当前位置:文档之家› 光电二三极管特性测试实验报告

光电二三极管特性测试实验报告

光电二三极管特性测试实验报告
光电二三极管特性测试实验报告

光敏二极管特性测试实验

一、实验目的

1.学习光电器件的光电特性、伏安特性的测试方法;

2.掌握光电器件的工作原理、适用范围和应用基础。

二、实验内容

1、光电二极管暗电流测试实验

2、光电二极管光电流测试实验

3、光电二极管伏安特性测试实验

4、光电二极管光电特性测试实验

5、光电二极管时间特性测试实验

6、光电二极管光谱特性测试实验

7、光电三极管光电流测试实验

8、光电三极管伏安特性测试实验

9、光电三极管光电特性测试实验

10、光电三极管时间特性测试实验

11、光电三极管光谱特性测试实验

三、实验仪器

1、光电二三极管综合实验仪 1个

2、光通路组件 1套

3、光照度计 1个

4、电源线 1根

5、2#迭插头对(红色,50cm) 10根

6、2#迭插头对(黑色,50cm) 10根

7、三相电源线 1根

8、实验指导书 1本

四、实验原理

1、概述

随着光电子技术的发发展,光电检测在灵敏度、光谱响应范围及频率我等技术方面要求越来越高,为此,近年来出现了许多性能优良的光伏检测器,如硅锗光电二极管、PIN光电二极管和雪崩光电二极管(APD)等。光敏晶体管通常指光电二极管和光电三极管,通常又称光敏二极管和三敏三极管。

光敏二极管的种类很多,就材料来分,有锗、硅制作的光敏二极管,也有III-V族化合物及其他化合物制作的二极管。从结构我来分,有PN结、PIN结、异质结、肖特基势垒及点接触型等。从对光的响应来分,有用于紫外光、红外光等种类。不同种类的光敏二极管,具胡不同的光电特性和检测性能。例如,锗光敏二极管与硅光敏二极管相比,它在红外光区域有很大的灵敏度,如图所示。这是由于锗材料的禁带宽度较硅小,它的本征吸收限处于红外区域,因此在近红外光区域应用;再一方面,锗光敏二极管有较大的电流输出,但它比硅光敏二极管有较大的反向暗电流,因此,它的噪声较大。又如,PIN型或雪崩型光敏二极管与扩散型PN结光敏二极管相比具有很短的时间响应。因此,在使用光敏二极管进要了解其类型及性能是非常重要的。

光敏二极管和光电池一样,其基本结构也是一个PN结。与光电池相比,它的突出特点是结面积小,因此它的频率特性非常好。光生电动势与光电池相同,但输出电流普遍比光电池小,一般为数微安到数十微安。按材料分,光敏二极管有硅、砷化铅光敏二极管等许多种,由于硅材料的暗电流温度系数较小,工艺较成熟,因此在实验际中使用最为广泛。

光敏三极管与光敏二极管的工作原理基本相同,工作原理都是基于内光电效应,和光敏电阻的差别仅在于光线照射在半导体PN结上,PN结参与了光电转换过程。

2、光电二三极管的工作原理

光生伏特效应:光生伏特效应是一种内光电效应。光生伏特效应是光照使不均匀半导体或均匀半导体中光生电子和空穴在空间分开而产生电位差的现象。对于不均匀半导体,由于同质的半导体不同的掺杂形成的PN结、不同质的半导体组成的异质结或金属与半导体接触形成的肖特基势垒都存在内建电场,当光照射这种半导体时,由于半导体对光的吸收而产生了光生电子和空穴,它们在内建电场的作用下就会向相反的方向移动和聚集而产生电位差。这种现象是最重要的一类光生伏特效应。均匀半导体体内没有内建电场,当光照射时,因眼光生载流子浓度梯度不同而引起载流子的扩散运动,且电子和空穴的迁移率不相等,使两种载流

子扩散速度的不同从而导致两种电荷分开,而出现光生电势。这种现象称为丹倍效应。此外,如果存在外加磁场,也可使得扩散中的两种载流子向相反方向偏转,从而产生光生电势。通常把丹倍效应和光磁电效应成为体积光生伏特效应。光电二极管和光电三极管即为光电伏特器件。

光敏二极管的结构和普通二极管相似,只是它的PN 结装在管壳顶部,光线通过透镜制成的窗口,可以集中照射在PN 结上,图2(a )是其结构示意图。光敏二极管在电路中通常处于反向偏置状态,如图2(b )所示。

a)b)

图2 光敏二极管

a)结构示意图和图形符号 b)基本电路

图3光敏三极管

a)结构示意图 b)基本电路

我们知道,PN 结加反向电压时,反向电流的大小取决于P 区和N 区中少数载流子的浓度,无光照时P 区中少数载流子(电子)和N 区中的少数载流子(空穴)都很少,因此反向电流很小。但是当光照PN 结时,只要光子能量h 大于材料的禁带宽度,就会在PN 结及其附近产生光生电子—空穴对,从而使P 区和N 区少数载流子浓度大大增加,它们在外加反向电压和PN 结内电场作用下定向运动,分别在两个方向上渡越PN 结,使反向电流明显增大。如果入射光的照度变化,光生电子—空穴对的浓度将相应变动,通过外电路的光电流强度也会随之变动,光敏二极管就把光信号转换成了电信号。

光敏三极管有两个PN 结,因而可以获得电流增益,它比光敏二极管具有更高的灵敏度。其结构如图3(a )所示。

当光敏三极管按图3(b )所示的电路连接时,它的集电结反向偏置,发射结正向偏置,无光照时仅有很小的穿透电流流过,当光线通过透明窗口照射集电结时,和光敏二极管的情况相似,将使流过集电结的反向电流增大,这就造成基区中正电荷的空穴的积累,发射区中的多数载流子(电子)将大量注人基区,由于基区很薄,只有一小部分从发射区注入的电子与基区的空穴复合,而大部分电子将穿过基区流向与电源正极相接的集电极,形成集电极电流。这个过程与普通三极管的

电流放大作用相似,它使集电极电流是原始光电流的(l+β )倍。这样集电极电流将随入射光照度的改变而更加明显地变化。

在光敏二极管的基础上,为了获得内增益,就利用了晶体三极管的电流放大作用,用Ge 或Si 单晶体制造NPN 或PNP 型光敏三极管。其结构使用电路及等效电路如图4所示。

2

R

L

I Ψ

(a)光敏三级管结构

(b)使用电路

(c)等效电路

图4 光敏三极管结构及等效电路

光敏三极管可以等效一个光电二极管与另一个一般晶体管基极和集电极并联 :集电极-基极产生的电流,输入到三极管的基极再放大。不同之处是,集电极电流(光电流)由集电结上产生的i φ控制。集电极起双重作用:把光信号变成电信号起光电二极管作用;使光电流再放大起一般三极管的集电结作用。一般光敏三极管只引出E 、C 两个电极,体积小,光电特性是非线性的,广泛应用于光电自动控制作光电开关应用。

3、光电二三极管的基本特性 (1)暗电流

光电二三极管在一定偏压,当没有光照的情况下,即黑暗环境中,所测得的电流值即为光电二、三极管的暗电流。 (2)光电流

光电二极管在一定偏压,当有光电照的情况下,所测得的电流值即为光电二、三极管在某特定光照下的光电流。 (3)光照特性

光电二极管在一定偏压下,当入射光的强度发生变化,通过光电二三极管的电流随之变化,即为光电二、三极管的光照特性。反向偏压工作状态下,在外加电压E 和负载电阻RL 的很大变化范围内,光电流与入照光功率均具有很好的线性关

系;在无偏压工作状态下,只有RL 较小时光电流与入照光功率成正比,RL 增大时光电流与光功率呈非线性关系。

图5 光电二极管的光照特性 (4)伏安特性

在一定光照条件下,光电二、三极管的输出光电流与偏压的关系称为伏安特性。光电二极管的伏安特性的数学表达式如下: I=I0[1-exp (qV/kT)]+IL

其中I0是无光照的反向饱和电流,V 是二极管的端电压(正向电压为正,反向电压为负),q 为电子电荷,k 为波耳兹常数,T 为PN 结的温度,单位为K ,IL 为无偏压状态下光照时的短路电流,它与光照时的光功率成正比。(光电二极管的伏安特性如下图所示)

