当前位置:文档之家› 黄昆版固体物理课后习题解答

黄昆版固体物理课后习题解答

黄昆版固体物理课后习题解答
黄昆版固体物理课后习题解答

《固体物理学》习题解答

黄昆 原著 韩汝琦改编 (陈志远解答,仅供参考)

第一章 晶体结构

1.1、

解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率, Vc

nV

x = (1)对于简立方结构:(见教材P2图1-1)

a=2r , V=

3

r 3

4π,Vc=a 3,n=1 ∴52.06r 8r

34a r 34x 3

333=π=π=π= (2)对于体心立方:晶胞的体对角线BG=x 3

3

4a r 4a 3=?= n=2, Vc=a 3

∴68.083)r 3

34(r 342a r 342x 3

3

33≈π=π?=π?

=

(3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=?= n=4,Vc=a 3

74.062)

r 22(r 344a r 344x 3

3

33≈π=π?=π?= (4)对于六角密排:a=2r 晶胞面积:S=62

60sin a a 6S ABO ??=??=2

a 233 晶胞的体积:V=332r 224a 23a 3

8

a 233C S ==?=

? n=1232

1

26112+?+?

=6个 74.062r

224r 346x 3

3

≈π=π?= (5)对于金刚石结构,晶胞的体对角线BG=3

r 8a r 24a 3=

??= n=8, Vc=a 3

34.063r 3

38r 348a r 348x 3

33

33≈π=π?=π?=

1.2、试证:六方密排堆积结构中633.1)3

8

(a c 2/1≈=

证明:在六角密堆积结构中,第一层硬球A 、B 、O 的中心联线形成一个边长a=2r 的正三角形,第二层硬球N 位于球ABO 所围间隙的正上方并与这三个球相切,于是: NA=NB=NO=a=2R.

即图中NABO 构成一个正四面体。…

1.3、证明:面心立方的倒格子是体心立方;体心立方的倒格子是面心立方。

证明:(1)面心立方的正格子基矢(固体物理学原胞基矢):123()2()2()2a a j k a a i k a a i j ?=+??

?

=+??

?=+??

由倒格子基矢的定义:1232()b a a π

=

31230,

,22

(),0,224,,02

2a a

a a a a a a a a Ω=??=

=,2

23,,,0,()2

24,

,0

2

2

i j k

a a a a a i j k a

a ?==-++ 213422()()4a

b i j k i j k a a

π

π∴=??-++=-++

同理可得:232()2()

b i j k a

b i j k a

π

π=

-+=+-即面心立方的倒格子基矢与体心立方的正格基矢相同。

所以,面心立方的倒格子是体心立方。

(2)体心立方的正格子基矢(固体物理学原胞基矢):123()2()2()2a a i j k a a i j k a a i j k ?=-++??

?

=-+??

?=+-??

由倒格子基矢的定义:1232()b a a π

=

3123,,

222

(),,2222,,222a a a a a a a a a a a a a -Ω=??=-=-,2

23,,,,()2222,,222

i j k a a a a a a j k a a a ?=-=+-

213222()()2a b j k j k a a

π

π∴=??+=+

同理可得:232()2()

b i k a

b i j a

π

π=

+=+即体心立方的倒格子基矢与面心立方的正格基矢相同。

所以,体心立方的倒格子是面心立方。

1.5、证明倒格子矢量112233G hb h b h b =++垂直于密勒指数为123()h h h 的晶面系。

证明:

因为33121323

,a a

a a CA CB h h h h =

-=-,112233G hb h b h b =++ 利用2i j ij a b πδ?=,容易证明

12312300

h h h h h h G CA G CB ?=?=

所以,倒格子矢量112233G hb h b h b =++垂直于密勒指数为123()h h h 的晶面系。

1.6、对于简单立方晶格,证明密勒指数为(,,)h k l 的晶面系,面间距d 满足:2

2

2

2

2

()d a h k l =++,其中a 为立方边长;并说明面指数简单的晶面,其面密度较大,容易解理。 解:简单立方晶格:123a a a ⊥⊥,123,,a ai a aj a ak === 由倒格子基矢的定义:2311232a a b a a a π

?=??,3121232a a b a a a π?=??,12

3123

2a a b a a a π?=??

倒格子基矢:123222,,b i b j b k a a a

πππ=== 倒格子矢量:123G hb kb lb =++,222G h i k j l k a a a

πππ=++ 晶面族()hkl 的面间距:2d G

π

=

2221

()()()h k l a a a

=++

2

2

2

22()

a d h k l =++ 面指数越简单的晶面,其晶面的间距越大,晶面上格点的密度越大,单位表面的能量越小,这样的晶面越容易解理。

1.9、画出立方晶格(111)面、(100)面、(110)面,并指出(111)面与(100)面、(111)面与(110)面的交线的晶向。

解:(111)

1、(111)面与(100)面的交线的AB ,AB 平移,A 与O 点重合,B 点位矢:B R aj ak =-+, (111)面与(100)面的交线的晶向AB aj ak =-+,晶向指数[011]。

(111)

2、(111)面与(110)面的交线的AB ,将AB 平移,A 与原点O 重合,B 点位矢:B R ai aj =-+,(111)面与(110)面的交线的晶向AB ai aj =-+,晶向指数[110]。

第二章 固体结合

2.1、两种一价离子组成的一维晶格的马德隆常数(2ln 2=α)和库仑相互作用能,设离子的总数为2N 。

<解> 设想一个由正负两种离子相间排列的无限长的离子键,取任一负离子作参考离子(这样马德隆常数中的正负号可以这样取,即遇正离子取正号,遇负离子取负号),用r 表示相邻离子间的距离,于是有

(1)1111

2[...

]234j

ij r

r r r r r

α

±'

==-+-+∑ 前边的因子2是因为存在着两个相等距离i r 的离子,一个在参考离子左面,一个在其右面,故对一边求和后要乘2,马德隆常数为

2

34

(1) (34)

n x x x x x x +=-

+-+ 当X=1时,有111

1 (2234)

n

-

+-+=

2.3、若一晶体的相互作用能可以表示为 ()m

n

u r r r α

β

=-

+

试求:(1)平衡间距0r ;

(2)结合能W (单个原子的);

(3)体弹性模量;

1112[1...]234α=-+-+22

n α∴=

(4)若取02,10,3,4m n r A W eV ====,计算α及β的值。 解:(1)求平衡间距r 0

0)

(0

==r r dr r du ,有:

m

n n

m n m m n n m r r n r m --++??

?

??=???

? ??=?=-1

101

.0100αββαβ

α

结合能:设想把分散的原子(离子或分子)结合成为晶体,将有一定的能量释放出来,这个能量称为结合能(用w 表示)

(2)求结合能w (单个原子的)

题中标明单个原子是为了使问题简化,说明组成晶体的基本单元是单个原子,而非原子团、离子基团,或其它复杂的基元。

显然结合能就是平衡时,晶体的势能,即U min

即:n

m

r r r U W 000)(β

α

-

+=-= (可代入r 0值,也可不代入)

(3)体弹性模量

由体弹性模量公式:0

220

2

09r r U V r k ???? ????=

(4)m = 2,n = 10,

A r 30=, w = 4eV ,求α、β

8

1

8

1

05210??

? ??=??

?

??=αβαβr ①

)5(54)(802

010

.

20

0代入α

β

αβ

α

=

-

=+

-

=r r r r

r U

eV r r U W 454)(2

00==

-=?α

② 将

A r 30=,J eV 19

10

602.11-?=代入①②

2

1152

3810459.910209.7m

N m N ??=??=?--βα (1)平衡间距r 0的计算 晶体内能()()2m n N U r r r

αβ=

-+ 平衡条件

0r r dU

dr

==,1100

0m n m n r r αβ

++-+=,1

0()n m n r m βα-= (2)单个原子的结合能

01()2W u r =-,0

0()()m n r r u r r r αβ==-+,1

0(

)n m n r m βα-= 1(1)()2m

n m m n W n m βαα

--=-

(3)体弹性模量0

202()V U

K V V

?=?? 晶体的体积3

V NAr =,A 为常数,N 为原胞数目 晶体内能()()2m n N U r r r

αβ=

-+ U U r V r V ???=???112

1

()23m n N m n r r NAr αβ++=- 221121

[()]23m n U N r m n V V r r r NAr αβ++???=-??? 0

2222

2

00000

1[]29m n m n V V U N m n m n V V r r r r αβαβ=?=-+-+? 由平衡条件

112

0001

()0

23m n V V U N m n V

r r NAr αβ++=?=

-=?,得00m n m n r r αβ= 0

22222

0001[]29m n V V U

N m n V V r r αβ=?=-+? 0

22

20001[]29m n V V U N m n m n V V r r αβ=?=

-+?2000

[]29m

n N nm V r r αβ

=--+ 000

()2m n N U r r αβ=-+ 0

202

2

()9V V U

mn

U V V =?=

-? 体弹性模量0

9mn K U V = (4)若取02,10,3,4m n r A W eV ====

10()n m n r m βα-=,1(1)()2m

n m m n W n m βαα

--=-

1002W r β=

,20100

[2]r W r β

α=+

-95101.210eV m β=??,1929.010eV m α-=??

