(4)套管式换热器

结构:由不同直径组成的同心套管,可根据换热要求,将几段套管用U形管连接,目的增加传热面积;冷热流体可以逆流或并流。

优点:结构简单,加工方便,能耐高压,传热系数较大,能保持完全逆流使平均对数温差最大,可增减管段数量应用方便。

缺点:结构不紧凑,金属消耗量大,接头多而易漏,占地较大。

用途:广泛用于超高压生产过程,可用于流量不大,所需传热面积不多的场合。

(5)列管式换热器(管壳式换热器)

列管式换热器又称为管壳式换热器,是最典型的间壁式换热器,历史悠久,占据主导作用。主要由壳体、管束、管板、折流挡板和封头等组成。一种流体在管内流动,其行程称为管程;另一种流体在管外流动,其行程称为壳程。管束的壁面即为传热面。

优点:单位体积设备所能提供的传热面积大,传热效果好,结构坚固,可选用的结构材料范围宽广,操作弹性大,大型装置中普遍采用。为提高壳程流体流速,往往在壳体内安装一定数目与管束相互垂直的折流挡板。折流挡板不仅可防止流体短路、增加流体流速,还迫使流体按规定路径多次错流通过管束,使湍动程度大为增加。

常用的折流挡板有圆缺形和圆盘形两种,前者更为常用。

壳体内装有管束,管束两端固定在管板上。由于冷热流体温度不同,壳体和管束受热不同,其膨胀程度也不同,如两者温差较大,管子会扭弯,从管板上脱落,甚至毁坏换热器。所以,列管式换热器必须从结构上考虑热膨胀的影

响,采取各种补偿的办法,消除或减小热应力。

根据所采取的温差补偿措施,列管式换热器可分为以下几个型式。

(1)固定管板式

壳体与传热管壁温度之差大于50 C,加补偿圈,也称膨胀节,当壳体和管束之间有温差时,依靠补偿圈的弹性变形来适应它们之间的不同的热膨胀。

特点:结构简单,成本低,壳程检修和清洗困难,壳程必须是清洁、不易产生垢层和腐蚀的介质。

(2)浮头式

两端的管板,一端不与壳体相连,可自由沿管长方向浮动。当壳体与管束因温度不同而引起热膨胀时,管束连同浮头可在壳体内沿轴向自由伸缩,可完全消除热应力。

特点:结构较为复杂,成本高,消除了温差应力,是应用较多的一种结构形式。

(3)U型管式

把每根管子都弯成U形,两端固定在同一管板上,每根管子可自由伸缩,来解决热补偿问题。

特点:结构较简单,管程不易清洗,常为洁净流体,适用于高压气体的换热。

6.7.4 管壳式换热器的设计和选用

(1)设计和选用时应考虑的问题

除了前面讲过流体的流向,流速和流体出口温度的选择外,还应考虑:

①冷热流体流动通道的选择

a、不洁净或易结垢的液体宜在管程,因管内清洗方便,但U形管式的不宜走管程;

b、腐蚀性流体宜在管程,以免管束和壳体同时受到腐蚀;

c、压力高的流体宜在管内,以免壳体承受压力;

d、饱和蒸汽宜走壳程,饱和蒸汽比较清洁,而且冷凝液容易排出;

e 、被冷却的流体宜走壳程,便于散热;

f 、若两流体温差大,对于刚性结构的换热器,宜将给热系数大的流体通入壳程,以减小热应力;

g 、流量小而粘度大的流体一般以壳程为宜,因在壳程100>Re 即可达到湍流。但这不是绝对的,如果流动阻力损失允许,将这种流体通入管内并采用多管程结构,反而会得到更高的给热系数。

以上各点常常不可能同时满足,而且有时还会相互矛盾,故应根据具体情况,抓住主要方面,作出适宜的决定。

② 流动方式的选择

除逆流和并流之外,在列管式换热器中冷、热流体还可以作各种多管程多壳程的复杂流动。当流量一定时,管程或壳程越多,对流传热系数越大,对传热过程越有利。但是,采用多管程或多壳程必导致流体阻力损失,即输送流体的动力费用增加。因此,在决定换热器的程数时,需权衡传热和流体输送两方面的损失。当采用多管程或多壳程时,列管式换热器内的流动形式复杂,对数平均值的温差要加以修正。

③ 换热管规格和排列选择

换热管直径越小,换热器单位容积的传热面积越大。因此对于洁净的流体管径可取得小些。但对于不洁净或易结垢的流体,管径应取的大些,以免堵塞。为了制造和维修的方便,我国目前试行的系列标准规定采用φ19×2mm 和φ25×

2.5mm 两种规格,管长有1.5、2.0、

3.0、6.0m ,排列方式:正三角形、正方形直列和错列排列。

各种排列方式的优点:

?????,给热系数大,管外流体湍流程度高等边三角形:排列紧凑热系数正方形错列:可提高给

但给热效果较差正方形排列:易清洗, ④ 折流挡板

安装折流挡板的目的是为提高壳程对流传热系数,为取得良好的效果,挡板的形状和间距必须适当。

对圆缺形挡板而言,弓形缺口的大小对壳程流体的流动情况有重要影响。由图可以看出,弓形缺口太大或太小都会产生"死区",既不利于传热,又往往增加流体阻力。挡板的间距对壳体的流动亦有重要的影响。间距太大,不能保证流体垂直流过管束,使管外表面传热系数下降;间距太小,不便于制造和检修,阻力损失亦大。一般取挡板间距为壳体内径的0.2~1.0倍。

a.切除过少

b.切除适当

c.切除过多

挡板切除对流动的影响

(2)管壳式换热器的给热系数

给热系数包括管内流动的给热系数和壳程给热系数,管内流体的给热系数前面已经学过,而壳程的给热系数与折流挡板的形状、板间距,管子的排列方式、管径及管中心距等因素有关。

壳程中由于设有折流挡板,流体在壳程中横向穿过管束,流向不断变化,湍动增强,当100>Re 即可达到湍流状态。

(3)流体通过换热器的阻力损失

① 管程阻力损失

包括各程直管阻力损失1f h 、回弯阻力损失2f h 及换热器进出口阻力损失3f h 构

成,其中3f h 可忽略不计。

p 21)(N f h h h t f f ft +=

式中 t f —— 管程结垢校正系数,对三角形排列取1.5,正方形排列取1.4;

p N ——管程数;

221i i f u d l h λ=

式中 l ——换热管长度,m ;

2322i f u h =

(2f h 包括回弯和进出口局部阻力及封头内流体转向的局部阻力之和,取阻力系

数为3)

管程阻力损失也可写成

232p i t i t u N f d l p ρλ???? ??+=?

由于p N u i ∝,所以3P

N p t ∝?。 对同一换热器,若单程改为双程,阻力损失剧增为原来的8倍,而给热系数只增为原来的1.74倍,因此在选择换热器管程数时,应该兼顾传热与流体压降两方面的得失。

② 壳程阻力损失

壳程由于流动状态比较复杂,结构参数较多,提出的公式较多,但可归结为

22o u h fs ζ=

不同的计算公式,决定ζ和o u 的方法不同,计算结果往往不一致。

(4)对数平均温差的修正

前面学过的对数平均温差m t ?仅适用于纯并流或纯逆流的情况,当采用多管

程或多壳程时,由于其内流动形式复杂,平均推动力m t ?的计算式相当复杂。为

了方便,可将这些复杂流型的平均推动力的计算结果与进出口温度相同的纯逆流相比较,求出修正系数ψ,即

逆m m t t ?=?ψ

其中ψ的求法为:

冷流体温升

热流体温降=两流体最初温差冷流体温升=--=--=

=12211112)

,(t t T T R t T t t P R P f ψ 根据P ,R 值由图查出各种情况的ψ值。

在设计时注意应使ψ>0.8,为什么?