1

2

3

I c (m A )

V(V)

图6 光电二三极管的伏安特性曲线 (5)响应时间特性

光敏晶体管受调制光照射时,相对灵敏度与调制频率的关系称为频率特性。如图7所示。减少负载电阻能提高响应频率,但输出降低。一般来说,光敏三极管的频响比光敏二极管差得多,锗光敏三极管的频响比硅管小一个数量级。 实验证明,光电器件的信号的产生和消失不能随着光强改变而立刻变化,会有一

定的惰性,这种惰性通常用时间常数表示。即当入射辐射到光电探测器后或入射辐射遮断后,光电探测器的输出升到稳定值或下降到照射前的值所需时间称为响应时间。为衡量其长短,常用时间常数τ的大小来表示。当用一个辐射脉冲光电探测器,如果这个脉冲的上升和下降时间很短,如方波,则光电探测器的输出由于器件的惰性而有延迟,把从10%上升到90%峰值处所需的时间称为探测器的上升时间,而把从90%下降到10%所需的时间称为下降时间。如图所示

(b)

图7 上升时间和下降时间

(a)入射光脉冲方波(b)响应时间

(6)光谱特性

一般光电二三极管的光谱响应特性表示在入射光能量保持一定的条件下,光电二三极管在一定偏压下所产生光电流与入射光波长之间的关系。一般用相对响应表示,实验中光电二三极秘的响应范围为400~1100nm,峰值波长为800~900nm,由于实验仪器所提供的波长范围为400~650nm,因此,实验所测出的光谱响应曲线呈上升趋势。

五、注意事项

1、当电压表和电流表显示为“1_”是说明超过量程,应更换为合适量程;

2、连线之前保证电源关闭。

3、实验过程中,请勿同时拨开两种或两种以上的光源开关,这样会造成实验所测试的数据不准确。

4、光电二极管偏压不要接反。

六、实验步骤

下面的实验内容为光电二极管的实验内容,实验之前请拆卸结构件,将光电二极管结构件装入对应光器件插座中。

1、光电二极管暗电流测试

实验装置原理框图如图8所示,但是在实际操作过程中,光电二极管和光电三极管的暗电流非常小,只有nA数量级。这样,实验操作过程中,对电流表的要求较高,本实验中,采用电路中串联大电阻的方法,将图8中的RL改为20M,再利用欧姆定律计算出支路中的电流即为所测器件的暗电流,如图8所示。

I/

V

RL

图8

(1)组装好光通路组件,将照度计显示表头与光通路组件照度计探头输出正负极对应相连(红为正极,黑为负极),将光源调制单元J4与光通路组件光源接口使用彩排数据线相连。

(2)“光源驱动单元”的三掷开关BM2拨到“静态特性”,将拨位开关S1,S2,S3,S4,S5,S6,S7均拨下。

(3)“光照度调节”调到最小,连接好光照度计,直流电源调至最小,打开照度计,此时照度计的读数应为0。

(4)将电压表直接与电源两端相连,打开电源调节直流电源电位器,使得电压输出为15V,关闭电源。

(注意:在下面的实验操作中请不要动电源调节电位器,以保证直流电源输出电

压不变)

(5)按图8所示的电路连接电路图,负载RL选择RL15=20M。

(6)打开电源开关,等电压表读数稳定后测得负载电阻RL上的压降V暗,则暗电流L暗=V暗/RL。所得的暗电流即为偏置电压在15V时的暗电流.

(注:在测试暗电流时,应先将光电器件置于黑暗环境中30分钟以上,否则测试过程中电压表需一段时间后才可稳定)

(7)实验完毕,直流电源调至最小,关闭电源,拆除所有连线。

2、光电二极管光电流测试

实验装置原理图如图9所示。

图9

(1)组装好光通路组件,将照度计显示表头与光通路组件照度计探头输出正负极对应相连(红为正极,黑为负极),将光源调制单元J4与光通路组件光源接口使用彩排数据线相连。

(2)“光源驱动单元”的三掷开关BM2拨到“静态特性”,将拨位开关S1拨上,S2,S3,S4,S5,S6,S7均拨下。

(3)按图9连接电路图, RL取RL4=1K欧。

(4)打开电源,缓慢调节光照度调节电位器,直到光照为300lx(约为环境光照),缓慢调节直流调节电位器到电压表显示为6V,请出此时电流表的读数,即为光电二极管在偏压6V,光照300lx时的光电流。

(5)实验完毕,将光照度调至最小,直流电源调至最小,关闭电源,拆除所有连线。

3、光电二极管光照特性

实验装置原理框图如图9所示。

(1)组装好光通路组件,将照度计显示表头与光通路组件照度计探头输出正负极对应相连(红为正极,黑为负极),将光源调制单元J4与光通路组件光源接口使用彩排数据线相连。

(2)“光源驱动单元”的三掷开关BM2拨到“静态”,将拨位开关S1拨上,S2,S3,S4,S5,S6,S7均拨下。

(3)按图9所示的电路连接电路图,负载RL选择RL4=1K欧。

(4)将“光照度调节”旋钮逆时针调节至最小值位置。打开电源,调节直流电源电位器,直到显示值为8V左右,顺时针调节光照度调节电位器,增大光照度值,分别记下不同照度下对应的光生电流值,填入下表。若电流表或照度计显示为“1_”时说明超出量程,应改为合适的量程再测试。

(5)将“光照度调节”旋钮逆时针调节到最小值位置后关闭电源。

(6)将以上连接的电路中改为如下图10连接(即0偏压),RL取RL4=1K欧。

图10

顺时针调节该光

照度调节旋钮,增大光照度值,分别记下不同照度下对应的光生电流值,填入下表。若电流表或照度计显示为“1_”时说明超出量程,应改为合适的量程再测试。

(8)根据上面两表中实验数据,在同一坐标轴中作出两条曲线,并进行比较。(9)实验完毕,将光照度调至最小,直流电源调至最小,关闭电源,拆除所有连线。

4、光电二极管伏安特性

实验装置原理框图如图8所示。

图9

(1)组装好光通路组件,将照度计显示表头与光通路组件照度计探头输出正负极对应相连(红为正极,黑为负极),将光源调制单元J4与光通路组件光源接口使用彩排数据线相连。

(2)“光源驱动单元”的三掷开关BM2拨到“静态”,将拨位开关S1拨上,S2,S3,S4,S5,S6,S7均拨下。

(4)按图9所示的电路连接电路图,负载RL选择RL5=2K欧。

(5)打开电源顺时针调节照度调节旋钮,使照度值为500Lx,保持光照度不变,

调节电源电压电位器,使反向偏压为0V、2V,4V、6V、8V、10V、12V时的电流

表读数,填入下表,关闭电源。

(注意:直流电源不可调至高于20V,以免烧坏光电二极管)

(6)根据Array上述实验

结果,作出

500Lx照

度下的光电二极管伏安特性曲线。

(7)重复上述步骤。分别测量光电二极管在300Lx和800Lx照度下,不同偏压

下的光生电流值,在同一坐标轴作出伏安特性曲线。并进行比较

(8)实验完毕,将光照度调至最小,直流电源调至最小,关闭电源,拆除所有

连线。

5. 光电二极管时间响应特性测试

(1)组装好光通路组件,将照度计显示表头与光通路组件照度计探头输出正负

极对应相连(红为正极,黑为负极),将光源调制单元J4与光通路组件光源接口

使用彩排数据线相连。

(2)“光源驱动单元”的三掷开关BM2拨到“脉冲”,将拨位开关S1拨上,S2,

S3,S4,S5,S6,S7均拨下。

(3)按图11所示的电路连接电路图,负载RL选择RL=1K欧。

(4)示波器的测试点应为A点,为了测试方便,可把示波器的测试点使用迭插

头对引至信号测试区的TP1和TP2,TP1与直流电源的地相连。

图11

(5)打开电源,白光对应的发光二极管亮,其余的发光二极管不亮。用示波器的第一通道与接TP 和GND (即为输入的脉冲光信号),用示波器的第二通道接TP2。 (6)观察示波器两个通道信号,缓慢调节直流电源电位器直到示波器上观察到信号清晰为止,并作出实验记录(描绘出两个通道波形)。

(7)缓慢调节脉冲宽度调节,增大输入脉冲的脉冲信号的宽度,观察示波器两个通道信号的变化,并作出实验记录(描绘出两个通道的波形)并进行分析。 (8)实验完毕,关闭电源,拆除导线。

6、光电二极管光谱特性测试

当不同波长的入射光照到光电二极管上,光电二极管就有不同的灵敏度。本实验仪采用高亮度LED (白、红、橙、黄、绿、蓝、紫)作为光源,产生400~630nm 离散光谱。

光谱响应度是光电探测器对单色入射辐射的响应能力。定义为在波长λ的单位入射功率的照射下,光电探测器输出的信号电压或电流信号。即为

)()()(λλλP V v =

?或)()

()(λλλP I i =

?

