当前位置:文档之家› 高中数学一轮复习专题1 函数的概念、图象与性质(优秀教学案)

高中数学一轮复习专题1 函数的概念、图象与性质(优秀教学案)

高中数学一轮复习专题1   函数的概念、图象与性质(优秀教学案)
高中数学一轮复习专题1   函数的概念、图象与性质(优秀教学案)

专题一 函数的概念、图象与性质[小题提速练]

[明晰考情] 1.命题角度:以基本初等函数为载体,考查函数的定义域、最值、奇偶性、单调性和周期性;利用函数的图象研究函数性质,能用函数的图象性质解决简单问题.2.题目难度:中档难度.

考点一 函数及其表示

要点重组 (1)给出解析式的函数的定义域是使解析式有意义的自变量的集合;探求抽象函数的定义域要把握一个原则:f (g (x ))中g (x )的范围与f (x )中x 的范围相同.

(2)对于分段函数的求值问题,必须依据条件准确地找出利用哪一段求解;形如f (g (x ))的函数求值时,应遵循先内后外的原则. 1.函数y =lg (1-x 2)2x 2-3x -2的定义域为( )

A.(-∞,1]

B.[-1,1]

C.????-1,-12∪????-1

2,1 D.?

???-1,-12∪????-1

2,1 答案 C

解析 函数有意义,则?

????

1-x 2>0,2x 2-3x -2≠0,

即?????

-1

x ≠2且x ≠-12.

所以函数的定义域为?

???

??

x ?

?

-1

x ,0

若f (a )=f (a +1),则f ????

1a 等于( ) A.2 B.4 C.6 D.8 答案 C

解析 若0<a <1,由f (a )=f (a +1), 得a =2(a +1-1),

∴a =1

4,∴f ????1a =f (4)=2×(4-1)=6. 若a ≥1,由f (a )=f (a +1), 得2(a -1)=2(a +1-1),无解. 综上,f ????1a =6. 故选C.

3.若函数y =f (x )的定义域是[0,2],则函数g (x )=f (2x )x -1的定义域是__________.

答案 [0,1)

解析 由?

????

0≤2x ≤2,

x -1≠0,得0≤x <1,

∴函数g (x )的定义域为[0,1).

4.函数f (x )=2a x -2 017

a x +1(a >0且a ≠1)的值域为______.

答案 (-2 017,2)

解析 f (x )=2a x -2 017a x +1=2(a x +1)-2 019

a x +1

=2-2 019

a x +1

因为a x >0,所以a x +1>1,

所以0<2 019a x +1<2 019,所以-2 017<2-2 019

a x +1<2,

故函数f (x )的值域为(-2 017,2). 考点二 函数的图象及应用

方法技巧 (1)函数图象的判断方法

①找特殊点;②看性质:根据函数性质判断图象的位置,对称性,变化趋势等;③看变换:看函数是由基本初等函数经过怎样的变换得到.

(2)利用图象可确定函数的性质、方程与不等式的解等问题. 5. 函数f (x )=???

?2

1+e x -1·sin x 的图象大致形状为( )

答案 A

解析 ∵f (x )=???

?2

1+e x -1·sin x ,

∴f (-x )=???

?2

1+e -x -1·sin(-x )

=-????2e x

1+e x -1sin x =????2

1+e x -1·

sin x =f (x ). ∴函数f (x )为偶函数,故排除C ,D ,

当x =2时,f (2)=? ??

??21+e 2-1·sin 2<0,故排除B ,只有A 符合.

6.已知f (x )=2x -1,g (x )=1-x 2,规定:当|f (x )|≥g (x )时,h (x )=|f (x )|;当|f (x )|

解析 画出y =|f (x )|=|2x -1|与y =g (x )=1-x 2的图象,它们交于A ,B 两点.由“规定”,在A ,B 两侧,|f (x )|≥g (x ),故h (x )=|f (x )|;在A ,B 之间,|f (x )|

综上可知,y =h (x )的图象是图中的实线部分,因此h (x )有最小值-1,无最大值. 7.函数y =1

1-x

的图象与函数y =2sin πx (-2≤x ≤4)的图象所有交点的横坐标之和等于________. 答案 8

解析 如图,两个函数图象都关于点(1,0)成中心对称,两个图象在[-2,4]上共8个交点,每两个对应交点横坐标之和为2.故所有交点的横坐标之和为8.

8.设函数f (x )=e x (2x -1)-ax +a ,其中a <1,若存在唯一的整数x 0,使得f (x 0)<0,则a 的取值范围是________. 答案 ???

? 3

2e ,1 解析 设g (x )=e x (2x -1),h (x )=ax -a ,

由题意知存在唯一的整数x 0使得g (x 0)在直线h (x )=ax -a 的下方,如图.

∵g ′(x )=e x (2x -1)+2e x =e x (2x +1),

∴当x <-1

2时,g ′(x )<0,函数g (x )单调递减,

当x >-1

2

时,g ′(x )>0,函数g (x )单调递增,

∴当x =-1

2

时,g (x )取最小值1

22e --,

当x =0时,g (x )=-1,当x =1时,g (x )=e >0, 直线h (x )=ax -a 恒过定点(1,0)且斜率为a , 故-a >g (0)=-1且g ()

-1=-3e -1≥-a -a , 解得3

2e

≤a <1.

考点三 函数的性质与应用

要点重组 (1)利用函数的奇偶性和周期性可以转化函数的解析式、图象和性质,把不在已知区间上的问题,转化到已知区间上求解.

(2)函数单调性的应用:可以比较大小、求函数最值、解不等式、证明方程根的唯一性.

(3)函数周期性的常用结论:若f (x +a )=-f (x )或f (x +a )=

1

f (x )

,则2a 是函数f (x )的周期. 9.已知函数f (x )的定义域为R ,当x <0时,f (x )=x 3-1;当-1≤x ≤1时,f (-x )=-f (x );当x >1

2时,f ????x +12=f ????x -12,则f (6)等于( ) A.-2 B.-1 C.0 D.2 答案 D

解析 当x >1

2时,f ????x +12=f ????x -12,即f (x )=f (x +1),∴T =1,∴f (6)=f (1).当x <0时,f (x )=x 3-1且当-1≤x ≤1时,f (-x )=-f (x ), ∴f (6)=f (1)=-f (-1)=2,故选D.

10.设函数y =f (x )(x ∈R )为偶函数,且?x ∈R ,满足f ????x -32=f ????x +1

2,当x ∈[2,3]时,f (x )=x ,则当x ∈[-2,0]时,f (x )=__________. 答案 3-|x +1| 解析 f (x )的周期T =2, 当x ∈[0,1]时,x +2∈[2,3], ∴f (x )=f (x +2)=x +2. 又f (x )为偶函数,

∴当x ∈[-1,0]时,-x ∈[0,1],f (-x )=-x +2, ∴f (x )=-x +2;

当x ∈[-2,-1]时,x +2∈[0,1], f (x )=f (x +2)=x +4.

综上,当x ∈[-2,0]时,f (x )=3-|x +1|.

11.已知偶函数f ????x +π2,当x ∈????-π2,π

2时,f (x )=1

3x +sin x .设a =f (1),b =f (2),c =f (3),则a ,b ,c 的大小关系是________.(用“<”连接) 答案 c

解析 因为函数f ????x +π

2为偶函数, 所以f ?

???-x +π2=f ????x +π

2,

即函数f (x )的图象关于直线x =π

2对称,即f (x )=f (π-x ).

又因为当x ∈???

