当前位置:文档之家› 船舶横摇运动中力矩分析

船舶横摇运动中力矩分析

船舶横摇运动中力矩分析
船舶横摇运动中力矩分析

船舶横摇角较小的情况下可以应用线性横摇理论来研究船舶的横摇运动,将船舶看作是一个刚体,在海浪的干扰下,船体绕中心线摆动,规定从船尾向船首看,

顺时针为正,逆时针为负,取船舶的横摇角为φ横摇角速度为φ&,横摇角加速度

为φ&&,船舶在波浪中的横摇所受的力矩可以看成船舶在静水中横摇所受的力矩加上波浪的正浮状态船体的扰动力矩,为此,船舶在波浪上的横摇受以下几种力矩的作用:

一、复原力矩

当船舶横摇某一角度Φ时,此时浮心和重心不在同一垂线上,形成一个使船舶回复到原来位置的力矩,即复原力矩)(ΦM ,当横摇角不太大时,可以应用初稳性公式:

Φ-=ΦDh M )(

式中:D 为排水量;

h 为初稳性高。

二、阻尼力矩

船在水中横摇,由于船体和水之间存在相对速度,船体必然受到阻力,阻尼力 矩大体受到三个原因的作用:摩擦阻尼,兴波阻尼,漩涡阻尼。

(1)摩擦阻尼

它是水的粘性引起的,其数值的大小一般认为和角速度的平方成比例,在横摇中,摩擦阻尼所占的比重是很小的,往往可以忽略。

(2)兴波阻尼

它是由于船的运动在水表面形成波浪,消耗了船体本身的能量而形成的,一般认为兴波阻尼比例于角速度的一次方。

(3)漩涡阻尼

它是在船体弯曲或突出物附近形成漩涡,损失部分能量而形成的。

船舶横摇阻尼力矩与船体形状、装载情况、舭龙骨、横摇频率和幅值等多种因素有关,精确的确定阻尼力矩是目前横摇研究中最困难的问题。用理论方法确定的阻尼力矩尚不能用于实际,最可靠的方法是进行实船或模型试验。小角度横摇时,认为船舶是时间恒定的线性系统,阻尼力矩与角速度成线性关系,其计算公式如下:

φ

φ&N M z 2-= Dh J J N )(φφφφμ?+=

其中: φN 为横摇阻尼系数;

φμ为无因次横摇衰减系数;

φJ 为转动惯量;

φJ ?为附加转动惯量。

三、惯性力矩

船舶在横摇运动中存在角加速度,则必然会产生惯性力矩,惯性力矩两部分组成,即船舶自身的惯性力矩和附加惯性力矩,它与横摇角加速度的关系可写成:

φ

φφφ&&&&)()(J J M ?+-=式中:φJ 为转动惯量; φJ ?为附加转动惯量。

四、海浪扰动力矩

波浪改变了船体水下的体积的形状,从而产生复原扰动力矩,船体的存在阻止了波浪的运动,反之波浪也给船体一个作用力矩。海浪扰动力矩是引起船舶横摇运动的主要原因,它由三部分组成:

(1)由于波浪改变船体水下部分体积的形状而产生的复原力矩公式为:

e BH Dh M α=

(2)海浪对船舶航行时的阻尼扰动力矩可表示为:

e BZ N M αφ&2=

(3)船体的附加惯性扰动方矩可表示为:

e BG J M αφ&&?=

故波浪扰动力矩可表示为:

=),,(e e e M ααα&&&e Dh α+e N αφ&2+e J αφ&&?

五、扶正力矩

由于减摇装置的存在,当波浪作用到船上时,减摇装置给船一个扶正力矩,以使船舶的横摇角减小,用于抵消波浪对船舶的作用力。公式如下:

f Dh M α-=Φ)(

基于Ansys Workbench的圆柱销接触分析

前面一篇基于Ansys经典界面得接触分析例子做完以后,不少朋友希望了解该例子在Workbench中就是如何完成得。我做了一下,与大家共享,不一定正确。毕竟这种东西,教科书上也没有,我只就是按照自己得理解在做,有错误得地方,恳请指正。 1.问题描述 一个钢销插在一个钢块中得光滑销孔中。已知钢销得半径就是0、5 units, 长就是2、5units,而钢块得宽就是4 Units,长4 Units,高为1Units,方块中得销孔半径为0、49units,就是一个通孔。钢块与钢销得弹性模量均为36e6,泊松比为0、3、由于钢销得直径比销孔得直径要大,所以它们之间就是过盈配合。现在要对该问题进行两个载荷步得仿真。 (1)要得到过盈配合得应力。 (2)要求当把钢销从方块中拔出时,应力,接触压力及约束力。 2.问题分析 由于该问题关于两个坐标面对称,因此只需要取出四分之一进行分析即可。 进行该分析,需要两个载荷步:

第一个载荷步,过盈配合。求解没有附加位移约束得问题,钢销由于它得几何尺寸被销孔所约束,由于有过盈配合,因而产生了应力。 第二个载荷步,拔出分析。往外拉动钢销1、7 units,对于耦合节点上使用位移条件。打开自动时间步长以保证求解收敛。在后处理中每10个载荷子步读一个结果。 本篇只谈第一个载荷步得计算。 3.生成几何体 上述问题就是ANSYS自带得一个例子。对于几何体,它已经编制了生成几何体得命令流文件。所以,我们首先用经典界面打开该命令流文件,运行之以生成四分之一几何体;然后导出为一个IGS文件,再退出经典界面,接着再到WORKBENCH中,打开该IGS文件进行操作。 (3、1)首先打开ANSYSAPDL14、5、 (3、2)然后读入已经做好得几何体。从【工具菜单】-->【>【Read Input From】打开导入文件对话框

