当前位置:文档之家› 化工原理课程设计之半干法脱硫系统设计

化工原理课程设计之半干法脱硫系统设计

化工原理课程设计之半干法脱硫系统设计
化工原理课程设计之半干法脱硫系统设计

化工原理课程设计

一、课程设计总体说明

综合应用学过的知识

学会翻书、查资料、找数据

培养独立工作能力、综合应用知识能力

课程设计过程

课程设计讲解,发设计任务;

明确设计任务,拟定设计步骤;

设计计算;

写设计说明书;

交说明书,回答提问

设计脱硫系统整体方案

烟气整体情况

设计的依据及规范

脱硫技术的选择

脱硫技术的原理

脱硫塔的设计

(按喷淋空塔设计)

装置型号及价格

耗电量

经济分析

副产物

全部采用A4纸打印,必须有封面、目录、姓名

及同组人、年纪学号等

必须要有流程图、基本布置图、主体塔的构造图,

均必须采用CAD或其他画图软件。

必须要有全部成本费用、设备清单

必须要有您小组认为的利润空间

烟气温度均为150度,且不设换热器

每一个设备必须提供详细的参数

建议提供脱硫系统三维布置图

目录

摘要…………………………………………………………………………

第一章绪论………………………………………………………

1.烟气脱硫的概念………………………………

2.烟气脱硫技术的发展………………………………

3.烟气脱硫面临的问题………………………………

4.烟气脱硫在生产工艺中的技术与应用………………………………

第二章烟气脱硫的设计方案…………………………………

1、脱硫技术的介绍…………………………………………

2、烟气脱硫技术的选择…………………………………………

3、喷雾干燥烟气脱硫技术…………………………………

第三章喷雾干燥烟气脱硫工艺的计算…………………………………

第四章工艺设计计算结果汇总与主要符号说明………………….

第五章设计方案讨论………………….…………………….…

第六章附录(计算程序及有关图表)………………….………………

第七章参考文献…………………….…………………

第八章结束语………………….…………………………………

第九章带控制点的工艺流程图………………….…………………

第十章设备条件图………………….…………………………………

·摘要

·绪论

1、烟气脱硫的概念

烟气脱硫英文名称:flue gas desulfurization, FGD; flue gas desulfurization.

烟气脱硫定义1:从烟气中脱除硫氧元素的工艺过程。

烟气脱硫定义2:从煤炭燃烧或工业生产过程排放的废气中去除硫氧化物的过程。

烟气脱硫(Flue gas desulfurization,简称FGD),在FGD技术中,按脱硫剂的种类划分,可分为以下五种方法:以CaCO3(石灰石)为基础的钙法,以MgO为基础的镁法,以Na2SO3为基础的钠法,以NH3为基础的氨法,以有机碱为基础的有机碱法。根据控制SO2排放的工艺在煤炭燃烧过程中的位置,可将脱硫技术分为燃烧前、燃烧中和燃烧后三种。燃烧前脱硫主要是选煤、煤气化、液化和水煤浆技术;然烧中脱硫指的是低污染燃烧、型煤和流化床燃烧技术:燃烧后脱硫也即所谓的烟气脱硫技术。烟气脱硫是指从烟气中脱除硫氧化物的工艺过程或从煤炭燃烧或工业生产过程排放的废气中去除硫氧化物的过程。

2、烟气脱硫技术的发展

1927年英国为了保护伦敦高层建筑的需要,在泰吾士河岸的巴特富安和班支赛德两电厂(共120MW),首先采用石灰石脱硫工艺。据统计,1984年有SO

2控制工艺189种,目前已超过200种。主要可分为四类:(1)燃烧前控制-原煤净化(2)燃烧中控制-硫化床燃烧(CFB)和炉内喷吸收剂(3)燃烧后控制-烟气脱硫(4)新工艺(如煤气化/联合循环系统、液态排渣燃烧器)其中大多数国家采用燃烧后烟气脱硫工艺。烟气脱硫则以湿式石灰石/石膏法脱硫工艺作为主流。

自本世纪30年代起已经进行过大量的湿式石灰石/石膏法研究开发,60年代末已有装置投入商业运行。ABB公司的第一套实用规模的湿法烟气脱硫系统于1968年在美国投入使用。1977年比晓夫公司制造了欧洲第一台石灰/石灰石石膏法示范装置。IHI(石川岛播磨)的首台大型脱硫装置1976年在矶子火电厂1、2号机组应用,采用文丘里管2塔的石灰石石膏法混合脱硫法。三菱重工于1964年完成第一套设备,根据其运转实绩,进行烟气脱硫装置的开发。

第一代FGD系统:在美国和日本从70年代开始安装。早期的FGD系统包括以下一些流程:石灰基流质;钠基溶液;石灰石基流质;碱性飞灰基流质;双碱(石灰和钠);镁基流质;Wellman-Lord流程。采用了广泛的吸收类型,包括通风型、垂直逆流喷射塔、水平喷射塔,并采用了一些内部结构如托盘、填料、玻璃球等来增进反应。第一代FGD的效率一般为70%~85%。除少数外,副产品无任何商用价值只能作为废料排放,只有镁基法和Wellman-Lord法产出有商用价值的硫和硫酸。特征是初投资不高,但运行维护费高而系统可靠性低。结垢和材料失效是最大的问题。随着经验的增长,对流程做了改进,降低了运行维护费提高可靠性。

第二代FGD系统:在80年代早期开始安装。为了克服第一代系统中的结垢和材料问题,出现了干喷射吸收器,炉膛和烟道喷射石灰和石灰石也接近了商业运行。然而占主流的FGD技术还是石灰基、石灰石基的湿清洗法,利用填料和玻璃球等的通风清洗法消失了。改进的喷射塔和淋盘塔是最常见的。流程不同其效率也不同。最初的干喷射FGD可达到70%~80%,在某些改进情形下可达到90%,炉膛和烟道喷射法可达到30%~50%,但反应剂消耗量大。随着对流程的改进和运行经验的提高,可达到90%的效率。美国所有第二代FGD系统的副产物都作为废物排走了。然而在日本和德国,在石灰石基湿清洗法中把固态副产品强制氧化,得到在某些工农业领域中有商业价值的石膏。第二代FGD系统在运行维护费用和系统可靠性方面都有所进步。

第三代FGD系统:炉膛和烟道喷射流程得到了改进,而LIFAC和流化床技术也发展起来了。通过广泛采用强制氧化和钝化技术,影响石灰、石灰石基系统

可靠性的结垢问题基本解决了。随着对化学过程的进一步了解和使用二基酸(DBA)这样的添加剂,这些系统的可靠性可以达到95%以上。钝化技术和DBA 都应用于第二代FGD系统以解决存在的问题。许多这些系统的脱硫效率达到了95%或更高。有些系统的固态副产品可以应用于农业和工业。在德国和日本,生产石膏已是电厂的一个常规项目。随着设备可靠性的提高,设置冗余设备的必要性减小了,单台反应器的烟气处理量越来越大。在70年代因投资大、运行费用高和存在腐蚀、结垢、堵塞等问题,在火电厂中声誉不佳。经过15年实践和改进,工作性能与可靠性有很大提高,投资和运行费用大幅度降低,使它的下列优点较为突出:(1)有在火电厂长期应用的经验;(2)脱硫效率和吸收利用率高(有的机组在Ca/S接近于1时,脱硫率超过90%);(3)可用性好(最近安装的机组,可用性已超过90%)。人们对湿法的观念,从而发生转变。目前它是应用最广,技术最成熟的工艺,运行可靠、检修周期长,采用经济实用、廉价的石灰石细粉作为吸收剂,与烟气中的SO2反应,经过几个反应步骤,生成副产品石膏。椐统计,全世界现有烟气脱硫装置中,湿法约占85%(其中石灰石/石膏系统为36.7%,其它湿法48.3%),喷雾干燥系统8.4%,吸收剂再生系统3.4%,烟道内喷吸收剂1.9%。

3、烟气脱硫面临的问题

4、烟气脱硫在生产工艺中的技术与应用

我国烟气脱硫控制技术的研究开发始于60年代初,对燃煤电厂、燃煤工业锅炉和冶金废气开展了烟气脱硫工艺研究、设备研制,取得实验室小试和现场中试结果。80年代以来,开展了一系列研究、开发和产业化工作。原国家科委组织了“七五”和“八五”攻关项目,对国际上现有脱硫技术主要方法进行研究和实用性工程装置实验;国家自然科学基金委员会设立课题支持脱硫技术的基础研究,取得了很多成绩。目前我国自行研究开发的烟气脱硫方法,尚处在工业化示范试验阶段。国家科技部在“九五”期间,组织“中小锅炉实用脱硫防尘技术与装备研究及产业化”攻关课题,其中包括针对燃煤电厂烟气脱硫技术,采用脉冲电晕等离子体烟气脱硫新技术研究;与此同时,引进了脱硫技术项目,进行示范规模试验和工业化运行应用。

我国电厂烟气脱硫技术起步于1961年,科研院所和高等院校相继投入研究开发力旦,进行于法、湿法和半干法等等的烟气脱硫的探索研究,国家科技部(原国家科委)“七五”“八五”和“九五”的脱硫专项支持取得极好进展。但目前我国自行开发的烟气脱硫工程,尚处在小试、中试阶段。工业化、产业化技术不多

·烟气脱硫的设计方案

1、脱硫技术的介绍

世界各国研究开发和商业应用的烟气脱硫技术估计超过200种。普遍使用的商业化技术是钙法,所占比例在90%以上。按吸收剂及脱硫产物在脱硫过程中的干湿状态又可将脱硫技术分为湿法、干法和半干(半湿)法。

湿法FGD技术是用含有吸收剂的溶液或浆液在湿状态下脱硫和处理脱硫产物。该工艺绝大多数采用碱性浆液或溶液作吸收剂,其中石灰石或石灰为吸收剂的强制氧化湿式脱硫方式是目前使用最广泛的脱硫技术。石灰石或石灰洗涤剂与烟气中SO2反应,反应产物硫酸钙在洗涤液中沉淀下来,经分离后即可抛弃,也可以石青形式回收。目前的系统大多数采用了大处理量洗涤塔,300MW 机组可用

一个吸收塔,从而节省了投资和运行费用。系统的运行可靠性已达99%以上,通过添加有机酸可使脱硫效率提高到95%以上。其它湿式脱硫工艺包括用钠墓、镁基、海水和氮作吸收剂,一般用于小型电厂和工业锅炉。以海水为吸收剂的工艺具有结构简单、不用投加化学品、投资小和运行费用低等特点。氨洗涤法可达很高的脱硫效率,副产物硫酸铁和硝酸钱是可出售的化肥。该法具有脱硫反应速度快、设备简单、脱硫效率高等优点,但普遍存在腐蚀严重、运行维护费用高及易造成二次污染等问题。

干法FGD技术的脱硫吸收和产物处理均在干状态下进行。干法脱硫工艺主要是喷吸收剂工艺。按所用吸收剂不同可分为钙基和钠基工艺,吸收剂可以干态、湿润态或浆液喷入。喷入部位可以为炉膛、省煤器和烟道。当钙硫比为2时.干法工艺的脱硫效率可达50-70%.钙利用率达50%。该法具有无污水废酸排出、设备腐蚀程度较轻,烟气在净化过程中无明显降温、净化后烟温高、利于烟囱排气扩散、二次污染少等优点,但存在脱硫效率低,反应速度较慢、设备庞大等问题。

