当前位置:文档之家› 北理工数据结构实验遍历二叉树

北理工数据结构实验遍历二叉树

北理工数据结构实验遍历二叉树
北理工数据结构实验遍历二叉树

本科实验报告实验名称:遍历二叉树

一、实验目的

1、熟悉VC环境,学习使用C语言实现树的基本操作。

2、通过编程、上机调试,进一步理解数、二叉数、拓展二叉数

的基本概念。

3、了解并熟悉二叉数的存储结构及其各种操作,掌握各种二叉

数的遍历方法。

4、锻炼动手编程,独立思考的能力。

二、实验题目

遍历二叉树

(1)问题描述

遍历二叉树:要求:请输入一棵二叉树的扩展的前序序列,经过处理后生成一棵二叉树,然后对于该二叉树输出前序、中序和后序遍历序列。例如:124*5***3**

三、实验基础知识

线性表、二叉树的基本概念的熟练掌握并实际运用。并了解创建树、遍历二叉树的思想解决问题的能力

四、实验设计方法

1、概要设计

为实现上述程序功能,首先需要二叉树的抽象数据结构。

⑴二叉树的抽象数据类型定义为:

ADT BinaryTree {

数据对象D:

D是具有相同特性的数据元素的集合。

数据关系R:

若D=Φ,则R=Φ,称BinaryTree为空二叉树;

若D≠Φ,则R={H},H是如下二元关系;

(1)在D中存在惟一的称为根的数据元素root,它在关系H下无前驱;

(2)若D-{root}≠Φ,则存在D-{root}={D1,Dr},且D1∩Dr =Φ;

(3)若D1≠Φ,则D1中存在惟一的元素x1,∈H,且存在D1上的关

系H1 ?H;若Dr≠Φ,则Dr中存在惟一的元素xr,∈H,且存在上的

关系Hr ?H;H={,,H1,Hr};

(4)(D1,{H1})是一棵符合本定义的二叉树,称为根的左子树;(Dr,{Hr})是一棵

符合本定义的二叉树,称为根的右子树。

基本操作:

CreateTree(&T)

操作结果:按先序次序建立二叉链表表示的二叉树T

PreOrderTraverse( T,Visit())

初始条件:二叉树T已经存在,visit是对结点操作的应用函数

操作结果:先序遍历二叉树T ,对每个结点调用visit函数仅一次;一旦visit

()失败,则操作失败。

InOrderTraverse(T,Visit())

初始条件:二叉树T已经存在,visit是对结点操作的应用函数

操作结果:中序遍历二叉树T ,对每个结点调用visit函数仅一次;一旦visit

()失败,则操作失败。

PostOrderTraverse(T,Visit)())

初始条件:二叉树T已经存在,visit是对结点操作的应用函数

操作结果:后序遍历二叉树T ,对每个结点调用visit函数仅一次;一旦visit

()失败,则操作失败。

} ADT BinaryTre e

(2)、宏定义

#define ok 1

#define error 0

(3)主程序流程

主程序先调用CreateTree(BiTree &T)函数,根据输入的先序序列构造出一棵二叉树,再依次调用PreOrderTraverse(BiTree T,int (*visit)(char e)),InOrderTraverse(BiTree T,int (*visit)(char e)),PostOrderTraverse(BiTree T,int (*visit)(char e))函数,对该二叉树进行先序、中序、后序遍历并输出结果。

(4)模块调用关系

由主函数调用创建模块,再调用计算模块,由计算模块将结果输出。

(5)流程图

五、实验结果及数据分析

1、124*5***3**

2、123**4**5***

六、总结

此次编程实验,让我了解到全面思考的重要性,再开始的程序设计中,我只想着直接建立树,没想到用队列辅助,在开始的时候一直测试失败,这让我想到知识是相互联系的,必须全面学习。

七、附录程序清单

#include"stdio.h"

#include"stdlib.h"

#define ok 1

#define error 0

/* 二叉链表的结点*/

typedef struct BiTNode

{

char data;

struct BiTNode * lchild, * rchild;

}BiTNode,*BiTree;

/* 队列*/

typedef BiTree QElemType; //定义队列元素类型typedef struct QNode

{

QElemType data;

struct QNode *next;

}QNode,*QueuePtr; //定义队列结点typedef struct

{

QueuePtr front;

QueuePtr rear;

}LinkQueue; //定义队列数据类型char c; //输入的字符

/* 创建队列*/

int InitQueue(LinkQueue &Q)

{

Q.front=Q.rear=(QueuePtr)malloc(sizeof(QNode));

if(!Q.front) exit(1); //存储分配失败Q.front->next=NULL;

return ok;

}

/*插入元素e作为新的队尾元素*/

int EnQueue( LinkQueue &Q,QElemType e)

{

QNode * p=(QueuePtr)malloc(sizeof(QNode));

if(!p) exit(1);

p->data=e;

p->next=NULL;

Q.rear->next=p;

Q.rear=p;

return ok;

}

/*删除队头元素并以e返回*/

int DeQueue(LinkQueue & Q,QElemType & e)

{

if(Q.front==Q.rear) return error;

QNode *p=Q.front->next;

e=p->data;

Q.front->next=p->next;

if(Q.rear==p) Q.rear=Q.front;

free(p);

return ok;

}

/* 建立二叉树*/

int CreateTree(BiTree & T)

{

c=getchar();

if(c=='*') T=NULL;

else

{

T=(BiTree)malloc(sizeof(BiTNode));

if(!T) { printf("ERROE\n"); exit(1);}

T->data=c;

CreateTree(T->lchild); //递归建立左子树

CreateTree(T->rchild); //递归建立右子树}

return ok;

}

int Visit(char e)

