当前位置:文档之家› 过程控制基本概念

过程控制基本概念

过程控制基本概念
过程控制基本概念

过程控制基本概念

自动控制技术在工业、农业、国防和科学技术现代化中起着十分重要的作用,自动控制水平的高低也是衡量一个国家科学技术先进与否的重要标志之一。随着国民经济和国防建设的发展,自动控制技术的应用日益广泛,其重要作用也越来越显著。

生产过程自动控制(简称过程控制)-------自动控制技术在石油、化工、电力、冶金、机械、轻工、纺织等生产过程的具体应用,是自动化技术的重要组成部分。

§1.1 过程控制的发展概况及特点

一、过程控制的发展概况

在过程控制发展的历程中,生产过程的需求、控制理论的开拓和控制技术工具和手段的进展三者相互影响、相互促进,推动了过程控制不断的向前发展。纵观过程控制的发展历史,大致经历了以下几个阶段:

20世纪40年代:

手工操作状态,只有少量的检测仪表用于生产过程,操作人员主要根据观测到

的反映生产过程的关键参数,用人工来改变操作条件,凭经验去控制生产过程。

20世纪40年代末~50年代:

过程控制系统:多为单输入、单输出简单控制系统

过程检测:采用的是基地式仪表和部分单元组合仪表(气动Ⅰ型和电动Ⅰ型);

部分生产过程实现了仪表化和局部自动化

控制理论:以反馈为中心的经典控制理论

20世纪60年代:

过程控制系统:串级、比值、均匀、前馈和选择性等多种复杂控制系统。

自动化仪表:单元组合仪表(气动Ⅱ型和电动Ⅱ型)成为主流产品

60年代后期,出现了专门用于过程控制的小型计算机,直接数字控

制系统和监督计算机控制系统开始应用于过程控制领域。

控制理论:出现了以状态空间方法为基础,以极小值原理和动态规划等最优控制

理论为基本特征的现代控制理论,传统的单输入单输出系统发展到多

输入多输出系统领域,、型、型

20世纪70~80年代:

微电子技术的发展,大规模集成电路制造成功且集成度越来越高(80年代初一片硅片可集成十几万个晶体管,于是32位微处理器问世),微型计算机的出

现及应用都促使控制系统发展。

过程控制系统:最优控制、非线性分布式参数控制、解耦控制、模糊控制

自动化仪表:气动Ⅲ型和电动Ⅲ型,以微处理器为主要构成单元的智能控制装置。

集散控制系统(DCS)、可编程逻辑控制器(PLC) 、工业PC机、

和数字控制器等,已成为控制装置的主流。

集散控制系统实现了控制分散、危险分散,操作监测和管理集中。

控制理论:形成了大系统理论和智能控制理论。模糊控制、专家系统控制、模式

识别技术

20世纪90年代至今:信息技术飞速发展

过程控制系统:管控一体化现场,综合自动化是当今生产过程控制的发展方向。

自动化仪表:总线控制系统的出现,引起过程控制系统体系结构和功能结构上的

重大变革。现场仪表的数字化和智能化,形成了真正意义上的全

数字过程控制系统。各种智能仪表、变送器、无纸纪录仪

人工智能、神经网络控制

二、自动化技术的应用范畴

1.宇航方面:(现代控制理论)

同步卫星与地面接收站直接对应,偏差影响收看效果(随动控制系统)

卫星的发射与回收(神州3号卫星,哥伦比亚号航天飞机)自动关机、点火系统

2.军事方面:

火炮自动点火、巡航导弹

3.其他方面:农业(病虫害防治、专家系统)

社会科学(计划生育,人口增长模型)

4.现代管理:办公自动化(以计算机技术和现代通信技术为主体的综合处理与办公活动

相关的语言、数据、图像、文字等人及信息系统。

5.工业生产:自动车床、加热炉、发酵罐

三、过程控制系统的特点

过程控制系统与其他自动控制系统相比,有如下几个特点:

1.生产过程的连续性

在过程控制系统中,大多数被控过程都是以长期的或间歇形式运行,在密闭的设备中被控变量不断的受到各种扰动的影响。

2.被控过程的复杂性

过程控制涉及范围广:石化过程的精馏塔、反应器;热工过程的换热器、锅炉等。

被控对象较复杂:动态特性多为大惯性,大滞后形式,且具有非线性、分布参数和时变

特性。

3.控制方案的多样性

被控过程对象特性各异,工艺条件及要求不同,过程控制系统的控制方案非常丰富。

包括:常规PID控制、改进PID控制、串级控制、前馈-反馈控制、解耦控制;

为满足特定要求而开发的比值控制、均匀控制、选择性控制、推断控制;

