当前位置:文档之家› 广东省广州市九年级(上)期末数学考点知识汇总

广东省广州市九年级(上)期末数学考点知识汇总

广东省广州市九年级(上)期末数学考点知识汇总
广东省广州市九年级(上)期末数学考点知识汇总

广东省广州市九年级广东省广州市九年级((上)期末数学考期末数学考点点知识汇总

1.解一元二次方程-直接开平方法

形如x 2=p 或(nx +m )2

=p (p ≥0)的一元二次方程可采用直接开平方的方法解一元二次方程.

如果方程化成x 2

=p 的形式,那么可得x =±;

如果方程能化成(nx +m )2

=p (p ≥0)的形式,那么nx +m =±. 注意:①等号左边是一个数的平方的形式而等号右边是一个非负数. ②降次的实质是由一个二次方程转化为两个一元一次方程. ③方法是根据平方根的意义开平方. 2.解一元二次方程-公式法

(1)把x =﹣b ±b 2﹣4ac 2a (b 2﹣4ac ≥0)叫做一元二次方程ax 2

+bx +c =0(a ≠0)的求根公式.

(2)用求根公式解一元二次方程的方法是公式法. (3)用公式法解一元二次方程的一般步骤为:

①把方程化成一般形式,进而确定a ,b ,c 的值(注意符号); ②求出b 2

﹣4ac 的值(若b 2

﹣4ac <0,方程无实数根);

③在b 2﹣4ac ≥0的前提下,把a 、b 、c 的值代入公式进行计算求出方程的根. 注意:用公式法解一元二次方程的前提条件有两个:①a ≠0;②b 2

﹣4ac ≥0. 3.根的判别式

利用一元二次方程根的判别式(△=b 2

﹣4ac )判断方程的根的情况. 一元二次方程ax 2

+bx +c =0(a ≠0)的根与△=b 2

﹣4ac 有如下关系: ①当△>0时,方程有两个不相等的两个实数根; ②当△=0时,方程有两个相等的两个实数根; ③当△<0时,方程无实数根. 上面的结论反过来也成立. 4.一元二次方程的应用

1、列方程解决实际问题的一般步骤是:审清题意设未知数,列出方程,解所列方程求所列

方程的解,检验和作答.

2、列一元二次方程解应用题中常见问题:

(1)数字问题:个位数为a,十位数是b,则这个两位数表示为10b+a.

(2)增长率问题:增长率=增长数量/原数量×100%.如:若原数是a,每次增长的百分率为x,则第一次增长后为a(1+x);第二次增长后为a(1+x)2,即原数×(1+增长百分率)2=后来数.

(3)形积问题:①利用勾股定理列一元二次方程,求三角形、矩形的边长.②利用三角形、矩形、菱形、梯形和圆的面积,以及柱体体积公式建立等量关系列一元二次方程.③利用相似三角形的对应比例关系,列比例式,通过两内项之积等于两外项之积,得到一元二次方程.(4)运动点问题:物体运动将会沿着一条路线或形成一条痕迹,运行的路线与其他条件会构成直角三角形,可运用直角三角形的性质列方程求解.

【规律方法】列一元二次方程解应用题的“六字诀”

1.审:理解题意,明确未知量、已知量以及它们之间的数量关系.

2.设:根据题意,可以直接设未知数,也可以间接设未知数.

3.列:根据题中的等量关系,用含所设未知数的代数式表示其他未知量,从而列出方程.4.解:准确求出方程的解.

5.验:检验所求出的根是否符合所列方程和实际问题.

6.答:写出答案.

5.一元一次不等式的应用

(1)由实际问题中的不等关系列出不等式,建立解决问题的数学模型,通过解不等式可以得到实际问题的答案.

(2)列不等式解应用题需要以“至少”、“最多”、“不超过”、“不低于”等词来体现问题中的不等关系.因此,建立不等式要善于从“关键词”中挖掘其内涵.

(3)列一元一次不等式解决实际问题的方法和步骤:

①弄清题中数量关系,用字母表示未知数.

②根据题中的不等关系列出不等式.

③解不等式,求出解集.

④写出符合题意的解.

6.反比例函数的性质

反比例函数的性质

(1)反比例函数y(k≠0)的图象是双曲线;

(2)当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;(3)当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.注意:反比例函数的图象与坐标轴没有交点.

7.反比例函数图象上点的坐标特征

反比例函数y=k/x(k为常数,k≠0)的图象是双曲线,

①图象上的点(x,y)的横纵坐标的积是定值k,即xy=k;

②双曲线是关于原点对称的,两个分支上的点也是关于原点对称;

③在y=k/x图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.

8.反比例函数与一次函数的交点问题

反比例函数与一次函数的交点问题

(1)求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.

(2)判断正比例函数y=k1x和反比例函数y在同一直角坐标系中的交点个数可总结为:

①当k1与k2同号时,正比例函数y=k1x和反比例函数y在同一直角坐标系中有2个交点;

②当k1与k2异号时,正比例函数y=k1x和反比例函数y在同一直角坐标系中有0个交点.9.二次函数的性质

二次函数y=ax2+bx+c(a≠0)的顶点坐标是(,),对称轴直线x,二次函数y=ax2+bx+c(a ≠0)的图象具有如下性质:

①当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上,x时,y随x的增大而减小;x时,y随x的增大而增大;x时,y取得最小值,即顶点是抛物线的最低点.