2.6、bcc 和fcc Ne 的结合能,用林纳德—琼斯(Lennard —Jones)势计算Ne 在bcc 和fcc 结构中的结合能之比值.

<解>1261261()4()(),()(4)()()2n l u r u r N A A r r r r σσσσεε???

?

=-=-???????

?

2

6

661200612()1022r

A A du r r u N r A A σε??=?=?=- ???

22066201212()12.25/9.11

()/()0.957()14.45/12.13

bcc bcc fcc fcc u r A A u r A A ωω'===='

2.7、对于2H ,从气体的测量得到Lennard —Jones 参数为6

5010, 2.96.J A εσ-=?=计算fcc 结构的2H 的结合能[以KJ/mol 单位),每个氢分子可当做球形来处理.结合能的实验值为0.751kJ /mo1,试与计

算值比较.

<解> 以2H 为基团,组成fcc 结构的晶体,如略去动能,分子间按Lennard —Jones 势相互作用,则晶体的总相互作用能为:

126

1262.ij ij i j U N P P R R σσε--??????''=-?? ? ?????????

∑∑

61214.45392;

12.13188,ij

ij j

i

P P --''==∑

∑16235010, 2.96, 6.02210/.

erg A N mol εσ-=?==?()()12628

16

2.96 2.962602210/5010

12.1314.45 2.55/.

3.16 3.16U U mol erg KJ mol -??

????=?????-≈-?? ? ?????????

0将R 代入得到平衡时的晶体总能量为。因此,计算得到的2H 晶体的结合能为2.55KJ /mol ,远大于实验观察值0.75lKJ /mo1.对于2H 的晶体,量子修正是很重要的,我们计算中没有考虑零点能的量子修正,这正是造成理论和实验值之间巨大

差别的原因.

第三章 固格振动与晶体的热学性质

3.1、已知一维单原子链,其中第j 个格波,在第n 个格点引起的位移为,sin(_)nj j j j j a t naq μωσ=+,

j σ为任意个相位因子,并已知在较高温度下每个格波的平均能量为,具体计算每个原子的平方平均位

移。

<解>任意一个原子的位移是所有格波引起的位移的叠加,即

sin()n nj j j j j j

j

a t naq μμωσ==++∑∑ (1)

2*2*n nj nj nj nj nj j j j j j μμμμμμ''

≠????==+ ????

??

?

∑∑∑∑

由于nj nj μμ?数目非常大为数量级,而且取正或取负几率相等,因此上式得第2项与第一项相比是一小量,

可以忽略不计。所以2

2n nj

j

μμ

=

由于nj μ是时间t 的周期性函数,其长时间平均等于一个周期内的时间平均值为

222

11sin()2

T j

j j j j j a t naq dt a T μωσ=

++=

?

(2) 已知较高温度下的每个格波的能量为KT ,nj μ的动能时间平均值为

022222

00

0111sin()224L

T T nj j j nj j j j j j j d w a T dx dt L a t naq dt w La T dt T μρρωσρ????=

=++=?? ???????

?

?

? 其中L 是原子链的长度,ρ使质量密度,0T 为周期。 所以22

1142

nj j j T w La KT ρ=

= (3) 因此将此式代入(2)式有2

2nj j

KT

PL μω=

所以每个原子的平均位移为

2222

1

n nj j

j

j j j

KT KT PL PL μμωω====∑∑

3.2、讨论N 个原胞的一维双原子链(相邻原子间距为a ),其2N 个格波解,当M = m 时与一维单原子链的结果一一对应。

解:质量为M 的原子位于2n-1, 2n+1, 2n+3 ……;质量为m 的原子位于2n , 2n+2, 2n+4 ……。

牛顿运动方程

2221212121222(2)(2)

n n n n n n n n m M μβμμμμβμμμ+-+++=---=---

N 个原胞,有2N 个独立的方程

设方程的解

[(2)]2[(21)]

21i t na q n i t n aq n Ae Be

ωωμμ--++==,代回方程中得到

2

2

(2)(2cos )0

(2cos )(2)0

m A aq B aq A M B βωβββω?--=??-+-=?? A 、B 有非零解,

22

22cos 02cos 2m aq aq

M βωβββω

--=--,则

1

2

2

22

()4{1[1sin ]}()

m M mM aq mM m M ωβ+=±-+

两种不同的格波的色散关系

1

2

2

22

1

222

2

()4{1[1sin ]}()()4{1[1sin ]}()

m M mM aq mM m M m M mM

aq mM m M ωβωβ

+-+=+-++=--+

一个q 对应有两支格波:一支声学波和一支光学波.总的格波数目为2N.

当M m =时

4cos 24sin 2

aq m aq m βωβω+-=

=

两种色散关系如图所示: 长波极限情况下0q →,sin(

)22

qa qa

≈, (2

)q m

β

ω-=与一维单原子晶格格波的色散关系一致.

3.3、考虑一双子链的晶格振动,链上最近邻原子间的力常数交错地为β和10β,两种原子质量相等,且最近邻原子间距为2a 。试求在0,q q a π==处的()q ω,并粗略画出色散关系曲线。此问题模拟如

2H 这样的双原子分子晶体。

答:(1)

浅色标记的原子位于2n-1, 2n+1, 2n+3 ……;深色标记原子位于2n , 2n+2, 2n+4 ……。

第2n 个原子和第2n +1个原子的运动方程:

212222112121122112222()()n n n n n n n n

m m μββμβμβμμββμβμβμ+-+++=-+++=-+++

体系N 个原胞,有2N 个独立的方程

方程的解:

1

[(2)]

221

[(21)]

221i t n aq n i t n aq n Ae

Be

ωωμμ--++==,令221122/,/m m ωβωβ==,将解代入上述方程得:

112

22

222

2

1

2

1

2

112222

2221

2

12()()0

()()0

i aq i aq i aq i aq A e e

B e

e

A B ωωωωωωωωωω--+--+=+-+-=

A 、

B 有非零的解,系数行列式满足:

11222

222

2

12

1

2

112222

2221

2

12(),()

0(),()

i aq i aq i aq i aq e

e

e

e

ωωωωωωωωωω--+--+=+-+-

11112222

2222222212

1

21

2

()()()0i aq i aq i aq i aq e e e e ωωωωωωω--+--++= 111122

22

22222

2

2

2

12

1

2

1

2

()()()0i aq i aq i aq i aq e

e

e

e

ωωωωωωω--+--++=

因为1ββ=、210ββ=,令2

2

22

012010,10c c m m

ωωωω==

==得到 2224

00(11)(10120cos )0aq ωωω--+=

两种色散关系:22

0(1120cos 101)qa ωω=±+

当0q =时,22

0(11121)ωω=±,

0220

ωωω+-==

当q a

π

=

时,2

20

(1181)ωω=±,

00

202ωωωω+-==

(2)色散关系图:

3.7、设三维晶格的光学振动在q=0附近的长波极限有20()q Aq ωω=- 求证:()1/2

0023/2

1(),4V f A

ωωωωωπ=

-<;0()0,f ωωω=>. <解>()

112

2

2

2

00000()0,0Aq f Aq q A ωωωωωωωωωω>-=>=

依据()3

()2,()()

2q q V

ds

q Aq f q ωωωπ?=-=

??

,并带入上边结果有

()()()()()()()1/21/2

00331/2223/2

01142()222q V

ds V A V f A A

q ωπωωωωωππωωπ=?=?-=?-?-

3.8、有N 个相同原子组成的面积为S 的二维晶格,在德拜近似下计算比热,并论述在低温极限比热正比与2

T 。

证明:在k 到k dk +间的独立振动模式对应于平面中半径n 到n dn +间圆环的面积2ndn π,且

()22

532222L s ndn kdk kdk d v ρω

πρωωπππ===即则

()()2

3

3220//2

22

22

3332121

21

m

D

D

B B x B B B B k T

k T x

D

D

d s k T s k T k T k T s d x dx

E E v e

v e v e ωωωωρρρωωωω

πππ????

? ?

????=

+==

---?

?

?

, 20,(

)v s E

T E T C T T

?→∝∴=∝?3时,

3.9、写出量子谐振子系统的自由能,证明在经典极限下,自由能为0q B n q

B F U k T

k T ω??

?+ ???

证明:量子谐振子的自由能为112q

B q

k T

B n q B F U k T e k T ωω

-

?????? ?=++

- ??????

?

∑ 经典极限意味着(温度较高)BT g k ω

应用21...x e x x =-++ 所以2

1...q B q

q k T

B B e

k T k T ωωω-

??

=-++ ???

因此01

112q q q B n B n q q

B B F U k T

U k T k T k T ωωω?

???

?++-+?+ ? ?????

∑∑ 其中01

2q q

U U ω?+∑

3.10、设晶体中每个振子的零点振动能为

1

2

ω,使用德拜模型求晶体的零点振动能。 证明:根据量子力学零点能是谐振子所固有的,与温度无关,故T=0K 时振动能0E 就是各振动模零点能之和。()()()0000

12m

E E g d E ωωωωωω=

=

?