式中,)(λP 为波长为λ时的入射光功率;)(λV 为光电探测器在入射光功率)(λP 作用下的输出信号电压;)(λI 则为输出用电流表示的输出信号电流。 本实验所采用的方法是基准探测器法,在相同光功率的辐射下,则有

)()(λλf f

U UK

?=

?

式中,f U 为基准探测器显示的电压值,K 为基准电压的放大倍数,)(λf ?为基准

探测器的响应度。取在测试过程中,f

U 取相同值,则实验所测测试的响应度大小

由)

()(λλf U ?=?的大小确定.下图为基准探测器的光谱响应曲线。

图12 基准探测器的光谱响应曲线

(1)组装好光通路组件,将照度计显示表头与光通路组件照度计探头输出正负极对应相连(红为正极,黑为负极),将光源调制单元J4与光通路组件光源接口使用彩排数据线相连。

(2)“光源驱动单元”的三掷开关BM2拨到“静态特性”,将拨位开关S1,S2,S4,S3,S5,S6,S7均拨下。

3)将直流电源正负极直接与电压表相连,打开电源,调节电源电位器至电压表为10V ,关闭电源。

(4)按如图13连接电路图,RL 取RL10=100K 欧。

图13

(5)打开电源,缓慢调节光照度调节电位器到最大,依次将S2,S3,S4,S5,S6,S7拨上后拨下,记下当上述开关拨向上时,照度计读数最小时照度计的读数E 作为参考。

(注意:请不要同时将两个拨位开关拨上)

(6)S2拨上,缓慢调节电位器直到照度计显示为E ,将电压表测试所得的数据填入下表,再将S2拨下;

(7)重复操作步骤(6),分别测试出橙,黄,绿,蓝,紫在光照度E 下电压表

的读数,填入下表。

(8)根据所测试得到的数据,做出光电二极管的光谱特性曲线。

七.实验结果

1.光电二极管光照特性

(1)图9条件下

(2)图十条件下

2、光电二极管伏安特性

(1).500LX

(2).300LX

3、光电二极管光谱特性测试

八.实验总结

通过此次实验,我们了解到了光敏电阻,光电池,光电二极管等光电器件的结构,特性,和工作原理,认识到了光电器件在不同环境下的性质变化以及他们的基本运用,掌握了不少光电探测器件使用的知识。在此感谢老师的指导和教诲,我们一定会继续努力学好光电探测,多动脑筋多思考,多动手多实践,认真学习理论知识,以应对社会的发展,满足企业的需要,争取做出成绩来,回馈母校,回报社会!

18

一阶单容上水箱对象特性的测试实验报告

《控制工程实验》实验报告 实验题目:一阶单容上水箱对象特性的测试 课程名称:《控制工程实验》 姓名: 学号: 专业: 年级: 院、所: 日期: 2019.04.05

实验一一阶单容上水箱对象特性的测试 一、实验目的 1. 掌握单容水箱的阶跃响应测试方法,并记录相应液位的响应曲线; 2. 根据实验得到的液位阶跃响应曲线,用相应的方法确定被测对象的特征参数K、T和传递函数; 3. 掌握同一控制系统采用不同控制方案的实现过程。 二、实验设备 1. 实验装置对象及控制柜 1套 2. 装有Step7、WinCC等软件的计算机 1台 3. CP5621专用网卡及MPI通讯线各1个 三、实验原理 所谓单容指只有一个贮蓄容器。自衡是指对象在扰动作用下,其平衡位置被破坏后,不需要操作人员或仪表等干预,依靠其自身重新恢复平衡的过程。图1 所示为单容自衡水箱特性测试结构图及方框图。阀门F 1-1和F 1-6 全开,设上水箱 流入量为Q 1,改变电动调节阀V1的开度可以改变Q 1 的大小,上水箱的流出量为 Q 2,改变出水阀F 1-11 的开度可以改变Q 2 。液位h的变化反映了Q 1 与Q 2 不等而引起 水箱中蓄水或泄水的过程。若将Q 1 作为被控过程的输入变量,h为其输出变量, 则该被控过程的数学模型就是h与Q 1 之间的数学表达式。 根据动态物料平衡关系有: (1) 变换为增量形式有: (2) 其中:,,分别为偏离某一平衡状态的增量; A为水箱截面积

图1 单容自衡水箱特性测试结构图(a)及方框图(b) 在平衡时,Q 1=Q 2 ,=0;当Q 1 发生变化时,液位h随之变化,水箱出口处的 静压也随之变化,Q 2 也发生变化。由流体力学可知,流体在紊流情况下,液位h 与流量之间为非线性关系。但为了简化起见,经线性化处理后,可近似认为Q 2 与h成正比关系,与阀F 1-11 的阻力R成反比,即 或 (3) 式中: R为阀F 1-11 的阻力,称为液阻。 将式(2)、式(3)经拉氏变换并消去中间变量 Q2,即可得到单容水箱的数学模型为 (4) 式中 T 为水箱的时间常数,T=RC;K 为放大系数,K=R;C 为水箱的容量系数。若令 Q1(s)作阶跃扰动,即,=常数,则式(4)可改写为: (5) 对上式取拉氏反变换得 (6) 当 t—>∞时,,因而有

APD光电二极管特性测试实验

APD光电二极管特性测试实验 一、实验目的 1、学习掌握APD光电二极管的工作原理 2、学习掌握APD光电二极管的基本特性 3、掌握APD光电二极管特性测试方法 4、了解APD光电二极管的基本应用 二、实验内容 1、APD光电二极管暗电流测试实验 2、APD光电二极管光电流测试实验 3、APD光电二极管伏安特性测试实验 4、APD光电二极管雪崩电压测试实验 5、APD光电二极管光电特性测试实验 6、APD光电二极管时间响应特性测试实验 7、APD光电二极管光谱特性测试实验 三、实验仪器 1、光电探测综合实验仪 1个 2、光通路组件 1套 3、光照度计 1台 4、光敏电阻及封装组件 1套 5、2#迭插头对(红色,50cm) 10根 6、2#迭插头对(黑色,50cm) 10根 7、三相电源线 1根 8、实验指导书 1本 9、示波器 1台 四、实验原理 雪崩光电二极管APD—Avalanche Photodiode是具有内部增益的光检测器,它可以用来检测微弱光信号并获得较大的输出光电流。 雪崩光电二极管能够获得内部增益是基于碰撞电离效应。当PN结上加高的反偏压时,耗尽层的电场很强,光生载流子经过时就会被电场加速,当电场强度足够高(约3x105V/cm)时,光生载流子获得很大的动能,它们在高速运动中与半导体晶格碰撞,使晶体中的原子电离,从而激发出新的电子一空穴对,这种现象称为碰撞电离。碰撞电离产生的电子一空穴对在强电场作用下同样又被加速,重复前一过程,这样多次碰撞电离的结果使载流子迅速增加,电流也迅速增大,这个物理过程称为雪崩倍增效应。 图6-1为APD的一种结构。外侧与电极接触的P区和N区都进行了重掺杂,分别以P+和N+表示;在I区和N+区中间是宽度较窄的另一层P区。APD工作在大的反偏压下,当反偏压加大到某一值后,耗尽层从N+-P结区一直扩展(或称拉通)到P+区,包括了中间的P层区和I区。图4的结构为拉通型APD的结构。从图中可以看到,电场在I区分布较弱,而在N+-P区分布较强,碰撞电离区即雪崩区就在N+-P区。尽管I区的电场比N+-P区低得多,但也足够高(可达2x104V/cm),可以保证载流子达到饱和漂移速度。当入射光照射时,由于雪