新型控制系统,如模糊控制、预测控制、最优控制等。

四、过程控制的主要内容

1.自动检测系统

———利用各种检测仪表对工艺参数进行测量、指示或记录

如:加热炉温度、压力检测

2.自动信号和联锁保护系统

自动信号系统:当工艺参数超出要求范围,自动发出声光信号

联锁保护系统:达到危险状态,打开安全阀或切断某些通路,必要时紧急停车

如:反应器温度、压力进入危险限时,加大冷却剂量或关闭进料阀

3.自动操纵及自动开停车系统

自动操纵系统:根据预先规定的步骤自动地对生产设备进行某种周期性操作

最新自动控制原理概念及定义

自控概念及定义 1.开环控制的定义:若系统的被控制量对系统的控制作用没有影响,则此系统叫开环控制 系统 2.闭环控制的定义:凡是系统的被控制信号对控制作用有直接影响的系统都叫闭环控制系 统 3.恒值控制系统的定义:如果反馈控制系统的参考输入信号为常量则称这类反馈控制系统 为恒值控制系统 4.程序控制系统的定义:系统的参考输入信号按照一定的时间函数变化则称这类反馈控制 系统为程序控制系统 5.随动控制系统的定义:闭环控制系统中,如果参考输入信号为一任意时间函数,其变化 规律无法预先予以确定,则承受这类输入信号的闭环控制系统叫做随动控制系统 6.被控对象的定义:控制系统中被控制的设备或过程 7.被控参数或输出量的定义:指被控对象中按一定规律变化的物理量,与输入信号间满足 一定的函数关系 8.扰动量的定义:所有妨碍控制量对被控量进行正常控制的因素称为扰动量 9.控制量的定义:直接加到被控对象、直接改变被控量的变量,称为控制量 10.反馈量的定义:由系统(或元件)输出端取出并反向送回系统(或元件)输入端的信号 称为反馈量 11.偏差量的定义:参考输入与主反馈信号之差 12.控制器的定义:控制系统中除了被控对象外各个部分的组合 13.负反馈控制基本原理:在反馈控制系统中,控制装置对被控对象施加的控制作用,是取 自被控量的反馈信息,用来不断修正被控量与输入量之间的偏差,从而实现对被控对象进行控制的任务,这就是负反馈控制的原理。 14.前向通道的定义:在闭环控制系统中,从系统输入量到系统被控量之间的通道称为前向 通道 15.反馈通道的定义:在闭环控制系统中,从被控量到输入端的反馈信号之间的通道称为反 馈通道 16.对控制系统的基本要求:稳定,精确,迅速 17.传递函数的定义:在初始条件为零时,线性定常系统或元件输出信号的拉氏变换式与输 入信号的拉氏变换式之比称为该系统或元件的传递函数 18.什么叫基本环节:一个复杂的控制系统分成的一个个小部分称为环节。从动态方程、传 递函数和运动特性的角度看不宜再分的最小环节称为基本环节 19.比例环节传递函数:G(s)=K 20.惯性环节传递函数:G(s)=1/(Ts+1) 21.积分环节传递函数:G(s)=1/s 22.振荡环节传递函数:G(s)=1/()= 23.纯微分环节传递函数:G(s)=s 24.一阶微分环节传递函数:G(s)=s+1 25.二阶微分传递函数:G(s)= 26.延迟环节传递函数:G(s)= 27.二阶系统五个性能指标:上升时间、峰值时间、最大超调量、过渡过程时间、振

第一章-过程控制基本概念

第一 章 过 程控制基本概念 教学要求:了解过程 控制的发展概况及特点; 负反馈概念; 控制系统的基本控制 要求及质量指标。 难 点:常用术语物理意 义(操纵变量与扰动量区别 ); 根据控制系统要求绘 制方框图; 静态,过渡过程概念 。 自动控制技术在工业 、农业、国防和科学技术现代化中起着十 分重要的作用,自动控 制水平的高低也是衡 量一个国家科学技术先进与否的重要标志 之一。随着国民经济和国防 建设的发展,自动控 制技术的应用日益广泛,其重要作用也越 来越显著。 生产过程自动控制( 简称过程控制) ------------ 自动 控制技术在石油、化工、电力、冶金、 机械、轻工、纺织等 生产过程的具体应用,是自动化技术的重 要组成部分。 §1.1 过程控 制的发展概况及特点 一、过 程控制的发展概况 在过程控制发展的历 程中,生产过程的需求、控制理论的开拓 和控制技术工具和手段 的进展三者相互影响 、相互促进,推动了过程控制不断的向前 发展。纵观过程控制的发展 历史,大致经历了以 下几个阶段: 20 世纪 40 年代: 手工操作状态,只有 少量的检测仪表用于生产过程,操作人员 主要根据观测 到的反映生产过程的 关键参数,用人工来改变操作条件,凭经 验去控制生产 过程。 20世纪40年代末?50年代: 过程控制系统:多为 单输入、单输出简单控制系统 过程检测:采用的是 基地式 仪表和部分单元组合仪表(气动I 型和电动I 型); 部分生产过程实现了 仪表化和局部自动化 控制理论:以反馈为 中心的经典控制理论 掌握管道及仪表流程 学会绘制简单系 统的 图绘制方法,认识常见图形符号、文字代 号 ; 掌握控制系统的基本 控制要求(稳定、快速、准确 ); 掌握静态、动态及过 渡过程概念; 掌握品质指标的定义 ,学会计算品质指标。 掌握过程控制系统各 部分作用,系统的组成; 重 点:自动控制系统的 组成及各部分的功能;

过程控制题库全

填空 1 前馈控制一般有四种结构形式,分别为:(),(),(),()。 2 工业上PID控制器一般可以分为四类,分别为:(),(),(),()。 (1)Smith预估补偿控制对给定值的跟随效果比对干扰量的抑制效果要好() (2) 在PID控制中,若系统震荡剧烈,则应加大积分信号() (3)在PID控制中,为了提高系统的响应速度,则应加大比例信号() (4)在控制系统中,控制通道时间常数的大小反映了控制作用的强弱() (5)增量型PID算式仅仅是计算方法上的改进,并没有改变位置型PID算式的本质() )(6)串级控制系统的主回路可以看成是一个定值控制系统()(7)在模糊控制中,隶属度函数值一般不会大于1 (??在解耦控制中,若矩阵的元素越接近1,表示相关通道受 耦合的影响越小()(8) )((9)在选择性控制中,总有一个控制器(调节器)处于开环状态 )((10) 分程控制本质上是一个单回路控制系统 )((10) 均匀控制结构上与单回路控制系统完全相同 K?s?e?(s)G) )自衡的非振荡过程传递函数一般可写为:11 ( ()?1s(Ts?) )不论前馈还是反馈控制系统(12扰动滞后都不会影响控制系统的品质( f) (13)任何串级控制系统副对象的动态滞后总是比整个对象的动态滞后大( ) 14()前馈控制系统属于开环控制系统( ?) 为负值,表示严重关联(15)在解耦控制中,相对增益( ) 的控制方式中没有计算机控制( (16)实验室控制AE2000A) 中,JX-300的所有卡件均为热插拔卡件( (17)在实验室DCS) 18)鲁棒控制是基于含有不确定性的非精确数学模型来设计系统控制器。( () 19)鲁棒控制中,小增益定理给出了多变量系统稳定的充要条件( ()(20)微分作用在高频下有大的振幅比,所以存在高频噪声的地方可以采用微分( (21) 均匀控制的控制器参数整定目标和方法与单回路控制系统完全相同()(22) 在PID )控制中,若系统的超调量过大,则可以通过减小比例系数的大小修正()(23)在PID控制中,通过加入积分控制实现系统的无静差控制(在控制系统中,控制通道时间常数的大小反映了控制作用的强弱((24))在控制系统中,扰动通道滞后时间常数的大小反映了扰动作用的强弱()(25)串级控制系统的副回路可以看成是一个定值控制系统()26 )(Smith)(27 预估补偿控制效果的好坏依赖于系统的数学模型的精度() Smith)内模控制本质上时一种特殊的(28)预估补偿控制(