将和()22332s

V

g v ωωπ=代入积分有 4

023

39168

m m s V E N v ωωπ=

=,由于098m B D B D k E Nk ωθθ==得 一股晶体德拜温度为~2

10K ,可见零点振动能是相当大的,其量值可与温升数百度所需热能相比拟.

3.11、一维复式格子24

15 1.6710

,

4, 1.510/M

m g N m m

β-=??==?4( 1.5110/),dyn cm ?即求(1),光学波00max min

,ωω,声学波max A

ω。 (2)相应声子能量是多少电子伏。 (3)在300k 时的平均声子数。

(4)与0

max ω相对应的电磁波波长在什么波段。

<解>(1),4131m

a x 24

22 1.510/ 3.0010,45 1.6710

A

dyn cm s M βω

-

??===???? ()()424131

max

2424

22 1.510455 1.6710/ 6.701045 1.67105 1.6710

o

M m dyn cm s Mm βω

-+????+??===???????

4131m a x

24

22 1.510/ 5.99105 1.6710

A

dyn cm s m βω

-??===??? (2)161312max 16

1312max 161312min 6.5810 5.9910 1.97106.5810

6.7010 4.41106.5810 3.0010 3.9510A o

o s eV s eV s eV

ωωω---------=???=?=???=?=???=?

(3)max max max max //110.873,0.2211

1

A

O

B B A O

k T

k T

n n e

e

ωω=

==

=--

min

min /10.2761

O

B O

k T

n e

ω=

=-

(4)228.1c

m πλμω

==

第四章 能带理论

4.1、根据k a

π

状态简并微扰结果,求出与E -及E +相应的波函数ψ-及ψ+?,并说明它们的特性.说

明它们都代表驻波,并比较两个电子云分布2

ψ说明能隙的来源(假设n V =*n V )。

<解>令k a

π

=+

,k a

π

'=-

,简并微扰波函数为00()()k k A x B x ψψψ=+

0*

()0n E k E A V B ??-+=??

()0

0n V A E k E B '??+-=?? 取E E +=

带入上式,其中0()n E E k V +=+

V(x)<0,0n V <,从上式得到B= -A,于是

0()()n n i x i x a a k

k A

A x x e

e L

ππψψψ-'

+????=-=-??????

=2sin A n x a L π 取E E -=,0()n E E k V -=- ,n n V A V B A B =-=得到

0()()n n i x i x a a k

k A

A x x e e L

ππψψψ-'

-????=-=-??

????

=2cos A n x a L π 由教材可知,+ψ及-ψ均为驻波. 在驻波状态下,电子的平均速度()k ν为零.产生驻波因为电子波矢n k a π=

时,电子波的波长22a

k n

πλ==,恰好满足布拉格发射条件,这时电子波发生全反射,

并与反射波形成驻波由于两驻波的电子分布不同,所以对应不同代入能量。

4.2、写出一维近自由电子近似,第n 个能带(n=1,2,3)中,简约波数2k a

π

=

的0级波函数。 <解>2221()*24

1111()i mx i x i mx i m x ikx ikx a a a a k

x e e e e e e

L L L L ππππψ+===?= 第一能带:*

2

10,0,()2i x a k

m m x e a L

π

π

ψ?===

第二能带:23*2221,,1,()x i x a a k b b b b m m x e a a L

πππππψ''=→?=-=-∴=i i 2a

则即(e =e )

第三能带:25*

222211,,1,()i x i x i x a a a k c c m m x e e e a a L L

πππ

ππψ'→?===?=即

4.3、电子在周期场中的势能.

2221(),2

m b x n a ω??--?? n a b x n a b -≤≤+当 ()V x = 0 , x n a b ≤≤-当(n-1)a+b

其中d =4b ,ω是常数.试画出此势能曲线,求其平均值及此晶体的第一个和第二个禁带度.

<解>(I)题设势能曲线如下图所示.

(2)势能的平均值:由图可见,()V x 是个以a 为周期的周期函数,所以

111()()()()a a b

L b b

V x V x V x dx V x dx L a a --=

==??? 题设4a b =,故积分上限应为3a b b -=,但由于在[],3b b 区间内()0V x =,故只需在[],b b -区间内积分.这时,0n =,于是

22

222

32

111()()223

6

b b b b b

b

b b m m V V x dx b x dx b x x m b a a a

ωωω----??==-=-=???

?

??。 (3),势能在[-2b,2b]区间是个偶函数,可以展开成傅立叶级数

200021()cos ,()cos ()cos 2222b b m m m m m m V x V V x V V x xdx V x xdx b b b b b

πππ

=-∞

'=+

==∑

??112

2210

2,1()cos

2b

g g m x

E V m E b x dx b

b

ωπ===

-?

第一个禁带宽度以代入上式,

利用积分公式()2

232

cos sin 2cos sin u u mudu mu mu mu mu m m =

+-???

??

得 2

23

16m b ωπ

=

1g E 第二个禁带宽度222,2g E V m ==以代入上式,代入上式

22

22

()cos

b

g m x

E b x dx b

b

ωπ=

-?

再次利用积分公式有2

22

2m b ωπ=

2g E

4.4、

解:我们求解面心立方,同学们做体心立方。

(1)如只计及最近邻的相互作用,按照紧束缚近似的结果,晶体中S 态电子的能量可表示成:

()0()()s ik R s s s Rs E k J J R e ε-?==--

近邻

在面心立方中,有12个最近邻,若取0m R =,则这12个最近邻的坐标是: ①

(1,1,0),(1,1,0),(1,1,0),(1,1,0)2222a a a a

(0,1,1),(0,1,1),(0,1,1),(0,1,1)2222a a a a

(1,0,1)(1,0,1),(1,0,1),(1,0,1)2222

a a a a

由于S 态波函数是球对称的,在各个方向重叠积分相同,因此()S J R 有相同的值,简单表示为J 1=()S J R 。又由于s 态波函数为偶宇称,即()()s s r r ??-=

∴在近邻重叠积分*

()()()()()s i s s i J R R U V R d ?ξξ?ξξ??-=--???

中,波函数的贡献为正 ∴J 1>0。

于是,把近邻格矢S R 代入()s S E R 表达式得到:

01

()s ik R s S Rs E k J J e ε-?==--∑

近邻

=()()()()222

201x y x y x y x y a a a a

i k k i k k i k k i k k S J J e e e e ε-+----+---?--+++??

()()()()2

2

2

2

y z y z y z y z a

a

a

a

i k k i k k i k k i k k e

e

e

e

-+----+---+++++()()()()2

2

2

2

x z x z x z x z a

a

a

a

i k k i k k i k k i k k e

e

e

e

-+----+---?+++??

=012cos ()cos ()cos ()cos ()22

22

S x y x y y z y z a a a a J J k k k k k k k k ε?????--++-+++-???????

?

?

?

cos ()cos()2z x z x a k k k k ???+++-??????

cos()cos()2cos cos αβαβαβ↓++-=

=014cos

cos cos cos cos cos 222222s x y y z z x a a a a a a J J k k k k k k ε??--++????

(2)对于体心立方:有8个最近邻,这8个最近邻的坐标是:

(1,1,1),(1,1,1),(1,1,1),(1,1,1)2222a a a a

(1,1,1),(1,1,1,),(1,1,1),(1,1,1)2222a a a a

01()8(cos cos cos )222

s s x y z a a a E k J J k k k ε=--

4.7、有一一维单原子链,间距为a ,总长度为N a 。求(1)用紧束缚近似求出原子s 态能级对应的能带E(k)函数。(2)求出其能态密度函数的表达式。(3)如果每个原子s 态只有一个电子,求等于T=0K 的

费米能级0F E 及0F E 处的能态密度。

<解>010101(1),()()2cos 2cos ika

ika s s E k J J e

e J J ka E J ka εε-=--+=--=-

0()()s ik R s E k E J J p e -???=--????

∑ (2) ,1121()2222sin sin L dk Na N

N E dE J a ka J ka

πππ=?

?=?= (3), 0

00

22()22222F

k F F F Nak Na N k dk k k a

πρππ=

?=??=∴=?

00

11

1()2cos

,()2sin

2F F s F N

N

E E k E J a E N E a

J J a

a

π

π

ππ==-?==

=?

4.8、证明一个自由简单晶格在第一布里渊区顶角上的一个自由电子动能比该区一边中点大2倍.(b)对于一个简单立力晶格在第一布里渊区顶角上的一个自由电子动能比该区面心上大多少?(c)(b)的结果对于二价金属的电导率可能会产生什么影响7

<解>(a )二维简单正方晶格的晶格常数为a ,倒格子晶格基矢22??,A i B j a a

ππ== 第一布里渊区如图所示

()2

222???,.,

2B x

y z i B K i j a a a K

K K m

πππε????=

=+ ? ?????

=

++A 区边中点的波矢为K 角顶点的波矢为自由电子能量2

2

2

2

2

2,222A x K m

m a m a ππε????

=

=

= ? ?????

A 点能量

()2222

2

22

22,222B x

y

K K m m a a m a πππε????

??????=+=+=???? ? ? ???????????????