最新第一组:一阶单容上水箱对象特性测试实验

实验一、一阶单容上水箱对象特性测试实验 一.实验目的 (1)建立单容水箱阶跃响应曲线。 (2)根据由实际测得的单容水箱液位的阶跃响应曲线,用作图的方法分别确定它们的参数(时间常数T 、放大系数K )。 二.实验设备 CS2000型过程控制实验装置, PC 机,DCS 控制系统与监控软件。 三、系统结构框图 单容水箱如图1-1所示: 丹麦泵 电动调节阀 V1 DCS控制系统手动输出 h V2 Q1 Q2 图1-1、 单容水箱系统结构图 四、实验原理 阶跃响应测试法是系统在开环运行条件下,待系统稳定后,通过DCS 控制系统监控画面——调整画面,(调节器或其他操作器),手动改变(调节阀的开度)对象的输入信号(阶跃信号),同时记录对象的输出数据或阶跃响应曲线。然后根据已给定对象模型的结构形式,对实验数据进行处理,确定模型中各参数。 五.实验内容步骤 1)对象的连接和检查:

(1)将CS2000 实验对象的储水箱灌满水(至最高高度)。 (2)打开以水泵、电动调节阀、孔板流量计组成的动力支路(1#)至上水箱的出水阀门.关闭动力支路上通往其他对象的切换阀门。 (3)打开上水箱的出水阀至适当开度。 2)实验步骤 (1)打开控制柜中水泵、电动调节阀、24V电源的电源开关。 (2)打开DCS控制柜的电源,打开电脑,启动DCS上位机监控软件,进入主画面,然后进入实验一画面“实验一、一阶单容上水箱对象特性测试实验”。 注满水箱打开出水阀打开阀门,连通电动调节阀 关闭支路阀打开上水箱打开上水箱打开电源 进水阀出水阀 打开泵的开关打开调节阀开关打开24V电源打开DCS控制柜电源

光电实验报告.

长春理工大学 光电信息综合实验—实验总结 姓名:赵儒桐 学号:S1******* 指导教师:王彩霞 专业:信息与通信工程 学院:电子信息工程 2016年5月20号

实验一:光电基础知识实验 1、实验目的 通过实验使学生对光源,光源分光原理,光的不同波长等基本概念有具体认识。 2、实验原理 本实验我们分别用了普通光源和激光光源两种。普通光源光谱为连续光谱,激光光源是半导体激光器。在实验中我们利用分光三棱镜可以得到红橙黄绿青蓝紫等多种波长的光辐射。激光光源发射出来的是波长为630纳米的红色光。 3、实验分析 为了找到光谱需要调节棱镜,不同的面对准光源找出光谱,棱镜的不同面对准光源产生的光谱清晰度不同,想要清晰的光谱就需要通过调节棱镜获得。 实验二:光敏电阻实验 1、实验目的 了解光敏电阻的光照特性,光谱特性和伏安特性等基本特性。2、实验原理 在光线的作用下,电子吸收光子的能量从键和状态过渡到自由状态,引起电导率的变化,这种现象称为光电导效应。光电导效应是半导体材料的一种体效应。光照越强,器件自身的电阻越小。光敏电阻无极性,其工作特性与入射光光强,波长和外加电压有关。 3、实验结果

当光敏电阻的工作电压(Vcc )为+5V 时,通过实验我们看出来改变光照度的值,光源的电流值是发生变化的。光照度增加电流值也是增加的。测得实验数据如表2-1: 表2-1 光敏电阻光照特性实验数据 得到的光敏电阻光照特性实验曲线: 图2.1 光敏电阻光照特性实验曲线 表2-2 光敏电阻伏安特性实验数据

通过实验我们看出光敏电阻的光电流值随外加电压的增大而增大,在光照强度增大的情况下流过光敏电阻的电流值也是增大的,得到数据如表2-2。 得到的伏安特性如下: 图2.2 光敏电阻伏安特性曲线 由光敏电阻的光谱特性可知光敏电阻对不同波长的光,接收的光灵敏度是不一样的,测量对应各种颜色的光透过狭缝时的电流值,得到数据如下表: 得到的光谱特性曲线如图:

实验1 二阶双容中水箱对象特性测试实验

实验1 二阶双容中水箱对象特性测试实验 一、实验目的 1、熟悉双容水箱的数学模型及其阶跃响应曲线; 2、根据由实际测得的双容液位阶跃响应曲线,分析双容系统的飞升特性。 二、实验设备 AE2000B 型过程控制实验装置、实验连接线 图1 双容水箱系统结构图 三、原理说明 如图1所示:这是由两个一阶非周期惯性环节串联起来,被调量是第二水槽的水位h 2。当输入量有一个阶跃增加?Q 1时,被调量变化的反应曲线如图2所示的?h 2曲线。它不再是简单的指数曲线,而是呈S 形的一条曲线。由于多了一个容器,就使调节对象的飞升特性在时间上更加落后一步。在图中S 形曲线的拐点P 上作切线,它在时间轴上截出一段时间OA 。 这段时间可以近似地衡量由于多了一个容量而使飞升过程向后推迟的程度,因此称容量滞后,通常以τ C 代表之。 设流量Q 1为双容水箱的输入量,下水箱的液位高度h 2为输出量,根据物料动态平衡关系,并考虑到液体传输过程中的时延,其传递函数为: 2112()()* ()(*1)(*1) s H S K G S Q S T S T S e τ-==++

图2 变化曲线 式中K=R3,T1=R2C1,T2=R3C2,R2、R3分别为阀V2和V3的液阻,C1和C2分别为上水箱和下水箱的容量系数。由式中的K、T1和T2须从由实验求得的阶跃响应曲线上求出。具体的做法是在图3所示的阶跃响应曲线上取: 1)h2(t)稳态值的渐近线h2(∞); 2)h2(t)|t=t1=0.4 h2(∞)时曲线上的点A和对应 的时间t1; 3)h2(t)|t=t2=0.8 h2(∞)时曲线上的点B和对应 的时间t2。 然后,利用下面的近似公式计算式2-1中的参数 K、T1和T2。其中:2 () K O h R ∞ == 输入稳态值 阶跃输入量 图3 阶跃响应曲线 4)12 12 t t T T 2.16 + +≈ 对于式(2-1)所示的二阶过程,0.32〈t1/t2〈0.46。当t1/t2=0.32时,为一阶环节;当t1/t2=0.46 h 0.4 0.8 2 h h 1 h 2 2 2

光电探测技术实验报告

光电探测技术实验报告 班级:08050341X 学号:28 姓名:宫鑫

实验一光敏电阻特性实验 实验原理: 光敏电阻又称为光导管,是一种均质的半导体光电器件,其结构如图(1)所示。由于半导体在光照的作用下,电导率的变化只限于表面薄层,因此将掺杂的半导体薄膜沉积在绝缘体表面就制成了光敏电阻,不同材料制成的光敏电阻具有不同的光谱特性。光敏电阻采用梳状结构是由于在间距很近的电阻之间有可能采用大的灵敏面积,提高灵敏度。 实验所需部件: 稳压电源、光敏电阻、负载电阻(选配单元)、电压表、 各种光源、遮光罩、激光器、光照度计(由用户选配) 实验步骤: 1、测试光敏电阻的暗电阻、亮电阻、光电阻 观察光敏电阻的结构,用遮光罩将光敏电阻完全掩 盖,用万用表测得的电阻值为暗电阻 R暗,移开遮光罩,在环境光照下测得的光敏电阻的 阻值为亮电阻,暗电阻与亮电阻之差为光电阻,光 电阻越大,则灵敏度越高。 在光电器件模板的试件插座上接入另一光敏电阻, 试作性能比较分析。 2、光敏电阻的暗电流、亮电流、光电流 按照图(3)接线,电源可从+2~+8V间选用,分别在暗光和正常环境光照下测出输出电压V暗和V亮则暗电流L暗=V暗/R L,亮电流L亮=V亮/R L,亮电流与暗电流之差称为光电流,光电流越大则灵敏度越高。 分别测出两种光敏电阻的亮电流,并做性能比较。 图(2)几种光敏电阻的光谱特性 3、伏安特性: 光敏电阻两端所加的电压与光电流之间的关系。 按照图(3)分别测得偏压为2V、4V、6V、8V、10V、12V时的光电流,并尝试高照射光源的光强,测得给定偏压时光强度的提高与光电流增大的情况。将所测得的结果填入表格并作出V/I曲线。 注意事项: 实验时请注意不要超过光电阻的最大耗散功率P MAX, P MAX=LV。光源照射时灯胆及灯杯温度均很高,请勿用手触摸,以免烫伤。实验时各种不同波长的光源的获取也可以采用在仪器上的光源灯泡前加装各色滤色片的办法,同时也须考虑到环境光照的影响。