第6章-船舶运动控制系统建模应用

第6章 船舶运动控制系统建模应用 6.1 引 言 数学模型化(mathematical modelling)是用数学语言(微分方程式)描述实际过程动态特性的方法。在船舶运动控制领域,建立船舶运动数学模型大体上有两个目的:一个目的是建立船舶操纵模拟器(ship manoeuvring simulator),为研究闭环系统性能提供一个基本的仿真平台;另一个目的是直接为设计船舶运动控制器服务。船舶运动数学模型主要可分为非线性数学模型和线性数学模型,前者用于船舶操纵模拟器设计和神经网络控制器、模糊控制器等非线性控制器的训练和优化,后者则用于简化的闭环性能仿真研究和线性控制器(PID, LQ, LQG, H ∞鲁棒控制器)的设计。 船舶的实际运动异常复杂,在一般情况下具有6个自由度。在附体坐标系内考察,这种运动包括跟随3个附体坐标轴的移动及围绕3个附体坐标轴的转动,前者以前进速度(surge velocity)u 、横漂速度(sway velocity)v 、起伏速度(heave velocity)w 表述,后者以艏摇角速度(yaw rate)r 、横摇角速度(rolling rate)p 及纵摇角速度(pitching rate)q 表述;在惯性坐标系内考察,船舶运动可以用它的3个空间位置000,,z y x (或3个空间运动速度 000,,z y x &&&)和3个姿态角即方位角(heading angle)ψ、横倾角(rolling angle)?、纵倾角 (pitching angle)θ (或3个角速度θ?ψ&&&,,)来描述,),,(θ?ψ称为欧拉角[4](见图6.1.1)。 显然T ],,[w v u 和T 000],,[z y x &&&以及T ],,[r q p 和T ],,[θ? ψ&&&之间有确定关系[4]。但这并不等于说,我们要把这6个自由度上的运动全部加以考虑。数学模型是实际系统的简化,如何简化就有很大学问。太复杂和精细的模型可能包含难于估计的参数,也不便于分析。过于简单的模型不能描述系统的重要性能。这就需要我们建模时在复杂和简单之间做合理的折中。对于船舶运动控制来说,建立一个复杂程度适宜、精度满足研究要求的数学模型是至关重要的。 图6.1.1的坐标定义如下:000Z Y X O -是惯性坐标系(大地参考坐标系), 为起始 位置,0OX 指向正北,0OY 指向正东,0OZ 指向地心;o -xyz 是附体坐标系,为船首尾之间连线的中点,ox 沿船中线指向船首,oy 指向右舷,oz 指向地心;航向角ψ以正 北为零度,沿顺时针方向取0?~360?;舵角δ以右舵为正。对于大多数船舶运动及其控制问题而言,可以忽略起伏运动、纵摇运动及横摇运动,而只需讨论前进运动、横漂运动和艏摇运动,这样就简化成一种只有3个自由度的平面运动问题。图6.1.2给出图6.1.1经简化后的船舶平面运动变量描述。 船舶平面运动模型对于像航向保持、航迹跟踪、动力定位、自动避碰等问题,具有足够的精度;但在研究像舵阻摇、大舵角操纵等问题时,则必须考虑横摇运动。本章根据刚体动力学基本理论建立船舶平面运动基本方程,据此进一步导出状态空间型(线性和非线性)及传递函数型船舶运动数学模型,并考虑了操舵伺服系统的动态特性和风、浪、流干扰的处理方法。这些结果将作为设计各种船舶运动控制器的基础。计及横摇的四自由度船舶运动数学模型参见文献[5]。

船舶横摇运动中力矩分析

船舶横摇角较小的情况下可以应用线性横摇理论来研究船舶的横摇运动,将船舶看作是一个刚体,在海浪的干扰下,船体绕中心线摆动,规定从船尾向船首看, 顺时针为正,逆时针为负,取船舶的横摇角为φ横摇角速度为φ&,横摇角加速度 为φ&&,船舶在波浪中的横摇所受的力矩可以看成船舶在静水中横摇所受的力矩加上波浪的正浮状态船体的扰动力矩,为此,船舶在波浪上的横摇受以下几种力矩的作用: 一、复原力矩 当船舶横摇某一角度Φ时,此时浮心和重心不在同一垂线上,形成一个使船舶回复到原来位置的力矩,即复原力矩)(ΦM ,当横摇角不太大时,可以应用初稳性公式: Φ-=ΦDh M )( 式中:D 为排水量; h 为初稳性高。 二、阻尼力矩 船在水中横摇,由于船体和水之间存在相对速度,船体必然受到阻力,阻尼力 矩大体受到三个原因的作用:摩擦阻尼,兴波阻尼,漩涡阻尼。 (1)摩擦阻尼 它是水的粘性引起的,其数值的大小一般认为和角速度的平方成比例,在横摇中,摩擦阻尼所占的比重是很小的,往往可以忽略。 (2)兴波阻尼 它是由于船的运动在水表面形成波浪,消耗了船体本身的能量而形成的,一般认为兴波阻尼比例于角速度的一次方。 (3)漩涡阻尼 它是在船体弯曲或突出物附近形成漩涡,损失部分能量而形成的。 船舶横摇阻尼力矩与船体形状、装载情况、舭龙骨、横摇频率和幅值等多种因素有关,精确的确定阻尼力矩是目前横摇研究中最困难的问题。用理论方法确定的阻尼力矩尚不能用于实际,最可靠的方法是进行实船或模型试验。小角度横摇时,认为船舶是时间恒定的线性系统,阻尼力矩与角速度成线性关系,其计算公式如下: φ φ&N M z 2-= Dh J J N )(φφφφμ?+= 其中: φN 为横摇阻尼系数; φμ为无因次横摇衰减系数; φJ 为转动惯量; φJ ?为附加转动惯量。