B 点能量所以/2B A εε=

b)简单立方晶格的晶格常数为a ,倒格子基矢为222?

??,,,A i B j C k a a a

πππ

??????=== ? ? ???????

第一布里渊区如图7—2所示.

2

2

;

2A m a πε??

== ???

A 点能量()22222

2

22

223,222B x

y

z

K K K m m a a a m a ππππε????

????????=++=++=???? ? ? ? ?????????????????

B 点能量

所以/3B A εε=

(c)如果二价金属具有简单立方品格结构,布里渊区如图7—2所示.根据自由电子理论,自由

a

π

a

π

-

a

π-

a

π

-

电子的能量为()2

2222x

y z K K K m

ε=

++,FerM 面应为球面.由(b)可知,内切于4点的内切球的体

343a π

π??

???,于是在K 空间中,内切球内能容纳的电子数为()

3

3

42 1.04733

2V

N N a

πππ

π??=

= ???

其中3V Na =

二价金属每个原子可以提供2个自由电子,内切球内只能装下每原子1.047个电子,余下的0.953

个电子可填入其它状态中.如果布里渊区边界上存在大的能量间隙,则余下的电子只能填满第一区内余下的所有状态(包括B 点).这样,晶体将只有绝缘体性质.然而由(b)可知,B 点的能员比A 点高很多,从能量上看,这种电子排列是不利的.事实上,对于二价金属,布里渊区边界上的能隙很小,对于三维晶体,可出现一区、二区能带重迭.这样,处于第一区角顶附近的高能态的电子可以“流向”第二区中的能量较低的状态,并形成横跨一、二区的球形Ferm 面.因此,一区中有空态存在,而二区中有电子存在,从而具有导电功能.实际上,多数的二价金届具有六角密堆和面心立方结构,能带出现重达,所以可以导电.

4.10、

解:设晶体中有N 个Cu 原子,向其中掺入x 个锌原子。则晶体中电子的总数为: (N-x)+2x=N+x

由于Cu 是面心立方,每一个原胞中含4个电子。因此:晶体中包含的原胞数为:

4

N 其倒格子为体心立方,倒格子的边长为:

4a π,对角线的长度为:43a

π 于是:布里渊区边界到原点的距离为:

14334a a

ππ?= 即:当Fermi 球与第一布里渊区边界相切时,3F k a

π

=

又由:()

33

4232F V

k N x ππ?

?=+ 3

32233

33333F k N x V a a

ππππ+∴=== 于是有:

333344

N x N x N a N a ππ

++=?=

固体物理课后答案

1.1 如果将等体积球分别排列成下列结构,设x 表示钢球所占体积与总体积之比,证明结构x简单立方π/ 6 ≈0.52体心立方3π/ 8 ≈0.68面心立方2π/ 6 ≈0.74六方密 排2π/ 6 ≈0.74金刚石3π/16 ≈0.34 解:设钢球半径为r ,根据不同晶体结构原子球的排列,晶格常数a 与r 的关系不同,分别为:简单立方:a = 2r 金刚石:根据金刚石结构的特点,因为体对角线四分之一处的原子与角上的原子紧贴,因此有 1.3 证明:体心立方晶格的倒格子是面心立方;面心立方晶格的倒格子是体心立方。 证明:体心立方格子的基矢可以写为

面心立方格子的基矢可以写为 根据定义,体心立方晶格的倒格子基矢为 同理 与面心立方晶格基矢对比,正是晶格常数为4π/ a的面心立方的基矢,说明体心立方晶格的倒格子确实是面心立方。注意,倒格子不是真实空间的几何分布,因此该面心立方只是形式上的,或者说是倒格子空间中的布拉菲格子。根据定义,面心立方的倒格子基矢为 同理 而把以上结果与体心立方基矢比较,这正是晶格常数为4πa的体心立方晶格的基矢。 证明:根据定义,密勒指数为的晶面系中距离原点最近的平面ABC 交于基矢的截距分别为 即为平面的法线

根据定义,倒格子基矢为 则倒格子原胞的体积为 1.6 对于简单立方晶格,证明密勒指数为(h, k,l)的晶面系,面间距d 满足 其中a 为立方边长。 解:根据倒格子的特点,倒格子 与晶面族(h, k,l)的面间距有如下关系 因此只要先求出倒格,求出其大小即可。 因为倒格子基矢互相正交,因此其大小为 则带入前边的关系式,即得晶面族的面间距。 1.7 写出体心立方和面心立方晶格结构的金属中,最近邻和次近邻的原子数。若立方边长为a ,写出最近邻和次近邻的原子间距。 答:体心立方晶格的最近邻原子数(配位数)为8,最近邻原子间距等于 次近邻原子数为6,次近邻原子间距为a ;

黄昆版固体物理学课后答案解析答案

《固体物理学》习题解答 黄昆 原著 韩汝琦改编 (陈志远解答,仅供参考) 第一章 晶体结构 1.1、 解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率, Vc nV x = (1)对于简立方结构:(见教材P2图1-1) a=2r , V= 3r 3 4π,Vc=a 3 ,n=1 ∴52.06r 8r 34a r 34x 3 333=π=π=π= (2)对于体心立方:晶胞的体对角线BG=x 3 3 4a r 4a 3=?= n=2, Vc=a 3 ∴68.083)r 3 34(r 342a r 342x 3 3 33≈π=π?=π?= (3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=?= n=4,Vc=a 3 74.062) r 22(r 344a r 344x 3 3 33≈π=π?=π?= (4)对于六角密排:a=2r 晶胞面积:S=62 60sin a a 6S ABO ??=??=2 a 233 晶胞的体积:V=332r 224a 23a 3 8 a 233C S ==?= ? n=1232 1 26112+?+? =6个 74.062r 224r 346x 3 3 ≈π=π?= (5)对于金刚石结构,晶胞的体对角线BG=3 r 8a r 24a 3= ??= n=8, Vc=a 3

固体物理习题解答

《固体物理学》习题解答 ( 仅供参考) 参加编辑学生 柯宏伟(第一章),李琴(第二章),王雯(第三章),陈志心(第四章),朱燕(第五章),肖骁(第六章),秦丽丽(第七章) 指导教师 黄新堂 华中师范大学物理科学与技术学院2003级

2006年6月 第一章 晶体结构 1. 氯化钠与金刚石型结构是复式格子还是布拉维格子,各自的基元为何?写出 这两种结构的原胞与晶胞基矢,设晶格常数为a 。 解: 氯化钠与金刚石型结构都是复式格子。氯化钠的基元为一个Na +和一个Cl - 组成的正负离子对。金刚石的基元是一个面心立方上的C原子和一个体对角线上的C原子组成的C原子对。 由于NaCl 和金刚石都由面心立方结构套构而成,所以,其元胞基矢都为: 12 3()2()2()2a a a ? =+?? ?=+?? ?=+?? a j k a k i a i j 相应的晶胞基矢都为: ,,.a a a =?? =??=? a i b j c k 2. 六角密集结构可取四个原胞基矢 123,,a a a 与4a ,如图所示。试写出13O A A '、1331A A B B 、2255A B B A 、123456A A A A A A 这四个晶面所属晶面族的 晶面指数()h k l m 。 解: (1).对于13O A A '面,其在四个原胞基矢 上的截矩分别为:1,1,1 2 -,1。所以, 其晶面指数为()1121。

(2).对于1331A A B B 面,其在四个原胞基矢上的截矩分别为:1,1,1 2-,∞。 所以,其晶面指数为()1120。 (3).对于2255A B B A 面,其在四个原胞基矢上的截矩分别为:1,1-,∞,∞。所以,其晶面指数为()1100。 (4).对于123456A A A A A A 面,其在四个原胞基矢上的截矩分别为:∞,∞,∞,1。所以,其晶面指数为()0001。 3. 如将等体积的硬球堆成下列结构,求证球体可能占据的最大体积与总体积的 比为: 简立方: 6 π ;六角密集:6;金刚石: 。 证明: 由于晶格常数为a ,所以: (1).构成简立方时,最大球半径为2 m a R = ,每个原胞中占有一个原子, 3 34326m a V a π π??∴== ??? 36 m V a π∴ = (2).构成体心立方时,体对角线等于4倍的最大球半径,即:4m R ,每个晶胞中占有两个原子, 3 3 422348m V a π??∴=?= ? ??? 32m V a ∴ = (3).构成面心立方时,面对角线等于4倍的最大球半径,即:4m R ,每个晶胞占有4个原子, 3 3 444346 m V a a π??∴=?= ? ???