第一节 单容自衡水箱液位特性测试实验

第一节 单容自衡水箱液位特性测试实验 一、实验目的 1.掌握单容水箱的阶跃响应测试方法,并记录相应液位的响应曲线; 2.根据实验得到的液位阶跃响应曲线,用相应的方法确定被测对象的特征参数K 、T 和传递函数; 3.掌握同一控制系统采用不同控制方案的实现过程。 二、实验设备 1.实验对象及控制屏、SA-11挂件一个、SA-13挂件一个、SA-14挂件一个、计算机一台(DCS 需两台计算机)、万用表一个; 2.SA-12挂件一个、RS485/232转换器一个、通讯线一根; 3.SA-21挂件一个、SA-22挂件一个、SA-23挂件一个; 4.SA-31挂件一个、SA-32挂件一个、SA-33挂件一个、主控单元一个、数据交换器两个,网线四根; 5.SA-41挂件一个、CP5611专用网卡及网线; 6.SA-42挂件一个、PC/PPI 通讯电缆一根。 三、实验原理 所谓单容指只有一个贮蓄容器。自衡是指对象在扰动作用下,其平衡位置被破坏后,不需要操作人员或仪表等干预,依靠其自身重新恢复平衡的过程。图2-1所示为单容自衡水箱特性测试结构图及方框图。阀门F1-1、F1-2和F1-8全开,设下水箱流入量为Q 1,改变电动调节阀V 1的开度可以改变Q 1的大小,下水箱的流出量为Q 2,改变出水阀F1-11的开度可以改变Q 2。液位h 的变化反映了Q 1与Q 2不等而引起水箱中蓄水或泄水的过程。若将Q 1作为被控过程的输入变量,h 为其输出变量,则该被控过程的数学模型就是h 与Q 1之间的数学表达式。 根据动态物料平衡关系有 Q 1-Q 2=A dt dh (2-1) 将式(2-1)表示为增量形式 ΔQ 1-ΔQ 2=A dt h d ? (2-2) 式中:ΔQ 1,ΔQ 2,Δh ——分别为偏 离某一平衡状态的增量; A ——水箱截面积。 在平衡时,Q 1=Q 2,dt dh =0;当Q 1 发生变化时,液位h 随之变化,水箱出 图2-1 单容自衡水箱特性测试系统 口处的静压也随之变化,Q 2也发生变化 (a )结构图 (b )方框图 。由流体力学可知,流体在紊流情况下,液位h 与流量之间为非线性关系。但为了简化起见,经线性化处理后,可近似认为Q 2与h 成正比关系,而与阀F1-11的阻力R 成反比,即 ΔQ 2=R h ? 或 R=2 Q ??h (2-3)

光电管特性研究

光电管特性的研究 光电效应是指在光的作用下,从物体表面释放电子的现象,所逸出的电子称为光电子。这种现象是1887年赫兹研究电磁波时发现的。在光电效应中,光不仅在被吸收或发射时以能量h 的微粒出现,而且以微粒形式在空间传播,充分显示了光的粒子性。 1905年爱因斯坦引入光量子理论,给出了光电效应方程,成功地解释了光电效应的全部实验规律。1916年密立根用光电效应实验验证了爱因斯坦的光电效应方程,并测定了普朗克常量。爱因斯坦和密立根都因为光电效应方面的杰出贡献,分别获得1921年和1923年诺贝尔物理学奖。而今光电效应已经广泛地应用于各科技领域,例如利用光电效应制成的光电管、光电倍增管等光电转换其间,把光学量转换成电学量来测量。光电元件已成为石油钻井、传真电报、自动控制等生产和科研中不可缺少的元件。 一、教学目的 1、了解光电效应实验的基本规律和光的量子性。 2、测定光电管的伏安特性,研究光电流强度与加在光电管两极间电压的关系。 3、测定光电管的光电特性,研究光电流强度与照在光电管阴极上光通量的关系。 二、教学要求 1、实验三小时完成。 2、观察光电管结构和光电效应现象,理解光的量子性。 3、测定光电管的伏安特性,研究光电流强度与加在光电管两极间电压的关系。 4、测定光电管的光电特性,研究光电流强度与照在光电管阴极上光通量的关系。 5、用所学过的知识解释本次实验所测得的曲线,并对实验结果进行评价,写出合格的实验报告。 三、教学重点和难点 1、重点:通过光电管的伏安特性和光电特性,掌握光电效应迈的实验原理。

2、难点:最小二乘法处理数据。 四、讲授内容(约20分钟) 采用讲授、讨论、演示相结合的教学方法。 1、光电效应的实验原理。 2、与学生们共同探讨光电效应在现代生产生活中的应用。 (1)光电管 利用饱和电流与照射光强的线性关系,实现光信号和电信号之间的转换。如:光控继电器、自动控制、自动计数、自动报警等。 (2)光电倍增管 光电倍增管可使光电阴极发出的光电子增至48 10~10倍,在探测弱光方面得到广泛的应用。 (3)光电成像器件 光电导摄像管等,可以将辐射图像转换成或增强为可观察、记录、传输、存储和进行处理的图像,广泛地应用于天文学、空间科学、电视等领域。 3、光电管的伏安特性曲线的特点和光电特性的特点,留给学生思考如何用所学知识解释这些特点,并在实验报告中回答。 4、结合仪器演示实验的主要步骤。 (1)测光电管的伏安特性曲线 ⑴按教材图5.12-4接好线路,使光电管阳极为高电势,检查正负极插线无误后,打开光电效应仪的电源开关,并预热10分钟。 ⑵选取合适的小灯电流值。测量前先测出小灯泡与光电管阴极间的初始间 r,并记录。 距0 ⑶研究光电管正向伏安特性。由于光电管的伏安特性为非线性曲线,因此,在非线性区域,测试点应多一些。 ⑷测临界截止电压。将光电管接线的极性对调,即在光电管两极加上反向电压,使光电管阳极为负电势,慢慢增大反向电压,记下使光电流刚好为零的电压值,即为临界截止电压。 ⑸研究光电管在不同光强照射下的伏安特性,采用两种方法。

实验四 控制系统频率特性的测试 实验报告

实验四控制系统频率特性的测试 一.实验目的 认识线性定常系统的频率特性,掌握用频率特性法测试被控过程模型的原理和方法,根据开环系统的对数频率特性,确定系统组成环节的参数。二.实验装置 (1)微型计算机。 (2)自动控制实验教学系统软件。 三.实验原理及方法 (1)基本概念 一个稳定的线性定常系统,在正弦信号的作用下,输出稳态与输入信号关系如下: 幅频特性相频特性 (2)实验方法 设有两个正弦信号: 若以) (y tω为纵轴,而以tω作为参变量,则随tω的变xω为横轴,以) (t 化,) (y tω?所确定的点的轨迹,将在 x--y平面上描绘出一条封闭的xω和) (t 曲线(通常是一个椭圆)。这就是所谓“李沙育图形”。 由李沙育图形可求出Xm ,Ym,φ, 四.实验步骤 (1)根据前面的实验步骤点击实验七、控制系统频率特性测试菜单。(2)首先确定被测对象模型的传递函数, 预先设置好参数

