当前位置:文档之家 > SMT不良缺陷

SMT不良缺陷

空洞是指分布在焊点表面或内部的气孔、针孔。形成这种缺陷的原因比较多。一般有以下几种。

1.焊膏中金属粉末的含氧量高、或使用回收焊膏、工艺环境卫生差、混入杂质。应对措施:控制焊膏质量,制订焊膏使用条例。

2.焊膏受潮,吸收了空气中的水汽。应对措施:焊膏回温时,达到室温后才能打开焊膏的容器盖,控制环境温度20-26℃相对湿40-70%。

3.元器件焊端、引脚、印制电路基板的焊盘氧化或污染,或印制板受潮。应对措施:元器件先到先用,不要存放在潮湿环境中,不要超过规定的使用日期。

4.升温区的升温速率过快,焊膏中的溶剂、气体蒸发不完全,进入焊接区产生气泡、针孔。应对措施:16 0℃前的升温速度控制在1—2℃/s,确保溶剂在焊膏熔化成型前挥发干净。

以上1.2.3.都会引起焊锡熔融时焊盘、焊端局部不润湿,未润湿处的助焊剂排气、以及氧化物排气时产生空洞。

表面贴装焊接的不良原因和防止对策

一、润湿不良

润湿不良是指焊接过程中焊料和基板焊区,经浸润后不生成金属间的反应,而造成漏焊或少焊故障。其原因大多是焊区表面受到污染,或沾上阻焊剂,或是被接合物表面生成金属化合物层而引起的,例如银的表面有硫化物,锡的表面有氧化物等都会产生润湿不良。另外,焊料中残留的铝、锌、镉等超过0.005%时,由焊剂吸湿作用使活性程度降低,也可发生润湿不良。波峰焊接中,如有气体存在于基板表面,也易发生这一故障。因此除了要执行合适的焊接工艺外,对基板表面和元件表面要做好防污措施,选择合适的焊料,并设定合理的焊接温度与时间。

二、桥联

桥联的发生原因,大多是焊料过量或焊料印刷后严重塌边,或是基板焊区尺寸超差,SMD贴装偏移等引起的,在SOP、QFP电路趋向微细化阶段,桥联会造成电气短路,影响产品使用。

作为改正措施:

1、要防止焊膏印刷时塌边不良。

2、基板焊区的尺寸设定要符合设计要求。

3、SMD的贴装位置要在规定的范围内。

4、基板布线间隙,阻焊剂的涂敷精度,都必须符合规定要求。

5、制订合适的焊接工艺参数,防止焊机传送带的机械性振动。

三、裂纹

焊接PCB在刚脱离焊区时,由于焊料和被接合件的热膨胀差异,在急冷或急热作用下,因凝固应力或收缩应力的影响,会使SMD基本产生微裂,焊接后的PCB,在冲切、运输过程中,也必须减少对SMD的冲击应力。弯曲应力。

表面贴装产品在设计时,就应考虑到缩小热膨胀的差距,正确设定加热等条件和冷却条件。选用延展性良好的焊料。

四、焊料球

焊料球的产生多发生在焊接过程中的加热急速而使焊料飞散所致,另外与焊料的印刷错位,塌边。污染等也有关系。

防止对策:

1.避免焊接加热中的过急不良,按设定的升温工艺进行焊接。

2.对焊料的印刷塌边,错位等不良品要删除。

3.焊膏的使用要符合要求,无吸湿不良。

4.按照焊接类型实施相应的预热工艺。

五、吊桥(曼哈顿)

吊桥不良是指元器件的一端离开焊区而向上方斜立或直立,产生的原因是加热速度过快,加热方向不均衡,焊膏的选择问题,焊接前的预热,以及焊区尺寸,SMD本身形状,润湿性有关。

防止对策:

1.SMD的保管要符合要求

2.基板焊区长度的尺寸要适当制定。

3.减少焊料熔融时对SMD端部产生的表面张力。

4.焊料的印刷厚度尺寸要设定正确。

5.采取合理的预热方式,实现焊接时的均匀加热。

表面贴片技术指南

第一步为制造着想的产品设计(DFM, Design for Manufacture)

虽然对DFM有各种的定义,但有一个基本点是为大家所认同的,那就是在新产品开发的构思阶段,DFM就必须有具体表现,以求在产品制造的阶段,以最短的周期、最低的成本,达到尽可能高的产量。