因为①经济上不合理;②操作温度略有变动,则ψ下降很快,使操作不稳定。

(5)管壳式换热器的设计和选用步骤

① 由已知条件计算传热量及逆流平均温差逆m t ?

逆m m t KA t KA Q ?=?=ψ

由上式可知,要求A ,必须知道K ,ψ;而K 和ψ则是由传热面积A 的大小和换热器结构决定的。因此,在冷、热流体的流量及进出口温度已知的条件下,选用或设计换热器必须通过试差计算。

② 初选换热器的尺寸规格

a 、初步选定流体流动方式,由冷热流体的进出口温度计算温差修正系数ψ,应使ψ>0.8,否则应改变流动方式,重新计算;

b 、依据经验估计总传热系数估K ,估算传热面积估A ;

c 、根据估A ,根据系列标准选定换热管的直径、长度及排列;如果是选用,

可根据估A 在系列标准中选用适当的换热器型号;

③ 计算管程的压降和给热系数;

a 、根据经验选定流速,确定管程数目,并计算管程压降t p ?,若t p ?>允t p ?,

必须调整管程数目重新计算。

b 、计算管内给热系数2α,若2α<估K ,则应改变管程数重新计算;若改变管

程数使t p ?>允t p ?,则应重新估计估K ,另选一换热器型号进行试算。

④ 计算壳程压降和给热系数;

a 、根据流速范围确定挡板间距,并计算壳程压降s p ?,若s p ?>允s p ?,可增大

挡板间距。

b 、计算壳程给热系数1α,若1α太小可减小挡板间距。

⑤ 计算传热系数,校核传热面积。

根据流体性质选择适当的垢层热阻R ,由R 、1α、2α计算计K ,再由传热基

本方程计算计A 。当计A 小于初选换热器实际所具有的传热面积A ,则计算可行。考虑到所用换热器计算式的准确度及其他未可预料的因素,应使选用换热器面积有15%~25%的裕度,即A /计A =1.15~1.25,否则应重新估计一个估K ,重复以上

计算。

6.7.5 传热过程的强化措施

由m t KA Q ?=,要增大热流量Q 可通过提高K ,增大A ,增大m t ?来达到。

(1)增大传热平均温度差m t ?

① 两侧变温情况下,尽量采用逆流流动;

② 提高加热剂T 1的温度(如用蒸汽加热,可提高蒸汽的压力来达到提高其饱和温度的目的);降低冷却剂t 1的温度。

利用m t ?↑来强化传热是有限的。

(2)增大总传热系数K

21

22m 111)1()1(1d d R d d b R K s s ++++=αλα

① 尽可能利用有相变的热载体(α大);

② 用λ大的热载体,如液体金属Na 等;

③ 减小金属壁、污垢及两侧流体热阻中较大者的热阻;

④ 提高α较小一侧有效。

提高α的方法

无相变传热:1)增大流速;2)管内加扰流元件;3)改变传热面形状和增加粗糙度。

(3)增大单位体积的传热面积A /V

① 直接接触传热:可增大A 和湍动程度,使Q ↑;

② 采用高效新型换热器。

在传统的间壁式换热器中,除夹套式外,其他都为管式换热器。管式的共同缺点是结构不紧凑,单位换热面积所提供的传热面小,金属消耗量大。随工业的发展,陆续出现了不少的高效紧凑的换热器并逐渐趋于完善。这些换热器基本可分为两类,一类是在管式换热器的基础上加以改进,另一类是采用各种板状换热表面。

如图所示几种强化传热管和板翅式换热器的翅片。

(a)光直翅片 (b)锯齿翅片 (c)多孔翅片

6.7.6 换热器的强化和其他类型

由前面的我们已经知道,m t KA Q ?=,要增大热流量Q 可通过提高K ,增大A ,增大m t ?,那么对换热器进行怎样的改造或设计能达到提高K ,增大A ,增大m t ?,从而实现强化传热的目的呢?

(1)板式换热器

① 平板式换热器

板式换热器早在20世纪20年代开始用于食品工业,50年代逐渐用于化工及其相近工业部门,现已发展成为一种传热效果较好,结构紧凑的化工换热设备。主要由一组长方形的薄金属板平行排列构成,用框架夹紧组装在支架上。两相邻流体板的边缘用垫片压紧,达到密封的作用,四角有圆孔形成流体通道,冷热流体在板片的两侧流过,通过板片换热。板上可被压制成多种形状的波纹,可增加刚性;提高湍动程度;增加传热面积;易于液体的均匀分布。

优点:传热效率高,总传热系数大,结构紧凑,操作灵活,安装检修方便。 缺点:耐温、耐压性较差,易渗漏,处理量小。

② 螺旋板式换热器

螺旋板式换热器主要由两张平行的薄钢板卷制而成,构成一对互相隔开的螺旋形流道。冷热两流体以螺旋板为传热面相间流动,两板之间焊有定距柱以维持流道间距,同时也可增加螺旋板的刚度。在换热器中心设有中心隔板,使

两个螺旋通道隔开。在顶、底部分分别焊有盖板或封头和两流体的出入接管。

优点:结构紧凑,传热效率高,不易堵塞,结构紧凑A/V大,成本较低。

缺点:操作压力、温度不能太高,螺旋板难以维修,流体阻力较大。

③板翅式换热器

板翅式换热器是一种传热效果好,更为紧凑的板式换热器。过去由于焊接技术的限制,制造成本较高,仅限用于宇航、电子、原子能等少数部门,作为散热冷却器。现已逐渐在石油化工、天然气液化、气体分离等部门中应用获得良好效果。

板翅式换热器的基本结构,是由于平隔板和各种型式的翅片构成板束组装而成。如图所示,在两块平行薄金属板(平隔板)间,夹入波纹状或其他形状的翅片,两边以侧条密封,即组成为一个单元体。各个单元体又以不同的叠积适当排列,并用钎焊固定,成为常用的逆流或错流式板翅式换热器组装件,或称为板束。再将带有集流进出口的集流箱焊接到板束上,就成为板翅式换热器。

(a)逆流(b)错流

优点:结构高度紧凑,传热效率高,允许较高的操作压力。

缺点:制造工艺复杂,检修清洗困难。

④板壳式换热器

将管壳式换热器中的管束用板束代替,即为板壳式换热器。其结构紧凑,传热系数高、坚固、能承受很高的压强和温度,但制造工艺复杂,焊接要求高。

(2)强化管式换热器

在管式换热器的基础上,采取某些强化措施,提高传热效果。如管外加翅片,增大A、管外的α;管内安装内插物,增大A、管内的α,从而增大K。

(3)热管换热器

热管是一种新型传热元件,它是在一根装有毛细吸芯金属管内充以定量的某种工作液体,然后封闭并抽除不凝性气体。当加热段受热时,工作液体遇热沸腾,产生的蒸汽流至加热段再次沸腾。如此过程反复循环,热量则由加热段传至冷却段。