半干法FGD技术是指脱硫剂在干燥状态下脱硫、在湿状态下再生(如水洗活性炭再生流程),或者在湿状态下脱硫、在干状态下处理脱硫产物(如喷雾干燥法)的烟气脱硫技术。特别是在湿状态下脱硫、在干状态下处理脱硫产物的半干法,以其既有湿法脱硫反应速度快、脱硫效率高的优点,又有干法无污水废酸排出、脱硫后产物易于处理的优势而受到人们广泛的关注。喷雾干燥法属于半干法脱硫工艺。该法利用石灰浆液作吸收剂,以细雾滴喷入反应器,与SO2边反应边干燥,在反应器出口,随着水分蒸发,形成了干的颗粒混合物。该副产物是硫酸钙、硫酸盐、飞灰及未反应的石灰组成的混合物。喷雾干操技术在燃用低硫和中硫煤的中小容量机组上应用较多。当用于高硫煤时石灰浆液需要高度浓缩,因而带来了一系列技术问题,同时由于石灰脱硫剂的成本较高,也影响了其经济性。但是近年来,燃用高硫煤的机组应用常规旋转喷雾技术的比例有所增加。喷雾干燥法可脱除70-95%的SO2,并有可能提高到98%,但副产物的处理和利用一直是个难题。

2、烟气脱硫技术的选择

我国目前的经济条件和技术条件还不允许象发达国家那样投入大量的人力和财力,并且在对二氧化硫的治理方面起步很晚,至今还处于摸索阶段,国内一些电厂的烟气脱硫装置大部分欧洲、美国、日本引进的技术,或者是试验性的,且设备处理的烟气量很小,还不成熟。不过由于近几年国家环保要求的严格,脱硫工程是所有新建电厂必须的建设的。因此我国开始逐步以国外的技术为基础研制适合自己国家的脱硫技术。

石灰石——石膏法烟气脱硫工艺是世界上应用最广泛的一种脱硫技术,日本、德国、美国的火力发电厂采用的烟气脱硫装置约90%采用此工艺。将石灰石粉加水制成浆液作为吸收剂泵入吸收塔与烟气充分接触混合,烟气中的二氧化硫与浆液中的碳酸钙以及从塔下部鼓入的空气进行氧化反应生成硫酸钙,硫酸钙达到一定饱和度后,结晶形成二水石膏。经吸收塔排出的石膏浆液经浓缩、脱水,使其含水量小于10%,然后用输送机送至石膏贮仓堆放,脱硫后的烟气经过除雾器除去雾滴,再经过换热器加热升温后,由烟囱排入大气。由于吸收塔内吸收剂浆液通过循环泵反复循环与烟气接触,吸收剂利用率很高,钙硫比较低,脱硫效率可大于95% 。

旋转喷雾干燥烟气脱硫工艺以石灰为脱硫吸收剂,石灰经消化并加水制成消石灰乳,消石灰乳由泵打入位于吸收塔内的雾化装置,在吸收塔内,被雾化成细小液滴的吸收剂与烟气混合接触,与烟气中的SO2发生化学反应生成CaSO3,烟气中的SO2被脱除。与此同时,吸收剂带入的水分迅速被蒸发而干燥,烟气温度随之降低。脱硫反应产物及未被利用的吸收剂以干燥的颗粒物形式随烟气带出吸收塔,进入除尘器被收集下来。脱硫后的烟气经除尘器除尘后排放。为了提高脱硫吸收剂的利用率,一般将部分除尘器收集物加入制浆系统进行循环利用。该工艺有两种不同的雾化形式可供选择,一种为旋转喷雾轮雾化,另一种为气液两相流。喷雾干燥法脱硫工艺具有技术成熟、工艺流程较为简单、系统可靠性高等特点,脱硫率可达到85%以上。脱硫灰渣可用作制砖、筑路,但多为抛弃至灰场或回填废旧矿坑。

磷铵肥法烟气脱硫工艺属于回收法,以其副产品为磷铵而命名。该工艺过程主要由吸附(活性炭脱硫制酸)、萃取(稀硫酸分解磷矿萃取磷酸)、中和(磷铵中和液制备)、吸收(磷铵液脱硫制肥)、氧化(亚硫酸铵氧化)、浓缩干燥(固体肥料制备)等单元组成。它分为两个系统:(1)烟气脱硫系统——烟气经高效除尘器后使含尘量小于200mg/Nm3,用风机将烟压升高到7000Pa,先经文氏管喷水降温调湿,然后进入四塔并列的活性炭脱硫塔组(其中一只塔周期性切换再生),控制一级脱硫率大于或等于70%,并制得30%左右浓度的硫酸,一级脱硫后的烟气进入二级脱硫塔用磷铵浆液洗涤脱硫,净化后的烟气经分离雾沫后排放。(2)肥料制备系统——在常规单槽多浆萃取槽中,同一级脱硫制得的稀硫酸分解磷矿粉(P2O5 含量大于26%),过滤后获得稀磷酸(其浓度大于10%),加氨中和后制得磷氨,作为二级脱硫剂,二级脱硫后的料浆经浓缩干燥制成磷铵复合肥料。

炉内喷钙尾部增湿烟气脱硫工艺是在炉内喷钙脱硫工艺的基础上在锅炉尾部增设了增湿段,以提高脱硫效率。该工艺多以石灰石粉为吸收剂,石灰石粉由气力喷入炉膛850~1150℃温度区,石灰石受热分解为氧化钙和二氧化碳,氧化钙与烟气中的二氧化硫反应生成亚硫酸钙。由于反应在气固两相之间进行,受到传质过程的影响,反应速度较慢,吸收剂利用率较低。在尾部增湿活化反应器内,增湿水以雾状喷入,与未反应的氧化钙接触生成氢氧化钙进而与烟气中的二氧化硫反应。当钙硫比控制在2.0~2.5时,系统脱硫率可达到65~80%。由于增湿水的加入使烟气温度下降,一般控制出口烟气温度高于露点温度10~15℃,增湿水由于烟温加热被迅速蒸发,未反应的吸收剂、反应产物呈干燥态随烟气排出,被除尘器收集下来。

烟气循环流化床脱硫工艺由吸收剂制备、吸收塔、脱硫灰再循环、除尘器及控制系统等部分组成。该工艺一般采用干态的消石灰粉作为吸收剂,也可采用其它对二氧化硫有吸收反应能力的干粉或浆液作为吸收剂。

由锅炉排出的未经处理的烟气从吸收塔(即流化床)底部进入。吸收塔底部为一个文丘里装置,烟气流经文丘里管后速度加快,并在此与很细的吸收剂粉末互相混合,颗粒之间、气体与颗粒之间剧烈磨擦,形成流化床,在喷入均匀水雾降低烟温的条件下,吸收剂与烟气中的二氧化硫反应生成CaSO3 和CaSO4。脱硫后携带大量固体颗粒的烟气从吸收塔顶部排出,进入再循环除尘器,被分离出来的颗粒经中间灰仓返回吸收塔,由于固体颗粒反复循环达百次之多,故吸收剂利用率较高。

此工艺所产生的副产物呈干粉状,其化学成分与喷雾干燥法脱硫工艺类似,主要由飞灰、CaSO3、CaSO4和未反应完的吸收剂Ca(OH)2等组成,适合作废矿井回填、道路基础等。

典型的烟气循环流化床脱硫工艺,当燃煤含硫量为2%左右,钙硫比不大于1.3时,脱硫率可达90%以上,排烟温度约70℃。此工艺在国外目前应用在10~20万千瓦等级机组。由于其占地面积少,投资较省,尤其适合于老机组烟气脱硫。海水脱硫工艺是利用海水的碱度达到脱除烟气中二氧化硫的一种脱硫方法。在脱硫吸收塔内,大量海水喷淋洗涤进入吸收塔内的燃煤烟气,烟气中的二氧化硫被海水吸收而除去,净化后的烟气经除雾器除雾、经烟气换热器加热后排放。吸收二氧化硫后的海水与大量未脱硫的海水混合后,经曝气池曝气处理,使其中的SO32-被氧化成为稳定的SO42-,并使海水的PH值与COD调整达到排放标准后排放大海。海水脱硫工艺一般适用于靠海边、扩散条件较好、用海水作为冷却水、燃用低硫煤的电厂。海水脱硫工艺在挪威比较广泛用于炼铝厂、炼油厂等工业炉窑的烟气脱硫,先后有20多套脱硫装置投入运行。近几年,海水脱硫工艺在电厂的应用取得了较快的进展。此种工艺最大问题是烟气脱硫后可能产生的重金属沉积和对海洋环境的影响需要长时间的观察才能得出结论,因此在环境质量比较敏感和环保要求较高的区域需慎重考虑。

电子束法脱硫工艺该工艺流程有排烟预除尘、烟气冷却、氨的充入、电子束照射和副产品捕集等工序所组成。锅炉所排出的烟气,经过除尘器的粗滤处理之后进入冷却塔,在冷却塔内喷射冷却水,将烟气冷却到适合于脱硫、脱硝处理的温度(约70℃)。烟气的露点通常约为50℃,被喷射呈雾状的冷却水在冷却塔内完全得到蒸发,因此,不产生废水。通过冷却塔后的烟气流进反应器,在反应器进

口处将一定的氨水、压缩空气和软水混合喷入,加入氨的量取决于SOx浓度和NOx浓度,经过电子束照射后,SOx和NOx在自由基作用下生成中间生成物硫酸(H2SO4)和硝酸(HNO3)。然后硫酸和硝酸与共存的氨进行中和反应,生成粉状微粒(硫酸氨(NH4)2SO4与硝酸氨NH4NO3的混合粉体)。这些粉状微粒一部分沉淀到反应器底部,通过输送机排出,其余被副产品除尘器所分离和捕集,经过造粒处理后被送到副产品仓库储藏。净化后的烟气经脱硫风机由烟囱向大气排放。

氨水洗涤法脱硫工艺该脱硫工艺以氨水为吸收剂,副产硫酸铵化肥。锅炉排出的烟气经烟气换热器冷却至90~100℃,进入预洗涤器经洗涤后除去HCI和HF,洗涤后的烟气经过液滴分离器除去水滴进入前置洗涤器中。在前置洗涤器中,氨水自塔顶喷淋洗涤烟气,烟气中的SO2被洗涤吸收除去,经洗涤的烟气排出后经液滴分离器除去携带的水滴,进入脱硫洗涤器。在该洗涤器中烟气进一步被洗涤,经洗涤塔顶的除雾器除去雾滴,进入脱硫洗涤器。再经烟气换热器加热后经烟囱排放。洗涤工艺中产生的浓度约30%的硫酸铵溶液排出洗涤塔,可以送到化肥厂进一步处理或直接作为液体氮肥出售,也可以把这种溶液进一步浓缩蒸发干燥加工成颗粒、晶体或块状化肥出售。

3、喷雾干燥烟气脱硫技术

喷雾干燥吸收工艺(SDA)基本原理

烟气脱硫喷雾干燥吸收工艺非常简单,工艺系统基本组成为:吸收剂浆液制备系统、喷雾干燥吸收塔、布袋除尘器或电除尘器等。

未处理的热烟气通过气体分布器进入喷雾干燥吸收塔,与细小的石灰浆液/吸收剂液滴(平均液滴直径约50微米)接触。烟气中的酸性组分迅速被细小的碱性液滴中和,同时,水分被蒸发。合理的控制烟气分布、浆液流量和液滴尺寸,以确保液滴在接触喷雾干燥吸收塔塔壁之前被干燥。一部分干燥产物,包括飞灰和吸收反应产物,落入吸收塔底部,进入粉尘输送系统。处理后的烟气进入颗粒收集器(布袋除尘器或电除尘器),固体颗粒被收集下来。从颗粒收集器出来的烟气通过引风机送入烟囱排放。大多数喷雾干燥吸收工艺设一个脱硫灰循环回路,将部分回收的干燥颗粒作为吸收剂送回吸收塔。尽管物料循环回路具有诸多优点,但并不是所有的喷雾干燥吸收工艺都采用。物料循环虽然可减少石灰的消耗,但是根据烟气量和烟气中SO2含量的不同,有时回路的设计增加了投资和维护的成本,使得脱硫系统并非经济合理。通常在SO2排放浓度要求严格的情况下,多采用脱硫灰循环回路。

工艺化学过程

烟气中酸性组分(SO2SO3、HCl和HF)与碱性浆液,Ca(OH)2的主要反应发生在紧邻雾化器喷嘴的区域,该区域具有传热和传质的最适宜条件。主要反应为:SO2+Ca(OH)2→CaS03+H20

一小部分SO2会进行如下反应:

SO2+1/202+Ca(0H)2+H20

CaS03+1/202→CaS04

其它组分,如:SO3,HCl和HF与碱的反应也在进行。当石灰作为吸收剂时,化学反应产物为亚硫酸钙/硫酸钙、氯化钙和氟化钙。从整个吸收反应来看,SO2和其它酸性组分的吸收反应主要发生在浆液雾滴还未被干燥之前的气一液两相之问,但干燥

之后的气一固两相接触仍然会发生吸收反应,即:SO2与烟气中悬浮的喷淋干燥后的多孔颗粒进行的反应,气一固反应在下游的颗粒收集器中还在进行。特别是布袋除尘器中,吸收反应更为显著。在吸收过程中CO2被认为可能会争相与碱性物质反应,然而,尽管CO2分压是SO2分压的50—200倍,分析干态反应产物的结果表明,只有少量的CO2被吸收。其原因是:与CO2相比,SO2是强酸;还有CO2较SO2溶解度低且反应速度慢。出于同样原因,HCl、HF和SO3是比SO2更强的酸,易于优先被吸收。事实证明,这些酸性强但微量的组份几乎全部被吸收。

在喷雾干燥吸收(SDA)工艺中,氯化物的存在对降低石灰的消耗是有利的。无论这些氯化物来自烟气还是来自含氯的水质较差的工艺水,如冷却塔排水、海水或处理后的污水,这种作用基本相同。缺少这种含氯工艺水的一些工艺系统可通过其它方法添加氯化物,如:添加氯化钙溶液。但是,即使没有含氯工艺水,SDA工艺也可正常工作。

主要设备介绍

喷雾干燥吸收塔

喷雾干燥吸收塔在脱硫系统中同时兼有反应吸收和干燥两项功能。烟气在吸收塔内停留约10一12秒,以保证这两项功能的完成所需时间。按照SDA系统所有吸收塔只配一个雾化器的设计原则,单个雾化器的最大出力为450Mw,也就是450MW及以下的脱硫机组均可配备一个吸收塔,用来处理机组100%的烟气量。450MW以上更大机组可按2个吸收塔设计。

吸收塔内的核心设备和部件是旋转雾化器和烟气分布器。

吸收塔由圆柱体和圆锥体上下部两部分组成,壳体全部由碳钢制作。SDA工艺吸收采用两点排放系统,即吸收塔内飞灰和反应产物固体,大部分在布袋除尘器中被收集,另有大约5%一10%的干燥固体物从吸收塔底部排出。两点排放系统的优点是可以避免烟道堵塞,甚至在运行不正常时也同样可以避免烟道堵塞。脱落的塔壁沉积物、潮湿的结块或甚至是过量的浆液,都落到吸收塔底部,经过破碎后排出系统。锅炉烟气中含有的少量SO2凝结在碱性液滴上,形成硫酸钙,在喷雾干燥器中被完全吸收。对出口烟气成分的多次测定均证明,SO2的浓度低于检测值,也就是说绝大部分被吸收了。喷雾干燥吸收塔及其下游设备的材料仅选择普通碳钢即可,不必采用贵的合金钢或橡胶衬里。因此喷雾干燥吸收塔投资和维护费显著低于湿法脱硫吸收塔。

旋转雾化器

SDA工艺的核心设备是采用Niro公司防磨轴专利技术的旋转雾化器。经过多年的开发,该雾化器已具有绝对可靠、连续工作、维护量最少的特性和优势。

雾化器的设计雾化出力可以满足达450MW大机组脱硫的需要,可以处理相当大的浆液量并保证雾化液滴尺寸分布均匀一致。从而,在已运行的SDA工艺中,随着烟气流量、温度和组分的动态变化,相应的吸收浆液供应也随之变化,但不会改变雾化器的雾化效果(即:液滴尺寸)。一个持续不变的喷雾雾化效果是吸收反应的基础,加上持续的吸收和干燥过程,为整个系统最终的脱硫效果提供可靠的保证。在所有吸收塔中只安装一个雾化器、良好的雾化效果、系统在超过饱和温度10—20℃运行以及采用独特的烟气分布系统,这些条件的组合确保最稳定、最有效的烟气/喷雾的连续混合,确保不会在吸收塔塔壁上形成湿的沉积物。

雾化器由上下两部分组成,中间被圆形支撑板分离开来。雾化器的上部分由带有润滑系统的齿轮箱和上部的油箱组成。放置在齿轮箱顶部的立式法兰连接电机供给雾化器能量,该能量通过弹性联轴器传输给立式齿轮箱输入轴。

专利的雾化器旋转轮的设计原理是:暴露于浆液的腐蚀/磨损部件采用抗磨损设计,并可替换。在运行期间,圆柱部分的内壁会形成一层浆液/反应产物的覆盖层。这样,磨损会发生在这个覆盖层上,而不是柱体本体部分。

通常旋转雾化器不会发生机械故障,但是如果发生了故障,更换也非常简单,只要将雾化器提上来,进行维修或安装备用雾化器。这一操作可在线进行,无需停机,大约需要三十分钟。

当雾化器的喷嘴内孔磨损到了一定程度时,通过转动这些喷嘴的角度多次使用达三次。

烟气分布器用于喷雾干燥器的烟气分布器由低碳钢制做。Niro采用标准型号的烟

气分布器设计,通常用于处理燃煤烟气的喷雾干燥塔的是一种屋脊式烟气分布器,带有可调节导向叶片。对含有高浓度腐蚀性飞灰的烟气,需使用特殊防腐的屋脊式烟气分布器,这种烟气分布器常用于很多市政固体垃圾焚烧厂的喷雾干燥吸收塔中。用来处理超过400,000Nm3/h大烟气量的吸收塔,通常采用复合式烟气分布器。这种分布器由两部分组成,一部分为屋脊部分,另一部分为中心部分。烟气被分成两股,其中60%的通过屋脊烟气分布器由吸收塔顶部进入塔内,而剩余的40%通过中心烟气分布器进入塔内。带有这种烟气分布器的吸收塔用在大多数燃煤电厂的SDA 工艺系统中。

吸收剂浆液制备系统设备

包括石灰制备系统和可选的循环物料浆液制备系统。

定量控制加进消化/混合罐的石灰或循环物料,在罐中物料与一定的水混合达到一个设定的固体浓度。在消化/混合罐中,浆液通过震动筛筛分去除大颗粒固体物分别重力自流至石灰浆罐和循环物料浆液罐中。罐中的石灰浆液和循环浆掖被泵送到雾化器上方供浆罐中。

吸收剂浆液制备系统主要设备有石灰消化器(罐)、浆液罐、浆液泵、计量仪表及振动筛等。

颗粒收集器

收集器布置于吸收塔后,用来收集经脱硫产生的固体颗粒产物和烟气中的灰分。

吸收塔下游的收集器通常采用布袋除尘器或静电除尘器。由于脱硫副产物固体颗粒与燃煤飞灰的物理性质相近,吸收塔出口烟气条件(温度、烟尘浓度等)与燃煤锅炉下游的除尘器入口条件相当,几乎可以与很多燃煤锅炉使用的除尘器一样设计。甚至由于吸收塔出口烟气温度更低、颗粒物粒径更大等原因,吸收塔下游烟气更容易除尘,除尘器设计更容易,除尘器尺寸更小。

通常在SDA/布袋除尘器的工艺系统中,有10—20%的SO2脱除率是在布袋除尘器内实现的。当对SO2脱除效率要求较高时,采用布袋除尘器是必要的。此时,布袋除尘器肩负着二级吸收的作用,但设计时应偏重考虑厚灰层和低的过滤速度。虽然SDA /电除尘器工艺中的电除尘器在作为下游除尘器时,进一步的吸收反应的能力与SDA 布袋除尘器工艺中的布袋除尘器有相当的差距,但采用电除尘器时仍可获得10%左右附加的SO2脱除率。

工艺流程

喷雾干燥脱硫工艺流程如图所示,主要分为脱硫浆液的制备、脱硫浆液的雾化、雾滴与烟气接触、SO2吸收和水分的蒸发、灰渣的再循环与排除五个步骤

图5旋转喷雾干燥吸收(SDA)脱硫工艺流程(最后画成CAD图)

脱硫浆液的制备

喷雾干燥烟气脱硫系统多采用CaO含量尽可能高的石灰做脱硫剂。石灰仓内的粉状石灰经螺旋输送机送入消化槽,并制成高浓度浆液,然后进入配浆槽,并过滤去除大颗粒的杂质。在配浆槽内用水将浓浆稀释到20%左右。制备好的石灰浆液用泵送到吸收剂罐,再用泵送到高位槽备用。

脱硫浆液的雾化

制备好的石灰浆液从高位槽自动流入旋转离心雾化器内,经分配器进入高速旋转的雾化轮,浆液被喷射成石灰乳雾化微滴。

雾滴与烟气接触

烟气沿切线方向进入喷雾干燥吸收塔顶部的蜗壳状烟气分配器,正好与吸收剂形成逆向接触。

SO2吸收和水分的蒸发

烟气与吸收剂在吸收塔内接触后,即发生热交换和化学反应。烟气中的SO2与Ca(OH)2反应生成CaSO3与CaSO4粉粒。

在吸收塔内,SO2的吸收与水分的蒸发主要分为两个阶段进行。第一阶段为恒速干燥阶段,主要是浆液表面谁的自由蒸发。由于浆液表面水分的存在为吸收SO2的反应创造了良好的条件,属于气-液反应过程,约有50%的吸收反应发生在该阶段,所需时间约为1-2S。随着水分的蒸发,浆液中固含量增加。当浆液滴表面出现明显的固体物质时,便进入第二阶段。在这一阶段,由于SO2必须穿过固体颗粒表面向内扩散,才能与内部的吸收剂发生反应,因此反应速率减慢。

灰渣的再循环与排除

部分颗粒在喷雾干燥吸收塔内被收集,剩余部分颗粒和烟气中的飞灰随气流进入袋式除尘器或电除尘器而被分离。为提高脱硫剂利用率,吸收塔和除尘器排出的灰渣部分被再循环使用,其余部分则进行综合利用

脱硫厂情况

由于SDA法主要适用于燃用含硫量<2%煤的中小锅炉(<200MW),不妨假设,本课程设计是为200MW 火电机组时行脱硫的技术方案。本课程设计不予考虑设计参数的真实性,仅对它们做一些合理和必要的假设。例如:不考虑中小锅炉是否能达到90万M3/h的烟气量,不考虑烟气中的非SO2的组分,钙硫比设置为1.2等。假设脱硫厂的占地面积为河北科技大学中校区的面积,150亩,即100000平方米。

表3 设计参数

表4 设计技术指标

第一章:物料恒算喷雾干燥系统流程图如下:

计算SO

2和颗粒物的物料平衡时,流入的烟气(流程图中1#物流)的SO

2

飞灰流速分别为90×104m3/h×1200mg/m3=1080kg/h。则烟气的主要组成成分如下表。

进入系统的SO

2

流率=1080kg/h

SO

2

允许排放量=108kg/h

SO

2

脱除量=972kg/h

烟气洁净烟气

SO

2=1080喷雾干燥塔布袋除尘器SO

2

=108

固体废物处理: SO

2

=972

进入系统的SO

2

量为1080kg/h,假设达到90%脱硫率所需的钙硫比为1.4,

则所需的新鲜CaO的量为:

CaO=1.4×1080×56/64

=1323kg/h

而所需的新鲜石灰(含CaO 92%)的量为

石灰量=1323/0.92=1438kg/h

由于 1mol SO

2

仅同 1mol 碱(CaO )反应,就存留了部分过量的CaO ,

其中一小部分同烟气中的CO

2

反应,而未参加反应的吸收剂同飞灰一道被捕集下来。

石灰的成分及其流率(7#)物流如下:

在熟化槽中,CaO和 MgO分别变成Ca(OH)

2和Mg(OH)

2

假设熟化后80%的惰性组分(砂石)已经被除去,这样;

除去的砂石(9#物流)=石灰中的惰性组分×80%

=71.9×0.8

=57.52 kg/h

仍留在熟石灰中的惰性组分为:

71.9-57.52=14.38 kg/h

由于1 mol CaO或MgO熟化为1 mol Ca(OH)

2和Mg(OH)

2

,则熟化槽

中出来的固体包括:

Ca(OH)

2

=23.6mol/h×74kg/mol=1746.4 kg/h

Mg(OH)

2

=1.2 mol/h×58kg/mol=69.6 kg/h 惰性组分=14.38 kg/h

因此,8#物流的固体质量为:

8#物流固体质量=1746.4+69.6+14.38

= 1830.38 kg/h

如果熟化槽流出的石灰乳含量为80%,则石灰乳中水含量为:

8#物流水分含量=固体总量×20%/80%

=1830.38/4

=457.6 kg/h

则流入浆液混合槽的石灰乳总量为:

耗水量(6#物流)=8#物流石灰乳量+9#物流砂石量

-7#物流石灰量

=1830.38+457.6+57.52-1438

=907.5 kg/h

石灰熟化操作的物料恒算如下表:

熟化槽物料平衡

计算需处理的废物时,需要考虑石灰乳和烟气中所含的固体以及Ca(OH)

2和SO

2

及CO

2

的反应产物,假设Mg(OH)

2

与SO

2

和CO

2

的反应可忽略不计。

系统除去的SO

2

量为972kg/h,石灰乳含1746.4kg/hCa(OH)

2

和69.6kg/h

Mg(OH)

2

,以及14.38kg/h的惰性组分。估计与CO2反应生成CaCO3的Ca(OH)

2约为与SO2反应的Ca(OH)

2

的10%,则:

因为1mol SO2反应了1mol Ca(OH)

2

所以SO2反应了Ca(OH)

2

的物质的量为:

972/64≈15.2mol/h

因此:

过量Ca(OH)

2

=(23.6-15.2-15.2×10%)

=6.88 mol/h

或 =6.88×74

=509.1 kg/h

形成的亚硫酸盐物质的量相当于脱除的SO2,这样;

CaSO

3

=15.2 mol/h

假设其中20%氧化为硫酸盐:

CaSO

3

=15.2×0.8=12.16 mol/h

CaSO

4

=15.2×0.2=3.04mol/h

形成的碳酸盐为:

CaCO

3

=1.52mol/h

或 =1.52×100=152kg/h

硫酸盐和亚硫酸盐均以水合形式存在:

CaSO

4·2H

2

O = 3.04 mol/h =3.04×172=522.9 kg/h

CaSO

3·1/2H

2

O=12.16 mol/h =12.16×129=1568.6 kg/h

Mg(OH)

2

流量 1.2 mol/h×58kg/mol=69.6 kg/h

固体废渣的各种物质含量和流率如下:

假设灰渣中含水分4%,则

灰渣总量(11#物料)=2879.7/(1-4%)=2999.7 kg/h

灰渣中水分 =2999.7-2879.7 = 120 kg/h

供给雾化器的料浆(以及灰循环)多少取决于维持饱和温度差情况下可蒸发的水量。因而,在计算料浆流量和灰循环之前应首先确定吸收塔的水质量平衡。

由于在吸收塔壁的烟气热损失很小,可以认为吸收塔内为增湿绝热冷却。由空气---水的湿度曲线,可以用来计算烟气冷却过程中的水分蒸发。如果需要确定严格的烟气冷却需水量,可以通过设计计算程序完成。

根据前述的烟气成分,可以得知烟气中水分与干气体的比值为0。在150℃,这相当于50℃湿球温度上的A点。由于要求与饱和湿度的温度的温差为11℃,烟气加水后的最后温度约为61℃。

沿湿球温度线可找到干球温度为61℃的B点,在这点的水和干气之比为

0.08,可用于计算出口烟气的水含量。由于脱除了SO

2,同时去处少量的CO

2

O

2

,所以洁净烟气的量略少于系统入口的烟气量。

SO

2

减少=972kg/h

因此,系统出口的干烟气量为:

SO

2

=(1080-972)=108kg/h

总计(450803+108)kg/h=450911 kg/h

则烟气中的含水量为:

H

2

O=0.08×450911=36072.9kg/h

喷雾干燥塔中的蒸发量为:

蒸发量=处理含水量=36072.9kg/h

为确定料浆槽中的水量和灰渣中的自由水量(120 kg/h)相加则浆液中水分=36072.9+120 =36192.9 kg/h

来自除尘设备的烟气流率为(假设在除尘器中没有热损失):烟气流率=各种组分的物质的量之和×22.4

=17445.7 ×22.4=390783.7m3/h

下表给出了处理烟气的流率和组成。

处理烟气的组成

料浆是熟石灰、循环灰渣和水的混合物,固含量为10%(质量分率)。维持喷雾干燥塔出口烟气温度在61℃和灰渣最大含量4%(质量分率),则料浆的最大用量为:

料浆用量(2#物流)=含水量/0.9

=36192.9 /0.9

=40214kg/h

料浆的含固量为:

含固量=料浆用量-浆液中水分

=40214-36192.9

=4021.1 kg/h

所含固体中1830.38 kg/h 来自石灰流程,

因此,可循环使用的最大吸收剂量为:

循环灰渣=(4021.1-1830.38)/(1-4%)

=2282kg/h

含水量=2282×4%

=91.3 kg/h

循环灰渣占灰渣总量的百分比为:

2282/2999.7×100%=76.1%

为计算溶解循环灰渣和石灰所需水量,从浆液中抽出这两部分水量:溶解水(5#物流)=浆液含水量(2#物流)-石灰乳含水量(8#物流)-

循环灰渣含水量(2#物流)

=36192.9-457.6-91.3

=35644 kg/h

烟气净化系统的总需水量为石灰熟化用水(6#物流)和浆液溶

解水(5#物流)之和:

总水量=36192.9+907.5

=37100.4 kg/h

物料衡算结果汇总

2.3喷淋吸收空塔主要工艺设计参数 (1)烟气流速

在保证除雾器对烟气中所携带水滴的去除效率及吸收系统压降允许的条件下,适当提高烟气流速,可加剧烟气和浆液液滴之间的湍流强度,从而增加两者之间的接触面积。同时,较高的烟气流速还可持托下落的液滴,延长其在吸收区的停留时间,从而提高脱硫效率。

另外,较高的烟气流速还可适当减少吸收塔和塔内件的几何尺寸,提高吸收塔的性价比。在吸收塔中,烟气流速通常为3~4.5m/s 。许多工程实践表明,3.5m/s≤烟气流速(110%过负荷)≤4.2m/s 是性价比较高的流速区域。综合考量,本设计烟气流速取3.5m/s 。 (2)喷淋塔吸收区高度(h 1)

含有二氧化硫的烟气通过喷淋塔将此过程中塔内总的二氧化硫吸收量平均到吸收区高度内的塔内容积中,即为吸收塔的平均容积负荷――平均容积吸收率,以ζ表示。

h

C K V Q ηξ0==

(1) 其中 C 为标准状态下进口烟气的质量浓度,kg/m 3,本设计为1.288kg/m 3; η为给定的二氧化硫吸收率,%;本设计方案为90%; h 为吸收塔内吸收区高度,m ;

K 0为常数,其数值取决于烟气流速u(m/s)和操作温度(℃);

K 0=3600u ×273/(273+t)

由于传质方程可得喷淋塔内单位横截面面积上吸收二氧化硫的量为:

m y y h a k y y G ???=-)(21 (2)

其中: G 为载气流量(二氧化硫浓度比较低,可以近似看作烟气流量),

kmol/( m 2.s);

y 1,y 2 分别为、进塔出塔气体中二氧化硫的摩尔分数(标准状态下

的体积分数);

k y 单位体积内二氧化硫以气相摩尔差为推动力的总传质系数,kg/(m 3﹒s);

a 为单位体积内的有效传质面积,m 2/m 3;

m

y ? 为平均推动力,即塔底推动力,

)ln(/)(2121y y y y y m ?-??-?=?;

所以 h y y G /)(21-=ξ (3) 吸收效率21/1y y -=ξ

又因为)(273/)273(4.22流速u t G =+?= 将式子(3)ξ的单位换算成)/(kg 2s m ?,可以写成

h uy t

/273273

4.226436001ηξ+??

= (4) 在喷淋塔操作温度C ?=+5.1052

61150下、烟气流速为 u=3.5m/s 、脱硫效率

90.0=η,前面已经求得原来烟气二氧化硫2SO 质量浓度为33/102.1m mg a ?=

而原来烟气的流量(标准状态时)为s m h m /161/108.5335=?

故在标准状态下、单位时间内每立方米烟气中含有二氧化硫质量为

g

mg m SO 2.193102.116132=??=

s m s L mol L mol

g g

V SO /068.0/62.67/4.22/642.19332≈=?=

则根据理想气体状态方程,在标准状况下,体积分数和摩尔分数比值相等

半干法脱硫方案(2020年整理).doc

烟气脱硫 技术方 1

第一章工程概述 1.1项目概况 某钢厂将就该厂烧结机后烟气进行烟气脱硫处理。现烧结机烟气流程为烧结机一除尘器一吸风机一烟囱。除尘器采用多管式除尘器,除尘效率大于90%。主要原始资料如下: 1.2主流烟气脱硫方法 烟气脱硫(简称FGD是世界上唯一大规模商业化应用的脱硫方法,是控制酸雨和二氧化硫污染最为有效和主要的技术手段。 FGD其基本原理都是以一种碱性物质来吸收SO,就目前国内实际应用工程, 按脱硫剂的种类划分,FGD技术主要可分为以下几种方法: 1、以石灰石、生石灰为基础的钙法; 2、以镁的化合物为基础的镁法; 3、以钠的化合物为基础的钠法或碱法; 4、以化肥生产中的废氨液为基础的氨法; 最为普遍使用的商业化技术是钙法,所占比例在90%以上。而其中应用最 为广泛的是石灰石-石膏湿法和循环流化床半干法烟气脱硫系统。针对本工程,

我公司将就以上两种脱硫方法分别进行设计、描述,并最终给出两方案比较结果。 1.3 主要设计原则 针对本脱硫工程建设规模,同时本着投资少、见效快、系统简单可靠等原则,我方在设计过程中主要遵循以下主要设计原则: 1、脱硫剂采用外购成品石灰石粉(半干法为消石灰粉),厂内不设脱硫剂制备车间。 2、考虑到烧结机吸风机出口烟气含硫浓度为2345 mg/Nd3,浓度并不是很高, 在满足环保排放指标的前提下,脱硫装置的设计脱硫效率取》90%。 3、脱硫装置设单独控制室,采用PLC程序控制方式。同时考虑同主体工程的信号连接。 4、脱硫装置的布置尽可能靠近烟囱以减少烟道的长度,减少管道阻力及工程投资。

第二章 石灰石-石膏湿法脱硫方案 2.1工艺简介 石灰石-石膏湿法脱硫工艺是目前世界上应用最为广泛和可靠的工艺。该工艺 以石灰石浆液作为吸收剂,通过石灰石浆液在吸收塔内对烟气进行洗涤, 发生反应, 以去除烟气中的S02反应产生的亚硫酸钙通过强制氧化生成含两个结晶水的硫酸 钙(石膏)。 图2.1石灰石—石膏湿法脱硫工艺流程图 工艺流程图如图2.1所示,该工艺类型是:圆柱形空塔、吸收剂与烟气在塔内 逆向流动、吸收和氧化在同一个塔内进行、塔内设置喷淋层、氧化方式采用强制氧 化。 与其他脱硫工艺相比,石灰石-石膏湿法脱硫工艺的主要特点为: ?脱硫效率高,可达95%以上; ?吸收剂化学剂量比低,脱硫剂消耗少; ?液/气比(L/G )低,使脱硫系统的能耗降低; ?可得到纯度很高的脱硫副产品一石膏,为脱硫副产品的综合利用创造了有利 条件; ?采用空塔型式使吸收塔内径减小,同时减少了占地面积; ?采用价廉易得的石灰石作为吸收剂; ?系统具有较高的可靠性,系统可用率可达 97%以上; ?对锅炉燃煤煤质变化适应性较好; ?对锅炉负荷变化有良好的适应性。 2.2 反应原理 原咽吒 Eimn 嗫收塔 ?工艺水 猜坏泵 脈冲捲浮 氧化空宅 节石蕎察液加梳姑 '事空皮出脱水机 吸收剂浆罐