运动控制MATLAB仿真

大作业: 直流双闭环调速MATLAB仿真 运动控制技术课程名称: 名:姓电气学院院:学 自动化业:专 号:学 孟濬指导教师: 2012年6月2日

------------------------------------- -------------学浙大江 李超 一、Matlab仿真截图及模块功能描述 Matlab仿真截图如下,使用Matlab自带的直流电机模型: 模块功能描述: ⑴电机模块(Discrete DC_Machine):模拟直流电机 ⑵负载转矩给定(Load Torque):为直流电机添加负载转矩 ⑶Demux:将向量信号分离出输出信号 ⑷转速给定(Speed Reference):给定转速 ⑸转速PI调节(Speed Controller):转速PI调节器,对输入给定信号与实际信号

的差值进行比例和积分运算,得到的输出值作为电流给定信号。改变比例和积分运算系数可以得到不同的PI控制效果。 ⑹电流采样环节(1/z):对电流进行采样,并保持一个采样周期 ⑺电流滞环调节(Current Controller):规定一个滞环宽度,将电流采样值与给定值进行对比,若:采样值>给定值+0.5*滞环宽度,则输出0; 若:采样值<给定值—0.5*滞环宽度,则输出1; 若:给定值—0.5*滞环宽度<采样值<给定值+0.5*滞环宽度,则输出不变 输出值作为移相电压输入晶闸管斩波器控制晶闸管触发角 :根据输入电压改变晶闸管触发角,从而改变电机端电压。GTO⑻晶闸管斩波.⑼续流二极管D1:在晶闸管关断时为电机续流。 ⑽电压传感器Vd:测量电机端电压 ⑾示波器scope:观察电压、电流、转速波形 系统功能概括如下:直流电源通过带GTO的斩波器对直流电机进行供电,输出量电枢电流ia和转速wm通过电流环和转速环对GTO的通断进行控制,从而达到对整个电机较为精确的控制。 下面对各个部分的功能加以详细说明: (1)直流电机 双击电动机模块,察看其参数:

船舶摇摆实验汇总

具体实验内容:格式样板如下,字体均用宋体。(填空,每空1分,共25分) 船舶摇摆实验 1、实验目的(10) (1)测量实船的固有横摇周期。 (2)通过实验了解船舶重心对横摇周期的影响。 2、实验原理(15) 船舶的摇荡主要有下列六种形式:横摇、纵摇、首摇、垂荡、横荡、纵荡。其中,横摇、纵摇和垂荡对船的航行影响最大,而横摇又最容易发生,横摇振幅也最大,严重影响船舶安全。 船舶的稳性:

横摇固有周期Ts: 横摇摇幅衰减 静水中通过对船舶施加倾斜力矩,使船舶产生初始倾角θ后,去除该力距,船舶进入自由横摇状态。静水中船舶自由横摇的衰减曲线是按指数规律随时间而衰减的,相邻的两个横摇峰值或谷值之间的时间间隔即为横摇的固有周期Ts。在半个周期时间间隔内,横摇幅值绝对值的变化为 由以上关系可得无因次衰减系数的表达式为:

3、实验步骤(10) 1、确认所有实验设备处于正确的初始状态,包括:船舶(模)的摇摆运动不会受到干扰,倾角测量装置已上电并运行正常; 2、每次实验前测量其初始倾角; 3、运行倾角测量软件; 4、给船舶施加倾斜力矩使其倾斜; 5、点击倾角测量软件界面上的“开始”按钮,此时开始测量倾角数据并显示在界面上; 6、去除倾斜力矩使船舶进入自由横摇状态; 7、等待一定时间后,点击倾角测量软件界面上的“暂停”按钮,停止测量倾角数据; 8、将记录下来的倾角数据保存在指定的文件中; 9、在船舶的某一高度上增加重量。 首先将双面胶的一面贴在亚铁上,然后将亚铁粘贴到船模上。注意沿船长的方向,亚铁的中心线要与船模的中线一致,避免船舶左右不对称产生固定的横倾角。将增加重量的船模放入水中,给船模施加倾斜力矩使其倾斜,去除该 力矩使船舶进入自由横摇状态,对船模摇摆的倾角进行测量并保存实验数据。按照这个方法,逐渐增加亚铁的数量,并对其进行摇摆试验,测量其摇摆横倾角并保存数据; 10、点击倾角测量软件界面上的“退出”按钮,关闭该软件,结束实验。 4、实验数据及其处理(40) 根据测得的倾角数据绘制倾角随时间的变化曲线、船舶横摇消灭曲线,求实验船舶的横摇周期、无因次阻尼系数,并写出算例。(所测数据中每两个相邻数据之间的时间间隔是100ms,即数据是按10个/秒的频率测量和记录的。)