第二步工艺流程的控制

随着作为销售市场上具有战略地位的英特网和电子商务的迅猛发展,OEM面临一个日趋激烈的竞争形势,产品开发和到位市场的时机正在戏剧性的缩短,边际利润的压力事实上已有增加。同时合约加工商(CM)发现客户要求在增加:生产必须具有资格并持有执照,产品上的电子元件必需有效用和有可追溯性。这样,文件的存档已成为必不可少的了。

第三步焊接材料

理解锡膏及其如何工作,将对SMT过程的相互作用有更好的了解。适当的评估技术用来保证与锡膏相联系的生产线的最佳表现。

第四步丝印

在表面贴片装配的回流焊接中,锡膏是元件引脚或端点和电路板上焊盘之间的连接介质。除了锡膏本身之外,丝印之中有各种因素,包括丝印机,丝印方法和丝印过程的各个参数。其中丝印过程是重点。

第五步黏合剂/环氧胶及滴胶

必须明确规定黏合剂的稠密度、良好的胶点轮廓、良好的湿态和固化强度、胶点大小。使用CAD或其它方法来告诉自动设备在什么地方滴胶点。滴胶设备必需有适当的精度、速度和可重复性,以达到应用成本的平衡。一些典型的滴胶问题必须在工艺设计时预计到。

第六步贴放元件

今天的表面贴片设备不仅要能够准确贴放各种元件,而且要能够处理日益变小的元件包装。设备必须保持其机动性,来适应可能变成电子包装主流的新元件。设备使用者-OEM和CM-正面临激动人心的时刻,成功的关键在于贴片设备供应商满足顾客要求和在最短的时间内提交产品的能力。

第七步焊接

批量回流焊接,过程参数控制,回流温度曲线的效果,氮气保护回流,温度测量和回流温度曲线优化。

第八步清洗

清洗时常被描述成“非增值”过程,但这样现实吗?或者是太过简化,以致于阻碍了对复杂事物的仔细思考。没有可靠的产品和最低的成本,一个公司在今天的环球经济中无以生存。因此制造过程中的每一步都必须经过仔细检查以确保其有助于整个成功。

第九步测试/检查

选择测试和检查的策略是基于板的复杂性,包括许多方面:表面贴片或通孔插件,单面或双面,元件数量(包括密脚),焊点,电气与外观特性,这里,重点集中在元件与焊点数量。

第十步返工与修理

不把返工看作“必须的不幸”,开明的管理者明白,正确的工具和改进的技术员培训的结合,可使返工成为整个装配工序中一个高效和有经济效益的步骤。

减少溅锡

线性温升曲线,没有保温平台区,对任何焊锡和助焊剂材料都造成一些溅锡

图三、有一个高温保温区的温度曲线,溶剂的消失提高余下的助焊剂粘性,因此减少溅锡

所有温度曲线研究的结果在图四和表六中总结。光板上测得的飞溅程度,在已贴装元件的生产板上大大减少。估计表明,光板上少于10-20个飞溅锡球,将在贴装元件板上不产生飞溅。因此,助焊剂类型D,E和F(表五)都提供了可行的溅锡解决方案。D型助焊剂载体有其它有点,工艺范围大和可以空气回流。三种材料的特点都是熔湿速度慢,但溶剂种类不同,这显示所有溶剂都可以有效烘干,熔湿速度才是助焊剂飞溅的关键因素。

每一种材料在内存模块六合一板上的飞溅结果。

Series1: 平坦、滞色的助焊剂小滴数量

Series2: 有形、光泽的助焊剂小滴数量

助焊剂A: Kester244; B: 92; C: 92J; D: 51SC; E: 73D; F: 75

检查与清洁

如果在清洁的连接器内产生溅锡,那么检查和清洁是对溅锡的昂贵和费时的改正行动。当然,通过锡膏残留中配方的变化,检查可以通过染色和荧光化学品来简化。清洁也可以用适当的残留构思来改进。不幸的是,和预防措施一样,成本和时间使得检查和清洁是人们所不希望的。

结论

锡膏结合正确的温度曲线,可以达到实际消除焊锡和助焊剂的飞溅。相对易挥发溶剂含量高和熔湿速度慢的锡膏可达到最好的效果。遮盖连接器手指和检查与清洁可提供临时的解决办法,但没有找到溅锡的根本原因。