?-π2,π

2时,f (x )=1

3x +sin x , 所以函数f (x )在????-π2,π2上单调递增,在????π2,3π

2上单调递减,因为2<π-1<3,所以f (2)>f (π-1)=f (1)>f (3),即c

12.已知函数y =f (x ),x ∈R ,有下列四个命题:

①若f (1+2x )=f (1-2x ),则f (x )的图象关于直线x =1对称; ②y =f (x -2)与y =f (2-x )的图象关于直线x =2对称;

③若f (x )为偶函数,且f (2+x )=-f (x ),则f (x )的图象关于直线x =2对称; ④若f (x )为奇函数,且f (x )=f (-x -2),则f (x )的图象关于直线x =1对称. 其中正确命题的序号为________. 答案 ①②④

解析 对于①,1+2x +1-2x

2=1,故函数y =f (x )的图象关于直线x =1对称,故①正确;对

于②,令t =x -2,则问题等价于y =f (t )与y =f (-t )图象的对称问题,显然这两个函数的图象关于直线t =0对称,即函数y =f (x -2)与y =f (2-x )的图象关于直线x -2=0,即x =2对称,故②正确;对于③,由f (x +2)=-f (x ),可得f (x +4)=-f (x +2)=f (x ),我们只能得到函数的周期为4,即只能推得函数y =f (x )的图象关于直线x =4k (k ∈Z )对称,不能推得函数y =f (x )的图象关于直线x =2对称,故③错误;对于④,由于函数f (x )为奇函数,且f (x )=f (-x -2),可得f (-x )=f (x +2),由于-x +x +2

2=1,可得函数y =f (x )的图象关于直线x =1对称,故④

正确.

1.已知函数f (x )的定义域为(-1,1),则函数g (x )=f ????

x 2+f (x -1)的定义域为( ) A.(-2,0) B.(-2,2) C.(0,2) D.???

?-1

2,0 答案 C

解析 由题意得?????

-1<x 2<1,-1<x -1<1,

解得?????

-2<x <2,

0<x <2,

故0<x <2.故选C.

2.已知函数f (x )为R 上的减函数,则满足f ???

?????1x <f (1)的实数x 的取值范围是( ) A.(-1,1) B.(0,1)

C.(-1,0)∪(0,1)

D.(-∞,-1)∪(1,+∞)

答案 C

解析 由f (x )为R 上的减函数且f ???

?????1x <f (1), 得?????

????1x >1,x ≠0,

即???

|x |<1,x ≠0.

∴-1<x <0或0<x <1.

3.已知函数f (x )=????

?

sin πx ,0≤x ≤1,log 2 016x ,x >1,

若a ,b ,c 互不相等,且f (a )=f (b )=f (c ),则a +b +c

的取值范围是( ) A.(1,2 016) B.[1,2 016] C.(2,2 017) D.[2,2 017]

答案 C

解析 在平面直角坐标系中画出f (x )的图象,如图所示.设a <b <c ,要满足存在互不相等的a ,b ,c ,使f (a )=f (b )=f (c ),则a ,b 关于直线x =1

2对称,可得a +b =1,1<c <2 016,故a +b

+c 的取值范围是(2,2 017).

解题秘籍 (1)从映射的观点理解抽象函数的定义域,如函数y =f (g (x ))中,若函数y =f (x )的定义域为A ,则有g (x )∈A .

(2)利用函数的性质求函数值时,要灵活应用性质对函数值进行转换. (3)解题中要利用数形结合的思想,将函数图象、性质有机结合.

1.函数f (x )=3x 2

1-x +lg (3x +1)的定义域是( )

A.????-1

3,+∞ B.????-1

3,1 C.????-13,13 D.[0,1)

答案 D

解析 要使函数有意义,需????

?

lg (3x +1)≥0,

3x +1>0,

1-x >0,即0≤x <1.

故函数的定义域为[0,1),故选D.

2.(2017·全国Ⅰ)已知函数f (x )在(-∞,+∞)上单调递减,且为奇函数.若f (1)=-1,则满足-1≤f (x -2)≤1的x 的取值范围是( ) A.[-2,2] B.[-1,1] C.[0,4] D.[1,3]

答案 D

解析 ∵f (x )为奇函数,∴f (-x )=-f (x ). ∵f (1)=-1,∴f (-1)=-f (1)=1.

故由-1≤f (x -2)≤1,得f (1)≤f (x -2)≤f (-1). 又f (x )在(-∞,+∞)单调递减,∴-1≤x -2≤1, ∴1≤x ≤3,故选D.

3.(2018·全国Ⅱ)函数f (x )=e x -e -

x

x 2

的图象大致为( )

答案 B

解析 ∵y =e x -e -x 是奇函数,y =x 2是偶函数,

∴f (x )=e x -e -x

x 2是奇函数,图象关于原点对称,排除A 选项.

当x =1时,f (1)=e -e -11=e -1

e >0,排除D 选项.

又e >2,∴1e <12,∴e -1e >3

2,排除C 选项.

故选B.

4.如果函数f (x )=ax 2+2x -3在区间(-∞,4)上是单调递增的,则实数a 的取值范围是( ) A.????-1

4,+∞ B.????-1

4,+∞ C.????-1

4,0 D.???

?-1

4,0 答案 D

解析 当a =0时,f (x )=2x -3,在定义域R 上是单调递增的,故在(-∞,4)上单调递增; 当a ≠0时,二次函数f (x )的对称轴为x =-1a .

因为f (x )在(-∞,4)上单调递增, 所以a <0,且-1a ≥4,解得-1

4≤a <0.

综上所述a 的取值范围是???

?-1

4,0. 5.已知函数g (x )的定义域为{x |x ≠0},且g (x )≠0,设p :函数f (x )=g (x )???

?11-2x -1

2是偶函数;

q :函数g (x )是奇函数,则p 是q 的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件

答案 C

解析 令h (x )=11-2x -1

2

(x ≠0),易得h (x )+h (-x )=0,则h (x )为奇函数,又g (x )是奇函数,

所以f (x )为偶函数;反过来也成立.因此p 是q 的充要条件. 6.已知定义在R 上的函数f (x )=2|x

-m |

-1(m 为实数)为偶函数.记a =f (log 0.53),b =f (log 25),c

=f (2m ),则a ,b ,c 的大小关系为( ) A.a <b <c B.a <c <b C.c <a <b D.c <b <a

答案 C

解析 由f (x )=2|x -m |-1是偶函数,得m =0,则f (x )=2|x |-1. 当x ∈[0,+∞)时,f (x )=2x -1单调递增,

又a =f (log 0.53)=f (|log 0.53|)=f (log 23),c =f (0),且0<log 23<log 25, 则f (0)<f (log 23)<f (log 25), 即c <a <b ,故选C.

7.已知函数f (x )=?

????

log 2x +a ,x >0,

ax +1,x ≤0,若f (4)=3,则f (x )>0的解集为( )

A.{x |x >-1}

B.{x |-1

C.{x |x >-1且x ≠0}

D.?

???

??

x ??

-112 答案 D

解析 因为f (4)=2+a =3,所以a =1.

所以不等式f (x )>0等价于?????

x >0,log 2x +1>0,

即x >1

2,或?

????

x ≤0,x +1>0,

即-1

所以f (x )>0的解集为?

???

??

x ?

?

-112. 8.已知函数f (x +2)(x ∈R )为奇函数,且函数f (x )的图象关于直线x =1对称,当x ∈[0,1]时,f (x )=

x

2 018

,则f (2 018)等于( ) A.2 018

B.12 018

C.11 009

D.0

答案 D

解析 由题意知,f (x +2)=-f (-x +2),∴f (x )=-f (-x +4),又f (x )=f (-x +2),∴-f (-x +4)=f (-x +2),∴-f (-x +2)=f (-x ),∴f (-x +4)=f (-x ),∴f (x )的周期为4,故f (2 018)=f (2 016+2)=f (2)=f (0)=0.

9.已知函数f (x )=x 2x -1

+cos ????x -π+12,则∑2 018k =1f ????k 2 019=________. 答案 1 009

解析 由所给函数知,

f (x )+f (1-x )=x 2x -1+cos ? ????

x -π+12+

1-x 2(1-x )-1+ cos ? ????1-x -π+12=1+cos ? ????x -π+12+cos ?

????

x +π-12=1,

所以∑2 018

k =1f ????k 2 019=2 0182

=1 009. 10.(2017·全国Ⅲ)设函数f (x )=?

????

x +1,x ≤0,2x ,x >0,则满足f (x )+f ????x -1

2>1的x 的取值范围是________.

答案 ???

?-1

4,+∞ 解析 由题意知,可对不等式分x ≤0,0<x ≤12,x >1

2三段讨论.

当x ≤0时,原不等式为x +1+x +1

2>1,

解得x >-1

4,

∴-1

4

<x ≤0.