船舶运动控制概述

船舶运动控制概述 随着经济全球化的加剧,现代物流业飞速发展,市场对进出口的需求越发的加大,造成了与之相应的航运自动化的繁荣发展,各种新的控制算法不断地应用于传播控制以提高营运的经济效益。作为大连海事大学自动化专业的学生,我们有必要了解船舶相关的知识,包括船舶运动控制,船舶控制系统,船舶导航等的相关知识。并将储备的知识运用到以后的学习与工作中。 一、欠驱动船舶的控制器设计 首先我们先来聊聊船舶的驱动。由于船舶动力驱动结构具有非完整约束和典型的欠驱动特性,而且航行条件的变化、环境参数的严重干扰和测量的不精确性等又使船舶运动呈现出大惯性、长时滞、非线性等特点,采用传统的船舶控制方法已经不能满足控制要求,必须探索新的船舶控制方法。 欠驱动系统是指由控制输入向量空间的维数小于系统广义坐标向量空间维数的系统,即控制输入数小于系统自由度的系统[1]。欠驱动船舶模型一般都具有非线性运动方程的形式,欠驱动船舶模型一般都具有非线性运动方程的形式,欠驱动船舶模型一般都具有非线性运动方程的形式,约束都是不可积的微分表达式,属于非完整系统。 研究欠驱动船舶的控制器设计也具有非常重要的现实意义。一个欠驱动船舶以较少数目的驱动器来完成航行任务,降低了系统的费用及重量,提高了营运效益,同时也会因控制设备的减少而降低船舶机械故障的发生率,使系统运行更加稳定而易于维护。更为重要的是,欠驱动控制同时对船舶完全驱动系统提供了一种备份控制技术。如果全驱动系统遇故障不能正常运行时,可采用欠驱动船舶控制策略,利用仍在工作的控制器对船舶进行有效控制,增大设备出现故障时系统的可靠性。 正是由于上述原因,对欠驱动船舶的控制研究得到了广泛重视并成为控制领域的研究热点之一[2]。作为一种特殊的非线性控制方法,欠驱动船舶控制技术的发展目前还存在着很多问题,有待于更多的科技工作者致力于深入的研究。为了促进欠驱动船舶控制技术的发展,本文在查阅有关资料的基础上,对欠驱动船舶数学模型、控制方法及其发展做了较为详细的综述,并对该领域存在的问题以及可能的发展方向进行了探讨。 如果把船舶作为一个刚体来研究,则船舶的运动有六个自由度,称之为横摇、纵摇、艏摇、横荡、纵荡和垂荡。考虑常规船舶水平面运动的控制,所关心的主要是船舶在水面上的位置和航向,而且就低重心的普通船舶而言,垂荡、纵摇和横摇对其水平面运动影响甚微,可以忽略。因此水面船舶的六自由度运动就可以简化为沿x方向前进、y方向横移及绕z轴旋转(艏摇)的三自由度运动。由于船舶的推进装置仅装备有螺旋桨推进器和船舵,也就是说系统只有2个控制输入(前向推力和旋转力矩),但需要同时控制船舶在水平面运动的3个自由度,因此对常规船舶平面运动的控制研究可归结为欠驱动控制问题。 上述的船舶的控制问题 ,船的质量和阻尼矩阵都假定为三角阵 ,船舶模型参数和环境干扰的不确定性也被忽略 ,都是在理想的条件下对船舶进行镇定Π跟踪控制。

船舶术语

ABS 美国船级社 aft a. adv. n.(在)船艉 aft peak 艉尖舱 anchor n.锚 anchor chain (cable chain)锚链 anchor handling 锚操纵anchor windlass (chain windlass) 起锚机 aux. engine room 辅机舱ballast system 压载系统ballast water 压载水 base[beis] n.基准 basic design 基本(方案)设计 basic metal 母材 beam n.横梁 bilge n.舱底水 bilge keel 舭龙骨 bilge plate 舭板 bilge pump 舱底水泵block n.分段 block or section fabrication 分段或总段装配 blower 风机 boat deck 艇甲板 bollard n. 带缆桩 bolt n. 螺栓 bottom n. 船底 bottom plate 底板 bottom structure 底板结构bow n. 船艏 bow &stern structure 艏艉结构 bow section 艏段 bridge n.桥楼 bridge control 桥楼控制broadcast n.v. 控制bulbous bow 球鼻艏 bulk cargo 散装货物 bulk-cargo carrier 散装货船 bulkhead n. 隔舱壁bulkhead structure 隔舱壁结构 butt joint 对接接头 cabin n.舱室 camber n. 梁拱 cargo n. 船货cargo oil 货油 cargo –hold n. 货舱 CCS 中国船级社 chain locker 锚链舱 chain pipe 锚链管 chain stopper 制链器 class n. 船级 classification n.船级 classification society 船级 社 coefficients of ship form 船型系数 compartment n. 分隔舱 compass n. 罗经 compass deck 罗经甲板 completion drawing 完工 图 component n. 组成部分 composition n. 成分组成 continuous deck 连续甲板 crew n.(全体)船员 dead weight ton(DWT) n. 载重量,吨载量 deck n. 甲板 deck girder 甲板材 deck longitudinal 甲板纵 骨 deck plate 甲板板 deck structure 甲板结构 deckhouse 甲板室 deliver v. 交货,交船 derrick n. 吊杆 discharge n.v. 排水 DNV 挪威船级社 Dock n. 船坞 double bottom 双层底 double-action a.双作用 draft(draught)n. 吃水 drawing n. 图纸 drydock n. 干船坞 engine-room 机舱 EO 无人机舱 设备 fire pump 消防泵 fire-fighting system 消防 系统 floor plate 肋板 fore perpendicular 艏垂线 forecastle n. 艏楼 formation n. 构成,结构 frame n. 肋骨 framing block 肋骨框架分 段 freeboard n. 干舷 freighter n. 货船 full-load a. 满载的 full-load displacement 满 载排水量 GL 西德劳氏船级社 hawsepipe n.锚链筒 headroom n.甲板间高度 heel n.横倾 hull n.船体 hull cleanness 船体光顺性 hull construction 船体结 构 hull form 船型 hull line 船体线型 hull structure 船体结构 IMCO 政府间海事协商组 织 inclination n.倾斜 inclination test 倾斜试验 incline v. 倾斜 index n.索引 keel n. 龙骨 keel plate 龙骨板 life-belt n.救生圈 life-boat n.救生艇 life-jacket n.救生衣 life-raft n.救生筏 life-saving n.救生 lines lofting 线型放样 lines offsets 型值 lines plan 线型图 local strengthening 局部加 强 locate v.定位 longitudinal bulkhead 纵隔 舱壁 longitudinal framing 纵向 构架 lower deck 下甲板 LR 英国劳氏船级社 M.E.engine room 主机舱 main hull 主船体 maneuvering console 操纵 台 marine geological research vessel