《自动控制原理》专科课程标准

《自动控制原理》课程标准 一、课程概述 (一)课程性质地位 自动控制原理是空间工程类、机械控制类、信息系统类等相关专业学历教育合训学员的大类技术基础课程。由于自动控制原理在信息化武器装备中得到了广泛的应用,因此,将本课程设置为大类技术基础课,对培养懂技术的指挥人才有着十分重要的作用。本课程所覆盖的知识面较宽,既有较深入的理论基础知识,也有较广泛的专业背景知识,因而,它在学员知识结构方面将起到加强理论深度和拓展知识广度的积极作用。 (二)课程基本理念 为了贯彻素质教育和创新教育的思想,本课程将在注重自动控制原理的基本概念和基本分析与设计方法的基础上,适当引入自动控制发展中的、学员能够理解的新概念和新方法;贯彻理论联系实际的原则,科学取舍各种主要理论、方法的比例,正确处理好理论与案例的关系,以适应为部队培养应用复合型人才的需要;适当引入和利用Matlab工具来辅助自动控制原理中的复杂计算与作图、验证分析与设计的结果;本课程应该既使学员掌握必要的基础理论知识,并了解它们对实际问题的指导作用,又要促进学员养成积极思考、长于分析、善于推导的能力和习惯。 (三)课程设计思路 本课程主要介绍自动控制原理的基本概念和基本的分析与设计方法。课程采用“一纵三横”的设计思路,具体来说,“一纵”就是在课程讲授中要求贯彻自动控制系统的建模、分析及设计方法这条主线;“三横”就是在方法讲授中要求强调自动控制系统的稳定性、快速性和准确性,稳准快三个字是分析的核心,也是设计的归宿。在课程讲授中,贯彻少而精的原则,即对重点、难点讲深讲透;注意理论联系专业实际,例子贴近生活,注重揭示抽象概念的物理意义;注意传统教法与现代教法的有机结合,充分运用各种教学手段,特别注重发挥课程教学网站的作用。在课程学习中,注重阅读教材、完成作业、课程实验及讨论问题等四个环节,深刻理解课程内容中的重点和难点,重点掌握自动控制原理的基本概念和基本分析与设计方法。 二、课程目标 (一)知识与技能 通过本课程的学习,使学员掌握自动控制原理的基本概念和基本的分析与设计方法,重点培养学生利用自动控制的基本理论分析与解决工程实际问题的思维方式和初步能力,并为学习后续相关专业课程,以及进一步学习和应用自动控制方面的新知识、新技术打下必要基础。 (二)过程与方法 通过本课程的学习,使学员掌握自动控制系统分析与设计的一般过程与基本方法。 (三)情感态度与价值观 通过本课程的学习,使学员在五个方面得到磨练与培养。 (1)实践意识:坚持一切从实际出发,不迷信书本、不迷信权威。 (2)质量意识:认认真真做好每一件事,在学习中的每一个环节都坚持质量至上的思想。 (3)协作意识:现代科学技术已经很少是一个人可以独立完成的了,所以要能与同学协同工作、协调配合。 (4)创新意识:勇于不断追求和探索新意境、新见解。 (5)坚毅意志:具有坚强的意志和顽强的精神,要敢于面对困难、善于克服困难。

过程控制模拟试题

过程控制模拟试题(一) 1、什么是过程控制系统? 其基本分类方法有哪几种? (5分) 2、什么是机理分析法建模? 该方法有何特点? (5分) 3、何谓调节阀的流通能力?对数流量特性有何特点?(5分) 4、何谓单回路系统?说明组成单回路系统各部分的作用。(10分) 5、选择调节器控制规律的依据是什么? 若已知过程的数学模型,怎样来选择PID控制规 律? (10分) 6、什么叫比值控制系统? 常用比值控制方案有哪些? 并比较其优缺点。(10分) 7、试推导单容过程数学模型(输入量为q1,被控量为h1)。(15分) 8、某生产过程中,冷物料通过加热炉对其进行加热。热物料温度必须满足生产工艺要求, 故设计下图所示温度控制系统流程图。试画出其框图,并确定调节阀的气开、气关形式和调节器的正、反作用。(20分) 加热炉 9、对于下图所示的加热炉串级控制系统,试画出系统的结构框图,并分析其工作过程。 与单回路系统相比,串级控制系统有哪些主要特点?(20分)

过程控制模拟试题(一)答案 1、答案 过程控制是通过各种检测仪表、控制仪表和电子计算机等自动化技术工具,对整个生产过程进行自动检测、自动监督和自动控制。一个过程控制系统是由被控过程和过程检测控制仪表两部分组成的。 按过程控制系统的结构特点可进行如下分类: 1)反馈控制系统:反馈控制系统是根据系统被控量的偏差进行工作的,偏差值是控制的依据,最后达到消除或减小偏差的目的。 2)前馈控制系统:前馈控制系统直接根据扰动量的大小进行工作,扰动是控制的依据。由于它没有被控量的反馈,所以也称为开环控制系统。 3)前馈—反馈控制系统(复合控制系统):开环前馈控制的最主要的优点是能针对主要扰动及时迅速地克服其对被控参数的影响;对于其余次要扰动,则利用反馈控制予以克服,使控制系统在稳态时能准确地使被控量控制在给定值上。 按给定值信号的特点可进行如下分类: 1)定值控制系统:就是系统被控量的给定值保持在规定值不变,或在小范围附近不变。 2) 程序控制系统:它是被控量的给定值按预定的时间程序变化工作的。控制的目的就是使系统被控量按工艺要求规定的程序自动变化。 3) 随动控制系统:它是一种被控量的给定值随时间任意变化的控制系统。其主要作用是克服一切扰动,使被控量快速跟随给定值而变化。 2、答案 机理建模: 是根据过程的内部机理(运动规律),运用一些已知的定律、原理,如生物学定律、化学动力学原理、物料平衡方程、能量平衡方程、传热传质原理等,建立过程的数学模型。特点: 机理分析法建模的最大特点是当生产设备还处于设计阶段就能建立其数学模型。由于该模型的参数直接与设备的结构、性能参数有关,因此对新设备的研究和设计具有重要意义。另外,对于不允许进行试验的场合,该方法是唯一可取的。机理分析法建模主要是基于分析过程的结构及其内部的物理化学过程,因此要求建模者应有相应学科的知识。通常此法只能用于简单过程的建模。对于较复杂的实际生产过程来说,机理建模有很大的局限性,这是因为实际过程的机理并非完全了解,同时过程的某些因素如受热面的积垢、催化剂的老化等可能在不断变化,难以精确描述。另外,一般来说机理建模得到的模型还需通过试验验证。 3、答案 流通能力C表示执行器的容量,其定义为:调节阀全开,阀前后压差为0.1MPa,流体密度为1g/cm3时,每小时流过阀门的流体流量(体积(m3)或质量(kg))。 对数(等百分比)流量特性:

自动控制原理题库(经典部分)解读

《自动控制原理》题库 一、解释下面基本概念 1、控制系统的基本控制方式有哪些? 2、什么是开环控制系统? 答:在控制器与被控对象之间只有正向控制作用而没有反馈控制作用,即系统的输出量对控制量没有影响。 3、什么是自动控制? 答:自动控制就是采用控制装置使被控对象自动地按照给定的规律运行,使被控对象的一个或数个物理量能够在一定的精度范围内按照给定的规律变化。 4、控制系统的基本任务是什么? 5、什么是反馈控制原理? 6、什么是线性定常控制系统? 7、什么是线性时变控制系统? 8、什么是离散控制系统? 9、什么是闭环控制系统? 10、将组成系统的元件按职能分类,反馈控制系统由哪些基本元件组成? 11、组成控制系统的元件按职能分类有哪几种? 12、典型控制环节有哪几个? 13、典型控制信号有哪几种? 14、控制系统的动态性能指标通常是指? 15、对控制系统的基本要求是哪几项? 16、在典型信号作用下,控制系统的时间响应由哪两部分组成? 17、什么是控制系统时间响应的动态过程? 18、什么是控制系统时间响应的稳态过程? 19、控制系统的动态性能指标有哪几个? 20、控制系统的稳态性能指标是什么? 21、什么是控制系统的数学模型? 22、控制系统的数学模型有: 23、什么是控制系统的传递函数? 24、建立数学模型的方法有? 25、经典控制理论中,控制系统的数学模型有?

26、系统的物理构成不同,其传递函数可能相同吗?为什么? 27、控制系统的分析法有哪些? 28、系统信号流图是由哪二个元素构成? 29、系统结构图是由哪四个元素组成? 30、系统结构图基本连接方式有几种? 31、二个结构图串联连接,其总的传递函数等于? 32、二个结构图并联连接,其总的传递函数等于? 33、对一个稳定的控制系统,其动态过程特性曲线是什么形状? 34、二阶系统的阻尼比10<<ξ,其单位阶跃响应是什么状态? 35、二阶系统阻尼比ξ减小时,其阶跃响应的超调量是增大还是减小? 36、二阶系统的特征根是一对负实部的共轭复根时,二阶系统的动态响应波形是什么特点? 37、设系统有二个闭环极点,其实部分别为:δ=-2;δ=-30,问哪一个极点对系统动态过程的影响大? 38、二阶系统开环增益K 增大,则系统的阻尼比ξ减小还是增大? 39、一阶系统可以跟踪单位阶跃信号,但存在稳态误差?不存在稳态误差。 40、一阶系统可以跟踪单位加速度信号。一阶系统只能跟踪单位阶跃信号(无稳态误差)可以跟踪单位斜坡 信号(有稳态误差) 41、控制系统闭环传递函数的零点对应系统微分方程的特征根。应是极点 42、改善二阶系统性能的控制方式有哪些? 43、什么是二阶系统?什么是Ⅱ型系统? 44、恒值控制系统 45、谐振频率 46、随动控制系统 47、稳态速度误差系数K V 48、谐振峰值 49、采用比例-微分控制或测速反馈控制改善二阶系统性能,其实质是改变了二阶系统的什么参数?。 50、什么是控制系统的根轨迹? 51、什么是常规根轨迹?什么是参数根轨迹? 52、根轨迹图是开环系统的极点在s 平面上运动轨迹还是闭环系统的极点在s 平面上运动轨迹? 53、根轨迹的起点在什么地方?根轨迹的终点在什么地方? 54、常规根轨迹与零度根轨迹有什么相同点和不同点? 55、试述采样定理。

过程控制试题库

过程控制期末试题库 一、填空题(本题共计10分,包括3小题,10个填空,每空1分) 1.一般一个简单控制系统由(检测/变送)装置、(被控对象)、(调节)器和(执行)机构组成。 2.过程控制系统常用的参数整定方法有:(经验法)、(衰减曲线法)、(稳定边界法/临界比例度法)和(响应曲线法)。 3.在PID调节器中,调节器的Kc越大,表示调节作用(越强),Ti值越大,表示积分作用(减弱),Td值越大表示微分作用(增强)。 4.常见的过程计算机控制系统分为下列几种典型形式:(操作指导控制系统)、直接数字控制系统、(监督计算机控制系统)、(集散控制系统)和现场总线控制系统。 5.在闭环控制系统中,根据设定值的不同形式,又可分为定值控制系统,随动控制系统和程序控制系统。 1)定值控制系统 特点:设定值是(固定不变); 作用:保证在(扰动)作用下使被控变量始终保持在设定值上。 2)随动控制系统 特点:设定值是一个(变化量); 作用:保证在各种条件下系统的输出(及时跟踪设定值变化)。 3)程序控制系统 特点:设定值是一个(按一定时间程序变化的时间函数); 作用:保证在各种条件下系统的输出(按规定的程序自动变化)。 6.串级控制系统能迅速克服进入(副)回路的扰动,改善(主)控制器的广义对象特性,容许(副)回路内各环节的特性在一定的范围内变动而不影响整个系统的控制品质。 7.定值控制系统是按(偏差)进行控制的,而前馈控制是按(扰动)进行控制的;前者是(闭)环控制,后者是(开)环控制。 二、选择题(本题共计10分,包括5小题,每题2分) 1.由于微分调节规律有超前作用,因此调节器加入微分作用主要是用来(C): A.克服调节对象的惯性滞后(时间常数T),容量滞后τc和纯滞后τ0. B.克服调节对象的纯滞后τ0. C.克服调节对象的惯性滞后(时间常数T),容量滞后τc. 2.定值调节是一种能对(A )进行补偿的调节系统。 A.测量与给定之间的偏差 B.被调量的变化 C.干扰量的变化 D. 设定值的变化 3.定值调节系统是(X)环调节,前馈系统是(X)环调节( B )。