在热管内部,热量的传递是通过沸腾冷凝过程。由于沸腾和冷凝表面传热系数皆很大,蒸汽流动的阻力损失很小,因此管壁温度相当均匀。这种新型的换热器具有传热能力大,应用范围广,结构简单等优点。

特点:有相变对流传热系数大,结构简单,壁温均匀。

(4)流化床换热器

通过在流体中加固体颗粒,当管程内的流体由下往上流动,使众多的固体颗粒保持稳定的流化状态,对换热器管壁起到冲刷、洗垢作用。同时,使流体在较低流速下也能保持湍流,大大强化了穿热速率。

列管式换热器课程设计作业

化工原理课程设计说明书 列管式换热器的选用和设计 苏州科技学院 班级应化0921 姓名朱子屹 指导教师杨兰 2011-6-30 目录 1 化工原理课程设计任务书 2 设计概述 3 换热器方案的确定 3.1 确定设计方案 3.2确定物性数据 3.3 计算总传热系数 4 计算换热面积 5 工艺结构尺寸 5.1 管径和管内流速 5.2 管程和传热管数

5.3 平均传热温差校正及壳程数 6传热管的排列和分程方法 7换热器核算 8 换热器的主要结构尺寸和计算结果表 9 设计评述 10 参考资料 11 主要符号说明 12 特别鸣谢 1化工原理课程设计任务书 欲用井水将6000kg/h的煤油从140℃冷却至40℃,冷水进、出口温度分别为30℃和40℃。若要求换热器的管程和壳程压强降不大于30kpa,试选择合适型号的列管式换热器。假设管壁热阻和热损失可以忽略。 名称水煤油 密度 994 825 比热 4.08 2.22 导热系数 0.626 0.14 粘度 0.725×10^-3 0.715×10^-3 2.概述和设计方案简介 换热器的类型 列管式换热器又称为管壳式换热器,是最典型的间壁式换热器,历史悠久,占据主导作用,主要有壳体、管束、管板、折流挡板和封头等组成。一种流体在关内流动,其行程称为管程;另一种流体在管外流动,其行程称为壳程。管束的壁面即为传热面。 其主要优点是单位体积所具有的传热面积大,传热效果好,结构坚固,可选用的结构材料范围宽广,操作弹性大,因此在高温、高压和大型装置上多采用列管式换热器。为提高壳程流体流速,往往在壳体内安装一定数目和管束相互垂直的折流挡板。折流挡板不仅可防止流体短路、增加流体流速,还迫使流体按规定路径多次错流通过管束,使湍流程度大为增加。列管式换热器中,由于两流体的温度不同,使管束和壳体的温度也不相同,因此它们的热膨胀程度也有差别。若两流体温差较大(50℃以上)时,就可能由于热应力而引起设备的变形,甚至弯曲或破裂,因此必须考虑这种热膨胀的影响。 2.1换热器 换热器是化工、石油、食品及其他许多工业部门的通用设备,在生产中占有重要地位。由于生产规模、物料的性质、传热的要求等各不相同,故换热器的类型也是多种多样。 按用途它可分为加热器、冷却器、冷凝器、蒸发器和再沸器等。根据冷、热流体热量交换的原理和方式可分为三大类:混合式、蓄热式、间壁式。 间壁式换热器又称表面式换热器或间接式换热器。在这类换热器中,冷、热流体被固体

列管式换热器课程设计报告书

——大学《化工原理》列管式换热器 课程设计说明书 学院: 班级: 学号: 姓名: 指导教师: 时间:年月日

目录 一、化工原理课程设计任务书............................................................................ . (2) 二、确定设计方案............................................................................ (3) 1.选择换热器的类型 2.管程安排 三、确定物性数据............................................................................ (4) 四、估算传热面积............................................................................ (5) 1.热流量 2.平均传热温差 3.传热面积 4.冷却水用量 五、工艺结构尺寸............................................................................ (6) 1.管径和管内流速 2.管程数和传热管数 3.传热温差校平均正及壳程数 4.传热管排列和分程方法 5.壳体内径 6.折流挡板 (7) 7.其他附件 8.接管 六、换热器核算............................................................................ . (8) 1.热流量核算 2.壁温计算 (10) 3.换热器内流体的流动阻力 七、结构设计............................................................................ . (13) 1.浮头管板及钩圈法兰结构设计 2.管箱法兰和管箱侧壳体法兰设计 3.管箱结构设计 4.固定端管板结构设计 5.外头盖法兰、外头盖侧法兰设计 (14) 6.外头盖结构设计 7.垫片选择

列管式换热器说明书

目录 一、设计任务 (2) 二、概述与设计方案简介 (3) 2.1 概述 (3) 2.2设计方案简介 (4) 2.2.1 换热器类型的选择 (4) 2.2.2流径的选择 (6) 2.2.3流速的选择 (6) 2.2.4材质的选择 (6) 2.2.5管程结构 (6) 2.2.6 换热器流体相对流动形式 (7) 三、工艺及设备设计计算 (7) 3.1确定设计方案 (7) 3.2确定物性数据 (8) 3.3计算总传热系数 (8) 3.4计算换热面积 (9) 3.5工艺尺寸计算 (9) 3.6换热器核算 (11) 3.6.1传热面积校核 (11) 3.6.2.换热器压降的核算 (12) 四、辅助设备的计算及选型 (13) 4.1拉杆规格 (13)

4.2接管 (13) 五、换热器结果总汇表 (14) 六、设计评述 (15) 七、参考资料 (15) 八、主要符号说明 (15) 九、致 (16) 一、设计任务

二、概述与设计方案简介 2.1 概述 在工业生产中用于实现物料间热量传递的设备称为换热设备,即换热器。换热器是化工、动力、食品及其他许多部门中广泛采用的一种通用设备。 换热器的种类很多,根据其热量传递的方法的不同,可以分为3种形式,即间壁式、直接接触式、蓄热式。 间壁式换热器又称表面式换热器或间接式换热器。在这类换热器中,冷、热流体被固体壁面隔开,互不接触,热量从热流体穿过壁面传给冷流体。该类换热器适用于冷、热流体不允许直接接触的场合。间壁式换热器的应用广泛,形式繁多。将在后面做重点介绍。 直接接触式换热器又称混合式换热器。在此类换热器中,冷、热流体相互接触,相互