船舶转心在操船实践中的运用

船舶转心在操船实践中的运用 惠州港引航站陈国平张曾华 0引言 船舶转心是指船舶作旋回运动时,船舶的回转中心。转心的位置是旋回中某瞬时的旋回中心,因此转心又称为“瞬时转动中心”。可以把船舶运动看作成一个保向斜航运动和绕转心的旋回运动的合运动。船舶转心是一个动态的点,在船舶无左右横倾时,对水运动速度V及船舶方型系数C将直接影响转心在船舶首尾线上的位置。当船舶对水前行时,船舶转心移至重心之前,速度V越大则转心前移得越多,反之亦然。对于船长和吃水相同的船舶,方型系数CB越小其转心前移越多;由于军舰的方型系数较小,因而其转心的位置越靠前移,不利于船舶旋转,因此需要安装多部推进器,加以克服。当在离转心越远处对船舶施加外力,则船舶越容易旋转;而在转心附近处对船舶施加外力,则船舶旋转效应差,越接近转心处,旋转效果越差。 在船舶掉头、侧推使用、船舶避让、拖轮协助等多方面都涉及船舶的转心。把握好船舶的转心,利用好转心的作用,能给船舶操纵带来许多方便;但是,如果对转心利用不好,则会给船舶驾驶带来麻烦。 1船舶转心的变化规律 船舶运动的同时推开其周围的流体,而周围的流体又来填充之前被船舶所占据的空间。当船舶相对于水向前运动时,紧贴船艏处的水在瞬时被加速(即水压力很大),当该水流速度达到与船速相同时,可把水看作是一个与船舶融合在一起的一个整体,即无形中增加了船舶的虚拟质量或称附加质量。而船尾处由于水流(伴流)速度已经被提起来了,即加速度很小,其水压力也就很小,因此其产生的附加质量就小得多。船舶在静止的情况下,船舶转心随船舶重心变化而作同向变化;当船舶相对于水向前运动时,相当于船艏处增加了重量,重心前移,船舶转心也就自然向前移动。至此,我们可以得出以下转心变化规律的解释:船舶对水运动速度越快,其顶流的一面船舶受到的水压力越大,产生的附加质量也就越大,重心朝顶流面移动,船舶转心也就朝顶流面移动。所以,当船舶对水向前运动,则船舶转心移至重心之前,相对速度越快,转心前移越多;船舶对水朝后运动时,船舶转心移至重心之后,且对水运动速度越快,船舶转心后移也越多。在研究船舶转心时,通常不考虑风压力的影响。其实风压力对船舶转心的变化也是有一定影响的,由于空气密度远小于水密度,其所能产生的附加质量要小得多,因此研究转心变化规律时,对于船舶就只需要考虑水压力的影响即可。2转心的运用实例 2.1拖轮协助船舶旋回掉头时转心的运用 见图1所示:①至④为拖轮的四个作用点,既可拖也可顶,当船 舶对水朝前运动时,即SPD >0,当利用拖轮来控制船舶朝有转右时, 我们来比较①至④四个作用点的旋回效果(朝右转向则图示中①和④ 为顶推点,②和③为拖拉点)。由于船舶朝前运动,转心前移至 接近船艏位置,③和④的作用力臂远大于①和②的作用力臂,因此③ 和④的作用效果远大于①和②的作用效果。而一般施加的拖力其效果 仅为顶推力的70%左右。因此,我们很容易得出以上四点受力的旋回 效果的大小顺序为:④>③>①>②。图1拖轮作用位置图

船舶动力定位技术简述

1.动力定位技术背景 1.1 国外动力定位技术发展 目前,国际上主要的动力定位系统制造商有Kongsberg公司、Converteam公司、Nautronix公司等。 下面分别介绍动力定位系统各个关键组成部分的技术发展现状。 1.动力定位控制系统 1)测量系统 测量系统是指动力定位系统的位置参考系统和传感器。国内外动力定位控制系统生产厂家均根据船舶的作业使命选择国内外各专业厂家的产品。位置参考系统主要采用DGPS,水声位置参考系统主要选择超短基线或长基线声呐,微波位置参考系统可选择Artemis Mk 4,张紧索位置参考系统可选择LTW Mk,激光位置参考系统可选择Fanbeam Mk 4,雷达位置参考系统可选择RADius 500X。罗经、风传感器、运动参考单元等同样选择各专业生产厂家的产品。 2)控制技术 20世纪60年代出现了第一代动力定位产品,该产品采用经典控制理论来设计控制器,通常采用常规的PID控制规律,同时为了避免响应高频运动,采用滤波器剔除偏差信号中的高频成分。 20世纪70年代中叶,Balchen等提出了一种以现代控制理论为基础的控制技术-最优控制和卡尔曼滤波理论相结合的动力定位控制方法,即产生了第二代也是应用比较广泛的动力定位系统。 近年来出现的第三代动力定位系统采用了智能控制理论和方法,使动力定位控制进一步向智能化的方向发展。智能控制方法主要体现在鲁棒控制、模糊控制、非线性模型预测控制等方面。 2001 年5 月份,挪威著名的Kongsberg Simrad 公司首次展出了一项的新产品—绿色动力定位系统(Green DP),将非线性模型预测控制技术成功地引入到动力定位系统中。Green DP 控制器由两部分组成:环境补偿器和模型预测控制器。环境补偿器的设计是为了提供一个缓慢变化的推力指令来补偿一般的环境作用力;模型预测控制器是通过不断求解一个精确的船舶非线性动态数学模型,用以预测船舶的预期行为。模型预测控制算法的计算比一般用于动力定位传统的控制器设计更加复杂且更为耗时,主要有三个步骤:1.从非线性船舶模型预测运动;2.寻找阶跃响应曲线;3.求解最佳推力。控制器结构如图所示[1]: 图1.1Green-DP总体控制图