{ printf("%c ",e); return ok;}

/* 先序遍历二叉树*/

int PreOrderTraverse(BiTree T,int (*Visit)( char c))

{

if(T)

{

Visit(T->data);

PreOrderTraverse(T->lchild,Visit); //先序遍历左子树

PreOrderTraverse(T->rchild,Visit); //先序遍历右子树}

return ok;

}

/* 中序遍历二叉树*/

int InOrderTraverse(BiTree T,int (*Visit)( char c))

{

if(T)

{

InOrderTraverse(T->lchild,Visit); //中序遍历左子树

Visit(T->data);

InOrderTraverse(T->rchild,Visit); //中序遍历右子树}

return ok;

}

/* 后序遍历二叉树*/

int PostOrderTraverse(BiTree T,int (*Visit)( char c))

{

if(T)

{

PostOrderTraverse(T->lchild,Visit); //后序遍历左子树

PostOrderTraverse(T->rchild,Visit); //后序遍历右子树

Visit(T->data);

}

return ok;

}

int main()

{

BiTree T;

printf("输入二叉树的扩展的前序序列\n");

CreateTree(T);

printf("二叉树的先序序列:");

PreOrderTraverse(T,Visit); printf("\n");

printf("二叉树的中序序列:");

InOrderTraverse(T,Visit); printf("\n");

printf("二叉树的后序序列:");

PostOrderTraverse(T,Visit); printf("\n");

return ok;

}

数据结构树和二叉树实验报告

《数据结构》课程实验报告 实验名称树和二叉树实验序号 5 实验日期 姓名院系班级学号 专业指导教师成绩 教师评语 一、实验目的和要求 (1)掌握树的相关概念,包括树、结点的度、树的度、分支结点、叶子结点、儿子结点、双亲结点、树 的深度、森林等定义。 (2)掌握树的表示,包括树形表示法、文氏图表示法、凹入表示法和括号表示法等。 (3)掌握二叉树的概念,包括二叉树、满二叉树和完全二叉树的定义。 (4)掌握二叉树的性质。 (5)重点掌握二叉树的存储结构,包括二叉树顺序存储结构和链式存储结构。 (6)重点掌握二叉树的基本运算和各种遍历算法的实现。 (7)掌握线索二叉树的概念和相关算法的实现。 (8)掌握哈夫曼树的定义、哈夫曼树的构造过程和哈夫曼编码产生方法。 (9)掌握并查集的相关概念和算法。 (10)灵活掌握运用二叉树这种数据结构解决一些综合应用问题。 二、实验项目摘要 1.编写一程序,实现二叉树的各种基本运算,并在此基础上设计一个主程序完成如下功能: (1)输出二叉树b; (2)输出H结点的左、右孩子结点值; (3)输出二叉树b的深度; (4)输出二叉树b的宽度; (5)输出二叉树b的结点个数; (6)输出二叉树b的叶子结点个数。 2.编写一程序,实现二叉树的先序遍历、中序遍历和后序遍历的各种递归和非递归算法,以及层次遍历的算法。 三、实验预习内容 二叉树存储结构,二叉树基本运算(创建二叉树、寻找结点、找孩子结点、求高度、输出二叉树)

三、实验结果与分析 7-1 #include #include #define MaxSize 100 typedef char ElemType; typedef struct node { ElemType data; struct node *lchild; struct node *rchild; } BTNode; void CreateBTNode(BTNode *&b,char *str) { BTNode *St[MaxSize],*p=NULL; int top=-1,k,j=0; char ch; b=NULL; ch=str[j]; while (ch!='\0') { switch(ch) { case '(':top++;St[top]=p;k=1; break; case ')':top--;break; case ',':k=2; break; default:p=(BTNode *)malloc(sizeof(BTNode)); p->data=ch;p->lchild=p->rchild=NULL; if (b==NULL) b=p; else { switch(k) { case 1:St[top]->lchild=p;break; case 2:St[top]->rchild=p;break; } } } j++; ch=str[j]; }

数据结构二叉树实验报告

实验三二叉树的遍历 一、实验目的 1、熟悉二叉树的结点类型和二叉树的基本操作。 2、掌握二叉树的前序、中序和后序遍历的算法。 3、加深对二叉树的理解,逐步培养解决实际问题的编程能力。 二、实验环境 运行C或VC++的微机。 三、实验内容 1、依次输入元素值,以链表方式建立二叉树,并输出结点的值。 2、分别以前序、中序和后序遍历二叉树的方式输出结点内容。 四、设计思路 1. 对于这道题,我的设计思路是先做好各个分部函数,然后在主函数中进行顺序排列,以此完成实验要求 2.二叉树采用动态数组 3.二叉树运用9个函数,主要有主函数、构建空二叉树函数、建立二叉树函数、访问节点函数、销毁二叉树函数、先序函数、中序函数、后序函数、范例函数,关键在于访问节点 五、程序代码 #include #include #include #define OK 1 #define ERROR 0 typedef struct TNode//结构体定义 {

int data; //数据域 struct TNode *lchild,*rchild; // 指针域包括左右孩子指针 }TNode,*Tree; void CreateT(Tree *T)//创建二叉树按,依次输入二叉树中结点的值 { int a; scanf("%d",&a); if(a==00) // 结点的值为空 *T=NULL; else // 结点的值不为空 { *T=(Tree)malloc(sizeof(TNode)); if(!T) { printf("分配空间失败!!TAT"); exit(ERROR); } (*T)->data=a; CreateT(&((*T)->lchild)); // 递归调用函数,构造左子树 CreateT(&((*T)->rchild)); // 递归调用函数,构造右子树 } } void InitT(Tree *T)//构建空二叉树 { T=NULL; } void DestroyT(Tree *T)//销毁二叉树 { if(*T) // 二叉树非空 { DestroyT(&((*T)->lchild)); // 递归调用函数,销毁左子树 DestroyT(&((*T)->rchild)); // 递归调用函数,销毁右子树 free(T); T=NULL; } } void visit(int e)//访问结点 { printf("%d ",e); }