溶剂排气模拟

测试描述材料结果

助焊剂载体(无粉末)印于铜箔试样,放于设定为190° C、200° C和220° C的热板上

助焊剂载体B

助焊剂载体D

在试样上没有明显的助焊剂飞溅,第二次结果相似

将锡膏印于铜箔试样,放于设定为190° C、200° C和220° C的热板上回流

锡膏B:90%金属含量,Sn63/Pb37,-325/+500

锡膏D:92%金属含量,Sn63/Pb37,-325/+500

两种金属含量都可以看到助焊剂飞溅,金属含量较高的产生飞溅可能较少,但很难说。第二次结果相似

助焊剂A:Kester244,助焊剂B:92,助焊剂C:92J,助焊剂D:51SC,助焊剂E:73D,助焊剂F:75 表二、从金属焊接中的助焊剂飞溅模拟试验

测试描述材料结果

锡膏(有粉末)印于铜箔试样,放于设定为190° C、200° C和220° C的热板上

锡膏B,90%,Sn63/Pb37,-325/+500

锡膏D,90%,Sn63/Pb37,-325/+500

在所有温度设定上,锡膏B明显比锡膏D湿润较快,结合更积极,结果助焊剂飞溅较多

也看到锡膏D在所有温度上的助焊剂飞溅,但比锡膏程度要小

温度越高,飞溅越厉害

保温区(干燥)模拟--锡膏印于铜箔试样,在设定不同的温度热板上预热不同的时间,保温范围150° C~17 0° C,时间1~4分钟。试样然后转到第二块热板上,以220° C回流,并观察助焊剂飞溅。

锡膏B,90%,Sn63/Pb37,-325/+500

在较高温度下保温超过2分钟,减少或消除了助焊剂飞溅

Sn62的锡膏和Sn63的锡膏比较,看是否Sn62较慢的结合速度会减少飞溅

锡膏B:90%金属含量,Sn63/Pb37,-325/+500

锡膏B:90%,Sn62/Pb36/Ag2,-325/+500

Sn62和Sn63都观察到助焊剂飞溅,飞溅数量的差别肉眼观察不出,观察到Sn62的结合速度较慢

助焊剂A:Kester244,助焊剂B:92,助焊剂C:92J,助焊剂D:51SC,助焊剂E:73D,助焊剂F:75

可以推断,如果助焊剂沸腾引起飞溅,那么当助焊剂单独加热时应该看到。可是,由于飞溅是在焊锡结合时观察到的,这里应该可找到其作用原理。测试说明溶剂排气理论不能解释助焊剂飞溅。

结合理论:当焊锡熔化和结合时熔化材料的表面张力―一个很大的力量―在被夹住的助焊剂上施加压力,当足够大时,猛烈地排出。这一理论得到了对BGA装配内焊锡空洞的研究的支持,其中描述了表面张力和助焊剂排气之间的联系(助焊剂排气率模型)。因此,有力的喷出是助焊剂飞溅最可能的原因。接下来的实验室助焊剂飞溅模拟说明了结合的影响,甚至当锡膏在回流前已烘干。尽管如此,完全的烘干大大地减少了飞溅(表三)。

表三、来自金属结合的助焊剂飞溅模拟―烘干研究

温度一分钟二分钟三分钟四分钟 150oC

观察到飞溅 1-2飞溅无飞溅飞溅 160oC 1-2飞溅无飞溅飞溅无飞溅

170oC 无飞溅无飞溅无飞溅无飞溅用锡膏B 90% Sn63/Pb37 合金作试验

熔湿速度

因为结合模型看来会成功,所以调查了各种材料的熔湿速度。熔湿速度受合金类型、温度、助焊剂载体和回流环境的影响。如图一所说明,温度对熔湿速度有戏剧性的影响,温度越高,速度越快。

图一、一种焊锡配方在不同温度测试的熔湿速度,影响因素包括合金类型、温度、助焊剂载体和回流环境。李宁成博士在其论文,“通过缺陷机制分析优化回流曲线”中说,惰性气体(氮)也会增加熔湿速度。SMT

专栏作家珍尼.黄博士和其它人的报告说,共晶合金的熔湿速度倾向于比非共晶材料快。因此,Sn63/Pb37一般比Sn62/Pb36/Ag2熔湿速度更快。影响熔湿、从而影响结合和潜在飞溅的因素如表四所示。