232425(黄昆固体物理)教案

§ 2.3 金属性结合;§ 2.4 范德瓦耳斯结合; §2.5 元素和化合物晶体结合的规律性 1. 教学目的和要求: 通过讲解使学生理解并掌握金属性结合和范德 瓦耳斯结合;理解元素和化合物晶体结合的规律性 2.教学重点:金属性结合和范德瓦耳斯结合。 3.教学难点:范德瓦耳斯结合。 4.讲授时间:45分钟。 5.讲授方式:PPT文档。 6.作业:学生课后复习。 一.金属性结合 (1)金属性结合的概念 第I族、第II族元素及过渡 元素都是典型的金属晶体,它们 的最外层电子一般为1~2个。组 成晶体时每个原子的最外层电 子为所有原子所共有,因此在结 合成金属晶体时,失去了最外层 (价)电子的原子实“沉浸”在 由价电子组成的“电子云”中。 如图XCH002_004所示。 这种情况下,电子云和原子实之 间存在库仑作用,体积 越小电子云密度越高,库仑相互 作用的能愈低,表现为 原子聚合起来的作用。 (2)金属晶体结合力 金属晶体结合力:主要是原子实和电子云之间的静电库仑力,对晶体结构没有特殊的要求,只要求排列最紧密,这样势能最低,结合最稳定。因此大多数金属具有面心立方结构,即立方密积或六角密积,配位数均为12。 立方密积(Cu、Ag、Au、Al)(面心立方结构)(配位数12) 六角密积(Be、Mg、Zn、Cd)

体心立方结构(Li、Na、K、Rb、Cs、Mo、W)(配位数8) 良好的导电本领,结合能比前面两种晶体要低一些,过渡金属的结合能较大。 晶体的平衡是依靠库仑作用力和一定的排斥力而维持的。 排斥来自两个方面 (a) 但体积减小,电子云的密度增大,电子的动能将增加 (b) 当原子实相互接近到一定的距离时,它们的电子云发生显著的重叠,将产生强烈的排斥 作用。 金属性结合对原子的排列没有特殊的要求,这使得容易造成原子排列的不规范性,使其具有很大的范性。 二.范德瓦耳斯结合 (1)范德瓦耳斯结合的概念 元素周期表中第VIII族(惰性)元素在低温下所结合成的晶体,是典型的非极性分子晶体。为明确起见,我们只介绍这种分子晶体。 惰性元素最外层的电子为8个,具 有球对称的稳定封闭结构。但在某 一瞬时由于正、负电中心不重合 而使原子呈现出瞬时偶极矩,这就 会使其它原子产生感应极矩。非极 性分子晶体就是依靠这瞬时偶极 矩的互作用而结合的,这种结合力 是很微弱的。1873年范德瓦耳斯 (Van der Waals)提出在实际气体 分子中,两个中性分子间存在着 “分子力”。当时他并没有指出这 力的物理本质,现在知道瞬时偶极 矩引起的力是分子力的一种。如图 XCH002_005所示。 (2)范德瓦耳斯结合的特征 惰性元素因具有球对称,结合时排列最紧密以使势能最低,所以Ne、Ar、Kr、Xe的晶体都是面心立方结构。它们是透明的绝缘体,熔点特低,分别为24K、84K、117K和161K。

黄昆固体物理课后习题答案5

第五章 第五章 晶体中电子能带理论 思考题 1. 1. 将布洛赫函数中的调制因子)(r k u 展成付里叶级数, 对于近自由电子, 当电子波矢远离和在布里渊区边界上两种情况下, 此级数有何特点? 在紧束缚模型下, 此级数又有什么特点? [解答] 由布洛赫定理可知, 晶体中电子的波函数 )()(r r k.r k i k u e =ψ, 对比本教科书(5.1)和(5.39)式可得 )(r k u = r K K .)(1 m i m m e a N ∑Ω . 对于近自由电子, 当电子波矢远离布里渊区边界时, 它的行为与自由电子近似, )(r k u 近似一常数. 因此, )(r k u 的展开式中, 除了)0(a 外, 其它项可忽略. 当电子波矢落在与倒格矢K n 正交的布里渊区边界时, 与布里渊区边界平行的晶面族对布洛赫波产生了强烈的反射, )(r k u 展开式中, 除了)0(a 和)(n a K 两项外, 其它项可忽略. 在紧束缚模型下, 电子在格点R n 附近的几率)(r k ψ2大, 偏离格点R n 的几率)(r k ψ2小. 对于这样的波函数, 其付里叶级数的展式包含若干项. 也就是说, 紧束缚模型下的布洛赫波函数要由若干个平面波来构造.. 2. 2. 布洛赫函数满足 )(n R r +ψ=)(r n k.R ψi e , 何以见得上式中k 具有波矢的意义? [解答] 人们总可以把布洛赫函数)(r ψ展成付里叶级数 r K k'h K k r ).()'()(h i h e a +∑+=ψ, 其中k ’是电子的波矢. 将)(r ψ代入 )(n R r +ψ=)(r n k.R ψi e , 得到 n k'.R i e =n k.R i e . 其中利用了πp n h 2.=R K (p 是整数), 由上式可知, k =k ’, 即k 具有波矢的意义. 3. 3. 波矢空间与倒格空间有何关系? 为什么说波矢空间内的状态点是准连续的? [解答] 波矢空间与倒格空间处于统一空间, 倒格空间的基矢分别为321 b b b 、、 , 而波矢空间的基矢分别为32N N / / /321b b b 、、 1N , N 1、N 2、N 3分别是沿正格子基矢321 a a a 、、方向晶体的原胞数目. 倒格空间中一个倒格点对应的体积为 *321) (Ω=??b b b ,

黄昆版固体物理学课后问题详解解析汇报问题详解

《固体物理学》习题解答 黄昆 原著 汝琦改编 (志远解答,仅供参考) 第一章 晶体结构 1.1、 解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率, Vc nV x = (1)对于简立方结构:(见教材P2图1-1) a=2r , V= 3 r 3 4π,Vc=a 3,n=1 ∴52.06r 8r 34a r 34x 3 333=π=π=π= (2)对于体心立方:晶胞的体对角线BG=x 3 3 4a r 4a 3=?= n=2, Vc=a 3 ∴68.083)r 3 34(r 342a r 342x 3 3 33≈π=π?=π?= (3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=?= n=4,Vc=a 3 74.062) r 22(r 344a r 344x 3 3 33≈π=π?=π?= (4)对于六角密排:a=2r 晶胞面积:S=62 60sin a a 6S ABO ??=??=2 a 233 晶胞的体积:V=332r 224a 23a 3 8 a 233C S ==?= ? n=1232 1 26112+?+? =6个 74.062r 224r 346x 3 3 ≈π=π?= (5)对于金刚石结构,晶胞的体对角线BG=3 r 8a r 24a 3= ??= n=8, Vc=a 3

固体物理课后习题与答案

第一章 金属自由电子气体模型习题及答案 1. 你是如何理解绝对零度时和常温下电子的平均动能十分相近这一点的? [解答] 自由电子论只考虑电子的动能。在绝对零度时,金属中的自由(价)电子,分布在费米能级及其以下的能级上,即分布在一个费米球内。在常温下,费米球内部离费米面远的状态全被电子占据,这些电子从格波获取的能量不足以使其跃迁到费米面附近或以外的空状态上,能够发生能态跃迁的仅是费米面附近的少数电子,而绝大多数电子的能态不会改变。也就是说,常温下电子的平均动能与绝对零度时的平均动能十分相近。 2. 晶体膨胀时,费米能级如何变化? [解答] 费米能级 3/222 )3(2πn m E o F = , 其中n 单位体积内的价电子数目。晶体膨胀时,体积变大,电子数目不变,n 变小,费密能级降低。 3. 为什么温度升高,费米能反而降低? [解答] 当K T 0≠时,有一半量子态被电子所占据的能级即是费米能级。除了晶体膨胀引起费米能级降低外,温度升高,费米面附近的电子从格波获取的能量就越大,跃迁到费米面以外的电子就越多,原来有一半量子态被电子所占据的能级上的电子就少于一半,有一半量子态被电子所占据的能级必定降低,也就是说,温度生高,费米能反而降低。 4. 为什么价电子的浓度越大,价电子的平均动能就越大? [解答] 由于绝对零度时和常温下电子的平均动能十分相近,我们讨论绝对零度时电子的平均动能与电子的浓度的关系。 价电子的浓度越大,价电子的平均动能就越大,这是金属中的价电子遵从费米—狄拉克统计分布的必 然结果。在绝对零度时,电子不可能都处于最低能级上,而是在费米球中均匀分布。由式 3/120)3(πn k F =可知,价电子的浓度越大费米球的半径就越大,高能量的电子就越多,价电子的平均动能 就越大。这一点从3 /2220)3(2πn m E F =和3/222)3(10353πn m E E o F ==式看得更清楚。电子的平均动能E 正比于费米能o F E ,而费米能又正比于电子浓度3 2l n 。所以价电子的浓度越大,价电子的平均动能就越大。 5. 两块同种金属,温度不同,接触后,温度未达到相等前,是否存在电势差?为什么? [解答] 两块同种金属,温度分别为1T 和2T ,且21T T >。在这种情况下,温度为1T 的金属高于费米能o F E 的电子数目,多于温度为2T 的金属高于费米能o F E 的电子数目。两块同种金属接触后,系统的能量要取最小值,温度为1T 的金属高于o F E 的部分电子将流向温度为2T 的金属。温度未达到相等前,这种流动一直持续,期间,温度为1T 的金属失去电子,带正电;温度为2T 的金属得到电子,带负电,两者出现电势差。