第六章树和二叉树习题数据结构

习题六树和二叉树 一、单项选择题 1.以下说法错误的是 ( ) A.树形结构的特点是一个结点可以有多个直接前趋 B.线性结构中的一个结点至多只有一个直接后继 C.树形结构可以表达(组织)更复杂的数据 D.树(及一切树形结构)是一种"分支层次"结构 E.任何只含一个结点的集合是一棵树 2.下列说法中正确的是 ( ) A.任何一棵二叉树中至少有一个结点的度为2 B.任何一棵二叉树中每个结点的度都为2 C.任何一棵二叉树中的度肯定等于2 D.任何一棵二叉树中的度可以小于2 3.讨论树、森林和二叉树的关系,目的是为了() A.借助二叉树上的运算方法去实现对树的一些运算 B.将树、森林按二叉树的存储方式进行存储 C.将树、森林转换成二叉树 D.体现一种技巧,没有什么实际意义 4.树最适合用来表示 ( ) A.有序数据元素 B.无序数据元素 C.元素之间具有分支层次关系的数据 D.元素之间无联系的数据 5.若一棵二叉树具有10个度为2的结点,5个度为1的结点,则度为0的结点个数是()A.9 B.11 C.15 D.不确定 6.设森林F中有三棵树,第一,第二,第三棵树的结点个数分别为M1,M2和M3。与森林F对应的二叉树根结点的右子树上的结点个数是()。 A.M1 B.M1+M2 C.M3 D.M2+M3 7.一棵完全二叉树上有1001个结点,其中叶子结点的个数是() A. 250 B. 500 C.254 D.505 E.以上答案都不对 8. 设给定权值总数有n 个,其哈夫曼树的结点总数为( ) A.不确定 B.2n C.2n+1 D.2n-1 9.二叉树的第I层上最多含有结点数为() A.2I B. 2I-1-1 C. 2I-1 D.2I -1 10.一棵二叉树高度为h,所有结点的度或为0,或为2,则这棵二叉树最少有( )结点A.2h B.2h-1 C.2h+1 D.h+1 11. 利用二叉链表存储树,则根结点的右指针是()。 A.指向最左孩子 B.指向最右孩子 C.空 D.非空 14.在二叉树结点的先序序列,中序序列和后序序列中,所有叶子结点的先后顺序()A.都不相同 B.完全相同 C.先序和中序相同,而与后序不同 D.中序和后序相同,而与先序不同 15.在完全二叉树中,若一个结点是叶结点,则它没()。 A.左子结点 B.右子结点 C.左子结点和右子结点 D.左子结点,右子结点和兄弟结点 16.在下列情况中,可称为二叉树的是()

二叉树的建立及其应用程序代码

#include #include #include #include typedef char elemtype; typedef struct tree //二叉树结构体 { elemtype data; struct tree *lchild; struct tree *rchild; }TREE; TREE *createbitree() //递归建立二叉树{ char ch; TREE *p; ch=getchar(); if (ch=='#') p=NULL; else { p=(TREE *)malloc(sizeof(TREE)); p->data=ch; p->lchild=createbitree(); p->rchild=createbitree(); } return p; } void preorder(TREE *p) //前序遍历 { if(p!=NULL) { printf("%c ",p->data); preorder(p->lchild); preorder(p->rchild); } } void inorder(TREE *p) //中序遍历 { if (p!=NULL)

{ inorder(p->lchild); printf("%c ",p->data); inorder(p->rchild); } } void postorder(TREE *p) //后序遍历 { if (p!=NULL) { postorder(p->lchild); postorder(p->rchild); printf("%c ",p->data); } } void shu(TREE *p,int len) //数的形状{ if (p!=NULL) { shu(p->lchild,len+1); for (int i=1;i<=4*len;i++) { printf(" "); } printf("%c",p->data); printf("------\n"); shu(p->rchild,len+1); } } int shendu(TREE *p) //计算深度 { int l,r; if (p==NULL) { return 0; } l=shendu(p->lchild)+1; r=shendu(p->rchild)+1; if (l>=r) //左右子树比较return l; else

目前最完整的数据结构1800题包括完整答案树和二叉树答案

第6章树和二叉树 部分答案解释如下。 12. 由二叉树结点的公式:n=n0+n1+n2=n0+n1+(n0-1)=2n0+n1-1,因为n=1001,所以1002=2n0+n1,在完全二叉树树中,n1只能取0或1,在本题中只能取0,故n=501,因此选E。 42.前序序列是“根左右”,后序序列是“左右根”,若要这两个序列相反,只有单支树,所以本题的A和B均对,单支树的特点是只有一个叶子结点,故C是最合适的,选C。A或B 都不全。由本题可解答44题。 47. 左子树为空的二叉树的根结点的左线索为空(无前驱),先序序列的最后结点的右线索为空(无后继),共2个空链域。 52.线索二叉树是利用二叉树的空链域加上线索,n个结点的二叉树有n+1个空链域。 部分答案解释如下。 6.只有在确定何序(前序、中序、后序或层次)遍历后,遍历结果才唯一。 19.任何结点至多只有左子树的二叉树的遍历就不需要栈。 24. 只对完全二叉树适用,编号为i的结点的左儿子的编号为2i(2i<=n),右儿子是2i+1(2i+1<=n) 37. 其中序前驱是其左子树上按中序遍历的最右边的结点(叶子或无右子女),该结点无右孩子。 38 . 新插入的结点都是叶子结点。 42. 在二叉树上,对有左右子女的结点,其中序前驱是其左子树上按中序遍历的最右边的结点(该结点的后继指针指向祖先),中序后继是其右子树上按中序遍历的最左边的结点(该结点的前驱指针指向祖先)。 44.非空二叉树中序遍历第一个结点无前驱,最后一个结点无后继,这两个结点的前驱线索和后继线索为空指针。 三.填空题