当0<x ≤12时,原不等式为2x +x +1

2>1,显然成立.

当x >12时,原不等式为2x +2x -1

2>1,显然成立.

综上可知,x 的取值范围是???

?-1

4,+∞.

11.已知函数f (x )=?

??

??

x 2+x ,x ≥0,

-3x ,x <0,若a [f (a )-f (-a )]>0,则实数a 的取值范围为

______________________. 答案 (-∞,-2)∪(2,+∞)

解析 当a >0时,a 2+a -[-3(-a )]>0?a 2-2a >0?a >2;当a <0时,-3a -[(-a )2+(-a )]<0?a 2+2a >0?a <-2.综上,实数a 的取值范围为(-∞,-2)∪(2,+∞).

12.能够把圆O :x 2+y 2=16的周长和面积同时分为相等的两部分的函数称为圆O 的“和谐函数”,下列函数是圆O 的“和谐函数”的是________.(填序号) ①f (x )=e x +e -

x ; ②f (x )=ln 5-x

5+x ;

③f (x )=tan x

2;

④f (x )=4x 3+x . 答案 ②③④

解析 由“和谐函数”的定义知,若函数为“和谐函数”,则该函数为过原点的奇函数,①中,f (0)=e 0+e -0=2,所以f (x )=e x +e -x 的图象不过原点,故f (x )=e x +e -x 不是“和谐函数”;②中,f (0)=ln 5-05+0=ln 1=0,f (x )的定义域为(-5,5),且f (-x )=ln 5+x 5-x =-ln 5-x 5+x =-f (x ),

所以f (x )为奇函数,所以f (x )=ln

5-x

5+x

为“和谐函数”;③中,f (0)=tan 0=0,f (x )的定义域为{x |x ≠π+2k π,k ∈Z },且f (-x )=tan -x 2=-tan x 2=-f (x ),f (x )为奇函数,故f (x )=tan x

2为“和

谐函数”;④中,f (0)=0,且f (x )的定义域为R ,f (x )为奇函数,故f (x )=4x 3+x 为“和谐函数”,所以②③④中的函数都是“和谐函数”.

高中函数图像大全

指数函数 概念:一般地,函数y=a^x(a>0,且a≠1)叫做指数函数,其中x 是自变量,函数的定义域是R。 注意:⒈指数函数对外形要求严格,前系数要为1,否则不能为指数函数。 ⒉指数函数的定义仅是形式定义。 指数函数的图像与性质: 规律:1. 当两个指数函数中的a互为倒数时,两个函数关于y轴对称,但这两个函数都不具有奇偶性。

2.当a>1时,底数越大,图像上升的越快,在y轴的右侧,图像越靠近y轴; 当0<a<1时,底数越小,图像下降的越快,在y轴的左侧,图像越靠近y轴。 在y轴右边“底大图高”;在y轴左边“底大图低”。

3.四字口诀:“大增小减”。即:当a>1时,图像在R上是增函 数;当0<a<1时,图像在R上是减函数。 4. 指数函数既不是奇函数也不是偶函数。 比较幂式大小的方法: 1.当底数相同时,则利用指数函数的单调性进行比较; 2.当底数中含有字母时要注意分类讨论; 3.当底数不同,指数也不同时,则需要引入中间量进行比较; 4.对多个数进行比较,可用0或1作为中间量进行比较 底数的平移: 在指数上加上一个数,图像会向左平移;减去一个数,图像会向右平移。 在f(X)后加上一个数,图像会向上平移;减去一个数,图像会向下平移。

对数函数 1.对数函数的概念 由于指数函数y=a x 在定义域(-∞,+∞)上是单调函数,所以它存在反函数, 我们把指数函数y=a x (a >0,a≠1)的反函数称为对数函数,并记为y=log a x(a >0,a≠1). 因为指数函数y=a x 的定义域为(-∞,+∞),值域为(0,+∞),所以对数函数y=log a x 的定义域为(0,+∞),值域为(-∞,+∞). 2.对数函数的图像与性质 对数函数与指数函数互为反函数,因此它们的图像对称于直线y=x. 据此即可以画出对数函数的图像,并推知它的性质. 为了研究对数函数y=log a x(a >0,a≠1)的性质,我们在同一直角坐标系中作出函数 y=log 2x ,y=log 10x ,y=log 10x,y=log 2 1x,y=log 10 1x 的草图

新课标下高中数学概念教学的实践与思考

新课标下高中数学概念教学的实践与思考 广东东莞实验中学黄芳芳523120 新一轮课程改革把培养人的创新能力放在重要位置, 重视知识传授的过程,强调各科目在学生个性发展、提高素质和健全人格上的作用。数学教学是实现这一教育目的的重要途径之一,而数学概念是数学思维的细胞,是形成数学知识体系的基本要素,是数学基础知识的核心。所以,数学概念教学是数学教学工作中的一项重要内容,是新课标下“人人学有用的数学”的前提,是提高中学数学教学质量的关键。 一、高中数学课程标准对概念教学的要求 高中数学课程标准指出:教学中应加强对基本概念和基本思想的理解和掌握,对一些核心概念和基本思想要贯穿高中数学教学的始终,帮助学生逐步加深理解。由于数学高度抽象的特点,注重体现基本概念的来龙去脉。在教学中要引导学生经历从具体实例抽象出数学概念的过程,在初步运用中逐步理解概念的本质。 二、当前高中数学概念教学中存在的问题 长期以来, 由于受应试教育的影响,不少教师重解题、轻概念,造成数学概念与解题脱节的现象。有些教师仅仅把数学概念看做一个名词而已,概念教学就是对概念作解释,要求学生记忆,而没有看到像函数、向量这样的概念, 本质是一种数学观念,是一种处理问题的数学方法。一节“概念课”教完了,也就完成了它的历史使命,剩下的是赶紧解题,造成学生对概念含糊不清,一知半解,不能很好地理解和运用概念,严重影响了学生的解题质量。在新课程理念下,研究和实践与之相适应的高中数学概念教学的范式与方法成为当务之需。那么,作为教师应如何进行数学概念的教学呢?笔者从以下几个方面作了努力与探索,收到了一定的效果 三、新课标下高中数学概念课的教学 新课标下教师要更新教学理念,重视概念课教学;正确选择教学方法,改进概念课的教学过程;精心设计问题情景,激发学生的学习兴趣;倡导学生自主探索,合作交流,优化学生的学习方式;引导学生重视概念的学习,提高应用概念解决问题的能力。 1. 重视数学概念引入的方法 新课标指出:概念教学中要引导学生经历从具体的实例抽象出数学概念的过程.因此引入数学概念就要以具体的典型材料和实例为基础,揭示概念形成的实际背景,要创设好的问题情境,帮助学生完成由材料感知到理性认识的过渡,并引导学生把背景材料与原有认知结构建立实质性联系. 1.1 从实际生活中,引入新概念 新课标强调“数学教学要紧密联系学生的生活实际”.在数学概念的引入上,尽可能地选取学生日常生活中熟悉的事例.并且注意选取事例不在于数量的多少,关键是要贴近学生的认识经历,能够反映概念的本质特征。 案例1:数列极限的概念引入,从学生熟悉的砍木棍引入:战国时代哲学家庄周著的《庄子·天下篇》中有这样一句话:一尺之棰,日取其半,万世不竭.意思是说:一根一尺长的木棍,每天砍去一半,这样可以无限制的进行下去.让学生将每天剩余的木棍长度和已砍去的木棍长度写成两个数列,并把它们的各项标在数轴上,引导学生归纳两个数列的共同点特征:(1)都是无穷数列;(2)随着项数的无限增大,数列的项无限趋近于一个常数.从而引出数列极限的定义。 1.2 在体验数学概念产生的过程中引入概念 数学概念的引入,应从实际出发,创设情景,提出问题。通过与概念有明显联系、直观性强

高中数学常见函数图像

高中数学常见函数图像1. 2.对数函数:

3.幂函数: 定义形如αx y=(x∈R)的函数称为幂函数,其中x是自变量,α是常数. 图像 性质过定点:所有的幂函数在(0,) +∞都有定义,并且图象都通过点(1,1).单调性:如果0 α>,则幂函数的图象过原点,并且在[0,) +∞上为增函数.如果0 α<,则幂函数的图象在(0,) +∞上为减函数,在第一象限内,图象无限接近x轴与y轴.