换热器特性与用途及优缺点评析

换热器特性与用途及优缺点评析 换热器 换热器是将热流体的部分热量传递给冷流体的设备,又称热交换器。 英语翻译:heat exchanger 换热器是实现化工生产过程中热量交换和传递不可缺少的设备。在热量交换中常有一些腐蚀性、氧化性很强的物料,因此,要求制造换热器的材料具有抗强腐蚀性能。换热器的分类比较广泛:反应釜压力容器冷凝器反应锅螺旋板式换热器波纹管换热器列管换热器板式换热器螺旋板换热器管壳式换热器容积式换热器浮头式换热器管式换热器热管换热器汽水换热器换热机组石墨换热器空气换热器钛换热器换热设备,要求制造换热器的材料具有抗强腐蚀性能。它可以用石墨、陶瓷、玻璃等非金属材料以及不锈钢、钛、钽、锆等金属材料制成。但是用石墨、陶瓷、玻璃等材料制成的有易碎、体积大、导热差等缺点,用钛、钽、锆等稀有金属制成的换热器价格过于昂贵,不锈钢则难耐许多腐蚀性介质,并产生晶间腐蚀。 换热器在石油、化工、轻工、制药、能源等工业生产中,常常需要把低温流体加热或者把高温流体冷却,把液体汽化成蒸汽或者把蒸汽冷凝成液体。这些过程均和热量传递有着密切联系,因而均可以通过换热器来完成。 随着经济的发展,各种不同型式和种类的换热器发展很快,新结构、新材料的换热器不断涌现。为了适应发展的需要,我国对某些种类的换热器已经建立了标准,形成了系列。完善的换热器在设计或选型时应满足以下基本要求: (1)合理地实现所规定的工艺条件; (2)结构安全可靠; (3)便于制造、安装、操作和维修; (4)经济上合理。 浮头式换热器的一端管板与壳体固定,而另一端的管板可在壳体内自由浮动,壳体和管束对膨胀是自由的,故当两张介质的温差较大时,管束和壳体之间不产生温差应力。浮头端设计成可拆结构,使管束能容易的插入或抽出壳体。(也可设计成不可拆的)。这样为检修、清洗提供了方便。但该换热器结构较复杂,而且浮动端小盖在操作时无法知道泄露情况。因此在安装时要特别注意其密封。 浮头换热器的浮头部分结构,按不同的要求可设计成各种形式,除必须考虑管束能在设备内自由移动外,还必须考虑到浮头部分的检修、安装和清洗的方便。 在设计时必须考虑浮头管板的外径Do。该外径应小于壳体内径Di,一般推荐浮头管板与壳体内壁的间隙b1=3~5mm。这样,当浮头出的钩圈拆除后,即可将管束从壳体内抽出。

列管式换热器设计方案计算过程参考

根据给定的原始条件,确定各股物料的进出口温度,计算换热器所需的传热面积,设计换热器的结构和尺寸,并要求核对换热器压强降是否符合小于30 kPa的要求。各项设计均可参照国家标准或是行业标准来完成。具体项目如下:设计要求: =0.727Χ10-3Pa.s 密度ρ=994kg/m3粘度μ 2 导热系数λ=62.6Χ10-2 W/(m.K) 比热容Cpc=4.184 kJ/(kg.K) 苯的物性如下: 进口温度:80.1℃出口温度:40℃ =1.15Χ10-3Pa.s 密度ρ=880kg/m3粘度μ 2 导热系数λ=14.8Χ10-2 W/(m.K) 比热容Cpc=1.6 kJ/(kg.K) 苯处理量:1000t/day=41667kg/h=11.57kg/s 热负荷:Q=WhCph(T2-T1)=11.57×1.6×1000×(80.1-40)=7.4×105W 冷却水用量:Wc=Q/[c pc(t2-t1)]=7.4×105/[4.184×1000×(38-30)]=22.1kg/s

4、传热面积的计算。 平均温度差 确定R和P值 查阅《化工原理》上册203页得出温度校正系数为0.8,适合单壳程换热器,平均温度差为 △tm=△t’m×0.9=27.2×0.9=24.5 由《化工原理》上册表4-1估算总传热系数K(估计)为400W/(m2·℃) 估算所需要的传热面积: S0==75m2 5、换热器结构尺寸的确定,包括: (1)传热管的直径、管长及管子根数; 由于苯属于不易结垢的流体,采用常用的管子规格Φ19mm×2mm 管内流体流速暂定为0.7m/s 所需要的管子数目:,取n为123 管长:=12.9m 按商品管长系列规格,取管长L=4.5m,选用三管程 管子的排列方式及管子与管板的连接方式: 管子的排列方式,采用正三角形排列;管子与管板的连接,采用焊接法。(2)壳体直径; e取1.5d0,即e=28.5mm D i=t(n c—1)+2e=19×(—1)+2×28.5=537.0mm,按照标准尺寸进行整圆,壳体直径为600mm。此时长径比为7.5,符合6-10的范围。

换热器清洗方式优缺点对比

换热器清洗方式优缺点对比 换热器(热交换器)是工业生产领域中应用十分广泛的热量交换设备,包括石油、化工、工业制冷、水泥、制盐、冶金、生物制药、造纸等工业领域。 然而工业换热器普遍存在换热效率不足的问题。换热器使用一段时间就会在管壁上结一层垢,据研究表示,0.1mm厚的污垢的热阻可以让1mm厚的换热管的导热热阻忽略不计。如此低的传热效率,使得管式换热器长期处于低效率的运行状态,随着换热技术的发展,污垢已经成为强化换热的主要障碍,需要定期对换热器进行清洗。 目前换热器清洗的方式主要分为物理清洗、人工清洗和化学清洗三种方法,下面来分析下各种清洗方法的优缺点。 1、物理清洗 主要包括胶球清洗、管刷清洗、超声波清洗等。 (1)胶球清洗:即在冷却水循环管路里投放表面粗糙的胶球,利用胶球与管壁间的摩擦实现清洗换热管。目前胶球清洗方法是最常用最普遍的清洗方法,但此方法并不能有效清洗到所有管道,只能对部分水力特性较好的换热管道进行清洗,同时对金属碳酸盐等硬垢去除效果不佳,随着时间推移,污垢仍然会在管壁累积。此外,胶球清洗系统要求投放数量较多的胶球,但胶球回收率低,部分电厂需要人工投球收球,统计收球率,导致了运行成本及人工成本的升高。 (2)管刷清洗:在每根换热管内都安装一个毛刷,利用反冲向原理,改变冷凝管道内的水向,推动毛刷低速前进清洗。与胶球清洗一样,其缺点也是硬垢去除效果不佳,且管刷清洗的成本更高。 (3)超声波清洗:利用超声波产生的强烈空化作用及振动将工件表面的污垢剥离脱落,同时还可将油脂性的污物分解、乳化。其缺点是需要选择合适的超声波功率和频率大小以及清洗液的温度,费用高昂,还需长期案例验证。 2、人工清洗 主要是采用高压水射流进行换热器清洗。该方法对泥沙等软垢有较好的去除效果,但对硬垢去除效果不佳,同时必须停机清洗,不仅会造成一定的停机损失,此外无法及时清除换热器内的积垢。 3、化学清洗 即在冷却水循环管路内投放盐酸、缓蚀阻垢剂和杀菌灭藻剂以及粘泥剥离剂等化学药剂清洗积垢。这种方法进行换热器清洗效果较好,但存在两点问题:首先,化学清洗频繁使用后,会腐蚀换热管,降低设备的使用寿命,存在安全隐患。其次,化学清洗方法运行成本高,污染环境。