②当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下,x时,y随x的增大而增大;x时,y随x的增大而减小;x时,y取得最大值,即顶点是抛物线的最高点.

③抛物线y=ax2+bx+c(a≠0)的图象可由抛物线y=ax2的图象向右或向左平移||个单位,再向上或向下平移||个单位得到的.

10.二次函数图象与几何变换

由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.

11.二次函数的最值

(1)当a>0时,抛物线在对称轴左侧,y随x的增大而减少;在对称轴右侧,y随x的增大而增大,因为图象有最低点,所以函数有最小值,当x时,y.

(2)当a<0时,抛物线在对称轴左侧,y随x的增大而增大;在对称轴右侧,y随x的增大而减少,因为图象有最高点,所以函数有最大值,当x时,y.

(3)确定一个二次函数的最值,首先看自变量的取值范围,当自变量取全体实数时,其最值为抛物线顶点坐标的纵坐标;当自变量取某个范围时,要分别求出顶点和函数端点处的函数值,比较这些函数值,从而获得最值.

12.二次函数的三种形式

二次函数的解析式有三种常见形式:

①一般式:y=ax2+bx+c(a,b,c是常数,a≠0),该形式的优势是能直接根据解析式知道抛物线与y轴的交点坐标是(0,c);

②顶点式:y=a(x﹣h)2+k(a,h,k是常数,a≠0),其中(h,k)为顶点坐标,该形式的优势是能直接根据解析式得到抛物线的顶点坐标为(h,k);

③交点式:y=a(x﹣x1)(x﹣x2)(a,b,c是常数,a≠0),该形式的优势是能直接根据解析式得到抛物线与x轴的两个交点坐标(x1,0),(x2,0).

13.抛物线与x轴的交点

求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标,令y=0,即ax2+bx+c =0,解关于x的一元二次方程即可求得交点横坐标.

(1)二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的交点与一元二次方程ax2+bx+c=0根之间的关系.

△=b2﹣4ac决定抛物线与x轴的交点个数.

△=b2﹣4ac>0时,抛物线与x轴有2个交点;

△=b2﹣4ac=0时,抛物线与x轴有1个交点;

△=b2﹣4ac<0时,抛物线与x轴没有交点.

(2)二次函数的交点式:y=a(x﹣x1)(x﹣x2)(a,b,c是常数,a≠0),可直接得到抛物线与x轴的交点坐标(x1,0),(x2,0).

14.勾股定理

(1)勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.

如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.

(2)勾股定理应用的前提条件是在直角三角形中.

(3)勾股定理公式a2+b2=c2的变形有:a,b及c.

(4)由于a2+b2=c2>a2,所以c>a,同理c>b,即直角三角形的斜边大于该直角三角形中的每一条直角边.

15.正方形的性质

(1)正方形的定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形.(2)正方形的性质

①正方形的四条边都相等,四个角都是直角;

②正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角;

③正方形具有四边形、平行四边形、矩形、菱形的一切性质.

④两条对角线将正方形分成四个全等的等腰直角三角形,同时,正方形又是轴对称图形,有四条对称轴.

16.垂径定理

(1)垂径定理

垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.

(2)垂径定理的推论

推论1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.

推论2:弦的垂直平分线经过圆心,并且平分弦所对的两条弧.

推论3:平分弦所对一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.17.圆周角定理

(1)圆周角的定义:顶点在圆上,并且两边都与圆相交的角叫做圆周角.

注意:圆周角必须满足两个条件:①顶点在圆上.②角的两条边都与圆相交,二者缺一不可.(2)圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.

推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.

(3)在解圆的有关问题时,常常需要添加辅助线,构成直径所对的圆周角,这种基本技能技巧一定要掌握.

(4)注意:①圆周角和圆心角的转化可通过作圆的半径构造等腰三角形.利用等腰三角形的顶点和底角的关系进行转化.②圆周角和圆周角的转化可利用其“桥梁”﹣﹣﹣圆心角转化.③定理成立的条件是“同一条弧所对的”两种角,在运用定理时不要忽略了这个条件,

把不同弧所对的圆周角与圆心角错当成同一条弧所对的圆周角和圆心角.

18.直线与圆的位置关系

(1)直线和圆的三种位置关系:

①相离:一条直线和圆没有公共点.

②相切:一条直线和圆只有一个公共点,叫做这条直线和圆相切,这条直线叫圆的切线,唯一的公共点叫切点.

③相交:一条直线和圆有两个公共点,此时叫做这条直线和圆相交,这条直线叫圆的割线.(2)判断直线和圆的位置关系:设⊙O的半径为r,圆心O到直线l的距离为d.

①直线l和⊙O相交?d<r

②直线l和⊙O相切?d=r

③直线l和⊙O相离?d>r.

19.切线的性质

(1)切线的性质

①圆的切线垂直于经过切点的半径.