函数 sin y x = cos y x = tan y x = 图象 定义域 R R ,2x x k k ππ??≠+∈Z ???? 值域 []1,1- []1,1- R 最值 当 22 x k π π=+ () k ∈Z 时, max 1y =; 当22 x k π π=- ()k ∈Z 时,min 1y =-. 当()2x k k π =∈Z 时, max 1y =; 当2x k π π=+ ()k ∈Z 时,min 1y =-. 既无最大值也无最小值 周期性 2π 2π π 奇偶性 奇函数 偶函数 奇函数 单调性 在 2,222k k ππππ? ?-+???? ()k ∈Z 上是增函数;在 32,222k k π πππ??++???? ()k ∈Z 上是减函数. 在[]() 2,2k k k πππ-∈Z 上 是 增 函 数 ; 在 []2,2k k πππ+ ()k ∈Z 上是减函数. 在,2 2k k π ππ π? ? - + ?? ? ()k ∈Z 上是增函数. 对称性 对称中心 ()(),0k k π∈Z 对称轴 ()2 x k k π π=+ ∈Z 对称中心 (),02k k ππ??+∈Z ?? ? 对称轴()x k k π =∈Z 对称中心(),02k k π?? ∈Z ??? 无对称轴

高中数学概念课教学

高中数学概念课教学 摘要培养创新精神和实践能力是目前我国教育改革,实施素质教育的重要任务之一,它要求我们在日常教学中持之以恒地认真钻研教材,合理创设问题情景,加强思维训练,并积极探索规律,改进教学方法,优化教学过程。笔者在高中数学概念教学中,发现教师若能充分重视数学概念的教学,在概念教学中恰当的把握好传授知识与增长能力的关系,充分尊重学生在学习过程中的主体体验、主动积极的思维和情感活动,才能循序渐进地引导学生在体验中感悟、在体验中创造、在体验中提高数学素养,帮助学生认识、理解、体验和掌握数学概念,促使其能运用数学概念灵活处理相关的数学问题。发展学生学会学习、学会思考、学会提问和开拓创新的能力。 关键词数学概念认识掌握拓展应用 数学是自然的,数学是清楚的。任何数学概念都有它产生的背景,考察它的来龙去脉,我们能够发现它是合情合理的。而要让学生理解概念,首先要了解它产生的背景,通过大量实例分析分析概念的本质属性,让学生概括概念,完善概念,进一步巩固和应用概念。才能是学生初步掌握概念。因此,概念教学的环节应包括概念的引入——概念的形成——概括概念——明确概念——应用概念—— 形成认知。传统的教法教师经常包办到家,口若悬河,常使学生感到枯燥无味,对数学课提不起兴趣,致使不少学生概念模糊,从而影响对数学内容的后续学习。数学概念是学习数学知识的基础,是

培养数学能力的前提。如何搞好数学概念课的教学呢? 一、让学生在亲自感知、体验教学中认识概念 学习一个新概念,首先应让学生明确学习它的意义,作用。因此,教师应设置合理的教学情景,使学生体会学习新概念的必要性。概念的引入,通常有两类:一类是从数学概念体系的发展过程引入,一类是从解决实际问题出发的引入。我们着重谈一下从实际问题引入,通过创设实验活动,培养学生动手操作能力,让他们在亲自体验实践中形成数学概念。如在椭圆概念教学中,可要求学生事先准备两个小图钉和一条长度为定长细线,将细线两端分别固定在图板上不同两点a 和b ,用铅笔把细线拉紧,使笔尖在纸上慢慢移动所得图形。提问思考讨论:(1)椭圆上的点有何特征?(2)当细线长等于两定点之间距离时,其轨迹是什么?(3)当细线长小于两定点之间距离时,其轨迹是什么?(4)请同学总结,完善椭圆定义。这样的设计,不是教师机械的讲解、学生被动的接受的过程,而是学生通过数学实验,在不断思考和探索中得到新发现,获得新知识,从而体验数学概念的发生、形成和发展的过程,,一方面有利于增强学生上数学课兴趣,感受过程给他们带来的快乐,另一方面有利于学生充分了解概念由来,方便记忆。 二、寻找新旧概念之间联系,形成系统化,进一步掌握概念 数学中有许多概念都有着密切的联系,如平面角与空间角、映射与函数、平行线段与平行向量、等差数列与等比数列等等,在教学中应善于寻找、分析其联系与区别,有利于学生掌握概念的本质。

高中数学课的基本课型

数学课的基本课型 一、关于数学基本课型 (一)数学概念课 概念具有确定研究对象和任务的作用。数学概念是导出全部数学定理、法则的逻辑基础,数学概念是相互联系、由简到繁形成学科体系。数学概念不仅是建立理论系统的中心环节,同时也是提高解决问题的前提。因此,概念教学是数学基础知识和基本技能教学的核心。它是以“事实学习”为中心内容的课型。 我们认为,通过概念教学,力求让学生明了以下几点: 第一,这个概念讨论的对象是什么?有何背景?其来龙去脉如何?学习这个概念有什么意义?它们与过去学过的概念有什么联系? 第二,概念中有哪些补充规定或限制条件?这些规定和限制条件的确切含义又是什么? 第三,概念的名称、进行表述时的术语有什么特点?与日常生活用语比较,与其他概念、术语比较,有没有容易混淆的地方?应当如何强调这些区别? 第四,这个概念有没有重要的等价说法?为什么等价?应用时应如何处理这个等价转换?第五,根据概念中的条件和规定,可以归纳出哪些基本的性质?这些性质又分别由概念中的哪些因素(或条件)所决定?它们在应用中起什么作用?能否派生出一些数学思想方法?由于数学概念是抽象的,因此在教学时要研究引入概念的途径和方法。一定要坚持从学生的认识水平出发,通过一定数量日常生活或生产实际的感性材料来引入,力求做到从感知到理解。还要注意在引用实例时一定要抓住概念的本质特征,着力揭示概念的本质属性。 人类的认识活动是一个特殊的心理过程,智力不同的学生完成这个过程往往有明显的差异。在教学时要从面向全体学生出发,从不同的角度,设计不同的方式,使学生对概念作辩证的分析,进而认识概念的本质属性。例如选择一些简单的巩固练习来辨认、识别,帮助学生掌握概念的外延和内涵;通过变式或变式图形,深化对概念的理解;通过新旧概念的对比,分析概念的矛盾运动。抓住概念之间的联系与区别来形成正确的概念。有些存在种属关系的概念,常分散在各单元出现,在教学进行到一定阶段,应适时归类整理,形成系统和网络,以求巩固、深化、发展和运用。 (二)数学命题课 表达数学判断的陈述句或用数学符号联结数和表示数的句子的关系统称为数学命题。定义、公理、定理、推论、公式都是符合客观实际的真命题。数学命题的教学是获得新知的必由之路,也是提高数学素养的基础。因此,它是数学课的又一重要基本课型。通过命题教学,使学生学会判断命题的真伪,学会推理论证的方法,从中加深学生对数学思想方法的理解和运用。培养数学语言能力、逻辑思维能力、空间想象能力和运算能力,培养数学思维的特有品质。 在进行命题教学时,首先要重视指导学生区分命题的条件与结论。其次要引导学生探索由条件到结论转化的证明思路。由于数学证明常会用证明一个等效的命题来代替原命题的真实性,因而还要注意引导学生在证明过程中如何进行命题的转换,一定要展示完整的思维过程,并要注意命题转换时的等价性。特别通过一个阶段的教学后,要及时归纳和小结证明的手段和方法。使学生掌握演绎法的原理和步骤,逐步掌握综合法、分析法、反证法等证明方法(高中还有数学归纳法)。 命题课教学还要注意: 第一,对基本问题,要详细讲解,认真作图,教学语言要准确,论证要严格,书写要规范,

高中数学函数图象高考题

函数图象B1 .函数y = a| x | (a > 1)的图象是( ) B() B3.当a>1时,函数y=log a x和y=(1-a)x的图象只可能是() A4.已知y=f(x)与y=g(x)的图象如图所示 则函数F(x)=f(x)·g(x)的图象可以是(A) B5.函数(1) || x xa y a x =>的图像大致形状是()D