列管式换热器设计

第一章列管式换热器的设计 1.1概述 列管式换热器是一种较早发展起来的型式,设计资料和数据比较完善,目前在许多国家中已有系列化标准。列管式换热器在换热效率,紧凑性和金属消耗量等方面不及其他新型换热器,但是它具有结构牢固,适应性大,材料范围广泛等独特优点,因而在各种换热器的竞争发展中得以继续应用下去。目前仍是化工、石油和石油化工中换热器的主要类型,在高温高压和大型换热器中,仍占绝对优势。例如在炼油厂中作为加热或冷却用的换热器、蒸馏操作中蒸馏釜(或再沸器)和冷凝器、化工厂中蒸发设备的加热室等,大都采用列管式换热器[3]。 1.2列管换热器型式的选择 列管式换热器种类很多,目前广泛使用的按其温度差补偿结构来分,主要有以下几种:(1)固定管板式换热器:这类换热器的结构比较简单、紧凑,造价便宜,但管外不能机械清洗。此种换热器管束连接在管板上,管板分别焊在外壳两端,并在其上连接有顶盖,顶盖和壳体装有流体进出口接管。通常在管外装置一系列垂直于管束的挡板。同时管子和管板与外壳的连接都是刚性的,而管内管外是两种不同温度的流体。因此,当管壁与壳壁温度相差较大时,由于两者的热膨胀不同,产生了很大的温差应力,以致管子扭弯或使管子从管板上松脱,甚至毁坏整个换热器。 为了克服温差应力必须有温度补偿装置,一般在管壁与壳壁温度相差50℃以上时,为安全起见,换热器应有温差补偿装置。 (2)浮头换热器:换热器的一块管板用法兰与外壳相连接,另一块管板不与外壳连接,以便管子受热或冷却时可以自由伸缩,但在这块管板上来连接有一个顶盖,称之为“浮头”,所以这种换热器叫做浮头式换热器。这种型式的优点为:管束可以拉出,以便清洗;管束的膨胀不受壳体的约束,因而当两种换热介质的温差大时,不会因管束与壳体的热膨胀量的不同而产生温差应力。其缺点为结构复杂,造价高。 (3)填料函式换热器:这类换热器管束一端可以自由膨胀,结构与比浮头式简单,造价也比浮头式低。但壳程内介质有外漏的可能,壳程终不应处理易挥发、易爆、易燃和有毒的介质。 (4)U型管换热器:这类换热器只有一个管板,管程至少为两程管束可以抽出清洗,

课程设计—列管式换热器

课程设计设计题目:列管式换热器 专业班级:应化1301班 姓名:王伟 学号: U201310289 指导老师:王华军 时间: 2016年8月

目录 1.课程设计任务书 (5) 1.1 设计题目 (5) 1.2 设计任务及操作条件 (5) 1.3 技术参数 (5) 2.设计方案简介 (5) 3.课程设计说明书 (6) 3.1确定设计方案 (6) 3.1.1确定自来水进出口温度 (6) 3.1.2确定换热器类型 (6) 3.1.3流程安排 (7) 3.2确定物性数据 (7) 3.3计算传热系数 (8) 3.3.1热流量 (8) 3.3.2 平均传热温度差 (8) 3.3.3 传热面积 (8) 3.3.4 冷却水用量 (8) 4.工艺结构尺寸 (9) 4.1 管径和管内流速 (9) 4.2 管程数和传热管数 (9)

4.3 传热管排列和分程方法 (9) 4.4 壳体内径 (10) 4.5 折流板 (10) 4.6 接管 (11) 4.6.1 壳程流体进出管时接管 (11) 4.6.2 管程流体进出管时接管 (11) 4.7 壁厚的确定和封头 (12) 4.7.1 壁厚 (12) 4.7.2 椭圆形封头 (12) 4.8 管板 (12) 4.8.1 管板的结构尺寸 (13) 4.8.2 管板尺寸 (13) 5.换热器核算 (13) 5.1热流量衡算 (13) 5.1.1壳程表面传热系数 (13) 5.1.2 管程对流传热系数 (14) 5.1.3 传热系数K (15) 5.1.4 传热面积裕度 (16) 5.2 壁温衡算 (16) 5.3 流动阻力衡算 (17) 5.3.1 管程流动阻力衡算 (17) 5.3.2 壳程流动阻力衡算 (17)

板式换热和管壳式换热器相比优缺点

人们通过科学研究和生产实践,对板式换热器的特点有了深刻的了解,并总结出一系列优缺点。这些优缺点,通常是和管壳式换热器加以比较的,归纳如下。 (一)优点 1. 传热系数高 管壳式换热器的结构,从强度方面看是很好的,但从换热角度看不甚理想,因为流体在壳程中流动时存在着折流板—壳体、折流体—换热管、管束—壳体之间的旁路。通过这些旁路的流体,没有充分参与换热。而板式换热器,不存在旁路,而且板片的波纹能使流体在较小的流速下产生湍流。所以板式换热器有较高的传热系数,一般认为是管壳式换热器的3~5 倍。 完成同一换热任务,采用管壳式换热器和采用板式换热器的比较;板式换热器的换热面积仅为管壳式换热面积的1/3?1/4。 2. 对数平均温差大 在管壳式换热器中,两种流体分别在壳程和管程内流动,总体上是错流的流动方式。如果进一步地分析,壳程为混合流动,管程是多股流动,所以对数平均温差都应采用修正系数。修正系数通常较小。流体在板式换热器内的流动,总体上是并流或逆流的流动方式,其温差修正系数一般大于,通常为. 3. 占地面积小 板式换热器结构紧凑,单位体积内的换热面积为管壳式换热器的2~5 倍,也不象管壳式 换热器那样要预留抽出管束的检修场地(除非吊出安装位置进行检修),因此实现同样的换

热任务时,板式换热器的占地面积约为管壳式换热器的1/5 ?1/10. 4. 重量轻 板式换热器的板片厚度仅为, 管壳式板式换热器的换热管厚度为?;管壳式换热器的壳体比板式换热器的框架重得多。在完成同样换热任务的情况下,板式换热器所需的换热面积比管壳式换热器的小,这就意味中板式换热器的重量轻,一般来说仅为管壳式换热器的1/5左右。 5.价格低 60 年代中期,弗兰克对用各种材料制造管壳式换热器和板式换热器的成本进行了比较,得到单位换热面积造价—换热面积(一台的)关系曲线。从曲线所示可见,若以不锈钢为材料,板式换热器的价格低于管壳式换热器 6.末端温差小 管壳式换热器在壳程中流动的流体和换热面交错并绕流,还存在旁流。而板式换热器的冷、热流体在板式换热器内的流动平行于换热面,且无旁流;这样使得板式换热器的末端温差很小,对于水一水换热可以低于1C,而管壳式换热器大约为5 C .这对于回收低温位的热 能是很有利的。 7、污垢系数低 板式换热器的污垢系数比管壳式换热器的污垢系数小很多,其原因是流体的剧烈湍流,杂质不易沉积;板间通道的流通死区小;不锈钢制造的换热面光滑、且腐蚀附着物少;以及清洗容易。板式换热器和管壳式换热器的污垢系数比较如下表。

列管式换热器的设计

化工原理课程设计 学院: 化学化工学院 班级: | 姓名学号: 指导教师: $

目录§一.列管式换热器 ! .列管式换热器简介 设计任务 .列管式换热器设计内容 .操作条件 .主要设备结构图 §二.概述及设计要求 .换热器概述 .设计要求 ~ §三.设计条件及主要物理参数 . 初选换热器的类型 . 确定物性参数 .计算热流量及平均温差 壳程结构与相关计算公式 管程安排(流动空间的选择)及流速确定 计算传热系数k 计算传热面积 ^ §四.工艺设计计算 §五.换热器核算 §六.设计结果汇总 §七.设计评述 §八.工艺流程图 §九.主要符号说明 §十.参考资料