黄昆固体物理课后习题答案1

第一章 第一章 晶体的结构 思 考 题 1. 1. 以堆积模型计算由同种原子构成的同体积的体心和面心立方晶体中的原子数之比. [解答] 设原子的半径为R , 体心立方晶胞的空间对角线为4R , 晶胞的边长为3/4R , 晶胞的体积为() 3 3/4R , 一个晶胞包含两个原子, 一个原子占的体积为() 2/3/43 R ,单位体积 晶体中的原子数为() 3 3 /4/2R ; 面心立方晶胞的边长为2/4R , 晶胞的体积为 () 3 2/4R , 一个晶胞包含四个原子, 一个原子占的体积为() 4/2 /43 R , 单位体积晶体 中的原子数为() 3 2 /4/4R . 因此, 同体积的体心和面心立方晶体中的原子数之比为 2/323 ???? ? ?=0.272. 2. 2. 解理面是面指数低的晶面还是指数高的晶面?为什么? [解答] 晶体容易沿解理面劈裂,说明平行于解理面的原子层之间的结合力弱,即平行解理面的原子层的间距大. 因为面间距大的晶面族的指数低, 所以解理面是面指数低的晶面. 3. 3. 基矢为=1a i a , =2a aj , =3a () k j i ++2 a 的晶体为何种结构? 若 =3a () k j +2 a +i 2 3a , 又为何种结构? 为什么? [解答] 有已知条件, 可计算出晶体的原胞的体积 23 321a = ??=a a a Ω. 由原胞的体积推断, 晶体结构为体心立方. 按照本章习题14, 我们可以构造新的矢量 =-=13a a u 2a ()k j i ++-, =-=23a a v 2a ()k j i +-, =-+=321a a a w 2 a ()k j i -+ . w v u ,,对应体心立方结构. 根据14题可以验证, w v u ,,满足选作基矢的充分条件.可见基 矢为=1a i a , =2a aj , =3a () k j i ++2a 的晶体为体心立方结构. 若

固体物理(严守胜编著) 课后答案 第1章

1.1对于体积V 内N 个电子的自由电子气体,证明 (1)电子气体的压强 ()() V p 032ξ?=,其中 0ξ为电子气体的基态能量。 (2)体弹性模量()V p V K ??-=为V 100ξ 解:(1) () 3 2 352225 223101101-==V N m h V m k h F πππξ (1.1.1) () () () ()() V V N m h V N m h V N m h V V p 035 352223535222323522223101323231013101ξππππππξ?==??? ? ??--=??? ? ????=??-=--- (1.1.2) (2) ()() () () V V N m h V N m h V V N m h V V V p V K 1031019103531013231013203 8 35222 383 52 22 353522 2ξππππππ==??? ? ??--=??? ? ????-=??-=--- (1.1.3) 1.2 He 3 原子是具有自旋1/2的费米子。在绝对零度附近,液体He 3 的密度为0.081g ?cm -3。 计算费米能量F ε和费米温度F T 。He 3 原子的质量为g m 24105-?≈。 解:把 He 3 原子当作负电背景下的正电费米子气体. Z=1. 3 2832224 1062.11062.1105081 .01m cm m Z n m ?=?=??== --ρ (1.2.1) ( ) 19173 1 2 108279.7108279.73--?=?==m cm n k F π (1.2.2) () eV J m k F F 42327 2 9 3422102626.41080174.6100.52108279.710055.12----?=?=?????= =ηε (1.2.3) K k T B F F 92.410381.1106.801742323=??==--ε (1.2.4)

黄昆固体物理试题及答案

山东大学试题专用纸 物理系-----年级----班 课程名称: 固体物理 共1页 学号: 姓名: 一. 填空(20分, 每题2分) 1.对晶格常数为a 的SC 晶体,与正格矢R =a i +2a j +2a k 正交的倒格子晶面族的面指数为( ), 其面间距为( ). 2.典型离子晶体的体积为V , 最近邻两离子的距离为R , 晶体的格波数目为( ), 长光学波的( )波会引起离子晶体宏观上的极化. 3. 金刚石晶体的结合类型是典型的( )晶体, 它有( )支格波. 4. 当电子遭受到某一晶面族的强烈反射时, 电子平行于晶面族的平均速度( )零, 电子波矢的末端处在( )边界上. 5. 两种不同金属接触后, 费米能级高的带( )电. 对导电有贡献的是 ( )的电子. 二. (25分) 1. 证明立方晶系的晶列[hkl ]与晶面族(hkl )正交. 2. 设晶格常数为a , 求立方晶系密勒指数为(hkl )的晶面族的面间距. 三. (25分) 设质量为m 的同种原子组成的一维双原子分子链, 分子内部的力系数为β1, 分子间相邻原子的力系数为β2, 分子的两原子的间距为d , 晶格常数为a , 1. 列出原子运动方程. 2. 求出格波的振动谱ω(q ). 四. (30分) 对于晶格常数为a 的SC 晶体 1. 以紧束缚近似求非简并s 态电子的能带. 2. 画出第一布里渊区[110]方向的能带曲线, 求出带宽. 3.当电子的波矢k =a πi +a π j 时,求导致电子产生布拉格反射的晶面族的面指数. (试题随答卷上交)

答案: 一. 填空(20分, 每题2分) 1.对晶格常数为a 的SC 晶体,与正格矢R =a i +2a j +2a k 正交的倒格子晶面族 的面指数为( 122 ), 其面间距为( a 32π ). 2.典型离子晶体的体积为V , 最近邻两离子的距离为R , 晶体的格波数 目为( 3 3R V ), 长光学波的( 纵 )波会引起离子晶体宏观上的极化. 3. 金刚石晶体的结合类型是典型的(共价结合)晶体, 它有( 6 )支格波. 4. 当电子遭受到某一晶面族的强烈反射时, 电子平行于晶面族的平均速度(不为 )零, 电子波矢的末端处在(布里渊区)边界上. 5. 两种不同金属接触后, 费米能级高的带(正)电.对导电有贡献的是 (费米面附近)的电子. 二. (25分) 1.设d 为晶面族()hkl 的面间距为, n 为单位法矢量, 根据晶面族的定义, 晶面族()hkl 将c b a 、、分别截为l k h 、、 等份, 即 a =?n a cos (a ,n )==a cos (a ,n )=hd , b =?n b cos (b ,n )= a cos (b ,n ) =kd , c =?n c cos (c ,n )= a cos (c ,n ) =ld . 于是有 n =a d h i +a d k j +a d l k =a d (h i +k j +l k ). (1) 其中, i 、j 、k 分别为平行于c b a 、、三个坐标轴的单位矢量. 而晶列 []hkl 的方向矢量为 =R ha i +ka j +la k =a (h i +k j +l k ). (2) 由(1)、(2)两式得 n =2a d R , 即n 与R 平行. 因此晶列[]hkl 与晶面()hkl 正交. 2. 立方晶系密勒指数为(hkl )的晶面族的面间距 22222222l k h a a l a k a h d hkl hkl ++= ++==k j i K πππππ 三. (25分) 1.

黄昆版固体物理学课后答案解析答案

《固体物理学》习题解答 黄昆原著韩汝琦改编 (陈志远解答,仅供参考) 第一章晶体结构 1.1、 解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。它的空间利用率就是这个晶体原胞所包含的点的数目n和小球体积V所得到的小球总 体积nV与晶体原胞体积Vc之比,即:晶体原胞的空间利用率, (1)对于简立方结构:(见教材P2图1-1) a=2r, 4 V= 3 r3, Vc=a3,n=1 4 3 4 3 r r 二x 3 3 0.52 3 a 8r3 6 (2)对于体心立方:晶胞的体对角线BG= , 3a 4r n=2, Vc=a3 4 3 F) n=4, Vc=a3 (22r)3 (4 )对于六角密排:a=2r晶胞面积:S=6 S ABO nV Vc 0.68 (3 )对于面心立方:晶胞面对角线BC= , 2a 4r, a 2 ., 2r 0.74 晶胞的体积: V=S C V 3 2a324.2r3 n=1212 - 2 - 6 2 3=6个 24 2r3 0.74 (5 )对于金刚石结构,晶胞的体对角线BG=3a 4 2r 8r .3 n=8, Vc=a3

所以,面心立方的倒格子是体心立方。 r a a, r 於i r j r k) (2 )体心立方的正格子基矢(固体物理学原胞基矢) r a r r r a2刖j k) r a丿r r a3 2(i j k) 8 3r38 3r3 83 3 ___ r 3,3 0.34 1.2、试证:六方密排堆积结构中C(8)1/21.633 a 3 证明:在六角密堆积结构中,第一层硬球A、B、0的中心联线形成一个边长a=2r的正三角形,第二层硬球N位于球ABO所围间隙的正上方并与这三个球相切,于是: NA=NB=N0=a=2R. 即图中NABO构成一个正四面体。… 1.3、证明:面心立方的倒格子是体心立方;体心立方的倒格子是面心立方。 a i 2(j k) 证明:(1 )面心立方的正格子基矢(固体物理学原胞基矢)a2 a ' a(i k) 由倒格子基矢的定义: a3) b1 2 同理可得: a3 a ' 2(i j) (a2 a3) b2 a a 0, r r r 2, 2 i , j, k 3 a a a r r a a _ J0, 一—,a2 a3 I0, — 2 2 4 2 2 a a a a J J0 0 2 2 2 2 a2 r r r 7「j k) k) k) 2 1—(i a jr a k) 即面心立方的倒格子基矢与体心立方的正格基矢相k)