A B C D D 7.函数x x y cos -=的部分图象是( ) A 8.若函数f(x)=x 2+b x +c 的图象的顶点在第四象限,则函数f /(x)的图象是 ( ) A 9.一给定函数) (x f y =的图象在下列图中,并且对任意)1,0 (1∈a ,由关系式) (1n n a f a =+得到的数列}{n a 满足)(* 1N n a a n n ∈>+,则该函数的图象是 ( ) A B C D C 10.函数y=kx+k 与y=x k 在同一坐标系是的大致图象是( ) A D C

A 12. 当a >1时,在同一坐标系中,函数y =a - x 与y =log a x 的图像( ) B 13. 函数1 1 1--=x y 的图象是( ) D 14.函数b x a x f -=)(的图象如图,其中a 、b 为常数,则下列结论正确的是 ( ) A .0,1<>b a B .0,1>>b a C .0,10><

高中数学平面直角坐标系下的图形变换及常用方法

高中数学平面直角坐标系下的图形变换及常用方法 摘要:高中数学新教材中介绍了基本函数图像,如指数函数,对数函数等图像等。而在更多的数学问题中,需要将这些基本图像通过适当的图形变换方式转化成其他的图像,要让学生理解并掌握图形变换方法。 高中数学研究的对象可分为两大部分,一部分是数,一部分是形,高中生是最需要培养的能力之一就是作图解图能力,就是根据给定图形能否提炼出更多有用信息;反之,根据已知条件能否画出准确图形。图是数学的生命线,能不能用图支撑思维活动是学好初等数学的关键之一;函数图像也是研究函数性质、方程、不等式的重要工具。 提高学生在数学知识的学习中对图形、图像的认知水平,是中学数学教学的主要任务之一,教师在教学过程中应该确立以下教学目标:一方面,要求学生通过对数学教材中基本的图形和图象的学习,建立起关于图形、图象较为系统的知识结构;培养和提高学生认识、研究和解决有关图形和图像问题的能力。为达到这一目标,教师应在教学中让学生理解并掌握图形变换的思想及其常用变换方法。 函数图形的变换,其实质是用图像形式表示的一个函数变化到另一个函数。与之对应的两个函数的解析式之间有何关系?这就是函数图像变换与解析式变换之间的一种动态的对应关系。在更多的数学问题中,需要将这些基本图像通过适当的图形变换方式转化成其它图像,要让学生理解并掌握图像变换方法。 常用的图形变换方法包括以下三种:缩放法、对称性法、平移法。 1.图形变换中的缩放法 缩放法也是图形变换中的基本方法,是蒋某基本图形进行放大或缩小,从而产生新图形的过程。若某曲线的方程F (x ,y )=0可化为f (ax ,by )=0(a ,b 不同时为0)的形式,那么F (x ,y )=0的曲线可由f (x ,y )=0的曲线上所有点的横坐标变为原来的1/a 倍,同时将纵坐标变为原来的1/b 倍后而得。 (1)函数()y af x =(0)a >的图像可以将函数()y f x =的图像中的每一点横坐标不变纵坐标伸长(1)a >或压缩(01a <<)为原来的a 倍得到; (2)函数()y f ax =(0)a >的图像可以将函数()y f x =的图像中的每一点纵 坐标不变横坐标伸长(1)a >或压缩(01a <<)为原来的1a 倍得到. ①y=f(x)ω?→x y=f(ω x );② y=f(x)ω?→y y=ωf(x). 缩放法的典型应用是在高中数学课本(三角函数部分)介绍函数)s i n (?ω+=x A y 的图像的相关知识时,课本重点分析了由函数y=sinx 的图像通

高中各种函数图像画法与函数性质

一次函数 二次函数

反比例函数 1、反比例函数图象:反比例函数的图像属于以原点为对称中心的中心对称的双曲线 反比例函数图像中每一象限的每一支曲线会无限接近X轴Y轴但不会与坐标轴相交(K≠0)。 2、性质: 1.当k>0时,图象分别位于第一、三象限,同一个象限内,y随x的增大而减小;当k<0时,图象分别位于二、四象限,同一个象限内,y随x的增大而增大。 2.k>0时,函数在x<0上同为减函数、在x>0上同为减函数;k<0时,函数在x<0上为增函数、在x>0上同为增函数。 定义域为x≠0;值域为y≠0。 3.因为在y=k/x(k≠0)中,x不能为0,y也不能为0,所以反比例函数的图象不可能与x轴相交,也不可能与y轴相交。 4. 在一个反比例函数图象上任取两点P,Q,过点P,Q分别作x轴,y轴的平行线,与坐标轴围成的矩形面积为S1,S2则S1=S2=|K| 5. 反比例函数的图象既是轴对称图形,又是中心对称图形,它有两条对称轴 y=x y=-x(即第一三,二四象限角平分线),对称中心是坐标原点。

指数函数y=a x (a>0,a≠1) 注意:⒈指数函数对外形要求严格,前系数要为1,否则不能为指数函数。 ⒉指数函数的定义仅是形式定义。 指数函数的图像与性质 规律:1. 当两个指数函数中的a互为倒数时,两个函数关于y轴对称,但这两个函数都不具有奇偶性。 2.当a>1时,底数越大,图像上升的越快,在y轴的右侧,图像越靠近y轴; 当0<a<1时,底数越小,图像下降的越快,在y轴的左侧,图像越靠近y轴。 在y轴右边“底大图高”;在y轴左边“底大图低”。

3.四字口诀:“大增小减”。即:当a>1时,图像在R上是增函数; 当0<a<1时,图像在R上是减函数。 4. 指数函数既不是奇函数也不是偶函数 比较幂式大小的方法: 1.当底数相同时,则利用指数函数的单调性进行比较; 2.当底数中含有字母时要注意分类讨论; 3.当底数不同,指数也不同时,则需要引入中间量进行比较; 4.对多个数进行比较,可用0或1作为中间量进行比较 底数的平移: 在指数上加上一个数,图像会向左平移;减去一个数,图像会向右平移。 在f(X)后加上一个数,图像会向上平移;减去一个数,图像会向下平移。

高中常用函数性质及图像汇总

高中常用函数性质及图像 一次函数 (一)函数 1、确定函数定义域的方法: (1)关系式为整式时,函数定义域为全体实数; (2)关系式含有分式时,分式的分母不等于零; (3)关系式含有二次根式时,被开放方数大于等于零; (4)关系式中含有指数为零的式子时,底数不等于零; (5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。 (二)一次函数 1、一次函数的定义 一般地,形如y kx b =+(k ,b 是常数,且0k ≠)的函数,叫做一次函数,其中x 是自变量。当0b =时,一次函数y kx =,又叫做正比例函数。 ⑴一次函数的解析式的形式是y kx b =+,要判断一个函数是否是一次函数,就是判断是否能化成以上形式. ⑵当0b =,0k ≠时,y kx =仍是一次函数. ⑶当0b =,0k =时,它不是一次函数. ⑷正比例函数是一次函数的特例,一次函数包括正比例函数. 2、正比例函数及性质 一般地,形如y=kx(k 是常数,k≠0)的函数叫做正比例函数,其中k 叫做比例系数. 注:正比例函数一般形式 y=kx (k 不为零) ① k 不为零 ② x 指数为1 ③ b 取零 当k>0时,直线y=kx 经过三、一象限,从左向右上升,即随x 的增大y 也增大;当k<0时,?直线y=kx 经过二、四象限,从左向右下降,即随x 增大y 反而减小. (1) 解析式:y=kx (k 是常数,k ≠0) (2) 必过点:(0,0)、(1,k ) (3) 走向:k>0时,图像经过一、三象限;k<0时,?图像经过二、四象限 (4) 增减性:k>0,y 随x 的增大而增大;k<0,y 随x 增大而减小 (5) 倾斜度:|k|越大,越接近y 轴;|k|越小,越接近x 轴 3、一次函数及性质 一般地,形如y=kx +b(k,b 是常数,k≠0),那么y 叫做x 的一次函数.当b=0时,y=kx +b 即y=kx ,所以说正比例函数是一种特殊的一次函数. 注:一次函数一般形式 y=kx+b (k 不为零) ① k 不为零 ②x 指数为1 ③ b 取任意实数 一次函数y=kx+b 的图象是经过(0,b )和(- k b ,0)两点的一条直线,我们称它为直线y=kx+b,它可以看作由直线y=kx 平移|b|个单位长度得到.(当b>0时,向上平移;当b<0时,向下平移)