T1、T2、ξ、K (3)设置好各项参数后,开始仿真分析,首先做幅频测试,按所得的频率范围由低到高,及ω由小到大慢慢改变,特别是在转折频率处更应该多取几个点 五.数据处理 (一)第一种处理方法: (1)得表格如下: (2)作图如下: (二)第二种方法: 由实验模型即,由实验设置模型根据理论计算结果绘制bode图,绘制Bode图。 (三)误差分析 两图形的大体趋势一直,从而验证了理论的正确性。在拐点处有一定的差距,在某些点处也存在较大的误差。 分析: (1)在读取数据上存在较大的误差,而使得理论结果和实验结果之间存在。 (2)在数值应选取上太合适,而使得所画出的bode图形之间存在较大的差距。 (3)在实验计算相角和幅值方面本来就存在着近似,从而使得误差存在,而使得两个图形之间有差异 六.思考讨论 (1)是否可以用“李沙育”图形同时测量幅频特性和想频特性

大物实验报告 光电效应

试验名称:光电效应法测普朗克常量h 实验目的:是了解光电效应的基本规律。并用光电效应方法测量普朗克常量和测定光电管的 光电特性曲线。 实验原理 光电效应实验原理如图8.2.1-1所示。其中S 为真空光电管,K 为阴极,A 为阳极。当无光照射阴极时,由于阳极与阴极是断路,所以检流计G 中无电流流过,当用一波长比较短的单色光照射到阴极K 上时,形成光电流,光电流随加速电位差U 变化的伏安特性曲线如图8.2.1-2所示。 1. 光电流与入射光强度的关系 光电流随加速电位差U 的增加而增加,加速电位差增加到一定量值后,光电流达到饱和值和值I H ,饱和电流与光强成正比,而与入射光的频率无关。当U= U A -U K 变成负值时,光电流迅速减小。实验指出,有一个遏止电位差U a 存在,当电位差达到这个值时,光电流为零。 2. 光电子的初动能与入射频率之间的关系 当U=U a 时,光电子不再能达到A 极,光电流为零。所以电子的初动能等于它克服电场力作用的功。即 a eU mv =2 2 1 (1) 根据爱因斯坦关于光的本性的假设,每一光子的能量为hv =ε,其中h 为普朗克常量,ν为光波的频率。所以不同频率的光波对应光子的能量不同。光电子吸收了光子的能量h ν之后,一部分消耗于克服电子的逸出功A ,另一部分转换为电子动能。由能量守恒定律可知 A mv hv += 22 1 (2) 式(2)称为爱因斯坦光电效应方程。

3. 光电效应有光电存在 实验指出,当光的频率0v v <时,不论用多强的光照射到物质都不会产生光电效应,根据式(2), h A v = 0,ν0称为红限。 爱因斯坦光电效应方程同时提供了测普朗克常量的一种方法:由式(1)和(2)可得: A U e hv +=0,当用不同频率(ν1,ν2,ν3,…,νn )的单色光分别做光源时,就有 A U e hv +=11 A U e hv +=22 ………… A U e hv n n += 任意联立其中两个方程就可得到 j i j i v v U U e h --= )( (3) 由此若测定了两个不同频率的单色光所对应的遏止电位差即可算出普朗克常量h ,也可由ν-U 直线的斜率求出h 。 因此,用光电效应方法测量普朗克常量的关键在于获得单色光、测得光电管的伏安特性曲线和确定遏止电位差值。 实验内容 通过实验了解光电效应的基本规律,并用光电效应法测量普朗克常量。 1. 在577.0nm 、546.1nm 、435.8nm 、404.7nm 四种单色光下分别测出光电管的伏安特性曲线,并根据此曲线确定遏止电位差值,计算普朗克常量h 。 本实验所用仪器有:光电管、单色仪(或滤波片)、水银灯、检流计(或微电流计)、直流电源、直流电压计等. j i j i v v U U e h --= )(,求斜率,得到普朗克常量h. 入射光波长λ/nm 365nm

实验四 PIN光电二极管特性测试

实验四PIN光电二极管特性测试 一、实验目的 1、学习掌握PIN光电二极管的工作原理 2、学习掌握PIN光电二极管的基本特性 3、掌握PIN光电二极管特性测试的方法 4、了解PIN光电二极管的基本应用 二、实验内容 1、PIN光电二极管暗电流测试实验 2、PIN光电二极管光电流测试实验 3、PIN光电二极管伏安特性测试实验 4、PIN光电二极管光电特性测试实验 5、PIN光电二极管时间响应特性测试实验 6、PIN光电二极管光谱特性测试实验 三、实验器材 1、光电探测综合实验仪1个 2、光通路组件1套 3、光照度计1台 4、PIN 光电二极管及封装组件1套 5、2#迭插头对(红色,50cm)10根 6、2#迭插头对(黑色,50cm)10根 7、三相电源线1根 8、实验指导书1本 9、示波器1台 四、实验原理 光电探测器PIN管的静态特性测量是指PIN光电二极管在无光照时的P-N结正负极、击穿电压、暗电流Id以及在有光照的情况下的输入光功率和输出电流的关系(或者响应度),光谱响应特性的测量。 图5-1 PIN光电二极管的结构和它在反向偏压下的电场分布 图5-1是PIN光电二极管的结构和它在反向偏压下的电场分布。在高掺杂P型和N型半导体之间生长一层本征半导体材料或低掺杂半导体材料,称为I层。在半导体PN结中,掺杂浓度和耗尽层宽度有如下关系: LP/LN=DN/DP

其中:DP和DN 分别为P区和N区的掺杂浓度;LP和LN分别为P区和N区的耗尽层的宽度。在PIN中,如对于P层和I层(低掺杂N型半导体)形成的PN结,由于I层近于本征半导体,有 DN<Eg 因此对于不同的半导体材料,均存在着相应的下限频率fc或上限波长λc,λc亦称为光电二极管的截止波长。只有入射光的波长小于λc时,光电二极管才能产生光电效应。Si-PIN 的截止波长为1.06um,故可用于0.85um的短波长光检测;Ge-PIN和InGaAs-PIN的截止波长为1.7um,所以它们可用于1.3um、1.55um的长波长光检测。 当入射光波长远远小于截止波长时,光电转换效率会大大下降。因此,PIN光电二极管是对一定波长范围内的入射光进行光电转换,这一波长范围就是PIN光电二极管的波长响应范围。 响应度和量子效率表征了二极管的光电转换效率。响应度R定义为

光电二极管检测电路的组成及工作原理

光电二极管及其相关的前置放大器是基本物理量和电子量之间的桥梁。许多精密应用领域需要检测光亮度并将之转换为有用的数字信号。光检测电路可用于CT扫描仪、血液分析仪、烟雾检测器、位置传感器、红外高温计和色谱分析仪等系统中。在这些电路中,光电二极管产生一个与照明度成比例的微弱电流。而前置放大器将光电二极管传感器的电流输出信号转换为一个可用的电压信号。看起来好象用一个光电二极管、一个放大器和一个电阻便能轻易地实现简单的电流至电压的转换,但这种应用电路却提出了一个问题的多个侧面。为了进一步扩展应用前景,单电源电路还在电路的运行、稳定性及噪声处理方面显示出新的限制。 本文将分析并通过模拟验证这种典型应用电路的稳定性及噪声性能。首先探讨电路工作原理,然后如果读者有机会的话,可以运行一个SPICE模拟程序,它会很形象地说明电路原理。以上两步是完成设计过程的开始。第三步也是最重要的一步(本文未作讨论)是制作实验模拟板。 1 光检测电路的基本组成和工作原理 设计一个精密的光检测电路最常用的方法 是将一个光电二极管跨接在一个CMOS输入 放大器的输入端和反馈环路的电阻之间。这种 方式的单电源电路示于图1中。 在该电路中,光电二极管工作于光致电压 (零偏置)方式。光电二极管上的入射光使之 产生的电流I SC从负极流至正极,如图中所示。由于CMOS放大器反相输入端的输入阻抗非常高,二极管产生的电流将流过反馈电阻R F。输出电压会随着电阻R F两端的压降而变化。 图中的放大系统将电流转换为电压,即 V OUT = I SC×R F(1) 图1 单电源光电二极管检测电路 式(1)中,V OUT是运算放大器输出端的电压,单位为V;I SC是光电二极管产生的电流,单位为A;R F是放大器电路中的反馈电阻,单位为W 。图1中的C RF是电阻R F的寄生电容和电路板的分布电容,且具有一个单极点为1/(2p R F C RF)。 用SPICE可在一定频率范围内模拟从光到电压的转换关系。模拟中可选的变量是放大器的反馈元件R F。用这个模拟程序,激励信号源为I SC,输出端电压为V OUT。 此例中,R F的缺省值为1MW ,C RF为0.5pF。理想的光电二极管模型包括一个二极管和理想的电流源。给出这些值后,传输函数中的极点等于1/(2p R F C RF),即318.3kHz。改变R F 可在信号频响范围内改变极点。