《固体物理学》基础知识训练题及其参考标准答案

《固体物理》基础知识训练题及其参考答案 说明:本内容是以黄昆原著、韩汝琦改编的《固体物理学》为蓝本,重点训练读者在固体物理方面的基础知识,具体以19次作业的形式展开训练。 第一章 作业1: 1.固体物理的研究对象有那些? 答:(1)固体的结构;(2)组成固体的粒子之间的相互作用与运动规律;(3)固体的性能与用途。 2.晶体和非晶体原子排列各有什么特点? 答:晶体中原子排列是周期性的,即晶体中的原子排列具有长程有序性。非晶体中原子排列没有严格的周期性,即非晶体中的原子排列具有短程有序而长程无序的特性。 3.试说明体心立方晶格,面心立方晶格,六角密排晶格的原子排列各有何特点?试画图说明。有那些单质晶体分别属于以上三类。 答:体心立方晶格:除了在立方体的每个棱角位置上有1个原子以外,在该立方体的体心位置还有一个原子。常见的体心立方晶体有:Li,Na,K,Rb,Cs,Fe等。 面心立方晶格:除了在立方体的每个棱角位置上有1个原子以外,在该立方体每个表面的中心还都有1个原子。常见的面心立方晶体有:Cu, Ag, Au, Al等。 六角密排晶格:以ABAB形式排列,第一层原子单元是在正六边形的每个角上分布1个原子,且在该正六边形的中心还有1个原子;第二层原子单元是由3个原子组成正三边形的角原子,且其中心在第一层原子平面上的投影位置在对应原子集合的最低凹陷处。常见的六角密排晶体有:Be,Mg,Zn,Cd等。 4.试说明, NaCl,金刚石,CsCl, ZnS晶格的粒子排列规律。 答:NaCl:先将两套相同的面心立方晶格,并让它们重合,然后,将一 套晶格沿另一套晶格的棱边滑行1/2个棱长,就组成Nacl晶格; 金刚石:先将碳原子组成两套相同的面心立方体,并让它们重合,然后将一套晶格沿另一套晶格的空角对角线滑行1/4个对角线的长度,就组成金刚石晶格; Cscl::先将组成两套相同的简单立方,并让它们重合,然后将一套晶 格沿另一套晶格的体对角线滑行1/2个体对角线的长度,就组成Cscl晶格。 ZnS:类似于金刚石。

黄昆固体物理总复习

Q02_02_001 ? Ц ?? ? ?? ? ???? ? ? 喚???? ??? ? ????ρ??喌 ?? ? ? 喌?ν? ?? ?喌??? ?? ?? π???щ?? ? ? ?ρ ? 喌 ? ?? ?喛 Ц ? 喚??? ????? 喌 ?? Ц?喛 ? ? 喚? ? ?? ? ? ? 喌 ? ? ? ? 喌 ε 喈Ц喉? ? ???? ?Ц? ? ??? π??? ?? ?喌? π ?? ???喌??? ? π ?倇喌 ??ρ??? ?? ?喌??? ? ? ???? ? ?? ? 喚 ? ?? ?8?喌 ? ??? ?? ?? ?? ?ν????? ?? ?? ? ? ?喌? щ? ?? ??? ? ???? ??ρ???? ??Q02_03_001?? 喟 ???? ? ?? ? ?? ?? 喌?? 喌 ?? Д? ?喌 Д?? 喌? Д??? Q02_03_002?? ?℃?? ? 喟 ク??テ? ? ?? Д????? ∑ В? ∑喌 ? ?? ?????喌 1??∑ 2?????∑? ?テ? ? ?? ??喚3 4)(1512)/(D D V T R T C 4 4S ā?? ?3? ?℃?? ?喌 ?? 喌? ? ? 喌 ?∑ ∑?? ????Q02_03_003?? ?℃??? ? 喟 ク??テ? ? ?? ν N ? ? ?喌 ?? ? Д? ???Z 0 ??テ? ? ? ?倇 喚āā? ?喍? ??? B V Nk C 3#? ? ? 喚T k B B V B e T k Nk C 0 20)(3Z Z == āā ? ? ??喌? 侻? ?さ?3 AT C V ? ? ?ε ∑??? ? Q02_04_001 ? ??ク?? ? ? ???? ? 喛

黄昆固体物理课后习题答案6

第六章 自由电子论和电子的输运性质 思 考 题 1.如何理解电子分布函数)(E f 的物理意义是: 能量为E 的一个量子态被电子所占据的平均几率 [解答] 金属中的价电子遵从费密-狄拉克统计分布, 温度为T 时, 分布在能级E 上的电子数目 1/)(+=-T k E E B F e g n , g 为简并度, 即能级E 包含的量子态数目. 显然, 电子分布函数 11 )(/)(+=-T k E E B F e E f 是温度T 时, 能级E 的一个量子态上平均分布的电子数. 因为一个量子态最多由一个电子所占据, 所以)(E f 的物理意义又可表述为: 能量为E 的一个量子态被电子所占据的平均几率. 2.绝对零度时, 价电子与晶格是否交换能量 [解答] 晶格的振动形成格波,价电子与晶格交换能量,实际是价电子与格波交换能量. 格波的能量子称为声子, 价电子与格波交换能量可视为价电子与声子交换能量. 频率为i ω的格波的声子数 11 /-=T k i B i e n ωη. 从上式可以看出, 绝对零度时, 任何频率的格波的声子全都消失. 因此, 绝对零度时, 价电子与晶格不再交换能量. 3.你是如何理解绝对零度时和常温下电子的平均动能十分相近这一点的 [解答] 自由电子论只考虑电子的动能. 在绝对零度时, 金属中的自由(价)电子, 分布在费密能级及其以下的能级上, 即分布在一个费密球内. 在常温下, 费密球内部离费密面远的状态全被电子占据, 这些电子从格波获取的能量不足以使其跃迁到费密面附近或以外的空状态上, 能够发生能态跃迁的仅是费密面附近的少数电子, 而绝大多数电子的能态不会改变. 也就是说, 常温下电子的平均动能与绝对零度时的平均动能一定十分相近. 4.晶体膨胀时, 费密能级如何变化 [解答] 费密能级 3/2220)3(2πn m E F η=, 其中n 是单位体积内的价电子数目. 晶体膨胀时, 体积变大, 电子数目不变, n 变小, 费密能级降低. 5.为什么温度升高, 费密能反而降低 [解答]

黄昆版固体物理学课后答案解析答案

《固体物理学》习题解答 黄昆 原著 韩汝琦改编 (陈志远解答,仅供参考) 第一章 晶体结构 1.1 、 解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。这样,一个单原子的晶体原胞就可以看作是相同的小球按点 阵排列堆积起来的。 它的空间利用率就是这个晶体原胞所包含的点的数目 n 和小球体积 V 所得到的小球总 体积 nV 与晶体原胞体积 Vc 之比,即:晶体原胞的空间利用率, x nV Vc ( 1)对于简立方结构: (见教材 P2图 1-1) a=2r , V= 4 r 3 , Vc=a 3,n=1 3 4 r 3 4 r 3 ∴ x 3 3 0.52 a 3 8r 3 6 ( 2)对于体心立方:晶胞的体对角线 BG= 3a 4r a 4 3 x n=2, Vc=a 3 3 2 4 r 3 2 4 r 3 3 ∴ x 3 3 0.68 a 3 ( 4 3 8 r )3 3 ( 3)对于面心立方:晶胞面对角线 BC= 2a 4r , a 2 2r n=4 ,Vc=a 3 4 4 r 3 4 4 r 3 2 x 3 3 0.74 a 3 ( 2 2r) 3 6 ( 4)对于六角密排: a=2r 晶胞面积: S=6 S ABO 6 a a sin 60 3 3 2 2 = a 2 晶胞的体积: V= S C 3 3 a 2 8 a 3 2a 3 24 2r 3 2 3 n=12 12 1 2 1 3=6个 6 2 6 4 r 3 2 x 3 0.74 24 2r 3 6 ( 5)对于金刚石结构,晶胞的体对角线 BG= 3a 4 2r a 8r n=8, Vc=a 3 3

固体物理课后答案

x 表示钢球所占体积与总体积之比,如果将等体积球分别排列成下列结构,设 x简单立方π / 6 ≈体心立方 3π / 8 证明结构≈面心立方 2π / 6 ≈六方密排 2π / 6 ≈金刚石 3π /16 ≈ r a r 的关系根据不同晶体结构原子球的排列,晶格常数与解:设钢球半径为,a r不同,分别为:简单立方:= 2

金刚石:根据金刚石结构的特点,因为体对角线四分之一处的原子与角上的原子紧贴,因此有 证明:体心立方晶格的倒格子是面心立方;面心立方晶格的倒格子是体心立方。 证明:体心立方格子的基矢可以写为 面心立方格子的基矢可以写为 根据定义,体心立方晶格的倒格子基矢为