1.(1)根结点(2)左子树(3)右子树 2.(1)双亲链表表示法(2)孩子链表表示法(3)孩 子兄弟表示法 3.p->lchild==null && p->rchlid==null 4.(1) ++a*b3*4-cd (2)18 5.平衡 因子 6. 9 7. 12 8.(1)2k-1 (2)2k-1 9.(1)2H-1 (2)2H-1 (3)H=?log2N?+1 10. 用顺序存储二叉树时,要按完全二叉树的形式存储,非完全二叉树存储时,要加“虚结 点”。设编号为i和j的结点在顺序存储中的下标为s 和t ,则结点i和j在同一层上的条 件是?log2s?=?log2t?。 11. ?log2i?=?log2j?12.(1)0 (2)(n-1)/2 (3)(n+1)/2 (4) ?log2n?+1 13.n 14. N2+1 15.(1) 2K+1-1 (2) k+1 16. ?N/2? 17. 2k-2 18. 64 19. 99 20. 11 21.(1) n1-1 (2)n2+n3 22.(1)2k-2+1(第k层1个结点,总结点个数是2H-1,其双亲是2H-1/2=2k-2)(2) ?log2i?+1 23.69 24. 4 25.3h-1 26. ?n/2? 27. ?log2k?+1 28.(1)完全二叉树 (2)单枝树,树中任一结点(除最后一个结点是叶子外),只有左子女或 只有右子女。 29.N+1 30.(1) 128(第七层满,加第八层1个) (2) 7 31. 0至多个。任意二叉树,度为1的结点个数没限制。只有完全二叉树,度为1的结点个 数才至多为1。 32.21 33.(1)2 (2) n-1 (3) 1 (4) n (5) 1 (6) n-1 34.(1) FEGHDCB (2)BEF(该二叉树转换成森林,含三棵树,其第一棵树的先根次序是 BEF) 35.(1)先序(2)中序 36. (1)EACBDGF (2)2 37.任何结点至多只有右子女 的二叉树。 38.(1)a (2) dbe (3) hfcg 39.(1) . (2) ...GD.B...HE..FCA 40.DGEBFCA 41.(1)5 (2)略 42.二叉排序树 43.二叉树 44. 前序 45.(1)先根次序(2)中根次序46.双亲的右子树中最左下的叶子结点47.2 48.(n+1)/2 49.31(x的后继是经x的双亲y的右子树中最左下的叶结点) 50.(1)前驱 (2)后 继 51.(1)1 (2)y^.lchild (3)0 (4)x (5)1 (6) y (7)x(编者注:本题按 中序线索化) 52.带权路径长度最小的二叉树,又称最优二叉树 53.69 54.(1)6 (2)261 55.(1)80 (2)001(不唯一)56.2n0-1 57.本题①是表达式求值,②是在二叉排序树中删除值为x的结点。首先查找x,若没有x, 则结束。否则分成四种情况讨论:x结点有左右子树;只有左子树;只有右子树和本身是叶 子。 (1)Postoder_eval(t^.Lchild) (2) Postorder_eval(t^.Rchild) (3)ERROR(无此运 算符)(4)A (5)tempA^.Lchild (6)tempA=NULL(7)q^.Rchild (8)q (9)tempA^.Rchild (10)tempA^.Item

二叉树实验报告

实验题目:实验九——二叉树实验 算法设计(3) 问题分析: 1、题目要求:编写算法交换二叉树中所有结点的左右子树 2、设计思路:首先定义一个二叉树的数据类型,使用先序遍历建立该二叉树,遍历二叉树,设计左右子树交换的函数,再次遍历交换之后的二叉树,与先前二叉树进行比较。遍历算法与交换算法使用递归设计更加简洁。 3、测试数据: A、输入:1 2 4 0 0 5 0 0 3 0 0 交换前中序遍历:4 2 5 1 3 交换后中序遍历:3 1 5 2 4 交换前:交换后: B、输入:3 7 11 0 0 18 17 0 0 19 0 0 6 13 0 0 16 0 0 交换前中序遍历:11 7 17 18 19 3 13 6 16 交换后中序遍历:16 6 13 3 19 18 17 7 11 概要设计: 1、为了实现上述功能:①构造一个空的二叉树;②应用先序遍历输入,建立二叉树;③中序遍历二叉树;④调用左右子树交换函数;⑤中序遍历交换过后的二叉树。 2、本程序包括4个函数: ①主函数main() ②先序遍历二叉树建立函数creat_bt() ③中序遍历二叉树函数inorder() ④左右子树交换函数 exchange()

各函数间关系如下: 详细设计: 1、结点类型 typedef struct binode //定义二叉树 { int data; //数据域 struct binode *lchild,*rchild; //左孩子、右孩子 }binode,*bitree; 2、各函数操作 ① 先序遍历建二叉树函数 bitree creat_bt() { 输入结点数据; 判断是否为0{ 若是,为空; 不是,递归;} 返回二叉树; } ② 左右子树交换函数 void exchange(bitree t) { 判断结点是否为空{ 否,交换左右子树; 递归;} } ③ 中序遍历函数 void inorder(bitree bt) { 判断是否为空{ 递归左子树; 输出; 递归右子树;} } main () creat_bt () inorder () exchange ()