自动控制原理基本概念总结

68.二阶系统中,闭环零点的出现,加快了系统响应速度,克服了阻尼过大,响应速度慢的缺点。实现快速性和平稳性均提高。 69.二阶系统中,引入比例微分控制,不影响系统误差,自然频率不变。 70.在二阶系统中引入微分反馈,速度反馈使增大,振荡和超调减小,改善了系统平稳性。 71.在二阶系统中引入微分反馈,速度负反馈控制的闭环传递函数无零点,其输出平稳性优于比例——微分控制。但是,系统快速性会降低。 72.在二阶系统中引入微分反馈,系统跟踪斜坡输入时稳态误差会加大,因此应适当提高系统的开环增益. 73.高阶系统瞬态响应各分量的衰减快慢由指数衰减系数pj和ζkωnk决定。如果某极点远离虚轴,那么其相应的瞬态分量持续时间较短。对系统暂态性能的影响就小。 74.当某极点pj靠某零点zi很近,相应瞬态分量的系数就越小,极端情况下,当pj和zi重合时,该零极点为偶极子,对系统的瞬态响应没有影响。 75.在系统中,某极点距虚轴的距离小于其他所有极点距虚轴的距离的1/5,在其附近没有零点存在,则该极点为主导极点。系统的瞬态响应取决于主导极点。若主导极点为一个负实数,高阶系统近似为一阶系统;若主导极点为一对共轭复数,高阶系统近似为二阶系统。 76.必要条件:控制系统特征方程式的所有系数ai(i=0,1,2,…,n)均大于零,小于零或者等于零(缺项)系 统必不稳定。 77.充分条件:劳斯表中第一列的元素均大于零时,系统稳定;反之,如果第一列出现小于零的元素时,系 统就不稳定。第一列元素符号的改变次数,代表特征方程的正实部根的个数。第一列出现0元素,系统临 界稳定。 78.系统的相频特性是指输入、输出正弦相位差与频率的关系,幅频特性是指输入、输出正弦幅值比与频率的关系。 79.系统的稳态输出正弦的复数形式与输入正弦函数的复数形式之比是-个复数,复数的幅值就是幅频特性,复数的幅角就是相频特性。 80.由奈氏判据可知,当ω从-∞变化到+∞时,系统的开环频率特性G(jω)H(jω)按逆时针方向包围(-1, j0)点P周,P为位于s平面右半部的开环极点数目。 81.由奈氏判据可知,闭环系统稳定的充分和必要条件是:系统的开环频率特性G(jω)H(jω)不包围(-1,j0)点。 82.闭环系统稳定的充分必要条件是,当ω由0变到∞时,在开环对数幅频特性L(ω)≥0的频段内,相频特性φ(ω)穿越-180°线的次数(正穿越与负穿越次数之差)为P/2。P为s平面右半部开环极点数目。 83.系统校正的实质是,利用校正装置所引入的附加的零、极点,来改变整个系统零、极点的配置,改变根轨迹或频率特性的形状从而影响系统的稳、暂态性能。 84.开环对数幅频特性的低频段决定系统的稳态精度,中频段决定系统的暂态性能,高频段则决定系统的频宽和抗扰能力等。 85.比例元件在信号变换中起着改变增益而不影响相位的作用。 86.在串联校正中,比例校正元件只影响系统的开环增益,从而影响系统的稳态误差。显然,增大开环增益,系统将提高稳态精度,同时,剪切频率增大,系统的快速性提高。但是它又往往使系统的相角裕量减小, 所以系统的平稳性变差。 87.微分元件在信号变换中起着对信号取导数即起到加速的作用,同时使相位发生超前。但由于它对恒定信号起着阻断作用,故在串联校正中不能单独使用, 88.比例微分校正可全面改善系统稳态及暂态性能,但是对系统抗高频干扰的能力影响较大,只能用于原系统抗高频干扰的能力非常强的系统。 89.积分元件在信号变换中起着对信号进行积分即积累的作用,同时使相位发生滞后,积分控制可以提高系统的无差度,即提高系统的稳态性能。但积分控制相当于系统增加一个开环原点极点,这将不利于系统的 稳定性。

过程控制基本概念

过程控制基本概念 自动控制技术在工业、农业、国防和科学技术现代化中起着十分重要的作用,自动控制水平的高低也是衡量一个国家科学技术先进与否的重要标志之一。随着国民经济和国防建设的发展,自动控制技术的应用日益广泛,其重要作用也越来越显著。 生产过程自动控制(简称过程控制)-------自动控制技术在石油、化工、电力、冶金、机械、轻工、纺织等生产过程的具体应用,是自动化技术的重要组成部分。 §1.1 过程控制的发展概况及特点 一、过程控制的发展概况 在过程控制发展的历程中,生产过程的需求、控制理论的开拓和控制技术工具和手段的进展三者相互影响、相互促进,推动了过程控制不断的向前发展。纵观过程控制的发展历史,大致经历了以下几个阶段: 20世纪40年代: 手工操作状态,只有少量的检测仪表用于生产过程,操作人员主要根据观测到 的反映生产过程的关键参数,用人工来改变操作条件,凭经验去控制生产过程。 20世纪40年代末~50年代: 过程控制系统:多为单输入、单输出简单控制系统 过程检测:采用的是基地式仪表和部分单元组合仪表(气动Ⅰ型和电动Ⅰ型); 部分生产过程实现了仪表化和局部自动化 控制理论:以反馈为中心的经典控制理论 20世纪60年代: 过程控制系统:串级、比值、均匀、前馈和选择性等多种复杂控制系统。 自动化仪表:单元组合仪表(气动Ⅱ型和电动Ⅱ型)成为主流产品 60年代后期,出现了专门用于过程控制的小型计算机,直接数字控 制系统和监督计算机控制系统开始应用于过程控制领域。 控制理论:出现了以状态空间方法为基础,以极小值原理和动态规划等最优控制 理论为基本特征的现代控制理论,传统的单输入单输出系统发展到多 输入多输出系统领域,、型、型 20世纪70~80年代: 微电子技术的发展,大规模集成电路制造成功且集成度越来越高(80年代初一片硅片可集成十几万个晶体管,于是32位微处理器问世),微型计算机的出 现及应用都促使控制系统发展。 过程控制系统:最优控制、非线性分布式参数控制、解耦控制、模糊控制 自动化仪表:气动Ⅲ型和电动Ⅲ型,以微处理器为主要构成单元的智能控制装置。 集散控制系统(DCS)、可编程逻辑控制器(PLC) 、工业PC机、 和数字控制器等,已成为控制装置的主流。 集散控制系统实现了控制分散、危险分散,操作监测和管理集中。 控制理论:形成了大系统理论和智能控制理论。模糊控制、专家系统控制、模式 识别技术 20世纪90年代至今:信息技术飞速发展 过程控制系统:管控一体化现场,综合自动化是当今生产过程控制的发展方向。

第二章 进程管理(进程概念)