: §一 .列管式换热器 . 列管式换热器简介 列管式换热器又称为管壳式换热器,是最典型的间壁式换热器,历史悠久,占据主导作用,主要有壳体、管束、管板、折流挡板和封头等组成。一种流体在关内流动,其行程称为管程;另一种流体在管外流动,其行程称为壳程。管束的壁面即为传热面。 其主要优点是单位体积所具有的传热面积大,传热效果好,结构坚固,可选用的结构材料范围宽广,操作弹性大,因此在高温、高压和大型装置上多采用列管式换热器。为提高壳程流体流速,往往在壳体内安装一定数目与管束相互垂直的折流挡板。折流挡板不仅可防止流体短路、增加流体流速,还迫使流体按规定路径多次错流通过管束,使湍流程度大为增加。 列管式换热器中,由于两流体的温度不同,使管束和壳体的温度也不相同,因此它们的热膨胀程度也有差别。若两流体温差较大(50℃以上)时,就可能由于热应力而引起设备的变形,甚至弯曲或破裂,因此必须考虑这种热膨胀的影响。 设计任务 ¥ 1.任务 处理能力:3×105t/年煤油(每年按300天计算,每天24小时运行) 设备形式:列管式换热器 2.操作条件 (1)煤油:入口温度150℃,出口温度50℃ (2)冷却介质:循环水,入口温度20℃,出口温度30℃ (3)允许压强降:不大于一个大气压。 备注:此设计任务书(包括纸板和电子版)1月15日前由学委统一收齐上交,两人一组,自由组合。延迟上交的同学将没有成绩。 [ .列管式换热器设计内容 1.3.1、确定设计方案 (1)选择换热器的类型;(2)流程安排 1.3.2、确定物性参数 (1)定性温度;(2)定性温度下的物性参数 1.3.3、估算传热面积 (1)热负荷;(2)平均传热温度差;(3)传热面积;(4)冷却水用量 % 1.3.4、工艺结构尺寸 (1)管径和管内流速;(2)管程数;(3)平均传热温度差校正及壳程数;(4)

常见换热器优缺点及适用范围

常见换热器优缺点及适用范围 浮头换热器 结构:两端管板中只有一端与壳体固定,另一端可相对壳体自由移动,称为浮头。浮头由浮头管板,钩圈和浮头盖组成,是可拆连接,管束可从壳体中抽出。 管束与壳体的热变形互不约束,不会产生热应力。 优点:可抽式管束,当换热管为正方形或转角正方形排列时,管束可抽出进行机械清洗,适用于易结垢及堵塞的工况。一端可自由浮动,无需考虑温差应力,可用于大温差场合。 缺点:结构复杂,造价高,设备笨重,材料消耗大。浮头端结构复杂影响排管数。浮头密封面在操作时,易产生内漏。 适用范围:适用于壳体和管束之间壁温差较大或壳程介质易结垢的场合。 浮头换热器在炼油行业或乙烯行业中应用较多,由于内浮头结构限制了使用压力和温度一般情况Pmax≤6.4MPa,Tmax≤400℃。 固定管板换热器 结构:管束连接在管板上,管板与壳体相焊。 优点:结构简单紧促,能承受较高压力,造价低,管程清洗方便,管子损坏时方便堵管或更换。排管数比U 形管换热器多。 缺点:管束与壳体的壁温或材料的线胀系数相差较大时,壳体和管束中将产生较

大热应力,为此应需要设置柔性元件(如膨胀节)。不能抽芯无法进行机械清洗。不能更换管束,维修成本较高。 适用范围:壳程侧介质清洁不易结垢,不能进行清洗,管程与壳程两侧温差不大或温差较大但壳侧压力不高的场合。 管壳式换热器的管子是换热器的基本构件,它为在管内流过一种流体和穿越管外的另一种流体之间提供传热面。根据两侧流体的性质决定管子材料,将具有腐蚀性,水质差的海水放在管内流动,水质较好的除盐水放在管子外壳侧,这样管子只需采用耐海水腐蚀的钛管,同时清洗污垢较为方便,管径从传热流体力学角度考虑,在给定壳体内使用小直径管子,可以得到更大的表面密度 但大多数流体会在管子表面上沉积污垢层,尤其管内冷却水水质较差,泥沙和污物及海生物的存在,都可能会在管壁上形成沉积物,将传热恶化并使定期的清洗工作成为必要,管子清洗限制管径最小约为20 mm,钛管一般采Φ25 mm,对给定的流体,污垢形成主要受管壁温度和流速的影响,为得到合理的维修周期,管内侧水的流速应在2 m/s左右(视允许压降的要求)。由于一般冷却水选用海水、河水等,较易引起结垢,对管壳式换热器,应根据水质含沙量情况需设置胶球清洗装置进行定期清洗。 管壳式换热器的结垢 换热器操作一段时间后,如果管壁结垢严重,则传热能力下降,换热介质出口温度达不到设计工艺参数要求;污垢将管内径变小;流速相应增大;压力损失增加。这时,可通过检查流量、压力和温度等操作记录来判定结垢情况。 管壳式换热器的腐蚀和磨损 换热介质、污垢等作用都会使换热器壳体和管子内、外表面产生腐蚀磨损。对壳体通常使用测厚仪,从外部测定和估计会产生腐蚀、减薄的壳体部位。

常见换热器结构及优缺点

6.7 换热器 换热器是化工、石油、食品及其他许多工业部门的通用设备,在生产中占有重要地位。化工生产中,换热器可作为加热器、冷却器、冷凝器、蒸发器和再沸器等,应用甚为广泛。由于生产规模、物料的性质、传热的要求等各不相同,故换热器的类型也是多种多样。根据冷、热流体热量交换的原理和方式基本上可分为三大类:混合式、蓄热式、间壁式。 6.7.1 直接接触式(混合式) 在这类换热器中,冷热两种流体通过直接混合进行热量交换。在工艺上允许两种流体相互混合的情况下,这是比较方便和有效的,且其结构比较简单。直接接触式换热器常用于气体的冷却或水蒸汽的冷凝。 6.7.2 蓄热式 蓄热式换热器又称为蓄热器,它主要由热容量较大的蓄热室构成,室中可填耐火砖或金属带等作为填料。当冷、热两种流体交替地通过同一蓄热室时,即可通过填料将得自热流体的热量,传递给冷流体,达到换热的目的。这类换热器的结构简单,且可耐高温,常用于气体的余热及其冷量的利用。其缺点是设备体积较大,而且两种流体交替时难免有一定程度的混合。 6.7.3 间壁式 这一类换热器的特点是在冷热两种流体之间用一金属壁(或石墨等导热性好的非金属)隔开,以使两种流体在不相混合的情况下进行热量交换。由于在三类换热器中,间壁式换热器应用最多,因此下面重点讨论间壁式换热器。 (1)夹套式换热器 结构:夹套装在容器外部,在夹套和容器壁之间形成密闭空间,成为一种流体的通道。 优点:结构简单,加工方便。 缺点:传热面积A小,传热效率低。 用途:广泛用于反应器的加热和冷却。 为了提高传热效果,可在釜内加搅拌器或蛇管和外循环。 (2)沉浸式蛇管换热器 结构:蛇管一般由金属管子弯绕而制成,适应容器所需要的形状,沉浸在容器内,冷热流体在管内外进行换热。 优点:结构简单,便于防腐,能承受高压。 缺点:传热面积不大,蛇管外对流传热系数小, 为了强化传热,容器内加搅拌。 (3)喷淋式换热器 结构:冷却水从最上面的管子的喷淋装置中淋下来,沿管表面流下来,被