二叉树的遍历和应用

内蒙古科技大学 本科生课程设计说明书 题目:数据结构课程设计 ——二叉树的遍历和应用 学生姓名: 学号: 专业: 班级: 指导教师: 2013年5月29日

内蒙古科技大学课程设计说明书 内蒙古科技大学课程设计任务书 I

内蒙古科技大学课程设计说明书 目录 内蒙古科技大学课程设计任务书..............................................................错误!未定义书签。目录....................................................................................................................................II 第一章需求分析 (3) 1.1课程设计目的 (3) 1.2任务概述 (3) 1.3课程设计内容 (3) 第二章概要设计 (5) 2.1设计思想 (5) 2.2二叉树的遍历 (5) 2.3运行界面设计 (6) 第三章详细设计 (7) 3.1二叉树的生成 (7) 3.2二叉树的先序遍历 (7) 3.3 二叉树的中序遍历 (8) 3.4二叉树的后续遍历 (8) 3.5主程序的设计 (8) 第四章测试分析 (11) 4.1二叉树的建立 (11) 4.2二叉树的先序、中序、后序遍历 (11) 第五章课程设计总结 (12) 附录:程序代码 (13) 致谢 ···········································································································错误!未定义书签。 II

数据结构实验报告-二叉树的实现与遍历

《数据结构》第六次实验报告 学生姓名 学生班级 学生学号 指导老师

一、实验内容 1) 采用二叉树链表作为存储结构,完成二叉树的建立,先序、中序和后序 以及按层次遍历的操作,求所有叶子及结点总数的操作。 2) 输出树的深度,最大元,最小元。 二、需求分析 遍历二叉树首先有三种方法,即先序遍历,中序遍历和后序遍历。 递归方法比较简单,首先获得结点指针如果指针不为空,且有左子,从左子递归到下一层,如果没有左子,从右子递归到下一层,如果指针为空,则结束一层递归调用。直到递归全部结束。 下面重点来讲述非递归方法: 首先介绍先序遍历: 先序遍历的顺序是根左右,也就是说先访问根结点然后访问其左子再然后访问其右子。具体算法实现如下:如果结点的指针不为空,结点指针入栈,输出相应结点的数据,同时指针指向其左子,如果结点的指针为空,表示左子树访问结束,栈顶结点指针出栈,指针指向其右子,对其右子树进行访问,如此循环,直至结点指针和栈均为空时,遍历结束。 再次介绍中序遍历: 中序遍历的顺序是左根右,中序遍历和先序遍历思想差不多,只是打印顺序稍有变化。具体实现算法如下:如果结点指针不为空,结点入栈,指针指向其左子,如果指针为空,表示左子树访问完成,则栈顶结点指针出栈,并输出相应结点的数据,同时指针指向其右子,对其右子树进行访问。如此循环直至结点指针和栈均为空,遍历结束。 最后介绍后序遍历: 后序遍历的顺序是左右根,后序遍历是比较难的一种,首先需要建立两个栈,一个用来存放结点的指针,另一个存放标志位,也是首先访问根结点,如果结点的指针不为空,根结点入栈,与之对应的标志位也随之入标志位栈,并赋值0,表示该结点的右子还没有访问,指针指向该结点的左子,如果结点指针为空,表示左子访问完成,父结点出栈,与之对应的标志位也随之出栈,如果相应的标志位值为0,表示右子树还没有访问,指针指向其右子,父结点再次入栈,与之对应的标志位也入栈,但要给标志位赋值为1,表示右子访问过。如果相应的标志位值为1,表示右子树已经访问完成,此时要输出相应结点的数据,同时将结点指针赋值为空,如此循环直至结点指针和栈均为空,遍历结束。 三、详细设计 源代码:

数据结构树和二叉树习题

树与二叉树 一.选择题 1.假定在一棵二叉树中,双分支结点数为15,单分支结点数为30个,则叶子结 点数为()个。 A.15B.16C.17D.47 2.按照二叉树的定义,具有3个结点的不同形状的二叉树有()种。 A. 3 B. 4 C. 5 D. 6 3.按照二叉树的定义,具有3个不同数据结点的不同的二叉树有()种。 A. 5 B. 6 C. 30 D. 32 4.深度为5的二叉树至多有()个结点。1 A. 16 B. 32 C. 31 D. 10 5.设高度为h的二叉树上只有度为0和度为2的结点,则此类二叉树中所包含的 结点数至少为()。 A. 2h B. 2h-1 C. 2h+1 D. h+1 6.对一个满二叉树2,m个树叶,n个结点,深度为h,则()。 A. n=h+m3 B. h+m=2n C. m=h-1 D. n=2 h-1 1深度为n的二叉树结点至多有2n-1 2满二叉树是除最后一层无任何子节点外,每一层上的所有结点都有两个子结点的二叉树7.任何一棵二叉树的叶结点在先序.中序和后序遍历序列中的相对次序()。 A.不发生改变 B.发生改变 C.不能确定 D.以上都不对 8.如果某二叉树的前根次序遍历结果为stuwv,中序遍历为uwtvs,那么该二叉 树的后序为()。 A. uwvts B. vwuts C. wuvts D. wutsv 9.某二叉树的前序遍历结点访问顺序是abdgcefh,中序遍历的结点访问顺序是 dgbaechf,则其后序遍历的结点访问顺序是()。 A. bdgcefha B. gdbecfha C. bdgaechf D. gdbehfca 10.在一非空二叉树的中序遍历序列中,根结点的右边()。 A. 只有右子树上的所有结点 B. 只有右子树上的部分结点 C. 只有左子树上的部分结点 D. 只有左子树上的所有结点 11.树的基本遍历策略可分为先根遍历和后根遍历;二叉树的基本遍历策略可分为 先序遍历.中序遍历和后序遍历。这里,我们把由树转化得到的二叉树4叫做这棵数对应的二叉树。结论()是正确的。 A.树的先根遍历序列与其对应的二叉树的先序遍历序列相同 B.树的后根遍历序列与其对应的二叉树的后序遍历序列相同 3对于深度为h的满二叉树,n=20+21+…+2h-1=2h-1,m=2h-1。故而n=h+m。 4树转化为二叉树的基本方法是把所有兄弟结点都用线连起来,然后去掉双亲到子女的连线,只留下双亲到第一个子女的连线。因此原来的兄弟关系就变为双亲与右孩子的关系。 1/ 9