半干法脱硫操作规程.doc

除灰装置操作规程 目次 第一章脱硫岗位操作规程第 6 页~第30 页 第一章脱硫岗位操作规程 原则流程 1、烟气系统 系统描述:从锅炉空气预热器出来的热烟气送往预除尘器,一电除尘器再经过独立的烟道和流量测量装置,反应器弯头,在弯头中使烟气流速增加,进入反应器混合段,在混合段中烟气同从消化混合器中来的含湿物料混合,烟气温度迅速降到70℃左右,湿度增加到70%以上,烟气同物料中的反应剂迅速地在反应器中发生反应,然后烟气通过静压沉降室进入到布袋除尘器进行收尘,烟气从布袋除尘器出来后通过出口喇叭进入引风机进口烟道然后进入引风机然后从引风机出口经烟道排入烟囱。

2、流化风系统 系统描述:流化风系统主要用于循环物料的输送、物料的流化、消化混合器的轴封密封和喷嘴流化风。外界的空气通过流化风机进风口进入流化风机入口过滤器,使空气中固体颗粒粒径小于0.7μm以下,经蒸汽加热,然后通过消音器,通过高压离心风机升压至16~21kpa 左右,进入到流化风母管。在脱硫反应器平台处通过管道分别送往流化底仓、消化混合器。每个流化底仓设置四个流化风机入口,主要用于物料的流化,防止循环下来的湿的脱硫灰发生板结和结块;每台混合器的底部各设置一组流化风,作用同流化底仓;喷嘴流化风主要用于消化器、混合器喷嘴保护,防止喷嘴被湿的物料堵塞;流化风主要用于消化混合器各轴承的密封。 由于各用气点的流化布一旦发生堵塞,则极其容易造成相关设备的输送不畅或流化状态不好,导致物料板结,因此流化风机入口的过滤器相当重要。过滤器能自动清灰保持良好过滤状态。 当脱硫系统停运或切除后,应保持流化风机的运行,以满足流化底仓中物料的流化或正常的排灰(粉煤灰)需要。 3、工艺水系统 系统描述:从锅炉来水通过给水管路进入脱硫岛工艺水箱,再通

循环流化床半干法脱硫装置计算书编辑版

一、喷水量的计算(热平衡法) 参数查表: 144℃: ρ(烟气)=0.86112Kg/m 3; C p(烟气)=0.25808Kcal/Kg ·℃ 78℃: ρ(烟气)=1.0259Kg/m 3; C p(烟气)=0.25368Kcal/Kg ·℃ 144℃:C 灰=0.19696Kcal/Kg ·℃ 78℃: C 灰=0.19102Kcal/Kg ·℃;C 灰泥,石膏=0.2Kcal/Kg ·℃ C Ca(OH)2=0.246Kcal/Kg ·℃ 1.带入热量: Q 烟气, Q 灰,Q Ca(OH)2,Q 水 M 烟气 =ρ 烟气 ·V 烟=510453.286112.0??510112.2?=(Kg/hr ) Q 烟气=C P ·M ·t 5510489.7814410112.225808.0?=???=(Kcal/hr) M 灰253105694.4810453.2108.19?=???=-(Kg/hr ) Q 灰=C 灰?M 灰?t =52103775.1144105694.4819696.0?=???(Kcal /hr) Q Ca(OH)2=C Ca(OH)2?M ?20=20246.02)(??OH Ca M 当 Ca/S=1.3, SO 2浓度为3500mg/m 3时 Kg M OH Ca 244.151810743.185 .06410453.21035003532 )(=???????=-- ∴Q Ca(OH)2=76.746920244.1518246.0=??(Kcal/hr) Q 水=cmt=χχ20201=??(Kcal/hr) 其中χ为喷水量 2.带出热量:Q 灰3,Q 烟气,Q 灰2,Q 蒸汽,Q 散热 M 灰3=M Ca(OH)2=1518.244Kg ; Q 灰3=Q Ca(OH)2=7469.76(Kcal/hr) Q 烟气=cmt=551079.417810112.225368.0?=???(Kcal/hr); Q 灰2=264.7576810785694.482.02=???(Kcal/hr) Q 蒸汽=630.5χ(Kcal/Kg ) 热损失以3%计: Q 散=(Q 烟气+Q 灰) 03.0?03.0)103775.110489.78(55??+?= 3.系统热平衡计算: Q in =Q out ,即: 03 .0)103775.110489.78(5.630264.757681079.4176.74692076.7469103775.110489.785 5 5 55??+?+++?+=++?+?χχ ∴χ=5.72(t/hr)

半干法脱硫技术

一、工艺概述循环悬浮式半干法烟气脱硫技术兼有干法与湿法的一些特点,其既具有湿法脱硫反应速度快、脱硫效率高的优点,又具有干法无污水排放、脱硫后产物易于处理的好处而受到人们广泛的关注。 循环悬浮式半干法烟气脱硫技术是近几年国际上新兴起的比较先进的烟气脱硫技术,它具有投资相对较低,脱硫效率相对较高,设备可靠性高,运行费用较低的优点,因此它的适用性很广,在许多国家普遍使用。 循环悬浮式半干法烟气脱硫技术主要是根据循环流化床理论,采用悬浮方式,使吸收剂在吸收塔内悬浮、反复循环,与烟气中的S02充分接触反应来实现脱硫的一种方法。 利用循环悬浮式半干法最大特点和优势是:可以通过喷水(而非喷浆)将吸收塔内温度控制在最佳反应温度下,达到最好的气固紊流混合并不断暴露出未反应的消熟石灰的新表面;同时通过固体物料的多次循环使脱硫剂具有很长的停留时 间,从而大大提高了脱硫剂的利用率和脱硫效率。与湿法烟气脱硫相比,具有系统简单、造价较低,而且运行可靠,所产生的最终固态产物易于处理等特点。 二、技术特点循环悬浮式半干法烟气脱硫技术是在集成浙大和国外环保公司半干法烟气脱硫技术基础上,结合中国的煤质和石灰品质及国家最新环保要求,经优化、完善后开发的第三代半干法技术。它是在锅炉尾部利用循环流化床技术进行烟气净化,脱除烟气中的大部分酸性气体,使烟气中的有害成分达到排放要求。 与第一、第二代半干法相比,第三代循环悬浮式半干法烟气脱硫技术具有以下特占: 八、、? 1、在吸收塔喉口增设了独特的文丘里管,使塔内的流场更均匀。 2、在吸收塔内设置上下两级双流喷嘴,雾化颗粒可达到50µm以下,精确 的灰水比保证了良好的增湿活化效果,受控的塔内温度使脱硫反应在最佳温度下进行,从而取得较高的脱硫效率,较长的滤料使用寿命。 3、采用比第二代更完善的控制系统,操作更简捷。 4、采用成熟的国产原材料和设备,降低成本,节约投资. 5、占地少,投资省,运行费用低,无二次污染。 6非常适合中小型锅炉的脱硫改造。 7、输灰采用上引式仓泵,耗气量小,输灰管路不易堵塞,使用寿命长。同时,在仓泵和布袋之间增设中间灰仓,使仓泵运行更稳定、可靠。 8、固体物料经袋式除尘器收集,再用空气斜槽回送至反应器,使未反应的脱除剂反复循环,在反应器内的停留时间延长,从而提高脱除剂的利用率,降低运行成本。 9、根据烟气净化需要,添加适量的活性炭等添加剂可改变循环物料组成,有效的吸附脱除二噁英和重金属等毒性大、难去除的污染物,达到特殊净化效果。 由于采用了大量的技术改良和优化,目前掌握的第三代半干法烟气脱硫技术克服 了第一代半干法脱硫装置易塌床、易磨损、系统阻力大、运行不可靠及第二代半干法

半干法脱硫技术介绍

半干法脱硫技术介绍 一、概述 循环流化床烟气脱硫工艺是八十年代末德国鲁奇(LURGI)公司开发的一种新的半干法脱硫工艺,这种工艺以循环流化床原理为基础以干态消石灰粉Ca(OH)2作为吸收剂,通过吸收剂的多次再循环,在脱硫塔内延长吸收剂与烟气的接触时间,以达到高效脱硫的目的,同时大大提高了吸收剂的利用率。通过化学反应,可有效除去烟气中的SO2、SO3、HF与HCL等酸性气体,脱硫终产物脱硫渣是一种自由流动的干粉混合物,无二次污染,同时还可以进一步综合利用。该工艺主要应用于电站锅炉烟气脱硫,单塔处理烟气量可适用于蒸发量75t/h~1025t/h之间的锅炉,SO2脱除率可达到90%~98%,是目前干法、半干法等类脱硫技术中单塔处理能力最大、脱硫综合效益最优越的一种方法。 二、CFB半干法脱硫系统工艺原理 Ca(OH)2+ SO2= CaSO3 + H2O Ca(OH)2+ 2HF= CaF2 +2H2O Ca(OH)2+ SO3= CaSO4 + H2O Ca(OH)2+ 2HCl= CaCl2 + 2H2O CaSO3+ 1/2O2= CaSO4 三、流程图 四、CFB半干法脱硫工艺系统组成 1. 脱硫剂制备系统 2. 脱硫塔系统 3. 除尘器系统 4. 工艺水系统 5. 烟气系统

6. 脱硫灰再循环系统 7. 脱硫灰外排系统 8. 电控系统 五、CFB半干法脱硫工艺技术特点 1. 脱硫塔内烟气和脱硫剂反应充分,停留时间长,脱硫剂循环利用率高; 2. 脱硫塔内无转动部件和易损件,整个装置免维护; 3. 脱硫剂和脱硫渣均为干态,系统设备不会产生粘结、堵塞和腐蚀等现象; 4. 燃烧煤种变化时,无需增加任何设备,仅增加脱硫剂就可满足脱硫效率; 5. 在保证SO2脱除率高的同时,脱硫后烟气露点低,设备和烟道无需做任何防腐措施; 6. 脱硫系统适应锅炉负荷变化范围广,可达锅炉负荷的30%~110%; 7. 脱硫系统简单,装置占地面积小; 8. 脱硫系统能耗低、无废水排放; 9. 投资、运行及维护成本低。

半干法脱硫方案..