表四、可能引起溅锡的因素机制对飞溅的影响助焊剂载体活性剂

不同的活性剂在回流时提高不同程度的湿润和结合速度

快速的结合将增加助焊剂被夹住的可能性,将可能增加受夹助焊剂的压力,因此引起助焊剂爆发性的排出。助焊剂载体溶剂及其含量

溶剂类型和含量将影响预热期间烘干程度

增加溶剂含量将引起受夹住焊剂更激烈的排出

合金类型

合金影响回流期间的湿润和结合速度

快速的结合将增加助焊剂被夹住的可能性,将可能增加受夹助焊剂的压力,因此引起助焊剂爆发性的排出。回流气氛

惰性(氮)环境增加回流期间的湿润和结合速度

快速的结合将增加助焊剂被夹住的可能性,将可能增加受夹助焊剂的压力,因此引起助焊剂爆发性的排出。焊锡熔化温度

更高的熔化温度增加回流期间的湿润和结合速度

快速的结合将增加助焊剂被夹住的可能性,将可能增加受夹助焊剂的压力,因此引起助焊剂爆发性的排出。

溅锡的解决方案

预防:防止溅锡沉积的一个方法就是在金手指上涂敷一层可驳除的阻焊层,在丝印锡膏后涂敷,回流后拿掉。这个方法还没有印证,可能成本高,因为牵涉手工作业,涂敷板上选择性区域会造成困难,中断生产流水作业。另外可选择在金手指上贴临时胶带。这个方法也有同样的缺点。

最小化:优化助焊剂载体的化学成份,和回流温度曲线,将溅锡减到最低。为了证明这一点,得到内存模块制造商的支持,通过评估对材料和回流温度曲线优化的影响,来评价表准锡膏系统。清楚地表明活性剂、溶剂、合金和回流温度曲线对溅锡程度有重要影响。因此,有信心着手解决问题,这些参数的适当调整可以将溅锡减到最小。

非标准材料,如聚合助焊剂系统由于成本高、货架寿命丝印寿命短、工艺变化范围小、并返工困难,不包括在本研究范围。但是,聚合助焊剂有希望最终提供一个可能最小化的溅锡解决方案,因为潜在的飞溅材料在温度激化的聚合过程中被包围。因此,没有液体助焊剂留下来产生飞溅。

测试样板是一块六个小板的内存模块,没有贴装元件。(已发现元件回减小溅锡的影响,因为元件会阻隔助焊剂从金手指上排出)。现有生产材料和温度曲线作基本的试验条件(表五)。生产电路板的飞溅水平大约每100块组合板有一个飞溅锡球。两个工程师通过20倍的显微镜观察所有的板,以评估溅锡程度。

溅锡的影响

在回流之后,内存模块的连接器“金手指”可能出现溅锡的污染,这意味着产品的品质和可靠性问题和制造流程问题。

溅锡只是表面污染的一种,其它类型包括水渍污染和助焊剂飞溅。这些影响较小,但由于焊锡飞溅,焊锡已实际上熔湿了“金手指”的表面。

“小爆炸”

溅锡有许多原因,不一定是回流焊接时热的或熔化的焊锡爆发性的排气结果。例如,通过观察过程,以保证锡膏丝印时的最佳清洁度,溅锡问题可以减少或消除。

任何方法,如果使锡膏粉球可能沉积在金手指上,并在回流过程时仍存在,都可以产生溅锡。包括:

在丝印期间没有擦拭模板底面(模板脏)

误印后不适当的清洁方法

丝印期间不小心的处理

机板材料和污染物中过多的潮汽

极快的温升斜率(超过每秒4° C)

在后面的原因中,助焊剂的激烈排气可能引起熔化焊接点中的小爆炸,促使焊锡颗粒变成在回流腔内空中乱飞,飞溅在PCB上,污染连接器的“金手指”。PCB材料内夹住潮气的情况是一样的,和助焊剂排气有相同的效果。类似地,板表面上的外来污染也引起溅锡。

溅锡的影响

虽然人们对溅锡可能对连接器接口有有害的影响的关注,还没有得到证实,但它仍然是个问题,因为轻微的飞溅“锡块”产生对连接器金手指平面的破坏。这些锡块是不柔顺的,锡本身比金导电性差,特别是遭受氧化之后。

第一个最容易的消除溅锡的方法是在锡膏的模板丝印过程。如果这个过程是产生溅锡的原因的话,那么通过良好的设备的管理及保养来得到控制,包括适当的丝印机设定和操作员培训。如果原因不在这里,那么必须检查其它方面。