人教版高一数学必修一《函数的概念》教学设计

. 1.2.1 函数的概念(第一课时) 班级 姓名 时间 制作人: 课题 函数的概念 课 型 新 授 课 知识目标—— 通过丰富的实例,进一步体会函数是描述变量之间的依赖关系 的重要数学模型;用集合与对应的思想理解函数的概念;理解函数的三要素 及函数符号的深刻含义. 能力目标—— 培养学生观察、类比、推理的能力;培养学生分析、判断、抽 学习目标 重 点 难 点 学法指导 象、归纳概括的能力;强化“形”与“数”结合并相互转化的数学思想 情感目标——探究过程中,强化学生参与意识,激发学生观察、分析、探求 的兴趣和热情;体会由特殊到一般、从具体到抽象、运动变化、相互联系、 相互制约、相互转化的辩证唯物主义观点;逐渐形成善于提出问题的习惯, 学会数学表达和交流,发展数学应用意识;感受数学的抽象性和简洁美渗, 透数学思想和文化. 函数的概念、函数的三要素 函数概念及符号 y = f ( x ) 的理解 ⑴先自学课本 15~18 页,尝试完成课本例题和练习题。 ⑵找准自学中存在的问题,以备课堂内解决。 一.知识链接: 1、在初中我们学习了哪几种基本初等函数? 一次函数,二次函数,反比例函数 2、在初中学习阶段,函数的定义是如何表述的? 在一个变化过程中,有两个变量x 与 y ,如果对于 x 的每一个值, y 都有唯一确定的值和它 对应,那么就说 x 是 y 的函数, y 叫自变量. 3、由上述定义你能判断“y=1”是否表示一个函数?函数 y=x 与函数 y = x 2 表示同一个函 x 数吗? (学生思考、小组讨论) 教师点拨:仅用上述函数概念很难回答这些问题,我们需要从新的角度来认识函数概念。这 就是今天我们要学习的课题:函数的概念(板书) 二、新课探究: 1.实例感受: 实例一:一枚炮弹发射后,经过 26s 落到地面击中目标.炮弹的射高为845m ,且炮弹 距地面的高度 h (单位: m )随时间 t (单位: s )变化的规律是: y = 130t - 5t 2. 思考 1:(1). t 的范围是什么? h 的范围是什么? (2). t 和 h 有什么关系?这个关系有什么特点? (实例一由师生共同完成) 事实上生活中这样的实例有很多,随着改革开放的深入,我们的生活水平越来越高, 1

(新)高中数学复习专题一---函数图象问题

专题一 函数图象 数形结合是中学数学的重要的数学思想方法,尤其是函数的图象更是历年高考的热点.函数图象是函数的一种表达形式,形象的显示了函数的性质,为研究数量关系提供了“形”的直观性,它是探求解题途径,获得问题的结果的重要工具. 一、知识方法 1.函数图象作图方法 (1)描点法:列表、描点(注意关键点:如图象与x 、y 轴的交点,端点,极值点等))、连线(注 意关键线:如;对称轴,渐近线等) (2)利用基本函数图象变换。 2.图象变换(由一个图象得到另一个图象):平移变换、对称变换和伸缩变换等。 (1)平移变换 ① 水平平移:函数()y f x a =+的图象可以把函数()y f x =的图象沿x 轴方向向左 (0)a >或向右(0)a <平移||a 个单位即可得到; ② 竖直平移:函数()y f x a =+的图象可以把函数()y f x =的图象沿y 轴方向向上(0)a >或向下(0)a <平移||a 个单位即可得到. (2)对称变换 ① 函数()y f x =-的图象可以将函数()y f x =的图象关于y 轴对称即可得到; ② 函数()y f x =-的图象可以将函数()y f x =的图象关于x 轴对称即可得到; ③ 函数()y f x =--的图象可以将函数()y f x =的图象关于原点对称即可得到; (3)翻折变换 ① 函数|()|y f x =的图象可以将函数()y f x =的图象的x 轴下方部分沿x 轴翻折到x 轴上方,去掉原x 轴下方部分,并保留()y f x =的x 轴上方部分即可得到; ② 函数(||)y f x =的图象可以将函数()y f x =的图象右边沿y 轴翻折到y 轴左边替代原y 轴左边部分并保留()y f x =在y 轴右边部分即可得到. (4)伸缩变换 ① 函数()y af x =(0)a >的图象可以将函数()y f x =的图象中的每一点横坐标不变纵坐标伸长(1)a >或压缩(01a <<)为原来的a 倍得到; ② 函数()y f ax =(0)a >的图象可以将函数()y f x =的图象中的每一点纵坐标不变横坐标伸长(01a <<)或压缩(1)a >为原来的 1 a 倍得到. 3.函数图象的对称性:对于函数)(x f y =,若对定义域内的任意x 都有 ①)()(x a f x a f +=-(或))2()(x a f x f -=,则)(x f 的图象关于直线a x =对称; ②b x a f x a f 2)()(=++-(或)2)2()(b x a f x f =-+,,则)(x f 的图象关于点),(b a P 对称. 4、熟练掌握基本初等函数(如正、反比例函数,一次、二次函数,指数、对数函数,幂函数,三角函数)的图象 5、作函数图象的一般步骤: (1)求出函数的定义域;(2)化简函数式;(3)讨论函数的性质(如奇偶性、周期性、单调性)以及图像上的特殊点、线(如极值点、渐近线、对称轴等);(4)利用基本函数的图像(5)利

高中数学常见函数图像

高中数学常见函数图像 1.指数函数: 定义 函数 (0x y a a =>且1)a ≠叫做指数函数 图象 1a > 01a << 定义域 R 值域 (0,)+∞ 过定点 图象过定点(0,1),即当0x =时,1y =. 奇偶性 非奇非偶 单调性 在R 上是增函数 在R 上是减函数 2.对数函数: 定义 函数 log (0a y x a =>且1)a ≠叫做对数函数 图象 1a > 01a << 定义域 (0,)+∞ 值域 R 过定点 图象过定点(1,0),即当1x =时,0y =. 奇偶性 非奇非偶 单调性 在(0,)+∞上是增函数 在(0,)+∞上是减函数 x a y =x y (0,1) O 1 y =x a y =x y (0,1) O 1 y =x y O (1,0) 1 x =log a y x =x y O (1,0) 1 x =log a y x =

3.幂函数: 定义形如αx y=(x∈R)的函数称为幂函数,其中x是自变量,α是常数. 图像 性质过定点:所有的幂函数在(0,) +∞都有定义,并且图象都通过点(1,1).单调性:如果0 α>,则幂函数的图象过原点,并且在[0,) +∞上为增函数.如果0 α<,则幂函数的图象在(0,) +∞上为减函数,在第一象限内,图象无限接近x轴与y轴.