二叉树的建立和遍历的实验报告doc

二叉树的建立和遍历的实验报告 篇一:二叉树的建立及遍历实验报告 实验三:二叉树的建立及遍历 【实验目的】 (1)掌握利用先序序列建立二叉树的二叉链表的过程。 (2)掌握二叉树的先序、中序和后序遍历算法。 【实验内容】 1. 编写程序,实现二叉树的建立,并实现先序、中序和后序遍历。 如:输入先序序列abc###de###,则建立如下图所示的二叉树。 并显示其先序序列为:abcde 中序序列为:cbaed 后序序列为:cbeda 【实验步骤】 1.打开VC++。 2.建立工程:点File->New,选Project标签,在列表中选Win32 Console Application,再在右边的框里为工程起好名字,选好路径,点OK->finish。至此工程建立完毕。 3.创建源文件或头文件:点File->New,选File标签,在列表里选C++ Source File。给文件起好名字,选好路径,点OK。至此一个源文件就被添加到了你刚创建的工程之中。

4.写好代码 5.编译->链接->调试 #include #include #define OK 1 #define OVERFLOW -2 typedef int Status; typedef char TElemType; typedef struct BiTNode { TElemType data; struct BiTNode *lchild, *rchild; }BiTNode,*BiTree; Status CreateBiTree(BiTree &T) { TElemType ch; scanf("%c",&ch); if (ch=='#') T= NULL; else { if (!(T = (BiTNode *)malloc(sizeof(BiTNode))))

二叉树的建立及几种简单的遍历方法

#include "stdio.h" #include "stdlib.h" #define STACK_INIT_SIZE 100 //栈存储空间初始分配量 #define STACKINCREMENT 10 //存储空间分配增量 //------二叉树的存储结构表示------// typedef struct BiTNode{ int data; struct BiTNode *lchild,*rchild; }BiTNode,*BiTree; //-----顺序栈的存储结构表示------// typedef struct{ BiTree *top; BiTree *base; int stacksize; }SqStack; //*************************************************** //构造一个空栈s SqStack *InitStack(); //创建一颗二叉树 BiTree CreatBiTree(); //判断栈空 int StackEmpty(SqStack *S); //插入元素e为新的栈顶元素 void Push(SqStack *S,BiTree p); //若栈不为空,则删除s栈顶的元素e,将e插入到链表L中void Pop(SqStack *S,BiTree *q); //非递归先序遍历二叉树 void PreOrderTraverse(BiTree L); //非递归中序遍历二叉树 void InOrderTraverse(BiTree L); //非递归后序遍历二叉树 void PostOrderTraverse(BiTree L); //递归后序遍历二叉树 void PostOrder(BiTree bt); //递归中序遍历二叉树 void InOrder(BiTree bt); //递归先序遍历二叉树 void PreOrder(BiTree bt); //***************************************************

数据结构实验-二叉树的操作

******************************* 实验题目:二叉树的操作 实验者信息:班级13007102,姓名庞文正,学号1300710226 实验完成的时间3:00 ****************************** 一、实验目的 1,掌握二叉树链表的结构和二叉树的建立过程。 2,掌握队列的先进先出的运算原则在解决实际问题中的应用。 3,进一步掌握指针变量、指针数组、动态变量的含义。 4,掌握递归程序设计的特点和编程方法。 二、实验内容 已知以二叉链表作存储结构,试编写按层次遍历二叉树的算法。(所谓层次遍历,是指从二叉树的根结点开始从上到下逐层遍历二叉树,在同一层次中从左到右依次访问各个节点。)调试程序并对相应的输出作出分析;修改输入数据,预期输出并验证输出的结果。加深对算法的理解。 三、算法设计与编码 1.本实验用到的理论知识 总结本实验用到的理论知识,实现理论与实践相结合。总结尽量简明扼要,并与本次实验密切相关,最好能加上自己的解释。 本算法要采用一个循环队列que,先将二叉树根结点入队列,然后退队列,输出该结点;若它有左子树,便将左子树根结点入队列;若它有右子树,便将右子树根结点入队列,直到队列空为止。因为队列的特点是先进先出,从而达到按层次顺序遍历二叉的目的。2.算法概要设计 给出实验的数据结构描述,程序模块、功能及调用关系 #include #include #define M 100 typedef struct node //二叉链表节点结构 {int data; //数据域 struct node *lchild,*rchild; //左孩子右孩子链 }bitree; bitree *que[M]; //定义一个指针数组,说明队列中的元素bitree 指针类型 int front=0, rear=0; //初始化循环列队 bitree *creat() //建立二叉树的递归算法 {bitree *t; int x; scanf("%d",&x); if(x==0) t=NULL; //以x=0 表示输入结束 else {t=malloc(sizeof(bitree)); //动态生成节点t,分别给节点t 的数据域,t->data=x; //左右孩子域赋值,给左右孩子赋值时用到 t->lchild=creat(); // 了递归思想 t->rchild=creat(); }