板式换热和管壳式换热器相比优缺点

板式换热和管壳式换热器相比优缺点 人们通过科学研究和生产实践,对板式换热器的特点有了深刻的了解,并总结出一系列优缺点。这些优缺点,通常是和管壳式换热器加以比较的,归纳如下。 (一)优点 1.传热系数高 的结构,从强度方面看是很好的,但从换热角度看不甚理想,因为流体在壳程中流动时存在着折流板—壳体、折流体—换热管、管束—壳体之间的旁路。通过这些旁路的流体,没有充分参与换热。而板式换热器,不存在旁路,而且板片的波纹能使流体在较小的流速下产生湍流。所以有较高的传热系数,一般认为是管壳式换热器的3~5倍。 完成同一换热任务,采用管壳式换热器和采用板式换热器的比较;板式换热器的换热面积仅为管壳式换热面积的1/3~1/4。 2.对数平均温差大 在管壳式换热器中,两种流体分别在壳程和管程内流动,总体上是错流的流动方式。如果进一步地分析,壳程为混合流动,管程是多股流动,所以对数平均温差都应采用修正系数。修正系数通常较小。流体在板式换热器内的流动,总体上是并流或逆流的流动方式,其温差修正系数一般大于,通常为. 3.占地面积小 结构紧凑,单位体积内的换热面积为管壳式换热器的2~5倍,也不象管壳式换热器那样要预留抽出管束的检修场地(除非吊出安装位置进行检修),因此实现同样的换热任务时,板式换热器的占地面积约为管壳式换热器的1/5~1/10. 4.重量轻 板式换热器的板片厚度仅为,管壳式板式换热器的换热管厚度为~;管壳式换热器的壳体比板式换热器的框架重得多。在完成同样换热任务的情况下,板式换热器所需的换热面积比管壳式换热器的小,这就意味中板式换热器的重量轻,一般来说仅为管壳式换热器的1/5左右。 5.价格低 60年代中期,弗兰克对用各种材料制造管壳式换热器和板式换热器的成本进行了比较,得到单位换热面积造价—换热面积(一台的)关系曲线。从曲线所示可见,若以不锈钢为材料,板式换热器的价格低于管壳式换热器 6.末端温差小

四种换热器的结构特点及优缺点

3、四种换热器的结构特点及优缺点。 (1)固定管板式换热器 组成:管箱、管板、换热管、壳体、折流板或支撑板、拉杆、定距管等。 结构特点:管板与壳体之间采用焊接连接。两端管板均固定,可以是单管程或多管箱,管束不可拆,管板可延长兼作法兰。 优点:结构简单,制造方便,在相同管束情况下其壳体内径最小,管程分程较方便。 缺点:壳程无法进行机械清洗,壳程检查困难,壳体与管子之间无温差补偿元件时会产生较大的温差应力,即温差较大时需采用膨胀节或波纹管等补偿元件以减小温差应力。 (2)浮头式换热器 组成:管箱、管板、换热管、壳体、折流板或支撑板、拉杆、定距管、钩圈、浮头盖等。结构特点:一端管板与壳体固定,另一端管板(浮动管板)与壳体之间没有约束,可在壳体内自由浮动。只能为多管程,布管区域小于固定管板式换热器,管板不能兼作法兰,一般有管束滑道。 优点:不会产生温差应力,浮头可拆分,管束易于抽出或插入,便于检修和清洗。缺点:结构较复杂,操作时浮头盖的密封情况检查困难。 (3)U形管式换热器 组成:管箱、管板、U形换热管、壳体、折流板或支撑板、拉杆、定距管等。 结构特点:只有一个管板和一个管箱,壳体与换热管之间不相连,管束能从壳体中抽出或插入。只能为多管程,管板不能兼作法兰,一般有管束滑道。总重轻于固定管板式换热器。优点:结构简单,造价较低,不会产生温差应力,外层管清洗方便。 缺点:管内清洗因管子成U形而较困难,管束内围换热管的更换较困难,管束的固有频率较低易激起振动。 (4)填料函式换热器 组成:管箱、管板、管束、壳体、折流板或支撑板、拉杆、定距管、填料函等。 结构特点:一侧管箱可以滑动,壳体与滑动管箱之间采用填料密封。管束可抽出,管板不兼作法兰。优点:填料函结构较浮头简单,检修清洗方便;无温差应力,(具备浮头式换热器的优点,消除了固定管板式换热器的缺点)。 缺点:密封性能较差,不适用于易挥发、易燃、易爆和有毒介质。

化工原理课程设计列管换热器讲解

《化工原理课程设计》报告 换热器的设计 年级2008级 专业化学工程与工艺

设计者姓名刘国雄 设计单位西北师范大学化学化工学院完成日期2010年 11 月 25 日

目录 概述 1.1.换热器设计任务书................................................................................................................ - 6 - 1.2换热器的结构形式................................................................................................................ - 9 - 2.蛇管式换热器.......................................................................................................................... - 9 - 3.套管式换热器.......................................................................................................................... - 9 - 1.3换热器材质的选择.............................................................................................................. - 10 - 1.4管板式换热器的优点.......................................................................................................... - 11 - 1.5列管式换热器的结构.......................................................................................................... - 12 - 1.6管板式换热器的类型及工作原理...................................................................................... - 13 - 1.7确定设计方案...................................................................................................................... - 14 - 2.1设计参数.............................................................................................................................. - 14 - 2.2计算总传热系数.................................................................................................................. - 15 - 2.3工艺结构尺寸...................................................................................................................... - 16 - 2.4换热器核算.......................................................................................................................... - 18 - 2.4.1.热流量核算............................................................................................................... - 18 - 2.4.2.壁温计算................................................................................................................... - 20 - 2.4.3.换热器内流体的流动阻力.................................................................................... - 21 -

四种换热器的结构特点及优缺点

四种换热器的结构特点及优缺点 3、四种换热器的结构特点及优缺点。(1)固定管板式换热器组成:管箱、管板、换热管、壳体、折流板或支撑板、拉杆、定距管等。结构特点:管板与壳体之间采用焊接连接。两端管板均固定,可以是单管程或多管箱,管束不可拆,管板可延长兼作法兰。优点:结构简单,制造方便,在相同管束情况下其壳体内径最小,管程分程较方便。缺点:壳程无法进行机械清洗,壳程检查困难,壳体与管子之间无温差补偿元件时会产生较大的温差应力,即温差较大时需采用膨胀节或波纹管等补偿元件以减小温差应力。(2)浮头式换热器组成:管箱、管板、换热管、壳体、折流板或支撑板、拉杆、定距管、钩圈、浮头盖等。结构特点:一端管板与壳体固定,另一端管板(浮动管板)与壳体之间没有约束,可在壳体内自由浮动。只能为多管程,布管区域小于固定管板式换热器,管板不能兼作法兰,一般有管束滑道。优点:不会产生温差应力,浮头可拆分,管束易于抽出或插入,便于检修和清洗。缺点:结构较复杂,操作时浮头盖的密封情况检查困难。(3)U形管式换热器组成:管箱、管板、U形换热管、壳体、折流板或支撑板、拉杆、定距管等。结构特点:只有一个管板和一个管箱,壳体与换热管之间不相连,管束能从壳体中抽出或插入。只能为多管程,管板不能兼作法兰,一般有管束滑道。总重轻于固定管板式换热器。优点:结构简单,造价较低,不会