第二章进程管理 ——进程概念—— 单选题 1.下面对进程的描述中,错误的是_____。 A.进程是动态的概念 B.进程的执行需要处理机 C.进程具有生命周期 D.进程是指令的集合 2.进程的并发性是指_____。 A.多个进程实体能在一个时刻同时执行 B.多个进程实体能在一段时间内同时执行 C.多个程序能在一个时刻同时执行 D.多个程序能在一段时间内同时执行 3.由于进程间共享资源和协同工作,造成进程执行时的间断性。进程的这种特性称为 _____。 A.独立性 B.动态性 C.异步性 D.协作性 4.通常用户进程被建立后,_____。 A.便一直存在于系统中,直到被操作人员撤消 B.随着作业运行正常或不正常结束而撤消 C.随着时间片轮转而撤消与建立 D.随着进程的阻塞或唤醒而撤消与建立 5.在操作系统中。进程是一个具有一定独立功能的程序在某个数据集上的一次_____。 A.等待活动 B.运行活动 C.单独操作 D.关联操作 6.多道程序环境中,操作系统分配资源以_____为基本单位。 A.程序 B.指令 C.进程 D.作业 7.进程存在的唯一标志是_____。 A.程序状态字 B.程序 C.进程映象 D.进程控制块 8.操作系统通过_____对进程进行管理。 A.JCB B.PCB

C.DCT D.FCB 9.不包含在进程控制块中的是_____。 A.系统当前的进程数 B.进程标识 C.处理机状态 D.进程所占资源清单 10.进程的三种基本状态是_____。 A.就绪、阻塞和挂起 B.执行、就绪和阻塞 C.执行、就绪和挂起 D.执行、挂起和阻塞 11.分配到必要的资源并获得处理机时间的进程状态是_____。 A.就绪状态 B.执行状态 C.阻塞状态 D.撤消状态 12.在进程管理中,当_____时,进程从阻塞状态变为就绪状态。 A.进程被调度程序选中 B.进程等待某一事件发生 C.等待的事件出现 D.时间片到 13.在分时系统中,一个进程用完给它的时间片后,其状态为_____。 A.就绪 B.等待 C.运行 D.由用户设定 14.一个正在CPU上运行的进程,其进程状态_____。 A.只能转变为阻塞状态 B.只能转变为就绪状态 C.可以转变为就绪状态也可以转变为阻塞状态 D.可以转变为就绪状态也可以转变为执行状态 15.一个进程被唤醒,意味着该进程_____。 A.重新占有CPU B.优先级变为最大 C.移至等待队列之首 D.变为就绪状态 16.下列的进程状态变化中,_____变化是不可能发生的。 A.运行→就绪 B.运行→等待 C.等待→运行 D.等待→就绪 17.进程的三个基本状态在一定条件下可以相互转化,进程由就绪状态变为运行状态的条件 是__D___;由运行状态变为阻塞状态的条件是__B___。

第1章自动控制系统的基本概念

第1章自动控制系统的基本概念 内容提要: 本章通过开环与闭环控制具体实例,讲述自动控制系统的基本概念(如被控制对象、输入量、输出量、扰动量、开环控制系统、闭环控制系统及反馈的概念)、反馈控制任务、控制系统的组成及原理框图的绘制、控制系统的基本分类、对控制系统的基本要求。 1.1 概述 在科学技术飞速发展的今天,自动控制技术起着越来越重要的作用。所谓自动控制,是指在没有人直接参与的情况下,利用控制装置使被控对象(机器设备或生产过程)的某个参数(即被控量)自动地按照预定的规律运行。例如,数控车床按照预定程序自动地切削工件,化学反应炉的温度或压力自动地维持恒定,人造卫星准确地进入预定轨道运行并回收,宇宙飞船能够准确地在月球着陆并返回地面等,都是以应用高水平的自动控制技术为前提的。 自动控制理论是控制工程的理论基础,是研究自动控制共同规律的技术科学。自动控制理论按其发展过程分成经典控制理论和现代控制理论两大部分。 经典控制理论在20世纪50年代末已形成比较完整的体系,它主要以传递函数为基础,研究单输入、单输出反馈控制系统的分析和设计问题,其基本内容有时域法、频域法、根轨迹法等。 现代控制理论是20世纪60年代在经典控制理论的基础上,随着科学技术的发展和工程实践的需要而迅速发展起来的,它以状态空间法为基础,研究多变量、变参数、非线性、高精度等各种复杂控制系统的分析和综合问题,其基本内容有线性系统基本理论、系统辨识、最优控制等。近年来,由于计算机和现代应用数学研究的迅速发展,使控制理论继续向纵深方向发展。目前,自动控制理论正向以控制论、信息论、仿生学为基础的智能控制理论深入。 1.2 自动控制的基本方式 在工业生产过程中,为了提高产品质量和劳动生产率,对生产设备、机器和生产过程需要进行控制,使之按预定的要求运行。例如,为了使发电机能正常供电,就必须使输出电压保持不变,尽量使输出电压不受负荷的变化和原动机转速波动的影响;为了使数控机床能加工出合格的零件,就必须保证数控机床的工作台或者刀架的位移量准确地跟随进给指令进给;为了使加热炉能保证生产出合格的产品,就必须对炉温进行严格的控制。其中,发电机、机床、加热炉是工作的机器装备;电压、刀架位移量、炉温是表征这些机器装备工作状态的物理参量;额定电压、进给的指令、规定的炉温是在运行过程中对工作状态物理参量的要求。 被控制对象或对象:将这些需要控制的工作机器装备称为被控制对象或对象,如发电机、机床。

过程控制试题库

过程控制试题库. 《过程控制》试题库 第1-2章试题 单选题 1.生产过程中引起被控量偏离其给定值的各种

因素称为()。答案 B A.被控量 B.扰动 C.控制量 D.给定值 当被控量受到扰动偏离给定值后,使被控量恢 2. 复为给定值所需改变的物理量称为 ()。答案 C A.被控量 B.扰动 C.控制量 D.给定值 自动控制系统按照给定值进行分类,可以分

成:3. ()、程序控制系统和随动控制系统。B .闭环控制系统A .定值控制系统B C.开环控制系统D.简单控制系统自动控制系 统按照给定值进行分类,可以分成:4. 定值控制系统、()和随动控制系统。B A.闭环控制系统.程序控制系统B C.开环控制系统D.简单控制系统自动控制系统按照给定值进行分类,可以分 5.成:定值 控制系统、程序控制系统和()。B .闭环控制系统A. B.随动控制系统 C.开环控制系统 D.简单控制系统 6.给定值在系统工作过程中保持不变,从而使被控量保持恒定,这样的系统称为 ()。D

A .开环控制系统 B .程序控制系统 C .随动控制系统 定值控制系统 .D 控制系统的给定值是时间的确定函数,这样的7.系统称为( )。 B A .开环控制系统 B .程序控制系统 .随动控制系统 C 定值控制系统 D . 控制系统的给定值按事先不确定的随机因素8.改变,这样的系统称为( )。C .开环控制系统A .程序控制系统B .随动控制系统C 定值控制系统 .D 自动控制系统按照结构进行分类,可以分成:9.( )、开环控制系统和复合控制系统。