4. 函数 sin y x = cos y x = tan y x = 图象 定义域 R R ,2x x k k ππ??≠+∈Z ???? 值域 []1,1- []1,1- R 最值 当 22 x k π π=+ () k ∈Z 时, max 1y =; 当22 x k π π=- ()k ∈Z 时,min 1y =-. 当()2x k k π =∈Z 时, max 1y =; 当2x k ππ=+ ()k ∈Z 时,min 1y =-. 既无最大值也无最小值 周期性 2π 2π π 奇偶性 奇函数 偶函数 奇函数 单调性 在 2,222k k ππππ? ?-+???? ()k ∈Z 上是增函数;在 32,222k k π πππ? ?++??? ? ()k ∈Z 上是减函数. 在[]() 2,2k k k πππ-∈Z 上 是 增 函 数 ; 在 []2,2k k πππ+ ()k ∈Z 上是减函数. 在,2 2k k π ππ π? ? - + ?? ? ()k ∈Z 上是增函数. 对称性 对称中心 ()(),0k k π∈Z 对称轴 ()2 x k k π π=+ ∈Z 对称中心 (),02k k ππ??+∈Z ?? ? 对称轴()x k k π =∈Z 对称中心(),02k k π?? ∈Z ??? 无对称轴

《新课标下高中数学概念教学的实践与研究》

《新课标下高中数学概念教学的实践与研究》 课题开题报告 浙江温州第二十二中学高洪武325000 一、课题提出的背景及现实意义 新一轮课程改革已经在全国部分省市如火如荼地开展,为了进一步扩大普通高中新课程实验范围,教育部决定从2006年秋季起,福建、浙江、辽宁和安徽4省将全面进入普通高中新课程实验。这将意味着我省教师将真正意义上进入新课程教学的实践与研究了。作为高中数学教师,理所当然将在这一实验过程中扮演着重要的角色。在新课程理念下,对构建数学理论大厦的数学概念如何实施教学是摆在每一位老师面前的一个严峻的课题。 高中数学课程标准指出:数学教学中应加强对基本概念和基本思想的理解和掌握,对一些核心概念和基本思想要贯穿高中数学教学的始终,帮助学生逐步加深理解。长期以来,由于受应试教育的影响,不少数学教师重解题、轻概念造成数学解题与概念脱节、学生对概念含混不清,一知半解,不能很好地理解和运用概念。数学课堂变成了教师进行学生解题技能培训的场所;而学生成了解题的机器,整天机械地按照老师灌输的“程序”进行简单的重复劳作。严重影响了学生思维的发展,能力的提高。这与新课程大力倡导的培养学生探究能力与创新精神已严重背离。那么在新课标下如何才能帮助学生更好、更加深刻地理解数学概念;如何才能灵活地应用数学概念解决数学问题,我想关键的环节还是在于教师如何实施数学概念教学,为此“新课标下高中数学概念教学的实践与研究”课题在这样的背景下应运而生。 二、国内外关于同类课题的研究综述和课题研究的理论依据 1.国内外关于同类课题的研究综述: 国内外关于数学概念教学理论研究是比较多的,对于一些概念课授课方法也是有研究的。但是那些理论的得出和经验的总结都是特定教育环境下的产物;而对于今天所推进的新课程实验(特别是在我国刚刚开始实施阶段),高中数学概念教学理论研究还几乎是一片空白。对于实践研究就更不足为谈了。 2. 课题研究的理论依据: 2-1 一般来说,数学概念要经历感知、理解、保持和应用四种心理过程。数学概念教学主要依据有如下理论: (1)联结理论、媒介理论:联结理论把概念的掌握过程解释为各种特征的重叠过程,尤如用照相机拍摄下来的事物在底片上的重叠,能够冲洗出照片一样。即接受外界刺激然后做出相应的反应。而媒介理论认为内部过程存在一种媒介因素,并用它来解释复杂的人类行动。 (2)同化、顺应理论:皮亚杰认为,概念的掌握过程无非是经历了一个同化与顺应的过程;所谓同化,就是把新概念、新知识接纳入到一个已知的认知结构中去;所谓顺应,就是当原有的认知结构不能纳入新概念时,必须改变已有的认知结构,以适应新概念。 (3)假设理论:假设理论不同于联结理论把概念掌握的过程看成是一个消极被动的过程,并认为学生掌握概念是一个积极制造概念的过程。所谓积极制造概念的过程,就是根据事实进行抽象、推理、概括、提出假设,并将这一假设应用于日后遇到的事例中加以检验的

新课标下如何进行高中数学概念教学

新课标下如何进行高中数学概念教学 发表时间:2011-01-26T17:01:56.810Z 来源:《少年智力开发报》2010年第9期供稿作者:杨昆 [导读] 如何在这一要求下进行数学概念教学?我认为抓好概念教学是提高数学教学质量的最关键的一环。 贵州省平塘民族中学杨昆 教师应该准确地提示概念的内涵与外延,使学生深刻理解概念,并在解决各类问题时灵活应用数学概念是新课标下数学概念的教学要求。因此正确理解数学概念,是掌握数学基础知识的前提。如何在这一要求下进行数学概念教学?我认为抓好概念教学是提高数学教学质量的最关键的一环。下面我从引入概念、解析概念、巩固概念三个方面谈谈对概念教学。 一、引入概念 概念教学中要引导学生经历从具体的实例抽象出数学概念的过程.因此引入数学概念就要以具体的典型材料和实例为基础,揭示概念形成的实际背景,要创设好的问题情境,帮助学生完成由材料感知到理性认识的过渡,并引导学生把背景材料与原有认知结构建立实质性联系.下面介绍几种引入数学概念的方法: 1.从实际生活中,引入新概念。 新课标强调“数学教学要紧密联系学生的生活实际”.在数学概念的引入上,尽可能地选取学生日常生活中熟悉的事例. 2.创设问题情境,引入新概念。 教师要善于恰当地创设趣味性、探索性的问题情境,激发学生概念学习的兴趣,使学生能够从问题分析中,归纳和抽象出概念的本质特征,这样形成的概念才容易被学生理解和接受。 3. 从最近概念引入新概念。 数学概念具有很强的系统性。数学概念往往是“抽象之上的抽象”,先前的概念往往是后续概念的基础,从而形成了数学概念的系统。公理化体系就是这种系统性的最高反映。教学中充分利用学生头脑中已有的知识与相关的经验引入概念,使相应的具体经验升华为理性认识,不仅能使学生准确地理解概念的形式定义,而且有利于建立起关于概念的恰当心理表征。使学生对知识的积累变成对知识的融合。 二、解析概念 生动恰当的引入概念,只是概念教学的第一步,,要使学生真正掌握新概念,还必须多角度、多方位的解析概念。对概念理解不深刻,解题时就会出现这样或那样的错误,要正确而深刻地理解一个概念并不是一件容易的事,教师要根据学生的知识结构和能力特点,从多方面着手,适当地引导学生正确地分析解剖概念,充分认识概念的科学性,抓住概念的本质。因此,教师要充分利用概念课,培养学生的能力,训练学生的思维,使学生认识到数学概念,既是进一步学习数学的理论基础,又是进行再认识的工具。为此,我们可以从以下几个方面努力,加深对概念的理解。 1.用数学符号语言解析概念。数学教学体现了数学语言的特点,数学语言无非是文字叙述、符号表示、图形表示三者之间的转换,当然要会三者的翻译,同时更重要的是强调符号感。引进数学符号以后,应当引导学生把符号与它所代表的实质内容联系起来,使学生在看到符号时就能够联想起符号所代表的概念及其本质特征。事实上,如果概念的符号能够与概念的实质内容建立起内在联系,那么,符号的掌握可以提高学生的抽象能力、概括能力。数学中的逻辑推理关键就在于能够合理、恰当地应用符号,而这又要依靠对符号的实质意义的把握。在概念学习中,形式地掌握符号而不懂得符号的本质涵义的情况是经常发生的,这时符号将使知识学习产生困难,导致数学推理的错误。 2.用图形语言解析概念。数与形的结合是使学生正确理解和深刻体会概念的好方法,数形结合妙用无穷,教学中凡是“数”与“形”能够结合起来讲的,一定要尽量结合起来讲。 3.逆向分析,加深对概念的理解。人的思维是可逆的,但必须有意识地去培养这种逆向思维活动的能力。对某些概念还应从多方面设问并思考。 4.讲清数学概念之内涵和外延,沟通知识的内在联系。概念反映的所有对象的共同本质属性的总和,叫做这个概念的内涵,又称涵义。适合于概念所指的对象的全体,叫做这个概念的外延,又称范围。 5.揭示概念与概念之间的区别与联系,使新概念与已有认知结构中的有关概念建立联系,把新概念纳入到已有概念体系中,同化新概念。教学中,应将相近、相反或容易混淆的概念放到一块来对比讲解,从定义、图形、性质等各方面进行分析对比,从而正确理解把握概念.。 三、巩固概念 学生认识和形成概念,理解和掌握之后,巩固概念是一个不可缺少的环节。巩固的主要手段是多练习、多运用,只有这样才能沟通概念、定理、法则、性质、公式之间的内存联系。我们可以选择概念性、典型性的习题,加强概念本质的理解,使学生最终理解和掌握数学思想方法。例如,当学习完“向量的坐标”这一概念之后,进行向量的坐标运算,提出问题:已知平行四边形ABCD的三个顶点ABC的坐标分别是(1,2),(2,4),(0,2),试求顶点D的坐标。学生展开充分的讨论,不少学生运用平面解析几何中学过的知识(如两点间的距离公式、斜率、直线方程、中点坐标公式等),结合平行四边形的性质,提出了各种不同的解法,有的学生应用共线向量的概念给出了解法,还有一些学生运用所学过向量坐标的概念,把点D的坐标和向量CD的坐标联系起来,巧妙地解答了这一问题。学生通过对问题的思考,尽快地投入到新概念的探索中去,从而激发了学生的好奇以及探索和创造的欲望,使学生在参与的过程中产生内心的体验和创造。除此之外,教师通过反例、错解等进行辨析,也有利于学生巩固概念。 总之,在中学数学概念的教学中,只要针对学生实际和概念的具体特点,注重引入,加强分析,重视训练,辅以灵活多样的教法,使学生准确地理解和掌握概念,才能更好地完成数学概念的教学任务,从而有效地提高数学教学质量。