产生温差应力,外层管清洗方便。缺点:管内清洗因管子成U形而较困难,管束内围换热管的更换较困难,管束的固有频率较低易激起振动。(4)填料函式换热器组成:管箱、管板、管束、壳体、折流板或支撑板、拉杆、定距管、填料函等。结构特点:一侧管箱可以滑动,壳体与滑动管箱之间采用填料密封。管束可抽出,管板不兼作法兰。优点:填料函结构较浮头简单,检修清洗方便;无温差应力,(具备浮头式换热器的优点,消除了固定管板式换热器的缺点)。缺点:密封性能较差,不适用于易挥发、易燃、易爆和有毒介质。

列管式换热器 (化工原理课程设计)

化工原理课程设计 题目:列管式换热器设计 班级: 姓名: 学号: 指导教师: 2015 年-2016 年学年第1 学期

目录 设计任务书3 前言4 一.工艺说明及流程示意图5 1. 工艺流程5 酒精的工艺流程5 冷却流程图5 白酒加工工艺流程5 冷却流程5 2. 工艺说明6 流体流入空间的选择6 出口温度的确定(含算法程序)6 流速的选择7 计算平均温差8 二.流程及方案的论证与确定8 1. 设计方案的论证8 2. 确定设计方案及流程 8 选择物料8 确定两流体的进出口温度9 确定流程9 换热器类型的选择 9 三.设计计算及说明9 1. 流体物性的确定9 水的物性9 无水乙醇的物性9 2. 初步确定换热器的类型和尺寸9 计算两流体的平均温度差9 计算热负荷和冷却水流量10 传热面积10 选择管子尺寸11 计算管子数和管长,对管子进行排列,确定壳体直径11根据管长和壳体直径的比值,确定管程数12 3. 核算压强降12 管程压强降12 壳程压强降12 4. 核算总传热面积14 管程对流传热系数α014 壳程对流传热系数αi14 污垢热阻15

总传热系数K’15 传热面积安全系数 15 壁温的计算15 4. 7 偏转角的计算 (15) 四.设计结果概要表16 五.对设计的评价及问题的讨论17 1.对设计的评价 (17) 2.问题的讨论 (17) 六.参考文献18 七.致谢 八.附录:固定管板式换热器的结构图、花板布置图 设计任务书 设计题目:列管式换热器设计。 设计任务:将自选物料用河水冷却或自选热源加热至生产工艺所要求的温度。 /d; 三、设计条件:1.处理能力G = 学生学号最后2位数×300 t 物料 2.冷却器用河水为冷却介质,考虑广州地区可取进口水温度为20~30℃;加热器用热水或水蒸汽为热源,条件自选。

列管式换热器

江西科技师范大学 食品科学与工程专业《化工原理课程设计》说明书 题目名称列管式换热器的设计 专业班级11级食品科学与工程 学号20111912 20111878 20111911 学生姓名胡利君吕亚琼钟翠 指导教师常军博士 2012 年11月06日

目录 1.概述 (1) 1.1设计方案 (1) 1.1.1设计条件 (1) 1.1.2选择换热器类型 (1) 1.1.3传热器管程安排 (2) 1.2设计换热器的要求 (2) 2.衡算 (2) 2.1传热面积的计算 (2) 2.1.1定性温度的确定 (3) 2.1.2计算平均传热温差 (3) 2.1.3初算传热面积 (3) 2.2工艺结构尺寸 (3) 2.2.1管径和管内流速 (3) 2.2.2管程数和传热数管数 (3) 2.2.3平均传热温差校正及壳程数 (4) 2.2.4传热管排列和分程方法 (4) 2.2.5壳体直径 (4) 2.2.6折流板 (4) 2.2.7接管 (5) 2.3换热器核算 (5) 2.3.1传热面积校正 (5) 2.3.2壳程传热膜系数 (6) 2.3.3污垢热阻和壁管热阻 (6) 2.3.4换热器内压降得核算 (7) 3.总结 (8) 4.附录 (9) 4.1计算总表 (9) 4.2设备选型表 (10) 5.图纸 (11) 6.参考文献及资料 (12)

1.概述 1.1设计方案 换热器是化工、石油、食品及其他许多部门的通用设备,在生产中常用的一种换热机械装置。按用途它可分为加热器、冷却器、冷凝器、蒸发皿和再沸器等。根据冷、热流体热量交换的原理和方式可分为三大类:混合式、蓄热式、间璧式。 本设计以列管式换热器为模型,以进口温度5℃、出口温度70℃、流量为30m3/h为设计条件,针对列管式换热器生产过程中最主要的设备部件进行模拟设计和选型,本论文进行工艺设计、主要设备及附件尺寸的设计。 1.1.1设计条件 两流体的温度变化情况:热流体进口温度160℃,出口温度105℃;流体进口温度5℃,出口温度70℃。冷流体的流量为30m3/h。 1.1.2 选择换热器的类型 列管式换热器可分为固定管板式换热器、浮头式换热器和U型管式换热器。该换热器用饱和水蒸气加热,冬季操作时,其进口温度会降低,故而会加大管壁温度和壳体温度之差,所以温差较大。同时,在清洗和检修时,整个管束可以从壳体中抽出,因此应选用浮头式换热器。 1.1.3传热管管程安排 由于水较易结垢,如果流速太低,将会加快污垢增长速度,使换热器的热流量下降;因此,饱和水蒸汽应走壳程,水走管程。 1.2设计换热器的要求 (1)合理的实现所规定的工艺条件 传热量流体的物热力学参数与物理化学性质是工艺过程所规定的条件。设计者应根据这些条件进行热力学和流体力学的计算,经过反复比较,使所设计的换热器具有尽可能小的传热面积,在单位时间内传递尽可能多的热量,其具体做法如下。 ①增大传热系数?在综合考虑流体阻力及不发生流体诱发振动的前提下,尽量选择高的流速。 ②提高平均温差?对于无相变的流体,尽量采用接近逆流的传热方式。因为这样不仅可以提高平均温差,还有助于减少结构中的温差应力,在允许的条件下,可提高热流体的进口温度或降低冷流体的进口温度。 ③妥善布置传热面?例如在管壳式换热器中,采用合适的管间距和排列方式,不仅可以加大单位空间内的传热面积,还可以改善流体的流动性质,错列管束的传热方式比并列管束的好。如果换热器中的一侧有相变,另一侧流体为气相,可在气相一侧的传热面上加翅片,以增大传热面积,更有利于热量的传递 (2)安全可靠 换热器是压力容器,在进行强度,刚度,温差应力以及疲劳寿命计算时,应遵循我国《钢制石油化工压力容器设计规定》与《钢制管壳式换热器设计规定》

相关主题
文本预览
相关文档 最新文档