二叉树的遍历算法实验报告

二叉树实验报告 09信管石旭琳 20091004418 一、实验目的: 1、理解二叉树的遍历算法及应用 2、理解哈夫曼树及其应用。 3、掌握哈夫曼编码思想。 二、实验内容: 1、建立二叉树二叉链表 2、实现二叉树递归遍历算法(中序、前序、后序) 3、求二叉树高度 4、求二叉树结点个数 5、求二叉树叶子个数 6、将序号为偶数的值赋给左子树 三、主要程序: #include #include typedef int ElemType; struct BiTNode { ElemType data; struct BiTNode *lch,*rch; }BiTNode,*BiTree; struct BiTNode *creat_bt1(); struct BiTNode *creat_bt2(); void preorder (struct BiTNode *t); void inorder (struct BiTNode *t); void postorder (struct BiTNode *t); void numbt (struct BiTNode *t); int n,n0,n1,n2; void main() { int k; printf("\n\n\n"); printf("\n\n 1.建立二叉树方法1(借助一维数组建立)"); printf("\n\n 2.建立二叉树方法2(先序递归遍历建立)"); printf("\n\n 3.先序递归遍历二叉树"); printf("\n\n 4.中序递归遍历二叉树"); printf("\n\n 5.后序递归遍历二叉树"); printf("\n\n 6.计算二叉树结点个数"); printf("\n\n 7.结束程序运行");

实验四 二叉树的遍历和应用04

江南大学通信与控制工程学院标准实验报告 (实验)课程名称:计算机软件技术基础实验名称:二叉树的遍历和应用 班级:自动化 姓名:李玉书 学号:03 指导教师:卢先领 江南大学通信与控制学院

江南大学 实验报告 学生姓名:张晓蔚学号:0704090304 实验地点:信控机房实验时间:90分钟 一、实验室名称:信控学院计算中心 二、实验项目名称:二叉树的遍历和应用 三、实验学时:4学时 四、实验原理: 二叉树的遍历和应用 五、实验目的: 1、掌握二叉树的数据类型描述及特点。 2、掌握二叉树的存储结构(二叉链表)的建立算法。 3、掌握二叉链表上二叉树的基本运算的实现。 六、实验内容: 阅读后面的程序,并将其输入到计算机中,通过调试为下面的二叉树建立二叉链表,并用递归实现二叉树的先序、中序、后序三种遍历。 七、实验器材(设备、元器件): 计算机 八、实验步骤: 1、输入示例程序 2、构建按序插入函数实现算法 3、用C语言实现该算法 4、与源程序合并,编译,调试 5、测试,查错,修改

6、生成可执行文件,通过综合测试,完成实验 九、实验数据及结果分析: 测试用例 初始数据:ABDH,,I,,EJ,,K,,CFL,,,G,, 测试结果 十、实验结论: 该程序可以完成线性表的常规功能,且增加了异常处理,在异常情况下,例如: 表空,删除结点号不合法或出界,删除数值未找到等,这些情况下都能作出处理。可以通过边界测试。 十一对本实验过程及方法、手段的改进建议: 对书中程序的几点错误做了改正,见源程序。 附:源程序 #include typedef struct bitree { char data ; bitree *lchild; bitree *rchild;

数据结构实验报告之树与二叉树

学生实验报告 学院:软通学院 课程名称:数据结构与算法 专业班级:软件142 班 姓名:邹洁蒙 学号: 0143990

学生实验报告 (二) 一、实验综述 1、实验目的及要求 目的:1)掌握树与二叉树的基本概念; 2)掌握二叉树的顺序存储,二叉链表的先序遍历中序遍历和后序遍历算法; 3)掌握树的双亲表示法。 要求:1)编程:二叉树的顺序存储实现; 2)编程:二叉链表的先序遍历中序遍历和后序遍历实现; 3)编程:树的双亲表示法实现。 2、实验仪器、设备或软件 设备:PC 软件:VC6 二、实验过程(编程,调试,运行;请写上源码,要求要有注释) 1.编程:二叉树的顺序存储实现 代码: BiTree::BiTree()//建立存储空间 { data = new int[MAXSIZE]; count = 0; } void BiTree::AddNode(int e)//加结点 { int temp = 0; data[count] = e; count++;//从编号0开始保存 }

运行截图: 2.编程:二叉链表的先序遍历中序遍历和后序遍历实现代码: void InOrderTraverse(BiTree* Head)//中序遍历 { if (Head) { InOrderTraverse(Head->LeftChild); cout << Head->data<<" "; InOrderTraverse(Head->RightChild); } } void PreOrderTraverse(BiTree* Head)//先序遍历 { if (Head) { cout << Head->data << " "; PreOrderTraverse(Head->LeftChild); PreOrderTraverse(Head->RightChild); } } void PostOrderTraverse(BiTree* Head)//后序遍历 { if (Head) { PostOrderTraverse(Head->LeftChild); PostOrderTraverse(Head->RightChild); cout << Head->data << " "; } } 运行截图:

二叉树的遍历实验报告

二叉树的遍历实验报告 一、需求分析 在二叉树的应用中,常常要求在树中查找具有某种特征的结点,或者对树中全部结点逐一进行某种处理,这就是二叉树的遍历问题。 对二叉树的数据结构进行定义,建立一棵二叉树,然后进行各种实验操作。 二叉树是一个非线性结构,遍历时要先明确遍历的规则,先访问根结点还时先访问子树,然后先访问左子树还是先访问有右子树,这些要事先定好,因为采用不同的遍历规则会产生不同的结果。本次实验要实现先序、中序、后序三种遍历。 基于二叉树的递归定义,以及遍历规则,本次实验也采用的是先序遍历的规则进行建树的以及用递归的方式进行二叉树的遍历。 二、系统总框图