长江航行船型介绍及横摇角度

普通客船 330客位:总长45.0米,垂线间长42.0米,船宽8.2米,型深2.4米,设计吃水1.4米,主机功率2×258 KW,速度25.0 km/h。 350/460客位:总长75.8米,垂线间长70.4米,船宽12.8米,型深3.2米,设计吃水2.1米,主机功率2×552 KW,速度27.0 km/h。 500/670客位:总长87.0米,垂线间长80.0米,船宽14.4米,型深3.6米,设计吃水2.4米,主机功率2×662 KW,速度27.0 km/h。 干散货船 干散货船目前是长江运输主力船型,占长江船舶总运力85%左右,承担着长江干线煤炭、金属矿石、钢铁、非金属矿石、矿建材料、化工原料等物品运输。 长江下游干散货船最大已达7000 吨,其总长102.8米、垂线间长97.0 米、船宽17.8米、型深7.0米、设计吃水6.0米、主机功率2×800KW,速度16.0km/h。 长江中游干散货船最大已达5000 吨,其总长99.0 米、垂线间长94.2 米、船宽17.0米、型深6.4米、设计吃水5.0米、主机功率2×662KW,速度19.2km/h。 长江上游干散货船最大也已达5000 吨,总长108.8米、垂线间长102.0米、船宽19.0米、型深5.0米、设计吃水4.2 米、主机功率2×400KW,速度17.0km/h。 集装箱船 长江库区以150/200/ 300TEU三型集装箱船标准船型为主力,构成了库区集装箱船系列船型。150TEU集装箱船:总长87.6 米、垂线间长82.0 米、船宽13.6米、型深4.6 米、设计吃水2.8米、最大吃水3.2米、设计载货量1691吨、最大载重量2127 吨、主机功率2×330KW,试航速度20.6km/h。 200TEU集装箱船:总长89.9 米、垂线间长85.4 米、船宽14.6米、型深4.8 米、设计吃水2.8米、最大吃水3.2米、设计载货量1932吨、最大载重量2438 吨、主机功率2×440KW,试航速度20.8km/h。 300TEU集装箱船:总长112.0米、垂线间长106.3米、船宽17.2米、型深5.8米、设计吃水3.2米、最大吃水3.8米、设计载重量3400 吨、最大载重量4400 吨、主机功率2×588KW,试航速度21.0km/h。 油船 1000t 油船:总长75.0米、垂线间长72.0米、船宽13.6米、型深3.2米、设计吃水2.4米、最大吃水2.5米、设计载重量1262吨、最大载重量1347吨、主机功率2×330KW,服务航速18.0km/h。 2000t 油船:总长83.73 米、垂线间长78.0米、船宽14.8米、型深4.1 米、设计吃水2.9米、最大吃水3.2米、设计载重量1989吨、最大载重量2310 吨、主机功率2×300KW,服务航速17.0km/h。 2500t 油船:船舶总长87.26 米、垂线间长83.0 米、船宽15.6米、型深4.2 米、设计吃水3.2米、最大吃水3.5米、设计载重量2440 吨、最大载重量2801 吨、主机功率2×350KW,服务航速17.0km/h。 化学品船 目前长江主力化学品运输船舶由1000t/2000t/3000t 级船舶构成。

ansys workbench接触分析

Workbench -Mechanical Introduction Introduction 作业3.1 31 接触控制

作业3.1 –目标 Workshop Supplement ?作业3.1调查了一个简单组件的接触行为。目的是为了说明由于不适当接触导致的刚体运动是怎么产生的。 ?问题描述: 问题描述 –模型从一个简单Parasolid组件文件获得 –我们的目标是在组件的各部件中建立接触,查看非对称加载对结果有何影响 我们的目标是在组件的各部件中建接触,查看非对称加载对结果有何影响

作业3.1 –假设 Workshop Supplement ?假设arm shaft 和side plate上的孔间的摩擦忽略不计,同样arm shaft 和stop shaft 之间的接触也忽略不计。最后假设stop shaft固定在两个side plate之间。 之间 Arm Shaft Side Plate Side Plate p Stop Shaft

作业3.1 –Project Schematic Workshop Supplement ?打开Project page(项目页) ?通过“Units” 菜单确定: –Project单位设置为“US Customary (lbm, in, s, F, A, lbf, V). –选择“Display Values in Project Units”

. . .作业3.1 –Project Schematic Workshop Supplement 1.在Toolbox(工具箱)中双击 Static Structural建立新的分析系 统 1. 2.Geometry上点击鼠标右键选择 2在 Import Geometry导入 2. Contact_Arm.x_t文件

船舶操纵

目录 第一章船舶操纵性能 第一节船舶旋回性 (三副:船舶旋回性和舵效) 第二节航向稳定性和保向性 (三副:船舶航向稳定性) 第三节船舶的变速运动性能 (三副:船速与冲程) 第四节船舶操纵性试验基本知识 第五节IMO船舶操纵性衡准适用的船舶和基本内容 第一章船舶操纵性能 第一节船舶旋回性 大副知识点1:船舶旋回运动三阶段 【典型考题】 1.直航船操一定舵角后,其转舵阶段的______。 A.横移速度较小,横移加速度较小 B.横移速度较小,横移加速度较大 C.横移速度较大,横移加速度较大 D.横移速度较大,横移加速度较小 参考答案:B 解析:第一阶段亦称转舵阶段,船舶从开始转舵起至转至规定舵角止一般约8-15s,横移加速度v 和旋回角加速度r 均较大,旋回角加速度在此阶段可达最大值。由于船舶运动惯