B A.开环控制系统B.闭环控制系统.复合控制系统C D.随动控制系统自动控制系统按照结构进行分类,可以分成:10.闭环控制系统、()和复合控制系统。A A.开环控制系统.闭环控制系统B. C.复合控制系统 D.随动控制系统 自动控制系统按照结构进行分类,可以分成:11.闭环控制系统、开环控制系统和()。C A.开环控制系统.闭环控制系统B .复合控制系统C .随动控制系统D()

自动控制原理基本概念总结

《自动控制原理》基本概念总结 1.自动控制系统的基本要求是稳定性、快速性、准确性 2.一个控制系统至少包括控制装置和控制对象 3.反馈控制系统是根据被控量和给定值的偏差进行调节的控制系统 4.根据自动控制系统是否形成闭合回路来分类,控制系统可分为开环控制系统、闭环控制系统。 根据信号的结构特点分类,控制系统可分为:反馈控制系统、前馈控制系统和前馈-反馈复合控制系统。根据给定值信号的特点分类,控制系统可分为:恒值控制系统、随动控制系统和程序控制系统。 根据控制系统元件的特性分类,控制系统可分为:线性控制系统、非线性控制系统。 根据控制信号的形式分类,控制系统可分为:连续控制系统、离散控制系统。 5.令线性定常系统传递函数的分母多项式为零,则可得到系统的特征方程 6.系统的传递函数完全由系统的结构和参数决定 7.对复杂系统的方框图,要求出系统的传递函数可以采用梅森公式 8.线性控制系统的特点是可以应用叠加原理,而非线性控制系统则不能 9.线性定常系统的传递函数,是在零初始条件下,系统输出信号的拉氏变换与输入信号的拉氏变换的比。 10.信号流图中,节点可以把所有输入支路的信号叠加,并把叠加后的信号传送到所有的输出支路。 11.从控制系统稳定性要求来看,系统一般是具有负反馈形式。 12.组成控制系统的基本功能单位是环节。 13.系统方框图的简化应遵守信号等效的原则。 14.在时域分析中,人们常说的过渡过程时间是指调整时间 15.衡量一个控制系统准确性/精度的重要指标通常是指稳态误差 16.对于二阶系统来说,系统特征方程的系数都是正数是系统稳定的必要条件 17.若单位反馈系统在阶跃函数作用下,其稳态误差ess为常数,则此系统为0型系统 18.一阶系统的阶跃响应无超调 19.一阶系统 G(s)= K/(Ts+1)的T越大,则系统的输出响应达到稳态值的时间越长。 20.控制系统的上升时间tr、调整时间tS等反映出系统的快速性。 21.二阶系统当0<ζ<1时,如果ζ增加,则输出响应的最大超调量将减小。 22.对于欠阻尼的二阶系统,当阻尼比ξ保持不变时,无阻尼自然振荡频率ωn越大,系统的超调量σp不变 23.在单位斜坡输入信号作用下,?II型系统的稳态误差 ess=0 24.衡量控制系统动态响应的时域性能指标包括动态和稳态性能指标。 25.分析稳态误差时,将系统分为0型系统、I型系统、II型系统…,这是按开环传递函数中的积分环节数来分类的。 26.二阶系统的阻尼系数ξ=时,为最佳阻尼系数。这时系统的平稳性与快速性都较理想。 27.系统稳定性是指系统在扰动消失后,由初始偏差状态恢复到原来的平衡状态的性能。 28.系统特征方程式的所有根均在根平面的左半部分是系统稳定的充要条件。 29.如果系统中加入一个微分负反馈,将使系统的超调量减小。 30.确定根轨迹与虚轴的交点,可用劳斯判据判断。 31.主导极点的特点是距离虚轴很近。 32.根轨迹上的点应满足的幅角条件为∠G(s)H(s)等于±(2l+1)π (l=0,1,2,…) 33.如果要求系统的快速性好,则闭环极点应距离虚轴越远越好。 34.根轨迹的分支数等于特征方程的阶数/开环极点数,起始于开环传递函数的开环极点,终止于开环传递函数的开环零点。 35. 根轨迹与虚轴相交时,在该交点处系统处于临界稳定状态,系统阻尼为0

进程线程的概念

提起程序这个概念,大家再也熟悉不过了,程序与进程概念是不可分的。程序是为了完成某项任务编排的语句序列,它告诉计算机如何执行,因此程序是需要运行的。程序运行过程中需要占有计算机的各种资源才能运行下去。如果任一时刻,系统中只有一道程序,即单道程序系统,程序则在整个运行过程中独占计算机全部资源,整个程序运行的过程就非常简单了,管理起来也非常容易。就象整个一套房子住了一个人,他想看电视就看电视,想去卫生间就去卫生间,没人和他抢占资源。但为了提高资源利用率和系统处理能力,现代计算机系统都是多道程序系统,即多道程序并发执行。程序的并发执行带来了一些新的问题,如资源的共享与竞争,它会改变程序的执行速度。就象多个人同时住一套房子,当你想去卫生间的时候,如果此时卫生间里有人,你就得等待,影响了你的生活节奏。如果程序执行速度不当,就会导致程序的执行结果失去封闭性和可再现性,这是我们不希望看到的。因此应该采取措施来制约、控制各并发程序段的执行速度。由于程序是静态的,我们看到的程序是存储在存储介质上的,它无法反映出程序执行过程中的动态特性,而且程序在执行过程中是不断申请资源,程序作为共享资源的基本单位是不合适的,所以需要引入一个概念,它能描述程序的执行过程而且可以作为共享资源的基本单位,这个概念就是进程。 进程的生命周期 进程和人一样是有生命的,从诞生到死亡要经历若干个阶段。一般说来进程有三种状态:就绪、执行、等待。由多种原因可以导致创建一个进程,例如一个程序从外存调入内存开始执行,操作系统就要为其创建进程,当然还可以有其它原因,如一个应用进程为完成一个特殊的任务,可以自己创建一个子进程。进程被创建后就是在内存中,处于就绪状态,所谓就绪状态就是具备除了CPU之外的所有资源,万事具备,只欠东风,一旦占有 了CPU,就变成了执行状态,执行中如果需要等待外围设备输入数据,则进程就沦落为 等待状态,操作系统又会从就绪状态队列中调度一个进程占有CPU。等到数据到来后, 等待状态的进程又被唤醒成为就绪状态。这些状态的转换是通过进程控制原语实现的。程序的运行是通过进程体现的,操作系统对进程进行管理和控制,那么操作系统怎么了解到进程的状态呢,怎么把资源分配给进程呢,而且进程做状态转换时CPU现场保存在那呢?这要说到PCB(进程控制快)。PCB是进程的唯一标志,在其中记录了进程的全部信息,它是一种记录型的数据结构,相当于进程的档案。操作系统就通过PCB感知进程的存在,通过PCB了解进程和控制进程的运行。PCB也是放在内存中的,如果PCB太大,有些系 统把PCB中一些不重要的信息放在外存中。 进程执行速度的制约 并发进程由于共享系统内部资源,因此导致进程执行速度上的制约,这种制约分为:间接制约与直接制约。间接制约引起进程之间的互斥执行,直接制约引起进程间的同步执行。例如一个家里如果只有一个卫生间,卫生间这个公有资源使得每个人只能互斥使用它,这就是间接制约。而直接制约是指并发进程各自执行的结果互为对方的执行条件,例如司机与售票员的关系,当司机到站停车后,售票员才能开门,而只有售票员关门后,司机才