对高中数学概念教学的一点想法

对高中数学概念教学的一点想法 发表时间:2009-07-07T11:16:12.733Z 来源:《中学课程辅导·教学研究》2009年第10期供稿作者:王仙 [导读] 随着新课改的深入实施,高中数学概念教学受到了前所未有的重视。 摘要:随着新课改的深入实施,高中数学概念教学受到了前所未有的重视。本文结合实例探讨了怎样才能更有效地进行概念教学以及相应的教学方法。 关键词:概念教学;课堂教学;理解;概括 作者简介:王仙,任教于浙江省衢州高级中学。 长期以来,由于受应试教育的影响,不少教师在教学中重解题、轻概念,造成数学概念与解题脱节的现象。有些教师仅仅把数学概念看作一个名词而已,认为概念教学就是对概念作解释,要求学生记忆。而没有看到像函数、向量这样的概念,本质是一种数学观念,是一种处理问题的数学方法。一节“概念课”教完了,也就完成了它的历史使命,剩下的是赶紧解题,造成学生对概念含糊不清,一知半解,不能很好地理解和运用概念,严重影响了学生的解题质量。另一方面,新教材有的地方对概念教学的要求是知道就行,需要某个概念时,就在旁边用小字给出,这样过高的估计了学生的理解能力,也是造成学生不会解题的一个原因。那么如何搞好新课标下数学概念课的教学呢? 一、正确地理解概念 我国从20世纪50年代以来,中学数学教学大纲虽经历多次修订,但都有一个共同的指导思想,这就是搞好三基。并强调指出,正确理解数学概念是掌握数学基础知识的前提。而当前我国数学教学中的突出问题,恰好是把掌握数学基础,即数学概念的正确理解,给忽视了。一方面是教材低估了学生的理解能力,为了“减负”,淡化甚至回避一些较难理解的基本概念;另一方面,“题海战术”式的应试策略,使教师没有充分的时间和精力去钻研如何使学生深入理解基本的数学概念。说是为了减负,其实南辕北辙,老师、学生的压力都增加了。 其实我们知道,正确理解数学概念是掌握数学基础知识的前提。学生如果不能正确地理解数学中的各种概念,就不能掌握各种法则、定理、公式,从而也就不能进行计算和论证。因此,讲清概念,使学生正确地理解概念,对于提高数学教学质量具有重要的意义。鉴于此,教师们都渐渐地开始重视概念的教学。 在较长的一段时间里,概念教学搞“一个定义三项注意”,不讲概念产生的背景,也不经历概念的概括过程,仅从“逻辑意义”列举“概念要素”和“注意事项”,忽视“概念所反映的数学思想方法”,导致学生难以达成对概念的实质性理解,无法形成相应的“心理意义”。 没有“过程”的教学,因为缺乏数学思想方法为纽带,概念间的关系无法认识,概念间的联系难以建立,导致学生的数学认知结构缺乏整体性。 用例题教学替代概念的概括过程,认为“应用概念的过程就是理解概念的过程”。殊不知没有概括过程必然导致概念理解的先天不足,没有理解的应用是盲目的应用。结果不仅“事倍功半”,而且“功能僵化”--面对新情境时无法“透过现象看本质,难以实现概念的正确、有效应用,质量效益都无保障。那么怎样才能有效地进行概念教学呢? 二、对不同的概念,要采取不同的方法 有的只需在例题教学中实施概念教学。比如:相关关系的概念是描述性的,不必追求形式化上的严格。建议采用案例教学法。对比函数关系,重点突出相关关系的两个本质特征在:关联性和不确定性。关联性是指当一个变量变化时,伴随另一个变量有一定的变化趋势;不确定性是指当一个变量取定值时,与之相关的变量的取值仍具有随机性。因为有关联性,才有研究的必要性。因为其不确定性,从少量的变量观测值,很难估计误差的大小,因此必须对变量进行大量的观测。但每个观测值都有一定误差,为了消除误差的影响,揭示变量间的本质联系,就必须要用统计分析方法。 有的先介绍概念产生的背景,然后通过与概念有明显联系、直观性强的例子,使学生在对具体问题的体验中感知概念,提炼出本质属性。如:“异面直线”概念的教学,可以在长方体模型或图形中(或现有的教室中),引导学生找到既不相交也不平行的两条直线,直接给出像这样的两条直线叫“异面直线”。然后画出一些看起来是异面直线其实不是异面直线的图,以完善异面直线的概念。再给出简明、准确、严谨的定义。最后让学生在各种模型中找出、找准所有的异面直线,以体验概念的发生发展过程。 有的要联系其它概念,借助多媒体等一些辅助设施进行直观教学。比如:导数是微积分的一个核心概念,它有着极其丰富的背景和广泛的应用。高等数学里,导数定义为自变量的改变量趋于零时,函数的改变量和相应的自变量的改变量之比的极限(倘若存在),涉及有限到无限的辩证思想,这样的数学概念是比较抽象的,这与初等数学在知识内容、思想方法等方面有较大的跨度,加上学生刚接触导数概念,所以往往把导数作为一种运算规则来记忆,却没有理解导数概念的内涵和基本思想。建议(1)导数教学前要加强变化率的实例分析; (2)利用多媒体的直观性,帮助学生理解动态无限趋近的思想;(3)利用APOS理论指导导数概念教学。 有的在情景设计、意义建构、例题讲解、课堂小结整个教学环节中实施,比如“函数”一课。我们知道函数是一个核心概念,函数思想是一种核心的数学思想方法。衢州高级中学何豪明老师是用三个实例(以解析式、图象、表格三种形式给出)设计情景,以小组讨论的形式让学生自己归纳出函数概念及三要素,又用四个例题层层深入地加深对概念的理解。整堂课紧紧围绕函数概念和思想方法进行教学,上出“简约”而“深刻”的效果。 概念是人们对客观事物在感性认识的基础上经过比较,分析,综合,概括,判断,抽象等一系列思维活动,逐步认识到它的本质属性以后才形成的。数学概念也不例外。因此,数学概念的产生和发展,人们对数学概念的认识都要经历由实践,认识,再实践,再认识的不断深化的过程。学生要形成、理解和掌握基本的数学概念也是一个十分复杂的认识过程,这就决定了对较难理解的数学概念的教学不能一步到位,而是要分阶段进行。 三、在寻找新旧概念之间联系的基础上掌握概念 数学中有许多概念都有着密切的联系,如平行线段与平行向量、平面角与空间角、方程与不等式、映射与函数、对立事件与互斥事件等等,在教学中应善于寻找、分析其联系与区别,有利于学生掌握概念的本质。再如,函数概念有两种定义,一种是初中给出的定义,是从运动变化的观点出发,其中的对应关系是将自变量的每一个取值,与唯一确定的函数值对应起来:另一种是高中给出的定义,是从集合、对应的观点出发,

相关主题
文本预览
相关文档 最新文档