水印污染:其根本原因还未完全理解,虽然可能涉及许多根源。因为已经显示清洁的、未加工的、无锡膏的和没有加元件的板,在回流后也会产生水印污染,所以其中包括了许多的原因:PCB制造残留、炉中的凝结物、干助焊剂的飞溅、清洗板的残留和导热金的变色等。

水印污染经常难于发现,但其对连接器接口似乎并无影响。事实上内存模块的使用者并不关心这类表面污染,常常看作为金的变色。

助焊剂飞溅:一般理解为,助焊剂水滴在回流炉中变成空中乱飞,分散和附着在整个板上,包括金手指。有两种理论试图说明助焊剂飞溅:溶剂排放理论和合并理论(丝印期间的清洁再次认为有影响,但可控制)。溶剂排放理论:认为锡膏助焊剂中使用的溶剂必须在回流时蒸发。如果使用过高温度,溶剂会“闪沸”成气体(类似于在热锅上滴水),把固体带到空中,随机散落到板上,成为助焊剂飞溅。

为了证实或反驳这个理论,使用热板对样板进行导热性试验,并作测试。使用的温度设定点分别为190°C,200° C和220° C。膏状的助焊剂(不含焊锡粉末)在任何情况下都不出现飞溅。可是,锡膏(含有粉末的助焊剂)在焊锡熔化和焊接期间始终都有飞溅。

穿孔回流焊

在传统的电子组装工艺中,对于安装有过孔插装元件(THD)印制板组件的焊接一般采用波峰焊接技术。但波峰焊接有许多不足之处:不适合高密度元件焊接;桥接、漏焊较多;需喷涂助焊剂;印制板受到较

大热冲击翘曲变形。因此波峰焊接在许多方面不能适应电子组装技术的发展。

为了适应表面组装技术的发展,解决以上焊接难点的措施是采用穿孔回流焊PIHR(p in—in—h ole ref lo w)。该技术原理是在印制板完成贴片后,使用一种安装有许多针管的特殊模板,调整模板位置使针管与插装元件的过孔焊盘对齐,然后使用刮刀将模板上的锡膏漏印到焊盘上,然后安装插装元件,最后插装元件与贴片元件一起通过回流焊完成焊接。穿孔回流焊的优越性在于:首先是减少了工序,省去了波峰焊这道工序,在费用上自然可节省不少,同时也减少了所需的工作人员,在效率上也得到了提高;其次回流焊相对于波峰焊,产生桥接的可能性要小得多,这样就提高了一次通过率。

穿孔回流焊相对传统工艺在经济性、先进性上都有很大优势。目前日本SONY公司有在1—2年内以

穿孔回流焊全面代替波峰焊的计划,而我国生产调谐器的企业和高技术、高附加值的一些通信产品已率先使用PIHR工艺,预计不远的将来这项新技术将会得到普遍采用。

脉冲加热回流焊接

脉冲加热回流焊接(pulse-heated reflow soldering)是一种工艺,将两个预先上好助焊剂的、镀锡的零件加热到足以使焊锡熔化、流动的温度,固化后,在零件与焊锡之间形成一个永久的电气机械连接。与传统的焊接相反,脉冲加热回流焊接通过对每个连接使用一个热电极加热和冷却来焊接。在整个加热、回流和冷却周期内要施加压力。脉冲加热控制将能量传送到安装在回流焊接头上的热电极。附着在热电极上的热电偶为可重复的、持续的热源控制提供反馈。

焊接头将两个零件直接接触。以一个精确的压力,头发信号给控制器,开始热电极的加热循环。热电极将热传导给零件,随后的热传导将零件之间的焊锡熔化。熔化的区域开始流动,造成两群焊锡的接合。当控制器终止回流循环,在冷却循环中零件继续保持在一起,因此焊锡重新固化,形成焊点。一个好焊点应该是焊锡充分地结合两个表面,在两个零件表面发生熔湿(wetting)。

电线元件(Flex Component)