烟气脱硫 技术方案

第一章工程概述 1.1项目概况 某钢厂将就该厂烧结机后烟气进行烟气脱硫处理。现烧结机烟气流程为烧结机—除尘器—吸风机—烟囱。除尘器采用多管式除尘器,除尘效率大于90%。主要原始资料如下: 1.2主流烟气脱硫方法 烟气脱硫(简称FGD)是世界上唯一大规模商业化应用的脱硫方法,是控制酸雨和二氧化硫污染最为有效和主要的技术手段。 ,就目前国内实际应用工程,FGD其基本原理都是以一种碱性物质来吸收SO 2 按脱硫剂的种类划分,FGD技术主要可分为以下几种方法: 1、以石灰石、生石灰为基础的钙法; 2、以镁的化合物为基础的镁法; 3、以钠的化合物为基础的钠法或碱法; 4、以化肥生产中的废氨液为基础的氨法; 最为普遍使用的商业化技术是钙法,所占比例在90%以上。而其中应用最为广泛的是石灰石-石膏湿法和循环流化床半干法烟气脱硫系统。针对本工程,

我公司将就以上两种脱硫方法分别进行设计、描述,并最终给出两方案比较结果。 1.3主要设计原则 针对本脱硫工程建设规模,同时本着投资少、见效快、系统简单可靠等原则,我方在设计过程中主要遵循以下主要设计原则: 1、脱硫剂采用外购成品石灰石粉(半干法为消石灰粉),厂内不设脱硫剂制备车间。 2、考虑到烧结机吸风机出口烟气含硫浓度为2345 mg/Nm3,浓度并不是很高,在满足环保排放指标的前提下,脱硫装置的设计脱硫效率取≥90%。 3、脱硫装置设单独控制室,采用PLC程序控制方式。同时考虑同主体工程的信号连接。 4、脱硫装置的布置尽可能靠近烟囱以减少烟道的长度,减少管道阻力及工程投资。

第二章石灰石-石膏湿法脱硫方案 2.1工艺简介 石灰石-石膏湿法脱硫工艺是目前世界上应用最为广泛和可靠的工艺。该工艺以石灰石浆液作为吸收剂,通过石灰石浆液在吸收塔内对烟气进行洗涤,发生反应,以去除烟气中的SO2,反应产生的亚硫酸钙通过强制氧化生成含两个结晶水的硫酸钙(石膏)。 图2.1 石灰石-石膏湿法脱硫工艺流程图 工艺流程图如图2.1所示,该工艺类型是:圆柱形空塔、吸收剂与烟气在塔内逆向流动、吸收和氧化在同一个塔内进行、塔内设置喷淋层、氧化方式采用强制氧化。 与其他脱硫工艺相比,石灰石-石膏湿法脱硫工艺的主要特点为: ·脱硫效率高,可达95%以上; ·吸收剂化学剂量比低,脱硫剂消耗少; ·液/气比(L/G)低,使脱硫系统的能耗降低; ·可得到纯度很高的脱硫副产品-石膏,为脱硫副产品的综合利用创造了有利条件; ·采用空塔型式使吸收塔内径减小,同时减少了占地面积; ·采用价廉易得的石灰石作为吸收剂; ·系统具有较高的可靠性,系统可用率可达97%以上;

半干法脱硫系统组成

附件2脱硫系统组成 脱硫除尘岛主要由烟气系统、一级除尘器、脱硫塔、脱硫布袋除尘器、脱硫灰循环系统、吸收剂供应系统、烟气系统、工艺水系统、流化风系统等组成。 1.烟气系统 从锅炉空气预热器出来的原烟气经一级除尘器后,从底部进入脱硫塔进行脱硫,脱硫后的烟气进入脱硫除尘器除尘,经净化后的烟气经引风机通过烟囱排往大气。脱硫除尘后的SO2浓度、粉尘浓度达到环保排放要求。 2. 一级除尘器 脱硫反应器前设置一级除尘器,除了考虑利用预除尘器收集粉煤灰,提高粉煤灰的综合利用外,主要是考虑机组燃煤中灰分的含量对脱硫反应的影响。若在脱硫反应器前不设置预电除尘器,大量的粉煤灰直接进入脱硫反应器并在脱硫系统内富集,由于反应器内的物料量是一定的,当大量的无效粉煤灰占据了脱硫反应空间,反应器内有效的吸收剂成分自然就要降低,这种情况的直接后果一是脱硫率降低;二是大量吸收剂与多余的物料一起排到系统外,造成吸收剂的严重浪费,运行成本急剧提高。 因此,一级除尘器通常采用静电除尘器(BEL型),除尘效率大约在80%即可。 3.脱硫塔 脱硫塔是一个有7个文丘里喷嘴的空塔结构,主要由进口段、下部方圆节、文丘里段、锥形段、直管段、上部方圆节、顶部方形段和出口扩大段组成,全部采用钢板焊接而成。塔内完全没有任何运动部件和支撑杆件,也无需设防腐内衬。脱硫塔采用钢支架进行支撑,并在下部设置两层满铺平台。 脱硫塔进口烟道设有均流装置,出口扩大段设有温度、压力检测装置,以便控制脱硫塔的喷水量和物料循环量。塔底设紧急排灰装置,并设有吹扫装置防堵。

4. 脱硫布袋除尘器 脱硫布袋除尘器具有除尘效率高、对粉尘特性不敏感的特点,本工程所配的脱硫除 尘器为鲁奇型低 压回转脉冲布袋除尘器,下面具体说明这种布袋除尘器的设计特点: LPJJFF 型布袋除尘器的设计技术特点介绍如下: 图2-1脱硫布袋除尘器示意图 1) 采用上进风方式,降低入口粉尘浓度,提高滤袋的使用寿命。 烟气从脱硫塔进入布袋除尘器,采用上进风方式。这一结构既可减小烟气的运行阻 力,又可以充分 利用重力,使粗颗粒的粉尘直接进入灰斗,减少滤袋的负荷,提高滤袋 的使用寿命。 2) 采用经特殊表面处理的聚苯硫醚(PPS )改性滤料。 采用经特殊表面处理的进口 PPS 改性滤料,可很好地适应长期使用要求,持续运行 温度为75C ? 160C ,瞬间可耐190C 。 选择合理的气布比,以同时适合脱硫和不脱硫两种工况。 3) 采用不间断回转的脉冲清灰方式,减少了脉冲阀数量,大大降低了维护工作量。 1、净气室 2、出风烟道 3、进风烟道 T i 5、花板 6、滤袋 7、检修平台 8、灰斗 IO 占 4、进口风门

半干法脱硫工艺特点介绍20171206

半干法脱硫工艺的特点: 一、工艺原理描述 锅炉尾气在CFB半干法烟气净化系统中得以净化,该系统主要是根据循环流化床理论和喷雾干燥原理,采用悬浮方式,使吸收剂 Ca(OH) 2在吸收塔内悬浮、反复循环,与烟气中的SO 2 等酸性气体充分接触、反应来实现脱除酸性气体及其它有害物质的一种方法。烟 气脱硫工艺分7个步骤:⑴吸收剂存储和输送;⑵烟气雾化增湿调温;⑶脱硫剂与含湿烟气雾化颗粒充分接触混合;⑷二氧化硫吸收; ⑸增湿活化;⑹灰循环;⑺灰渣排除。⑵、⑶、⑷、⑸四个步骤均在吸收塔中进行,其化学、物理过程如下所述。 A.化学过程: 当雾化水经过双流体雾化喷嘴在吸收塔中雾化,并与烟气充分接触,烟气冷却并增湿,氢氧化钙粉颗粒同H2O 、SO2、H2SO3反应生成干粉产物,整个反应分为气相、液相和固相三种状态反应,反应步骤及方程式如下: ⑴SO2被液滴吸收; SO2(气)+H2O→H2SO3(液) ⑵吸收的SO2同溶液的吸收剂反应生成亚硫酸钙; Ca(OH)2(液)+H2SO3(液)→CaSO3(液)+2H2O Ca(OH)2(固)+H2SO3(液)→CaSO3(液)+2H2O ⑶液滴中CaSO3达到饱和后,即开始结晶析出 CaSO3(液)→CaSO3(固) ⑷部分溶液中的CaSO3与溶于液滴中的氧反应,氧化成硫酸钙 CaSO3(液)+1/2O2(液)→CaSO4(液)

⑸CaSO4(液)溶解度低,从而结晶析出 CaSO4(液)→CaSO4(固) ⑹对未来得及反应的Ca(OH)2 (固),以及包含在CaSO3(固)、CaSO4(固)内的Ca(OH)2 (固)进行增湿雾化。 Ca(OH)2 (固) →Ca(OH)2 (液) SO2(气)+H2O→H2SO3(液) Ca(OH)2 (液)+H2SO3(液)→CaSO3(液)+2H2O CaSO3(液)→CaSO3(固) CaSO3(液)+1/2O2(液)→CaSO4(液) CaSO4(液)→CaSO4(固) ⑺布袋除尘器脱除的烟灰中的未反应的Ca(OH) 2 (固),以及包含在CaSO 3 (固)、 CaSO 4 (固)内的Ca(OH) 2 (固)循环至吸收塔内继续 反应。 Ca(OH)2 (固) →Ca(OH)2 (液) SO2(气)+H2O→H2SO3(液) Ca(OH)2 (液)+H2SO3(液)→CaSO3(液)+2H2O CaSO3(液)→CaSO3(固) CaSO3(液)+1/2O2(液)→CaSO4(液) CaSO4(液)→CaSO4(固) B.物理过程: 物理过程系指液滴的蒸发干燥及烟气冷却增湿过程,液滴从蒸发开始到干燥所需的时间,对吸收塔的设计和脱硫率都非常重要。

(完整word版)半干法脱硫培训教材

南山铝业股份有限公司2×220MW机组烟气脱硫技改工程 学员培训教材 东海热电脱硫分场 二008年11月

第一章SDA脱硫系统概述 1.1 SDA脱硫工艺基本原理 早在50多年前,人们就将喷雾干燥广泛运用于现代工艺,它是一种将液体按要求雾化喷入干燥塔在热气体干燥下成为粉末的技术。喷雾干燥吸收(SDA)就源于此。 当未经处理的热烟气经过分散进入喷雾干燥吸收室时,利用雾化的平均直径60μm的精细石灰浆液滴对其进行接触,在气液接触过程中,烟气的酸性成分(SO2等)很快就被碱性液滴吸收,同时水分也被迅速蒸发。通过控制气体分布、浆液流速、液滴直径等,使吸收反应的液滴到达喷雾干燥吸收室壁之前,保证液滴的干燥,使之最后形成粉末状的脱硫产物(亚硫酸钙为主)。 一部分干燥产物包括飞灰和反应物落入吸收室底端后被收集转运。处理后的烟气进入布袋式除尘器或静电除尘器,经过除尘,悬浮颗粒物被去除,而气体则用引风机将其从除尘器引出后直接排放。除尘器收集的部分固体物质被循环利用,这有助于降低反应剂的消耗,其余的均被处理掉。 NIRO SDA系统包括了部分干燥产物的循环利用,这主要有以下几方面优点: 使石灰浆液滴中的固体物质浓度达到一定的标准,这样有利于SDA系统的操作,并保证烟气脱硫(FGD)系统中有效地进行雾化、吸收和干燥。 干燥物中过量的石灰可重新被用作吸收剂。 反应产物即使不继续反应,也会在每个石灰浆液滴内形成一个核,这样新的吸收剂在其上面不断沉积,使与未处理烟气进行反应的石灰表面增大。 工程经验表明,脱硫渣的循环利用使反应剂的消耗下降了30-50%,可以大大降低脱硫运行成本。 SDA工艺有干燥的粉末产生,因此在喷雾干燥之后需要一个合适的除尘器(以与其他湿法FGD系统中的除尘器相区别),部分吸收反应也发生在除尘器中(特别是布袋除尘系统)。 1.2 化学反应过程 喷雾干燥技术,它具有吸收和干燥的双重作用,主要过程和反应如下: 将碱性浆液雾化成无数微小液滴。 在吸收室内,烟气被有效地分布以便使其与被雾化的浆液充分混合接触以发生吸收反应,也就是说,吸收室具有混合反应器的功能。