过程控制复习题

过程控制复习题 一、填空题 1.过程控制系统由测量元件与变送器、控制器(调节器)、执行器(调节阀)和被控对象(过程)等环节组成。 2. 按系统的结构特点,过程控制系统可分为反馈控制系统、前馈控制系统、前馈—反馈控制系统(复合控制系统) 3.按给定信号的特点,过程控制系统可分为定值控制系统、随动控制系统、程序控制系统等。 4.过程控制系统的性能可从稳定性、快速性、准确度三个方面来说明。评价控制性能好坏的质量指标,通常采用的两种质量指标:系统过渡过程的性能指标(时域控制性能指标)和偏差积分性能指标(积分性能指标),积分指标是采用偏差与时间的某种积分关系作为衡量系统质量的准则。 5.过渡过程的性能指标是用阶跃信号作用下控制系统的输出响应曲线表示,它包括余差(静态偏差)、衰减比n、最大偏差A与超调量、回复时间(过渡时间)t、峰值时间tp和振荡周期 T等。对于随动控制系统,常用超调量这个指标来衡量被控参数偏离给定值的程度。 6.衰减比n是衡量系统过渡过程稳定性的一个动态指标。n<l表示系统是不稳定的,振幅愈来愈大;n=1表示为等幅振荡;n=4表示系统为4:1的衰减振荡。 7.建立被控过程数学模型的方法有:解析法(机理演绎法、机理分析法)、实验辩识法(系统辨识与参数估计法)和混合法 8. 按结构形式不同,自动化仪表可分为基地式仪表、单元组合式仪表、组件组装式仪表,其中单元组合式仪表是将整套仪表划分成能独立实现一定功能的若干单元,各单元之间采用统一信号进行联系。其中QDZ-Ⅲ型仪表采用的标准信号是20~100kPa。 9.按能源形式不同,自动化仪表可分:液动仪表、气动仪表、电动仪表及混合仪表,其中气动仪表的特点是性能稳定、可靠性高、具有本质安全防爆性能、不受电磁干扰、结构简单、维护方便。 10. 检测仪表是指检测元件(敏感元件或传感器)、变送器及显示装置的统称。 11.DDZ-Ⅲ型仪表采用的标准信号是1-5V或4-20mA,QDZ-Ⅲ型仪表采用的标准信号是 20~100kPa。 12. Cu50热电阻是指在0℃时铜电阻有阻值为50欧 13.热电偶测温的关键是要使冷端温度恒定。IEC对已经被国际公认的7种热电偶制定了国际标准,称为标准热电偶,其中最常用的有 S 、 B 、 K 三种。 14. DDZ-Ⅲ型差压变送器是以力矩平衡原理工作的,其的作用是将被测压力、流量等过程参数变换成4~20mADC输出信号,以便实现集中检测或自动控制。 15.热电阻Pt100是指在0℃时铂电阻为100欧 16. 变送器的发展趋势:微型化、数字化、智能化和虚拟化。 17.调节器的作用是将测量信号与给定值比较产生偏差信号,然后按一定的运算规律产生输出信号,推动执行器,实现对生产过程的自动控制。 18. 执行器的作用是接受调节器的控制信号,改变操纵变量(控制变量),使生产过程按预定要求正常进行。执行器一般安装在生产现场直接与介质接触 19.执行器的执行机构是指根据调节器控制信号产生推力或位移的装置;执行器的调节机构是根据执行机构输出信号去改变能量或物料输送量的装置,通常指调节阀。

(完整word版)自动控制原理概念最全整理

1.在零初始条件下,线性定常系统输出量的拉普拉斯变换与输入量的拉普拉斯 变换值比,定义为线性定常系统的传递函数。传递函数表达了系统内在特性,只与系统的结构、参数有关,而与输入量或输入函数的形式无关。 2.一个一般控制系统由若干个典型环节构成,常用的典型环节有比例环节、惯 性环节、积分环节、微分环节、振荡环节和延迟环节等。 3.构成方框图的基本符号有四种,即信号线、比较点、方框和引出点。 4.环节串联后总的传递函数等于各个环节传递函数的乘积。环节并联后总的传 递函数是所有并联环节传递函数的代数和。 5.在使用梅森增益公式时,注意增益公式只能用在输入节点和输出节点之间。 6.上升时间tr、峰值时间tp和调整时间ts反应系统的快速性;而最大超调量 Mp和振荡次数则反应系统的平稳性。 7.稳定性是控制系统的重要性能,使系统正常工作的首要条件。控制理论用于 判别一个线性定常系统是否稳定提供了多种稳定判据有:代数判据(Routh 与Hurwitz判据)和Nyquist稳定判据。 8.系统稳定的充分必要条件是系统特征根的实部均小于零,或系统的特征根均 在跟平面的左半平面。 9.稳态误差与系统输入信号r(t)的形式有关,与系统的结构及参数有关。 10.系统只有在稳定的条件下计算稳态误差才有意义,所以应先判别系统的稳定 性。 11.Kp的大小反映了系统在阶跃输入下消除误差的能力,Kp越大,稳态误差越 小; Kv的大小反映了系统跟踪斜坡输入信号的能力,Kv越大,系统稳态误差越小; Ka的大小反映了系统跟踪加速度输入信号的能力,Ka越大,系统跟踪精度越高 12.扰动信号作用下产生的稳态误差essn除了与扰动信号的形式有关外,还与扰 动作用点之前(扰动点与误差点之间)的传递函数的结构及参数有关,但与扰动作用点之后的传递函数无关。 13.超调量仅与阻尼比ξ有关,ξ越大,Mp则越小,相应的平稳性越好。反之,

相关主题
文本预览
相关文档 最新文档