用于脉冲加热回流焊接工艺的最常见类型的电线是由聚酰亚胺(polyimide)制造的,也叫做“Kapton?”。两层聚酰亚胺包胶铜迹线(trace) - 一般 0.5~2 盎司(ounce)。两种最常见的铜导线是轧制韧化(RA, rol led annealed)铜和电解沉淀(ED, electrodeposited)铜;电解沉淀铜最有成本效益,被广泛使用。铜迹线的厚度范围是 0.0007~0.004" (0.02~0.10mm)。聚酰亚胺的可操作温度范围是 130~200°C,可经受高达3 00°C的短期焊接温度。热电极的温度总是高于被热电极加热的零件温度。在热电极与焊点之间、横穿K apton电线,可能发生 50~80°C的温降,决定于厚度。电线(flex)的厚度范围是 0.001~0.0047" (0.025 4~0.12mm)。

在脉冲加热回流焊接工艺的柔性电路上使用的三种常见类型的端子设计是:

暴露引线设计(exposed lead design) - 这种设计将聚酰亚胺材料的两面去掉,留下不绝缘的迹线。热电极直接接触迹线,将热传导给零件。如果PCB焊盘与热电极脚印尺寸正确,这种设计将容许一些多余的焊锡在焊盘上,因为焊锡可能流到开放的区域。在工艺过程中,焊锡也将熔湿迹线顶部。在处理零件时必须小心,因为迹线容易弯曲或损坏。

单面电线设计(single-sided flex design) - 这种设计只从一面去掉聚酰亚胺。热量从热电极通过固体聚酰亚胺表面传导到底下暴露的迹线。聚酰亚胺通过绝缘体传导热量到暴露的迹线和PCB焊盘。在焊接点区域的聚酰亚胺的厚度限制在0.002",使得可以热传导。如果聚酰亚胺必须加热超过260°C,可能造成表面烧伤和热电极污染。这个设计不容许过多焊锡在PCB焊盘上,因为存在很少空间来过多流动。

开窗式电线设计(open-windowed flex design) - 这种设计将焊接区域的两面的聚酰亚胺去掉,但在边缘和迹线尾端都有剩下的聚酰亚胺材料支持。该设计给予装配一定的强度,并对较生硬的处理有弹性。因为迹线暴露,对零件的热传导是良好的,有额外的空间给剩余的焊锡流动。热电极的尺寸是关键的,因为它必须适合窗口,并允许熔化的焊锡流动的空间。

电线与PCB迹线的尺寸(Flex and PCB Trace Sizes)

理想地,柔性电路的焊盘应该比PCB上的焊盘在宽度上更窄。随着焊锡熔化、零件压下,焊锡被挤到旁边。该设计将允许焊锡在柔性焊盘的另一面流动的空间,将容许PCB上更多的焊锡,避免锡桥问题。

柔性电路上更小的焊盘宽度将帮助两个零件的定位与对中。对于密间距(fine pitch)的应用,PCB迹线的宽度设计成间距的50%。这种设计减少由于不对准所造成的短路。

通用基板零件设计指南

多数PCB材料诸如FR-2和FR-4对于工艺期间的局部受热是很有弹性的。象陶瓷基板这样的材料必须以一种更受控的方式来加热,以减少破裂的机会。两个零件的散热能力太大的差距也可能引起冷却期间的

焊接破裂。

沿焊接点长度上的散热差异是最常见的要克服的设计问题。小的差别影响也小,但沿焊接区域的任何热质量改变都将引起温度和焊接点质量的不一致。

散热、焊盘区域设计问题,解决方案

热可能很容易从焊接区域传导到大的焊盘,如果位置太靠近焊接区域(图一A)。加大的迹线宽度和电镀的通孔从焊接区域吸走热量(图一B)。宽度减小的迹线就好象挡热墙,阻止焊盘的任何散热(图一C)。如果使用小迹线挡热墙,没有散热存在的有效的最小面积是0.08"(0.2mm)(图一D)。相等尺寸的小迹线作挡热墙用,保证焊接区域相同的加热。

从焊盘引出的迹线应该相同的宽度,尽可能地窄(图二)。这种设计将起挡热墙的作用,防止焊接期间过多的热量从焊盘区域排走。对于多层板,将粘结区域下的迹线限制为最小宽度的(信号)迹线,在PCB的焊盘之下均匀地分布。PCB上任何屏蔽都在焊接区域有同等的影响。

PCB焊盘的焊接要求

焊锡沉积的可重复性对达到良好的过程控制是关键的。在许多情况中可能要求试验来获得理想的焊锡量。一个良好的开始点是使用一块0.006"的丝印模板,40%的焊盘覆盖面积。