同理 aπ/ 4的面心立方的基矢,说明体心立方晶与面心立方晶格基矢对比,正是晶格常数为格的倒格子确实是面心立方。注意,倒格子不是真实空间的几何分布,因此该面心立方只是形式上的,或者说是倒格子空间中的布拉菲格子。根据定义,面心立方的倒格子基矢为 同理 aπ4的体心立方晶格的基矢。而把以上结果与体心立方基矢比较,这正是晶格常数为

ABC 交于基矢的密勒指数为的晶面系中距离原点最近的平面证明:根据定义,截距分别为 即为平面的法线 根据定义,倒格子基矢为 则倒格子原胞的体积为

hkld 满足, 对于简单立方晶格,证明密勒指数为(), 的晶面系,面间距 a 为立方边长。其中 解:根据倒格子的特点,倒格子 hkl)(与晶面族,, 的面间距有如下关系 因此只要先求出倒格,求出其大小即可。 因为倒格子基矢互相正交,因此其大小为

则带入前边的关系式,即得晶面族的面间距。 写出体心立方和面心立方晶格结构的金属中,最近邻和次近邻的原子数。若立。,写出最近邻和次近邻的原子间距a 方边长为 答:体心立方晶格的最近邻原子数(配位数)为8,最近邻原子间距等于 a ;,次近邻原子间距为6次近邻原子数为 面心立方晶格的最近邻原子数(配位数)为12,最近邻原子间距等于 a 。,次近邻原子间距为次近邻原子数为6α = 2ln 2 证明两种一价离子组成 的一维晶格的马德隆常数为 证明:设一个由正负两种离子相间等距排列的无限一维长链,取一负离子作参考

固体物理课后答案

如果将等体积球分别排列成下列结构,设x 表示钢球所占体积与总体积之比,证明结构x简单立方π/ 6 ≈体心立方3π/ 8 ≈面心立方2π/ 6 ≈六方密排2π/ 6 ≈金刚石3π/16 ≈ 解:设钢球半径为r ,根据不同晶体结构原子球的排列,晶格常数a 与r 的关系不同,分别为:简单立方:a = 2r 金刚石:根据金刚石结构的特点,因为体对角线四分之一处的原子与角上的原子紧贴,因此有

证明:体心立方晶格的倒格子是面心立方;面心立方晶格的倒格子是体心立方。 证明:体心立方格子的基矢可以写为 面心立方格子的基矢可以写为 根据定义,体心立方晶格的倒格子基矢为 同理 与面心立方晶格基矢对比,正是晶格常数为4π/ a的面心立方的基矢,说明体心立方晶格的倒格子确实是面心立方。注意,倒格子不是真实空间的几何分布,因此该面心立方只是形式上的,或者说是倒格子空间中的布拉菲格子。根据定义,面心立方的倒格子基矢为 同理 而把以上结果与体心立方基矢比较,这正是晶格常数为4πa的体心立方晶格的基矢。 证明:根据定义,密勒指数为的晶面系中距离原点最近的平面ABC 交于基矢的截距分别为 即为平面的法线

根据定义,倒格子基矢为 则倒格子原胞的体积为 对于简单立方晶格,证明密勒指数为(h, k,l)的晶面系,面间距d 满足 其中a 为立方边长。 解:根据倒格子的特点,倒格子 与晶面族(h, k,l)的面间距有如下关系 因此只要先求出倒格,求出其大小即可。 因为倒格子基矢互相正交,因此其大小为 则带入前边的关系式,即得晶面族的面间距。

写出体心立方和面心立方晶格结构的金属中,最近邻和次近邻的原子数。若立方边长为a ,写出最近邻和次近邻的原子间距。 答:体心立方晶格的最近邻原子数(配位数)为8,最近邻原子间距等于 次近邻原子数为6,次近邻原子间距为a ; 面心立方晶格的最近邻原子数(配位数)为12,最近邻原子间距等于 次近邻原子数为6,次近邻原子间距为a 。 证明两种一价离子组成的一维晶格的马德隆常数为α= 2ln 2 证明:设一个由正负两种离子相间等距排列的无限一维长链,取一负离子作参考离子,用r表示相邻离子间的距离,于是有 根据假设,马德隆常数求和中的正负号这样选取,即遇正离子取正号,遇负离子取负号。因子2 是因为存在着两个相等距离i r 的离子,一个在参考离子左面,一个在其右面。 则马德隆常数为 当x =1时,有 所以α= 2ln 2

黄昆版固体物理学课后答案解析答案

黄昆版固体物理学课后答 案解析答案 Prepared on 24 November 2020

《固体物理学》习题解答 黄昆 原着 韩汝琦改编 (陈志远解答,仅供参考) 第一章 晶体结构 、 解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率, Vc nV x = (1)对于简立方结构:(见教材P2图1-1) a=2r , V=3r 3 4π,Vc=a 3,n=1 ∴52.06r 8r 34a r 34x 3333=π=π=π= (2)对于体心立方:晶胞的体对角线BG=x 3 3 4a r 4a 3= ?= n=2, Vc=a 3 ∴68.083 )r 3 34(r 34 2a r 342x 3 3 33≈π=π?=π?= (3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=?= n=4,Vc=a 3 (4)对于六角密排:a=2r 晶胞面积:S=62 60sin a a 6S ABO ??=??=2a 2 33

晶胞的体积:V=332r 224a 23a 3 8 a 2 33 C S ==? =? n=1232 126 112+?+?=6个 (5)对于金刚石结构,晶胞的体对角线BG=3 r 8a r 24a 3= ??= n=8, Vc=a 3 、试证:六方密排堆积结构中633.1)3 8(a c 2/1≈= 证明:在六角密堆积结构中,第一层硬球A 、B 、O 的中心联线形成一个边长a=2r 的正三角形,第二层硬球N 位于球ABO 所围间隙的正上方并与这三个球相切,于是: NA=NB=NO=a=2R. 即图中NABO 构成一个正四面体。… 、证明:面心立方的倒格子是体心立方;体心立方的倒格子是面心立方。 证明:(1)面心立方的正格子基矢(固体物理学原胞基矢):123()2()2()2a a j k a a i k a a i j ?=+?? ? =+?? ?=+?? 由倒格子基矢的定义:1232()b a a π = ?Ω 3 1230, ,22 (),0,224 ,,0 2 2a a a a a a a a a a Ω=??= =,2 23,,, 0,()224,,0 2 2 i j k a a a a a i j k a a ?==-++ 同理可得:232()2() b i j k a b i j k a π π= -+=+-即面心立方的倒格子基矢与体心立方的正格基矢相同。 所以,面心立方的倒格子是体心立方。

黄昆版固体物理学课后答案解析答案 (2)

《固体物理学》习题解答 黄昆 原着 韩汝琦改编 (陈志远解答,仅供参考) 第一章 晶体结构 、 解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率, Vc nV x = (1)对于简立方结构:(见教材P2图1-1) a=2r , V=3r 3 4π,Vc=a 3,n=1 ∴52.06r 8r 34a r 34x 33 33=π =π=π= (2)对于体心立方:晶胞的体对角线BG=x 3 3 4a r 4a 3=?= n=2, Vc=a 3 ∴68.083)r 3 34(r 342a r 342x 3 3 3 3≈π=π?=π?= (3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=?= n=4,Vc=a 3 (4)对于六角密排:a=2r 晶胞面积:S=62 60sin a a 6S ABO ??=??=2 a 233 晶胞的体积:V=332r 224a 23a 3 8 a 233C S ==?= ? n=1232 126 112+?+?=6个

(5)对于金刚石结构,晶胞的体对角线BG=3 r 8a r 24a 3=??= n=8, Vc=a 3 、试证:六方密排堆积结构中633.1)3 8(a c 2/1≈= 证明:在六角密堆积结构中,第一层硬球A 、B 、O 的中心联线形成一个边长a=2r 的正三角形,第二层硬球N 位于球ABO 所围间隙的正上方并与这三个球相切,于是: NA=NB=NO=a=2R. 即图中NABO 构成一个正四面体。… 、证明:面心立方的倒格子是体心立方;体心立方的倒格子是面心立方。 证明:(1)面心立方的正格子基矢(固体物理学原胞基矢):123()2()2()2a a j k a a i k a a i j ?=+?? ?=+?? ?=+?? r r r r r r r r r 由倒格子基矢的定义:1232()b a a π=?Ω r r r 31230, ,22 (), 0,224 ,,0 2 2a a a a a a a a a a Ω=??==r r r Q ,223,,, 0,()224,,0 2 2 i j k a a a a a i j k a a ?==-++r r r r r r r r 同理可得:232() 2() b i j k a b i j k a ππ=-+=+-r r r r r r r r 即面心立方的倒格子基矢与体心立方的正格基矢相同。 所以,面心立方的倒格子是体心立方。 (2)体心立方的正格子基矢(固体物理学原胞基矢):123()2()2()2a a i j k a a i j k a a i j k ?=-++?? ?=-+?? ?=+-?? r r r r r r r r r r r r

相关主题
文本预览
相关文档 最新文档