②经过圆心且垂直于切线的直线必经过切点.

③经过切点且垂直于切线的直线必经过圆心.

(2)切线的性质可总结如下:

如果一条直线符合下列三个条件中的任意两个,那么它一定满足第三个条件,这三个条件是:①直线过圆心;②直线过切点;③直线与圆的切线垂直.

(3)切线性质的运用

由定理可知,若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.简记作:见切点,连半径,见垂直.

20.切线的判定

(1)切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.

(2)在应用判定定理时注意:

①切线必须满足两个条件:a、经过半径的外端;b、垂直于这条半径,否则就不是圆的切线.

②切线的判定定理实际上是从”圆心到直线的距离等于半径时,直线和圆相切“这个结论直接得出来的.

③在判定一条直线为圆的切线时,当已知条件中未明确指出直线和圆是否有公共点时,常过圆心作该直线的垂线段,证明该线段的长等于半径,可简单的说成“无交点,作垂线段,证

半径”;当已知条件中明确指出直线与圆有公共点时,常连接过该公共点的半径,证明该半径垂直于这条直线,可简单地说成“有交点,作半径,证垂直”. 21.三角形的内切圆与内心

(1)内切圆的有关概念:

与三角形各边都相切的圆叫三角形的内切圆,三角形的内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.三角形的内心就是三角形三个内角角平分线的交点. (2)任何一个三角形有且仅有一个内切圆,而任一个圆都有无数个外切三角形. (3)三角形内心的性质:

三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内

角.

22.圆锥的圆锥的计算计算

(1)连接圆锥顶点和底面圆周上任意一点的线段叫做圆锥的母线.连接顶点与底面圆心的线段叫圆锥的高.

(2)圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.

(3)圆锥的侧面积:S 侧?2πr ?l =πrl . (4)圆锥的全面积:S 全=S 底+S 侧=πr 2

+πrl (5)圆锥的体积底面积×高

注意:①圆锥的母线与展开后所得扇形的半径相等. ②圆锥的底面周长与展开后所得扇形的弧长相等. 23.轴对称图形

(1)轴对称图形的概念:

如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称. (2)轴对称图形是针对一个图形而言的,是一种具有特殊性质图形,被一条直线分割成的两部分沿着对称轴折叠时,互相重合;轴对称图形的对称轴可以是一条,也可以是多条甚至无数条.

(3)常见的轴对称图形:

等腰三角形,矩形,正方形,等腰梯形,圆等等. 24.作图-轴对称变换

几何图形都可看做是由点组成,我们在画一个图形的轴对称图形时,也是先从确定一些特殊的对称点开始的,一般的方法是:

①由已知点出发向所给直线作垂线,并确定垂足;

②直线的另一侧,以垂足为一端点,作一条线段使之等于已知点和垂足之间的线段的长,得到线段的另一端点,即为对称点;

③连接这些对称点,就得到原图形的轴对称图形.

25.旋转的性质

(1)旋转的性质:

①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③旋转前、后的图形全等.(2)旋转三要素:①旋转中心;②旋转方向;③旋转角度.注意:三要素中只要任意改变一个,图形就会不一样.26.中心对称图形

(1)定义

把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.

注意:中心对称图形和中心对称不同,中心对称是两个图形之间的关系,而中心对称图形是指一个图形自身的特点,这点应注意区分,它们性质相同,应用方法相同.

(2)常见的中心对称图形

平行四边形、圆形、正方形、长方形等等.

27.作图-旋转变换

(1)旋转图形的作法:

根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.(2)旋转作图有自己独特的特点,决定图形位置的因素较多,旋转角度、旋转方向、旋转中心,任意不同,位置就不同,但得到的图形全等.

28.随机事件

(1)确定事件

事先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,必然事件和不可能事件都是确定的.

(2)随机事件

在一定条件下,可能发生也可能不发生的事件,称为随机事件.

(3)事件分为确定事件和不确定事件(随机事件),确定事件又分为必然事件和不可能事件,其中,

①必然事件发生的概率为1,即P(必然事件)=1;

②不可能事件发生的概率为0,即P(不可能事件)=0;

③如果A为不确定事件(随机事件),那么0<P(A)<1.

29.概率公式

(1)随机事件A的概率P(A)=事件A可能出现的结果数所有可能出现的结果数.(2)P(必然事件)=1.

(3)P(不可能事件)=0.

30.列表法与树状图法

(1)当试验中存在两个元素且出现的所有可能的结果较多时,我们常用列表的方式,列出所有可能的结果,再求出概率.

(2)列表的目的在于不重不漏地列举出所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.

(3)列举法(树形图法)求概率的关键在于列举出所有可能的结果,列表法是一种,但当一个事件涉及三个或更多元素时,为不重不漏地列出所有可能的结果,通常采用树形图.(4)树形图列举法一般是选择一个元素再和其他元素分别组合,依次列出,象树的枝丫形式,最末端的枝丫个数就是总的可能的结果n.

(5)当有两个元素时,可用树形图列举,也可以列表列举.

相关主题
文本预览
相关文档 最新文档