PCB焊盘上要求的焊锡数量取决于几个因素。焊盘尺寸与间距决定可施用的焊锡量的最大与最小,使用丝印模板工艺。模板印刷的焊锡在回流工艺之前应该熔合。小焊盘与小间距要求较少的焊锡,防止焊点形成锡桥。

电线(flex)的设计也将影响焊锡量。开窗的电线和暴露的迹线的电线将得到比单面电线稍微较多的焊锡量。

热电极尺寸与对零件的定位

热电极应该按照焊盘和电线的尺寸来确定尺寸,如图三所示。热电极的长度必须完全覆盖迹线,在每一边超出至少一个焊盘间距。热电极的宽度应该提供充分的热传导,以达到在最短的时间内完成焊接,因此消除对零件的温度危害。热电极的宽度也应该接纳足够的空隙给熔化的焊锡位移,消除锡桥的任何机会。热电极的宽度

为了热电极最好的热性能和寿命,最小尺寸应该是0.059"。标准尺寸是0.079",以达到更好的性能和寿命。在焊锡量没有好好控制或者空间受限制的地方,可以使用0.047"宽的热电极,可是,热电极的寿命与性能将减少。

电线(flex)焊盘宽度

注意,电线焊盘短于PCB焊盘(图四),这样方便焊点的检查。

PCB焊盘宽度

额外的宽度允许额外的焊锡和方便检查。PCB焊盘大约是热电极宽度的三倍。表一的尺寸只是指导性的。可能要求一些试验,因为焊锡量不同。

热电极定位

当在暴露的或开窗的电线(flex)上面定位热电极时,热电极不应该定位太靠近电线主体的边缘(图五)。一些柔性电路有较薄和较厚的涂层在其中等迹线两面。如果是这样,将迹线较薄的一面定位在PCB上,这将减少当热电极推下迹线时热电极损伤迹线的机会。

脉冲加热回流焊接

脉冲加热回流焊接(pulse-heated reflow soldering)是一种工艺,将两个预先上好助焊剂的、镀锡的零件加热到足以使焊锡熔化、流动的温度,固化后,在零件与焊锡之间形成一个永久的电气机械连接。与传统的焊接相反,脉冲加热回流焊接通过对每个连接使用一个热电极加热和冷却来焊接。在整个加热、回流和冷却周期内要施加压力。脉冲加热控制将能量传送到安装在回流焊接头上的热电极。附着在热电极上的热电偶为可重复的、持续的热源控制提供反馈。

焊接头将两个零件直接接触。以一个精确的压力,头发信号给控制器,开始热电极的加热循环。热电极将热传导给零件,随后的热传导将零件之间的焊锡熔化。熔化的区域开始流动,造成两群焊锡的接合。当控制器终止回流循环,在冷却循环中零件继续保持在一起,因此焊锡重新固化,形成焊点。一个好焊点应该是焊锡充分地结合两个表面,在两个零件表面发生熔湿(wetting)。

电线元件(Flex Component)

用于脉冲加热回流焊接工艺的最常见类型的电线是由聚酰亚胺(polyimide)制造的,也叫做“Kapton?”。两层聚酰亚胺包胶铜迹线(trace) - 一般 0.5~2 盎司(ounce)。两种最常见的铜导线是轧制韧化(RA, rol led annealed)铜和电解沉淀(ED, electrodeposited)铜;电解沉淀铜最有成本效益,被广泛使用。铜迹线的厚度范围是 0.0007~0.004" (0.02~0.10mm)。聚酰亚胺的可操作温度范围是 130~200°C,可经受高达3 00°C的短期焊接温度。热电极的温度总是高于被热电极加热的零件温度。在热电极与焊点之间、横穿K apton电线,可能发生 50~80°C的温降,决定于厚度。电线(flex)的厚度范围是 0.001~0.0047" (0.025 4~0.12mm)。

在脉冲加热回流焊接工艺的柔性电路上使用的三种常见类型的端子设计是:

暴露引线设计(exposed lead design) - 这种设计将聚酰亚胺材料的两面去掉,留下不绝缘的迹线。热电极直接接触迹线,将热传导给零件。如果PCB焊盘与热电极脚印尺寸正确,这种设计将容许一些多余的焊锡在焊盘上,因为焊锡可能流到开放的区域。在工艺过程中,焊锡也将熔湿迹线顶部。在处理零件时必须小心,因为迹线容易弯曲或损坏。