干法、半干法脱硫技术介绍

干法脱硫技术 摘要:本文主要论述了干法脱除烟气中SO2的各种技术应用及其进展情况,对烟气脱硫技术的发展进行展望,即研究开发出优质高效、经济配套、性能可靠、不造成二次污染、适合国情的全新的烟气污染控制技术势在必行。 关键词:烟气脱硫二氧化硫干法 前言:我国的能源以燃煤为主,占煤炭产量75%的原煤用于直接燃烧,煤燃烧过程中产生严重污染,如烟气中CO2是温室气体,SOx可导致酸雨形成,NOX也是引起酸雨元凶之一,同时在一定条件下还可破坏臭氧层以及产生光化学烟雾等。总之燃煤产生的烟气是造成中国生态环境破坏的最大污染源之一。中国的能源消费占世界的8%~9%,SO2的排放量占到世界的15.1%,燃煤所排放的SO2又占全国总排放量的87%。中国煤炭一年的产量和消费高达12亿吨,SO2的年排放量为2000多吨,预计到2010年中国煤炭量将达18亿吨,如果不采用控制措施,SO2的排放量将达到3300万吨。据估算,每削减1万吨SO2的费用大约在1亿元左右,到2010年,要保持中国目前的SO2排放量,投资接近1千亿元,如果想进一步降低排放量,投资将更大[1]。为此1995年国家颁布了新的《大气污染防治法》,并划定了SO2污染控制区及酸雨控制区。各地对SO2的排放控制越来越严格,并且开始实行SO2排放收费制度。随着人们环境意识的不断增强,减少污染源、净化大气、保护人类生存环境的问题正在被亿万人们所关心和重视,寻求解决这一污染措施,已成为当代科技研究的重要课题之一。因此控制SO2的排放量,既需要国家的合理规划,更需要适合中国国情的低费用、低耗本的脱硫技术。 烟气脱硫技术是控制SO2和酸雨危害最有效的手段之一,按工艺特点主要分为湿法烟气脱硫、干法烟气脱硫和半干法烟气脱硫。 湿法脱硫是采用液体吸收剂洗涤SO2烟气以脱除SO2。常用方法为石灰/石灰石吸收法、钠碱法、铝法、催化氧化还原法等,湿法烟气脱硫技术以其脱硫效率高、适应范围广、钙硫比低、技术成熟、副产物石膏可做商品出售等优点成为世界上占统治地位的烟气脱硫方法。但由于湿法烟气脱硫技术具有投资大、动力消耗大、占地面积大、设备复杂、运行费用和技术要求高等缺点,所以限制了它的发展速度。 干法脱硫技术与湿法相比具有投资少、占地面积小、运行费用低、设备简单、维修方便、烟气无需再热等优点,但存在着钙硫比高、脱硫效率低、副产物不能商品化等缺点。 自20世纪80年代末,经过对干法脱硫技术中存在的主要问题的大量研究和不断的改进,现在已取得突破性进展。有代表性的喷雾干燥法、活性炭法、电子射线辐射法、填充电晕法、荷电干式吸收剂喷射脱硫技术、炉内喷钙尾部增湿法、烟气循环流化床技术、炉内喷钙循环流化床技术等一批新的烟气脱硫技术已成功地开始了商业化运行,其脱硫副产物脱硫灰已成功地用在铺路和制水泥混合材料方面。这一些技术的进步,迎来了干法、半干法烟气脱硫技术的新的快速发展时期。 传统的石灰石/石膏法脱硫与新的干法、半干法烟气脱硫技术经济指标的比较见表1。表1说明在脱硫效率相同的条件下,干法、半干法脱硫技术与湿法相比,在单位投资、运行费用和占地面积的方面具有明显优势,将成为具有产业化前景的烟气脱硫技术。 3、电子射线辐射法烟气脱硫技术电子射线辐射法是日本荏原制作所于1970年着手研究,1972年又与日本原子能研究所合作,确立的该技术作为连续处理的基础。1974年荏原制作所处理重油燃烧废气,进行了1000Nm3/h规模的试验,探明了添加氨的辐射效果,稳定了脱硫脱硝的条件,成功地捕集了副产品和硝铵。80年代由美国政府和日本荏原制作所等单位分担出资在美国印第安纳州普列斯燃煤发电厂建立了一套最大处理高硫煤烟气量为

有图有真相-干法、半干法、湿法脱硫-太详细

脱硫工艺是用湿法、半湿法还是干法,看完这篇就知道了 导读 目前烟气脱硫技术种类达几十种,按脱硫过程是否加水和脱硫产物的干湿形态,烟气脱硫分为:湿法、半干法、干法三大类脱硫工艺。 湿法脱硫技术较为成熟,效率高,操作简单。 一、湿法烟气脱硫技术

优点:湿法烟气脱硫技术为气液反应,反应速度快,脱硫效率高,一般均高于90%,技术成熟,适用面广。湿法脱硫技术比较成熟,生产运行安全可靠,在众多的脱硫技术中,始终占据主导地位,占脱硫总装机容量的80%以上。 缺点:生成物是液体或淤渣,较难处理,设备腐蚀性严重,洗涤后烟气需再热,能耗高,占地面积大,投资和运行费用高。系统复杂、设备庞大、耗水量大、一次性投资高,一般适用于大型电厂。 分类:常用的湿法烟气脱硫技术有石灰石-石膏法、间接的石灰石-石膏法、柠檬吸收法等。 技术路线 A、石灰石/石灰-石膏法

原理:是利用石灰石或石灰浆液吸收烟气中的SO2,生成亚硫酸钙,经分离的亚硫酸钙(CaSO3)可以抛弃,也可以氧化为硫酸钙(CaSO4),以石膏形式回收。是目前世界上技术最成熟、运行状况最稳定的脱硫工艺,脱硫效率达到90%以上。 目前传统的石灰石/石灰—石膏法烟气脱硫工艺在现在的中国市场应用是比较广泛的,其采用钙基脱硫剂吸收二氧化硫后生成的亚硫酸钙、硫酸钙,由于其溶解度较小,极易在脱硫塔内及管道内形成结垢、堵塞现象。对比石灰石法脱硫技术,双碱法烟气脱硫技术则克服了石灰石—石灰法容易结垢的缺点。 B 、间接石灰石-石膏法:

常见的间接石灰石-石膏法有:钠碱双碱法、碱性硫酸铝法和稀硫酸吸收法等。 原理:钠碱、碱性氧化铝(Al2O3·nH2O)或稀硫酸(H2SO4)吸收 SO2,生成的吸收液与石灰石反应而得以再生,并生成石膏。该法操作简单,二次污染少,无结垢和堵塞问题,脱硫效率高,但是生成的石膏产品质量较差。 C、柠檬吸收法: 原理:柠檬酸(H3C6H5O7·H2O)溶液具有较好的缓冲性能,当SO2气体通过柠檬酸盐液体时,烟气中的SO2与水中H发生反应生成H2SO3络合物,SO2吸收率在99%以上。

常用的烟气脱硫技术

常用的烟气脱硫技术 一、湿法烟气脱硫技术(WFGD) 吸收剂在液态下与SO2反应,脱硫产物也为液态。该法脱硫效率高、运行稳定,但投资和运行维护费用高、系统复杂、脱硫后产物较难处理、易造成二次污染。 湿法烟气脱硫技术优点:湿法烟气脱硫技术为气液反应,反应速度快、脱硫效率高,一般均高于90%,技术成熟、适用面广。湿法脱硫技术比较成熟,生产运行安全可靠,在众多的脱硫技术中,始终占据主导地位,占脱硫总装机容量的80% 以上。 缺点:生成物是液体或淤渣,较难处理,设备腐蚀性严重,洗涤后烟气需再热,能耗高,占地面积大,投资和运行费用高、系统复杂、设备庞大、耗水量大、一次性投资高,一般适用于大型电厂。分类: 常用的湿法烟气脱硫技术有石灰石-石膏法、间接的石灰石-石膏法、柠檬吸收法等。 1、石灰石/石灰-石膏法 是利用石灰石或石灰浆液吸收烟气中的SO2,生成亚硫酸钙,经分离的亚硫酸钙(CaO3S)可以抛弃,也可以氧化为硫酸钙(CaSO4),以石膏形式回收。这是目前世界上技术最成熟、运行状况最稳定的脱硫工艺,脱硫效率达到90% 以上。 2、间接石灰石-石膏法

常见的间接石灰石-石膏法有: 钠碱双碱法、碱性硫酸铝法和稀硫酸吸收法等。原理: 钠碱、碱性氧化铝(Al2O3˙nH2O)或稀硫酸(H2SO4)吸收SO2,生成的吸收液与石灰石反应而得以再生,并生成石膏。该法操作简单,二次污染少,无结垢和堵塞问题,脱硫效率高,但是生成的石膏产品质量较差。 3、柠檬吸收法 原理:柠檬酸(H3C6H5O7˙H2O)溶液具有较好的缓冲性能,当SO2气体通过柠檬酸盐液体时,烟气中的SO2与水中H+发生反应生成H2SO3络合物,SO2吸收率在99% 以上。这种方法仅适于低浓度SO2烟气,而不适于高浓度SO2气体吸收,应用范围比较窄。另外,还有海水脱硫法、磷铵复肥法、液相催化法等湿法烟气脱硫技术。 二、干法烟气脱硫技术(DFGD) 脱硫吸收和产物处理均在干状态下进行。该法系统简单、无污水和废酸排出、设备腐蚀小、运行费用低,但脱硫效率较低。 干法烟气脱硫技术优点:干法烟气脱硫技术为气同反应,相对于湿法脱硫系统来说,具有设备简单、占地面积小、投资和运行费用较低、操作方便、能耗低、生成物便于处置、无污水处理系统等优点。

半干法脱硫技术说明

半干法脱硫技术说明 增湿灰循环脱硫技术常用的脱硫剂为CaO。CaO在一个专门设计的消化器中加水消化成Ca(OH)2。在通过混合增湿器后,混合灰的水分含量由2%增加5%。然后导入烟道反应器与烟气中的SO2反应。生成亚硫酸钙,并使最终产物为干粉状。 本公司在考察和引进国外同类的技术的基础上,结合我国国情,成功研发出新一代半干法脱硫技术。本技术的特点在于:取消了制浆和喷浆系统,实行氧化钙的消化及循环增湿一体化设计。这不仅克服了单独消化时出现的漏风、堵管等问题。而且能利用消化时产生的蒸汽,增加了烟气的相对湿度,对脱硫有利。同时克服了普通半干法吸收塔可能出现的粘壁现象。实行脱硫灰多次循环,循环倍率可高达50倍,使脱硫剂的利用率提高到95%,克服了其他半干法工艺脱硫剂利用率布告的问题。本方案脱硫效率高。用90%的氧化钙作脱硫剂,当Ca/s=1.1 mol/mol 时,确保脱硫率大于80%;当Ca/s=1.2~1.3 mol/mol 时,脱硫率可达90%以上。 半干法烟气脱硫系统 一、半干法脱硫工艺 1、介绍

1997年ABB低投资烟气脱硫(FGD)技术方面的开发工作得到了广泛的报道。这种技术将低投资与优良的性能巧妙地结合,是针对亚洲和东欧的新兴市场开发的。 采用这种脱硫技术,不管燃料中的含硫量是多少,脱硫效率都有可能达到90%以上,此外,该系统适合于已有项目的改造,它的占地面积小。干法烟气脱硫技术常被忽略的一个主要特点是它在不增加投资的情况下提高了除尘效率。从干法烟气脱硫系统排出的烟气可不经加热,通过已有的烟囱排出。 2、半干法工艺过程 半干法工艺是利用含有石灰(氧化钙)的干燥剂或干燥的消石灰(氢氧化钙)吸收二氧化硫的,这两种吸收剂都可使用,也可以使用含适当碱性的飞灰。 任何干法烟气脱硫工艺中,关键的控制参数都是反应区内,即反应器及其后的除尘器内的烟气温度。在相对湿度为40%至50%时,消石灰活性增强,能够非常有效地吸收二氧化硫。烟气的相对湿度是利用给烟气内喷水的方法提高的。在传统的干法烟气脱硫工艺中,水和石灰是以浆液的状态(不论是否循环)注入烟气的,但水分布在粉料微粒的表面,水在其中的含量仅占百分之几。这样,吸收剂的循环量比传统干法烟气脱硫要高得多。即,用于蒸发的表面积非常大。进入烟气的粉料的干燥时间非常短,所以它可以采用比传统喷雾干燥技术小得多的反应器。提高了烟气的相对湿度,足以在典型的干法脱硫操作温度或高于饱和温度10℃~20℃(实践中这一温度范围是65℃~75℃)激活石灰吸收剂二氧化硫。 水在增湿搅拌机中加入吸收剂,然后才注入烟气。半干法技术的独到之处是所有的循环吸收剂都要在搅拌机中增湿,这样做,可以最大限度的利用循环吸收剂。经过活化和干燥之后,烟气中干燥的循环粉料在高效的除尘器,最好是袋式除尘器中被分离出来,进入搅拌机,补充石灰也是在这里加入的。注入搅拌机的水量要保证恒定的烟出口温度。控制系统以烟气的出入口温度为基础,以烟气量为辅助,采用前馈信号控制,并有反馈微调。出口的SO2也采用类似的方法进行控制:入口和出口的SO2浓度加上烟气流量决定石灰的加入速率。副产品收集在除尘器灰斗内,当达到回斗的最高料位时,副产品溢流排出。 半干法工艺的主要特点:高循环率、干燥迅速、反应器尺寸小、反应剂的利用率高: 半干法工艺的特点是循环率高,这意味着最高限度地利用了反应剂。如上所述,高循环率获得很大的表面积,供水分迅速蒸发,这使得半干法工艺采用的反应/干燥器比采用喷雾干燥技术的干法烟气循环系统的反应器小得多。 此外,在半干法工艺中,也尽可能少采用复杂的专用设备:不采用高速旋转雾化器:也不采用需要压缩空气的双流体喷嘴。在搅拌机内搅拌循环物料和反应剂消耗的电力比传统干法烟气净化系统的相应电耗要低得多。对比可知,旋转喷雾器和双流体喷嘴比半干法的搅拌机复杂得多。采用搅拌机而不采用旋转喷雾