性的原因,船舶重心G 基本上沿原航向滑进,横移速度v 和转向角速度r 变化绝对值不大。 2.船舶操舵后,在转舵阶段将______。 A .出现速度降低、向转舵一侧横倾现象 B .出现速度降低、向转舵相反一侧横倾现象 C .出现速度增大、向转舵一侧横倾现象 D .出现速度增大、向转舵相反一侧横倾现象 参考答案:A 解析:在舵力转船力矩M δ的作用下,船首有向操舵一侧回转的趋势,重心则有向操舵相反方向的微量横移,与此同时,船舶因舵力位置比重心位置低而出现少量内倾。因此,该阶段也称为横移内倾阶段。 3.直航船操一定舵角后,其过渡阶段的______。 A .转向角速度为变量,角加速度为常量 B .转向角速度为常量,角加速度为变量 C .转向角速度为变量,角加速度为变量 D .转向角速度为常量,角加速度为常量 参考答案:C 解析:第二阶段亦称过度阶段,诸指标均为变量。该阶段中,船舶的旋回角速度、横移速度和漂角均逐步增大,水动力F w 的作用方向由第一阶段来自正前方,逐渐改变为来自船首外舷方向。由于水动力F W 作用点较重心更靠近船首,因而产生水动力转船力矩M δ,方向与舵力转船力矩MJ 一致,使船舶加速旋回;与此同时,随着旋回角速度的不断提高,又会产生不断增大的船舶旋回阻矩,从而使旋回角速度不断降低,角速度的增加受到限制。 【点评1】阶段中船舶的运动特点是: 1)船舶降速明显。其首要因素是船舶斜航时水动力F w 的纵向分力F wx 的增加,如图(a ),其次是舵力P n 的纵向分力P nx ,旋回运动产生的离心力Q 的纵向分力Q x 以及旋回中推进效率的下降。 2)由反向横移变成向操舵一侧正向横移。原因是船舶在旋回中,随着漂角β的增大,水动 力F w 不断增大,而舵力却有所下降,以致F W 的横向分力大于P n 的横向分力。 3)船舶出现外倾并逐渐增大。其原因是舵力横向分力P ny 、水动力横向分力F wy 以及旋回中产生的离心力的横向分力Q y 作用于船舶垂直方向的不同位置,构成了力矩,从而使船舶由初始阶段的内倾变为外倾。如图(b )所示。 【相关考题】 4.直航船操一定舵角后,其过渡阶段的______。 A .横移速度为变量,横移加速度为常量 B .横移速度为常量,横移加速度为变量 .C .横移速度为变量,横移加速度为变量 D .横移速度为常量,横移加速度为常量 参考答案:C 解析:见本知识点点评1

船舶运动控制的舵机仿真改进

第47卷 2018年7月 一一一一一一一一 一一一一一 船海工程 SHIP&OCEANENGINEERING 一一 一一一一一一一一一一一一 Vol.47 Jul.2018 一 一一 DOI:10.3963/j.issn.1671 ̄7953.2018.S1.033 船舶运动控制的舵机仿真改进 张志恒?张显库?周韬 (大连海事大学航海学院?辽宁大连116026) 摘一要:基于大连海事大学校船 育鲲 轮海试数据?在已有舵机特性的基础上增加了小的航向偏差不操舵环节和舵效维持环节?建立非线性Nomoto模型和MMG模型?进行仿真验证?仿真发现?在风浪流干扰作用下?在舵机特性中增加舵效维持环节模拟操舵响应缓慢特性?操舵频率和操舵幅度更符合航海实践?操舵效果与海试舵效基本一致?结果表明?用舵效维持模拟船舶操舵响应缓慢的特性更符合海试操舵效果? 关键词:船舶工程?船舶运动控制?仿真?零阶保持器?舵机 中图分类号:U675.79一一一一文献标志码:A一一一一文章编号:1671 ̄7953(2018)S1 ̄0154 ̄07 收稿日期:2018-03-11修回日期:2018-04-11 基金项目:国家自然科学基金(51679024)?中央高校 青年教师基本科研业务费(3132016315) 第一作者:张志恒(1991 )?男?硕士生研究方向:船舶运动控制和鲁棒控制 一一海洋运输是交通运输的重要方式?船舶运动控制是海洋运输研究的热点?实船实验是理论应用于实践验证的重要环节?但船舶实验成本较高?所以仿真实验成为研究者进行科研的重要手段?理论研究是更好工程应用的前提?本研究基于大连海事大学校船 育鲲 轮海试试验?根据舵角反馈器记录数据的特点?改进现有船舶运动控制仿真?本研究结合海试数据二船长经验及文献[1 ̄6]对航海操舵进行如下总结? 1)船舶如果不是在受限水域掉头或紧急避让?多数不采用大舵角?通常用小舵角来抑制船舶偏转?用中等舵角来进行转向或正常避让? 2)根据经验?航海实践中好的海况不操舵的 航向偏差一般限定为?0.5?~?1.0??恶劣海况不操舵的航向偏差一般限定为?3?~?5?? 文献[7]采用自适应神经网络控制算法?船舶航向跟踪控制效果良好?但操舵频繁?文献[8]研究了二阶非线性多智能体系统的输出反馈同步控制?舵机操舵幅度小?操舵频繁?文献[9]基于RBF神经网络对2艘船舶进行仿真控制?但舵角在?0.1?范围内频繁操舵?文献[10 ̄12]的操舵频率为每次0.3~3s?对船舶航向保持控制 效果良好?但操舵频率较高?不符合航海实践?在航海实践中?舵机具有大惯性二舵角饱和和舵角速率限制二小的航向偏差不操舵二操舵频率低等特性?船舶运动的大惯性特点?时间常数为几十秒甚至是几百秒?操舵响应缓慢?在响应过程中舵角把定(维持)某个状态等待船舶状态调整?本研究以大连海事大学校船 育鲲 和 育鹏 为例?分别采用非线性Nomoto模型和MMG模型进行仿真验证?基于Nomoto模型?给出了包含舵机惯性环节二舵角饱和和舵角速率限制特性的非线性模型?在此基础上?分别增加了小的航向偏差不操舵环节二时滞环节以及零阶保持器(Zero-Order-Holder?ZOH[13])环节的仿真对比效果?基于MMG 模型?给出了包含舵机惯性环节二舵角饱和和舵角速率限制特性模型以及增加零阶保持器环节模型的航向保持控制和操舵的对比效果? 1一准备工作 为了仿真研究中舵效更接近航海实践?对舵 机加入了小航向偏差不操舵二舵角维持(或舵角时滞)二舵机惯性环节二舵角饱和和舵角速率限制等特性?舵机仿真结构见图1?结合航海实践?小的航向偏差取?1.0??舵角维持(每间隔操舵一次)设定为10s?舵机惯性为一阶惯性环节1 Trs+1?Tr =5s?舵角范围为-35?~35??舵角速率范围为-5?/s~5?/s? 舵角维持环节和时滞环节对系统的响应产生干扰?控制输出不能很好地跟踪控制输入?根据文献 4 51