APD光电二极管特性测试实验

APD光电二极管特性测试实验 APD光电二极管特性测试实验 1,实验目的 1,学习掌握APD光电二极管的工作原理2,学习掌握APD光电二极管的基本特性3,掌握APD光电二极管特性测试方法4,了解APD光电二极管的基本应用 2,实验内容有 1,APD光电二极管暗电流测试实验2,APD光电二极管光电流测试实验3,APD光电二极管伏安特性测试实验4,APD光电二极管雪崩电压测试实验5、APD光电二极管光电特性测试实验6、APD光电二极管时间响应特性测试实验7、APD光电二极管光谱特性测试实验 3、实验仪器 1、光电检测综合实验仪器1 2、光路组件1组 3、测光表1组 4、1组5和2#重叠插头对(红色,50厘米)和10组6和2#重叠插头对(黑色,50厘米)10根7相电力电缆,1根8相电源线,1本9实验说明书,1台 4示波器, 雪崩光电二极管APD—雪崩光电二极管是一种具有内部增益的光电探测器,可用于探测微弱的光信号并获得较大的输出光电流。 雪崩光电二极管的内部增益基于碰撞电离效应。当高反向偏置电

压施加到PN结时, 5 耗尽层中的电场非常强,并且光生载流子在通过时将被电场加速。当电场强度足够高(约3x10v/cm)时,光生载流子获得大量动能。它们与半导体晶格高速碰撞,电离晶体中的原子,从而激发新的电子-空穴对。这种现象被称为碰撞电离碰撞电离产生的电子-空穴对也在强电场的作用下加速,并重复前面的过程。由于多次碰撞电离,载流子迅速增加,电流迅速增加。这一物理过程被称为雪崩倍增效应。 ++ 图6-1是APD的结构与电极接触的外侧的P区和N区被重掺杂,分别由P和N + 表示;在I区和n区的中间是另一层宽度较窄的p区APD在大的反向偏置下工作。当反向偏置电压增加到 ++ 到一定值时,耗尽层从N-P结区延伸到P区,包括中间P层区和I + 区图4的结构是直通APD结构从图中可以看出,电场分布在区域一相对较弱,但在区域N-P ++ 相对较强。碰撞电离区,即雪崩区,位于n-p区虽然I区的电场比

光电二极管检测电路的工作原理及设计方案

?光电二极管及其相关的前置放大器是基本物理量和电子量之间的桥梁。许多精密应用领域需要检测光亮度并将之转换为有用的数字信号。光检测电路可用于CT扫描仪、血液分析仪、烟雾检测器、位置传感器、红外高温计和色谱分析仪等系统中。在这些电路中,光电二极管产生一个与照明度成比例的微弱电流。而前置放大器将光电二极管传感器的电流输出信号转换为一个可用的电压信号。看起来好象用一个光电二极管、一个放大器和一个电阻便能轻易地实现简单的电流至电压的转换,但这种应用电路却提出了一个问题的多个侧面。为了进一步扩展应用前景,单电源电路还在电路的运行、稳定性及噪声处理方面显示出新的限制。 本文将分析并通过模拟验证这种典型应用电路的稳定性及噪声性能。首先探讨电路工作原理,然后如果读者有机会的话,可以运行一个SP IC E模拟程序,它会很形象地说明电路原理。以上两步是完成设计过程的开始。第三步也是最重要的一步(本文未作讨论)是制作实验模拟板。 1 光检测电路的基本组成和工作原理 设计一个精密的光检测电路最常用的方法是将一个光电二极管跨接在一个CMOS 输入放大器的输入端和反馈环路的电阻之间。这种方式的单电源电路示于图1中。 在该电路中,光电二极管工作于光致电压(零偏置)方式。光电二极管上的入射光使之产生的电流ISC从负极流至正极,如图中所示。由于CMOS放大器反相输入端的输入阻抗非常高,二极管产生的电流将流过反馈电阻RF。输出电压会随着电阻RF两端的压降而变化。 图中的放大系统将电流转换为电压,即 VOUT = ISC ×RF (1)

图1 单电源光电二极管检测电路 式(1)中,VOUT是运算放大器输出端的电压,单位为V;ISC是光电二极管产生的电流,单位为A;RF是放大器电路中的反馈电阻,单位为W 。图1中的CRF是电阻RF的寄生电容和电路板的分布电容,且具有一个单极点为1/(2p RF CRF)。 用SPICE可在一定频率范围内模拟从光到电压的转换关系。模拟中可选的变量是放大器的反馈元件RF。用这个模拟程序,激励信号源为ISC,输出端电压为VOUT。 此例中,RF的缺省值为1MW ,CRF为0.5pF。理想的光电二极管模型包括一个二极管和理想的电流源。给出这些值后,传输函数中的极点等于1/(2p RFCRF),即318.3kHz。改变RF可在信号频响范围内改变极点。 遗憾的是,如果不考虑稳定性和噪声等问题,这种简单的方案通常是注定要失败的。例如,系统的阶跃响应会产生一个其数量难以接受的振铃输出,更坏的情况是电路可能会产生振荡。如果解决了系统不稳定的问题,输出响应可能仍然会有足够大的“噪声”而得不到可靠的结果。 实现一个稳定的光检测电路从理解电路的变量、分析整个传输函数和设计一个可靠的电路方案开始。设计时首先考虑的是为光电二极管响应选择合适的电阻。第二是分析稳定性。然后应评估系统的稳定性并分析输出噪声,根据每种应用的要求将之调节到适当的水平。 这种电路中有三个设计变量需要考虑分析,它们是:光电二极管、放大器和R//C反馈网络。首先选择光电二极管,虽然它具有良好的光响应特性,但二极管的寄生电容将对电路的噪声增益和稳定性有极大的影响。另外,光电二极管的并联寄生电阻在很宽的温度范围内变化,会在温度极限时导致不稳定和噪声问题。为了保持良好的线性性能及较低的失调误差,运放应该具有一个较小的输入偏置电流(例如CMOS工艺)。此外,输入噪声电压、输入共模电容和差分电容也对系统的稳定性和整体精度产生不利的影响。最后,R//C反馈网络用于建立电路的增益。该网络也会对电路的稳定性和噪声性能产生影响。 2 光检测电路的SPICE模型

实验一 单容自衡水箱液位特性测试实验

计算机控制技术实验报告 实验一单容自衡水箱液位特性测试实验 班级: 姓名: 学号:

实验一 单容自衡水箱液位特性测试实验 一、实验目的 1.掌握单容水箱的阶跃响应测试方法,并记录相应液位的响应曲线; 2.根据实验得到的液位阶跃响应曲线,用相应的方法确定被测对象的特征参数K 、T 和传递函数; 3.掌握同一控制系统采用不同控制方案的实现过程。 二、实验原理 所谓单容指只有一个贮蓄容器。自衡是指对象在扰动作用下,其平衡位置被破坏后,不需要操作人员或仪表等干预,依靠其自身重新恢复平衡的过程。图1-1所示为单容自衡水箱特性测试结构图及方框图。阀门F1-1、F1-2和F1-8全开,设下水箱流入量为Q 1,改变电动调节阀V 1的开度可以改变Q 1的大小,下水箱的流出量为Q 2,改变出水阀F1-11的开度可以改变Q 2。液位h 的变化反映了Q 1与Q 2不等而引起水箱中蓄水或泄水的过程。若将Q 1作为被控过程的输入变量,h 为其输出变量,则该被控过程的数学模型就是h 与Q 1之间的数学表达式。 根据动态物料平衡关系有 Q 1-Q 2=A dt dh (1-1) 将式(2-1)表示为增量形式 ΔQ 1-ΔQ 2=A dt h d ? (1-2) 式中:ΔQ 1,ΔQ 2,Δh ——分别为偏 离某一平衡状态的增量; A ——水箱截面积。 在平衡时,Q 1=Q 2,dt dh =0;当Q 1 发生变化时,液位h 随之变化,水箱出 口处的静压也随之变化,Q 2也发生变化。 由流体力学可知,流体在紊流情况下, 液位h 与流量之间为非线性关系。但为 了简化起见,经线性化处理后,可近似 认为Q 2与h 成正比关系,而与阀F1-11 的阻力R 成反比,即 ΔQ 2=R h ? 或 R=2Q ??h (1-3) 图1-1 单容自衡水箱特性测试结构图及方框图 式中:R ——阀F1-11的阻力,称为液阻。 将式(1-2)、式(1-3)经拉氏变换并消去中间变量Q 2,即可得到单容水箱的数学模型为

光电探测实验报告

光电探测技术 实验报告 班级:10050341 学号:05 姓名:解娴

实验一光敏电阻特性实验 一、实验目的 1.了解一些常见的光敏电阻的器件的类型; 2.了解光敏电阻的基本特性; 3.测量不同偏置电压下的光敏电阻的电压与电流,并作出V/A曲线。 二、实验原理 伏安特性显示出光敏电阻与外光电效应光电元件间的基本差别。这种差别是当增加电压时,光敏电阻的光电流没有饱和现象,因此,它的灵敏度正比于外加电压。 光敏电阻与外光电效应光电元件不同,具有非线性的光照特性。各种光敏电阻的非线性程度都是各不相同的。 大多数场合证明,各种光敏电阻均存在着分析关系。这一关系为 式中,K为比例系数;是永远小于1的分数。 光电流的增长落后于光通量的增长,即当光通量增加时,光敏电阻的积分灵敏度下降。 这样的光照特性,使得解算许多要求光电流与光强间必需保持正比关系的问题时不能利用光敏电阻。 光照的非线性特性并不是一切光敏半导体都必有的。目前已有就像真空光电管—样,它的光电流随光通量线性增大的光敏电阻的实验室试样。光敏电阻的积分灵敏度非常大,最近研究出的硒—鎘光敏电阻达到12A/lm,这比普通锑、铯真空光电管的灵敏度高120,000倍。

三、实验步骤 1、光敏电阻的暗电流、亮电流、光电流 按照图1接线,电源可从+2V~+8V间选用,分别在暗光和正常环境光照下测出输出电压V暗和V亮。则暗电流L暗=V暗/RL,亮电流L亮=V亮/RL,亮电流与暗电流之差称为光电流,光电流越大则灵敏度越高。 2、伏安特性 光敏电阻两端所加的电压与光电流之间的关系即为伏安特性。按照图1接线,分别测得偏压为2V、4V、6V、8V、10V时的光电流,并尝试高照度光源的光强,测得给定偏压时光强度的提高与光电流增大的情况。将所测得的结果 填入表格并做出V/I曲线。 图1光敏电阻的测量电路 偏压2V4V6V8V10V12V 光电阻I 四、实验数据 实验数据记录如下: 光电流: E/V246810 U/V0.090.210.320.430.56 I/uA1427.54255.270.5 暗电流:0.5uA 实验数据处理:

APD光电二极管的特性测试及应用研究1

四川理工学院毕业设计(论文)APD光电管的特性测试及应用研究 学生:XXX 学号:XXX 专业:物理学 班级:2010.1 指导教师:XXX 四川理工学院理学院 二O 一四年六月

附件1:四川理工学院毕业设计(论文)任务书 四川理工学院 毕业设计(论文)任务书 设计(论文)题目:APD光电管的特性测试及应用研究 系:物理专业:物理学班级: 2010级1班学号: 学生:XXX 指导教师:XXX 接受任务时间2014.01.18 教研室主任(签名)二级学院院长(签名) 1.毕业设计(论文)的主要内容及基本要求 1) 学习APD光电二极管的工作原理; 2)理解APD光电二极管的各项参数指标并测试各项参数如: 暗电流、伏安特性、雪崩电压、光谱特性等; 3)设计利用APD光电二极管的相关检测电路并实际制作硬件; 4) 撰写毕业论文,参加答辩。 2.指定查阅的主要参考文献及说明 [1]Jerald Graeme. 光电二级管及其放大电路设计[M]. 北京:科学出版社. 2012.8 [2]史玖德. 光电管与光电倍增管[M]. 1981年 [3]黄德修. 半导体光电子学(第二版)[M]. 北京:电子工业出版社, 2013.1. [4]安毓英. 光电子技术[M].北京:电子工业出版社, 2012.12. [5]王庆有. 光电传感器应用技术[M].北京:机械工业出版社,2007.10. [6]其他:可网上搜索查找相关中文和外文文献。 注:本表在学生接受任务时下达

摘要 APD -Avalanche Photodiode称为雪崩光敏二极管,在光电二极管的P-N结上加上反向偏压,则入射的光子被P-N结吸收后就会形成光电流。雪崩光敏二极管广泛应用于电磁兼容测试、生物发光检测、激光成像系统、激光测距、激光雷达、激光陀螺、红外探测、金属矿石选择等领域。本文在分析APD工作原理的基础上,在实验室实际测试了APD光电二极管的暗电流、光电流、伏安特性、雪崩电压、光电特性、光谱特性等。最后设计了一个通过单片机控制并显示的光敏开关电路,在实验室调试成功。 关键词:APD;光电特性测试;半导体;单片机

过程控制控实验报告

实验一 单容自衡水箱特性的测试 一、实验目的 1. a 根据实验得到的液位阶跃响应曲线,用相应的方法确定被测对象的特征参数K 、T 和传递函数。 二、实验设备 1. A3000高级过程控制实验系统 2. 计算机及相关软件 三、实验原理 由图2.1可知,对象的被控制量为水箱的液位h ,控制量(输入量)是流入水箱中的流量Q 1,Q 2为流出水箱的流量。手动阀QV105和闸板QV116的开度(5~10毫米)都为定值。根据物料平衡关系,在平衡状态时: 0Q Q 2010=- (1) 动态时则有: dt dV Q Q 21=- (2) 式中V 为水箱的贮水容积,dt dV 为水贮存量的变化率,它与h 的关系为Adh dV =,即: dt dh A dt dV = (3) A 为水箱的底面积。把式(3)代入式(2)得: QV116 V104 V103 h ?h QV105 QV102 P102 LT103 LICA 103 FV101 M Q 1 Q 2 图2.1单容水箱特性测试结构图

图2.2 单容水箱的单调上升指数曲线 dt dh A =-21Q Q (4) 基于S 2R h Q =,R S 为闸板QV116的液阻,则上式可改写为dt dh A R h Q S =-1,即: 或写作: 1 )()(1+=TS K s Q s H (5) 式中T=AR S ,它与水箱的底积A 和V 2的R S 有关;K=R S 。式(5)就是单容水箱的传递函数。 若令S R s Q 01)(=,R 0=常数,则式(5)可改为: T S KR S R K S R T S T K s H 0011/)(0+-=?+= 对上式取拉氏反变换得: )e -(1KR h(t)t/T 0-= (6) 当∞→t 时0KR )h(=∞,因而有=∞=0R )h(K 阶跃输入 输出稳态值。当t=T 时,则)h(KR )e -(1KR h(T) 001∞===-0.6320.632。式(6)表示一阶惯性环节的响应曲线是一单调上升的指数函数,如图2.2所示。 当由实验求得图2.2所示的阶跃响应曲线后,该曲线上升到稳态值的63%所对应的时间,就是水箱的时间常数T 。该时间常数T 也可以通过坐标原点对响应曲线作切线,切线与稳态值交点所对应的时间就是时间常数T ,由响应曲线求得K 和T 后,就能求得单容水箱的传递函数。 1KQ h dt dh AR S =+

相关主题
文本预览
相关文档 最新文档