半干法脱硫方案

半干法脱硫方案 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

烟气脱硫 技术方案

第一章工程概述 项目概况 某钢厂将就该厂烧结机后烟气进行烟气脱硫处理。现烧结机烟气流程为烧结机—除尘器—吸风机—烟囱。除尘器采用多管式除尘器,除尘效率大于90%。主要原始资料如下: 主流烟气脱硫方法 烟气脱硫(简称FGD)是世界上唯一大规模商业化应用的脱硫方法,是控制酸雨和二氧化硫污染最为有效和主要的技术手段。 FGD其基本原理都是以一种碱性物质来吸收SO2,就目前国内实际应用工程,按脱硫剂的种类划分,FGD技术主要可分为以下几种方法: 1、以石灰石、生石灰为基础的钙法; 2、以镁的化合物为基础的镁法; 3、以钠的化合物为基础的钠法或碱法; 4、以化肥生产中的废氨液为基础的氨法; 最为普遍使用的商业化技术是钙法,所占比例在90%以上。而其中应用最为广泛的是石灰石-石膏湿法和循环流化床半干法烟气脱硫系统。针对本工

程,我公司将就以上两种脱硫方法分别进行设计、描述,并最终给出两方案比较结果。 主要设计原则 针对本脱硫工程建设规模,同时本着投资少、见效快、系统简单可靠等原则,我方在设计过程中主要遵循以下主要设计原则: 1、脱硫剂采用外购成品石灰石粉(半干法为消石灰粉),厂内不设脱硫剂制备车间。 2、考虑到烧结机吸风机出口烟气含硫浓度为2345 mg/Nm3,浓度并不是很高,在满足环保排放指标的前提下,脱硫装置的设计脱硫效率取≥90%。 3、脱硫装置设单独控制室,采用PLC程序控制方式。同时考虑同主体工程的信号连接。 4、脱硫装置的布置尽可能靠近烟囱以减少烟道的长度,减少管道阻力及工程投资。

干法和半干法脱硫工艺

第三节干法和半干法脱硫工艺 喷雾干燥法脱硫工艺 喷雾干燥法脱硫工艺以石灰为脱硫吸收剂,石灰经消化并加水制成消石灰乳,由泵打入位于吸收塔内的雾化装置,在吸收塔内,被雾化成细小液滴的吸收剂与烟气混合接触,与烟气中的SO2发生化学反应生成CaS03,烟气中的SO2被脱除。与此同时,吸收剂带入的水分迅速被蒸发而干燥,烟气温度随之降低。脱硫反应产物及未被利用的吸收剂呈干燥颗粒状,随烟气带出吸收塔,进入除尘器被收集。脱硫后的烟气经除尘器除尘后排放。为了提高脱硫吸收剂的利用率,一般将部分除尘器收集物加入制浆系统进行循环利用。该工艺有两种不同的雾化形式可供选择,一种为旋转喷雾轮雾化,另一种为气液两相流。 喷雾干燥法脱硫工艺具有技术成熟、工艺流程较为简单、系统可靠性高等特点,脱硫率可达到85%以上。该工艺在美国及西欧一些国家有一定应用范围(8%)。脱硫灰渣可用作制砖、筑路,但多为抛弃至灰场或回填废旧矿坑[9]。 烟气循环流化床脱硫工艺 该工艺由吸收剂制备、吸收塔、脱硫灰再循环、除尘器及控制系统等部分组成。一般采用干态的消石灰粉作为吸收剂,也可采用其它对SO2有吸收反应能力的干粉或浆液作为吸收剂。 未经处理的烟气从吸收塔(即流化床)底部进入。吸收塔底部为一个文丘里装置,烟气流经文丘里管后速度加快,并在此与很细的的吸收剂粉末互相混合,颗粒之间、气体与颗粒之间剧烈摩擦,形成流化床,在喷人均匀水雾降低烟温的条件下,吸收剂与烟气中的SO2反应生成CaSO3和CaSO4。 脱硫后携带大量固体颗粒的烟气从吸收塔顶部排出,进人再循环除尘器,被分离出来的颗粒经中间灰仓返回吸收塔,由于固体颗粒反复循环达百次之多,故吸收剂利用率较高。 此工艺的副产物呈干粉状,其化学成分与喷雾干燥法脱硫工艺类似,主要由飞灰、CaS03、 CaSO4和未反应完的吸收剂Ca(OH)2等组成,适合作废矿井回填、道路基础等。

烟气半干法脱硫技术方案

烟气半干法脱硫技术方案 1. 吸收塔 1.1工艺流程 图1-1 循环流化床半干法工艺流程示意图 原烟气由循环流化床半干法净化装置底部进入循环悬浮流化床脱硫塔。Ca(OH)2原料经过螺旋输送机送入脱硫塔,流态化的物料和烟气中的二氧化硫在脱硫塔中发生化学反应,脱除掉大部分的二氧化硫。烟气通过脱硫塔底部的文丘里管的加速,进入循环流化床体,物料在循环流化床里,气固两相由于气流的作用,产生激烈的湍动与混合,充分接触,在上升的过程中,不断形成絮状物向下返回,而絮状物在激烈湍动中又不断解体重新被气流提升,使得气固间的滑落速度高达单颗粒滑落速度的数十倍;脱硫塔顶部结构进一步强化了絮状物的返回,进一步提高了塔内颗粒的床层密度,使得床内的Ca/S 比高达50以上。这样循环流化床内气固两相流机制,极大地强化了气固间的传质与传热,为实现污染物高脱除率提供了根本的保证。 喷嘴的安装位置设置在文丘里扩散段,喷入的雾化水以降低脱硫塔内的烟温,从而使得SO2与Ca(OH)2的反应转化为可以瞬间完成的离子型反应。吸收剂、循环脱硫灰在文丘里段以上的塔内进行第二步的充分反应,生成副产物CaSO3·1/2H2O,还与SO3等反应生成相应的副产物CaSO4·1/2H2O等。 烟气在上升过程中,颗粒一部分随烟气被带出脱硫塔,一部分因自重重新回流到循

环流化床内,进一步增加了流化床的床层颗粒浓度和延长吸收剂的反应时间。烟气在文丘里以上的塔内流速为3.5~5.5m/s,烟气在塔内的气固接触时间大约为6~8秒左右,从而有效地保证了脱硫效率。 从化学反应工程的角度看,SO2与氢氧化钙的颗粒在循环流化床中的反应过程是一个外扩散控制的反应过程;SO2与氢氧化钙反应的速度主要取决于SO2在氢氧化钙颗粒表面的扩散阻力,或说是氢氧化钙表面气膜厚度。当滑落速度或颗粒的雷诺数增加时,氢氧化钙颗粒表面的气膜厚度减小,SO2进入氢氧化钙的传质阻力减小,传质速率加快,从而加快SO2与氢氧化钙颗粒的反应。 只有在循环流化床这种气固两相流动机制下,才具有最大的气固滑落速度。同时,脱硫脱硫塔内的气固最大滑落速度是否能在不同的锅炉负荷下始终得以保持不变,是衡量一个循环流化床半干法脱硫工艺先进与否的一个重要指标,也是一个鉴别半干法脱硫能否达到较高脱硫率的一个重要指标。当气流速度大于10m/s时,气固间滑落速度很小或只在脱硫塔某个局部具有滑落速度,要达到很高的脱硫率是不可能的。 喷入的用于降低烟气温度的水,通过以激烈湍动的、拥有巨大的表面积的颗粒作为载体,在塔内得到充分的蒸发,保证了进入后续除尘器中的灰具有良好的流动状态。 净化后的含尘烟气经脱硫塔的顶部出口进入布袋除尘器除去大部分细灰,由除尘器除下的细灰和大颗粒大部分经过空气斜槽循环进入脱硫塔,少量储存于除尘器下灰斗外排。净化后的烟气经引风机由烟囱排入大气。 当雾化水经过回流式雾化喷嘴在脱硫塔中雾化,并与烟气充分接触,烟气冷却并增湿,氢氧化钙粉颗粒同H2O 、SO2、H2SO3反应生成干粉产物,整个反应分为气相、液相和固相三种状态反应,反应步骤及方程式如下: ⑴SO2被液滴吸收; SO2(气)+H2O→H2SO3(液) ⑵吸收的SO2同溶液的吸收剂消石灰粉反应生成亚硫酸钙; Ca(OH)2(液)+H2SO3(液)→CaSO3(液)+2H2O Ca(OH)2(固)+H2SO3(液)→CaSO3(液)+2H2O ⑶液滴中CaSO3达到饱和后,即开始结晶析出 CaSO3(液)→CaSO3(固) ⑷部分溶液中的CaSO3与溶于液滴中的氧反应,氧化成硫酸钙 CaSO3(液)+1/2O2(液)→CaSO4(液)

半干法脱硫存在的问题

烟气循环流化床石灰半干法脱硫存在的问题与改造方案 烟气循环流化床石灰半干法脱硫 存在的问题与改造方案 摘要:烟气循环流化床石灰半干法脱硫在我国属于新兴的环保项目,本文主要针对某厂#6炉烟气循环流化床石灰半干法脱硫自投运以来存在的问题进行了分析,并针对每个问题提出了可行性解决方案,其中部分方案已经得以实施,并取得一定成效。 关键词:半干法脱硫存在问题解决方案 1、脱硫系统概述 某厂#6炉150MV a组是上海锅炉厂生产的循环流化床锅炉,烟气脱硫除尘系统,采用循环流化床半干法脱硫装置,脱硫除尘岛布置在锅炉尾部的空气预热器出口至烟囱的区域范围,每台锅炉的烟气从空气预热器出来后,进入预除尘器(ESP1)预除尘,除去85%勺飞灰,然后进入脱硫塔,在塔内进行脱硫反应,再进入脱硫除尘器(ESP2),除尘后由吸风机排入烟道通过烟囱排放到大气。 脱硫工程除消石灰制备系统和压缩空气系统采用三台机组共用外,其它系统为一台机组一套配置,主要包括:烟气系统、预除尘系统、脱硫塔系统、脱硫电除尘器系统、脱硫工艺水系统、物料再循环系统等。 脱硫塔是烟气脱硫系统的核心设备,其包括烟气进入口、雾化喷嘴安装口、回料口和仓顶排气接入口、顶部封盖、烟气径向出口、底部排灰斗等,从预除尘器出来的烟气经过脱硫塔排出,在脱硫塔中,增湿雾化水、吸收剂分别从文丘里装置扩散管上端喷入,从脱硫电除尘器返回的脱硫灰返回到中间文丘里管的收缩段出口部分。烟气与脱硫剂进行混合、反应,这种强烈的多相流保证烟气中的 S02与脱硫剂具有较好的反应、换热及传质性能。从而达到脱硫的目的。 从预除尘器出来的烟气中未被捕集的烟尘、脱硫塔产生的脱硫副产物(脱硫 灰)、未完全反应的吸收剂等被气流夹带从脱硫塔顶部排出,进入脱硫电除尘器, 这些粉尘绝大部分被捕集落入到电除尘器的灰斗中。根据脱硫塔内压差的控制信 电场灰斗下的大部分脱硫灰通过空气斜槽返回脱硫塔参与进一步的化 号, 学反应,形成了物料的再循环,只有一小部分物料排出脱硫系统。

相关主题
文本预览
相关文档 最新文档