典型船体结构术语

1典型船体结构术语 图1:单壳油船—典型横剖面图 single hull oil —typical transverse section (transverse adj.横向的, 横断的) 1.强力甲板板strength deck plating (strength n.力, 力量, 力气, 实力, 兵力, 浓度) 2.甲板边板stringer plate 3.舷顶列板sheerstrake (strake n.束紧车轮用的轮铁, 船底板,列板) 4.舷侧板side shell plating (shell n.贝壳, 外形, 炮弹;vt.去壳,炮轰;vi.剥落, 脱壳) 5.舭板bilge plating 6.底部外板bottom shell plating 7.龙骨板keel plate 8.甲板纵骨deck longitudinals 9.甲板纵桁deck girders 10.舷顶列板纵骨sheerstrake longitudinals 11.纵舱壁顶列板longitudinal bulkhead top strake 12.船底纵骨bottom longitudinals 13.船底纵桁bottom girders 14.舭纵骨bilge longitudinals 15.纵舱壁底列板longitudinal bulkhead lower strake (bulkhead n.隔壁, 防水壁) 16.舷侧纵骨side shell longitudinals 17.纵舱壁板longitudinal bulkhead plating (remainder) 18.纵舱壁纵骨longitudinal bulkhead

ansys workbench接触分析习题

)间的球形界面的压力形貌。

上机实验报告: 软件版本:ANSYS workbench 19.2 1.主要分析过程及注意事项 分析过程: ●打开workbench,从左侧的“analysis system”中拖入“static structural”到中间空白区域 ●由于材料已经是默认的结构钢,所以我们不用修改,但是单位和它的显示模式我们要改 成像下图中的(Tonne,mm,…)和“display values in project units”。 ●在geometry中导入“ball-socket.x_t ”之前,先在右边的属性栏里,找到analysis type, 将3D改为2D,改完之后再导入“ball-socket.x_t ”。

●双击model进去“mechanical”,选中Geometry,在Definition中把2D Behavior改为 Axisymmetric。同时检查工作单位制是否是Metric (mm,kg,N,s,mV,mA) ●选中“contacts”,插入“Frictional” Frictional Coefficient设为0.4,behavior改为auto asymmetric(自动非对称),formulation改为augmented lagrange(后面的试验结果表明,formulation设为program controlled,结果都一样)

●在analysis setting里把Large Deflection改为ON ●鼠标选中mesh,我们可以在下面的element size 改变网格大小,本上机实验中会分别试验 1.0mm和0.5mm,修改完后右键generate mesh可观看效果 ●选中static structural,插入fixed support ,选中socket的上边线,并apply,然后在插入loads 里的force,这时选择ball的下边线,并apply,在define by里选择component,并在y方向上输入-1000。

船舶动力定位技术简述

船舶动力定位技术简述 1.动力定位技术背景 1.1 国外动力定位技术发展 目前,国际上主要的动力定位系统制造商有Kongsberg公司、Converteam公司、Nautronix公司等。 下面分别介绍动力定位系统各个关键组成部分的技术发展现状。 1(动力定位控制系统 1)测量系统 测量系统是指动力定位系统的位置参考系统和传感器。国内外动力定位控制系统生产厂家均根据船舶的作业使命选择国内外各专业厂家的产品。位置参考系统主要采用DGPS,水声位置参考系统主要选择超短基线或长基线声呐,微波位置参考系统可选择Artemis Mk 4,张紧索位置参考系统可选择LTW Mk,激光位置参考系统可选择Fanbeam Mk 4,雷达位置参考系统可选择RADius 500X。罗经、风传感器、运动参考单元等同样选择各专业生产厂家的产品。 2)控制技术 20世纪60年代出现了第一代动力定位产品,该产品采用经典控制理论来设计控制器,通常采用常规的PID控制规律,同时为了避免响应高频运动,采用滤波器剔除偏差信号中的高频成分。 20世纪70年代中叶,Balchen等提出了一种以现代控制理论为基础的控制技术-最优控制和卡尔曼滤波理论相结合的动力定位控制方法,即产生了第二代也是应用比较广泛的动力定位系统。

近年来出现的第三代动力定位系统采用了智能控制理论和方法,使动力定位控制进一步向智能化的方向发展。智能控制方法主要体现在鲁棒控制、模糊控制、非线性模型预测控制等方面。 2001 年 5 月份,挪威著名的 Kongsberg Simrad 公司首次展出了一项的新产品—绿色动力定位系统(Green DP),将非线性模型预测控制技术成功地引入到动力定位系统中。Green DP 控制器由两部分组成:环境补偿器和模型预测控制器。环境补偿器的设计是为了提供一个缓慢变化的推力指令来补偿一般的环境作用力;模型预测控制器是通过不断求解一个精确的船舶非线性动态数学模型,用以预测船舶的预期行为。模型预测控制算法的计算比一般用于动力定位传统的控制器设计更加复杂且更为耗时,主要有三个步骤:1.从非线性船舶模型预测运动;2.寻找阶跃响应曲线;3.求解 [1]最佳推力。控制器结构如图所示: 图1.1Green-DP总体控制图 荷兰的Marin在20世纪80年代初期即确定了关于推进器和动力定位的研究计划,并开展了动力定位的模型实验,内容包括:?推进器和推进器之间的相互作用;?推进器和船体之间的相互作用;?环境力和船舶的低频运动。研究结果产生了应用于动力定位的模拟程序RUNSIM,包括模拟实验的程序DPCON和理论模型计算的程序

相关主题
文本预览
相关文档 最新文档