三、各模块设计分析 (1)建立二叉树结构 建立二叉树时,要先明确是按哪一种遍历规则输入,该二叉树是按你所输入的遍历规则来建立的。本实验用的是先序遍历的规则进行建树。 二叉树用链表存储来实现,因此要先定义一个二叉树链表存储结构。因此要先定义一个结构体。此结构体的每个结点都是由数据域data 、左指针域Lchild 、右指针域Rchild 组成,两个指针域分别指向该结点的左、右孩子,若某结点没有左孩子或者右孩子时,对应的指针域就为空。最后,还需要一个链表的头指针指向根结点。 要注意的是,第一步的时候一定要先定义一个结束标志符号,例如空格键、#等。当它遇到该标志时,就指向为空。 建立左右子树时,仍然是调用create ()函数,依此递归进行下去,

直到遇到结束标志时停止操作。 (2)输入二叉树元素 输入二叉树时,是按上面所确定的遍历规则输入的。最后,用一个返回值来表示所需要的结果。 (3)先序遍历二叉树 当二叉树为非空时,执行以下三个操作:访问根结点、先序遍历左子树、先序遍历右子树。 (4)中序遍历二叉树 当二叉树为非空时,程序执行以下三个操作:访问根结点、先序遍历左子树、先序遍历右子树。 (5)后序遍历二叉树 当二叉树为非空时,程序执行以下三个操作:访问根结点、先序遍历左子树、先序遍历右子树。 (6)主程序 需列出各个函数,然后进行函数调用。 四、各函数定义及说明 因为此二叉树是用链式存储结构存储的,所以定义一个结构体用以存储。 typedef struct BiTNode { char data; struct BiTNode *Lchild; struct BiTNode *Rchild;

实验八:二叉树的遍历与应用

实验8 二叉树的遍历与应用 一、实验目的 1.进一步掌握指针变量的含义。 2.掌握二叉树的结构特征,理解并熟悉掌握创建二叉树和实现二叉树的三种遍历。 3.学会编写实现二叉树基本操作的递归算法,领会递归的实质。 二、实验要求 1. 给出程序设计的基本思想、原理和算法描述。 2. 源程序给出注释。 3. 保存和打印出程序的运行结果,并结合程序进行分析。 三、实验题目 1.编写算法,按层输出一棵顺序存储的二叉树所有结点的值。 /**********level.c************/ #include #define VirNode 0 /*虚结点值*/ #define MAXSIZE 100 /*一维数组的容量*/ typedef int TElemType; /*二叉树结点值的类型*/ typedef TElemType SqBitTree[MAXSIZE]; /*SqBitTree:顺序存储的二叉树类型名*/ void leveltree(SqBitTree bt) { } void main() {SqBitTree bb={15,1,2,3,4,5,0,0,8,0,0,11,0,0,0,0}; ; } 2.以二叉链表为存储结构实现二叉树的三种遍历(先序、中序、后序)的递归算法。将tree.h 和tree.c文件补充完整。 3.编写算法,按层次遍历一棵二叉链表。 4.编写算法,输出二叉树中所有度为2的结点。 void printdata(BitTree bt) 5.编写算法,求二叉树中结点的最大值。假设结点为整型。 int maxvalue(BitTree bt) 6.编写递归算法,求二叉树中以元素值为x的结点为根的子树的深度。(首先在遍历过程中找到值为x结点,然后调用Get_Depth(),求得值为x的结点为根的子树的深度)。 注意:后面有算法的过程与步骤,请填空。 7.编写算法,实现二叉链表的先序非递归遍历。 void PreOrderBiTree(BitTree T)

数据结构实验报告—二叉树

算法与数据结构》课程实验报告

一、实验目的 1、实现二叉树的存储结构 2、熟悉二叉树基本术语的含义 3、掌握二叉树相关操作的具体实现方法 二、实验内容及要求 1. 建立二叉树 2. 计算结点所在的层次 3. 统计结点数量和叶结点数量 4. 计算二叉树的高度 5. 计算结点的度 6. 找结点的双亲和子女 7. 二叉树前序、中序、后序遍历的递归实现和非递归实现及层次遍历 8. 二叉树的复制 9. 二叉树的输出等 三、系统分析 (1)数据方面:该二叉树数据元素采用字符char 型,并且约定“ #”作为二叉树输入结束标识符。并在此基础上进行二叉树相关操作。 (2)功能方面:能够实现二叉树的一些基本操作,主要包括: 1. 采用广义表建立二叉树。 2. 计算二叉树高度、统计结点数量、叶节点数量、计算每个结点的度、结点所在层次。 3. 判断结点是否存在二叉树中。 4. 寻找结点父结点、子女结点。 5. 递归、非递归两种方式输出二叉树前序、中序、后序遍历。 6. 进行二叉树的复制。 四、系统设计 (1)设计的主要思路 二叉树是的结点是一个有限集合,该集合或者为空,或者是由一个根节点加上两棵分别称为左子树和右子树、互不相交的二叉树组成。根据实验要求,以及课上老师对于二叉树存储结构、基本应用的讲解,同时课后研究书中涉及二叉树代码完成二叉树模板类,并将所需实现各个功能代码编写完成,在建立菜单对功能进行调试。 (2)数据结构的设计 二叉树的存储结构有数组方式和链表方式。但用数组来存储二叉树有可能会消耗大量的存储空间,故在此选用链表存储,提高存储空间的利用率。根据二叉树的定义,二叉

相关主题
文本预览
相关文档 最新文档