单面电线设计(single-sided flex design) - 这种设计只从一面去掉聚酰亚胺。热量从热电极通过固体聚酰亚胺表面传导到底下暴露的迹线。聚酰亚胺通过绝缘体传导热量到暴露的迹线和PCB焊盘。在焊接点区域的聚酰亚胺的厚度限制在0.002",使得可以热传导。如果聚酰亚胺必须加热超过260°C,可能造成表面烧伤和热电极污染。这个设计不容许过多焊锡在PCB焊盘上,因为存在很少空间来过多流动。

开窗式电线设计(open-windowed flex design) - 这种设计将焊接区域的两面的聚酰亚胺去掉,但在边缘和迹线尾端都有剩下的聚酰亚胺材料支持。该设计给予装配一定的强度,并对较生硬的处理有弹性。因为迹线暴露,对零件的热传导是良好的,有额外的空间给剩余的焊锡流动。热电极的尺寸是关键的,因为它必须适合窗口,并允许熔化的焊锡流动的空间。

电线与PCB迹线的尺寸(Flex and PCB Trace Sizes)

理想地,柔性电路的焊盘应该比PCB上的焊盘在宽度上更窄。随着焊锡熔化、零件压下,焊锡被挤到旁边。该设计将允许焊锡在柔性焊盘的另一面流动的空间,将容许PCB上更多的焊锡,避免锡桥问题。

柔性电路上更小的焊盘宽度将帮助两个零件的定位与对中。对于密间距(fine pitch)的应用,PCB迹线的宽度设计成间距的50%。这种设计减少由于不对准所造成的短路。

通用基板零件设计指南

多数PCB材料诸如FR-2和FR-4对于工艺期间的局部受热是很有弹性的。象陶瓷基板这样的材料必须以一种更受控的方式来加热,以减少破裂的机会。两个零件的散热能力太大的差距也可能引起冷却期间的焊接破裂。

沿焊接点长度上的散热差异是最常见的要克服的设计问题。小的差别影响也小,但沿焊接区域的任何热质量改变都将引起温度和焊接点质量的不一致。

散热、焊盘区域设计问题,解决方案

热可能很容易从焊接区域传导到大的焊盘,如果位置太靠近焊接区域(图一A)。加大的迹线宽度和电镀的通孔从焊接区域吸走热量(图一B)。宽度减小的迹线就好象挡热墙,阻止焊盘的任何散热(图一C)。如果使用小迹线挡热墙,没有散热存在的有效的最小面积是0.08"(0.2mm)(图一D)。相等尺寸的小迹线作挡热墙用,保证焊接区域相同的加热。

从焊盘引出的迹线应该相同的宽度,尽可能地窄(图二)。这种设计将起挡热墙的作用,防止焊接期间

过多的热量从焊盘区域排走。对于多层板,将粘结区域下的迹线限制为最小宽度的(信号)迹线,在PCB的焊盘之下均匀地分布。PCB上任何屏蔽都在焊接区域有同等的影响。

PCB焊盘的焊接要求

焊锡沉积的可重复性对达到良好的过程控制是关键的。在许多情况中可能要求试验来获得理想的焊锡量。一个良好的开始点是使用一块0.006"的丝印模板,40%的焊盘覆盖面积。

PCB焊盘上要求的焊锡数量取决于几个因素。焊盘尺寸与间距决定可施用的焊锡量的最大与最小,使用丝印模板工艺。模板印刷的焊锡在回流工艺之前应该熔合。小焊盘与小间距要求较少的焊锡,防止焊点形成锡桥。

电线(flex)的设计也将影响焊锡量。开窗的电线和暴露的迹线的电线将得到比单面电线稍微较多的焊锡量。

热电极尺寸与对零件的定位

热电极应该按照焊盘和电线的尺寸来确定尺寸,如图三所示。热电极的长度必须完全覆盖迹线,在每一边超出至少一个焊盘间距。热电极的宽度应该提供充分的热传导,以达到在最短的时间内完成焊接,因此消除对零件的温度危害。热电极的宽度也应该接纳足够的空隙给熔化的焊锡位移,消除锡桥的任何机会。热电极的宽度

为了热电极最好的热性能和寿命,最小尺寸应该是0.059"。标准尺寸是0.079",以达到更好的性能和寿命。在焊锡量没有好好控制或者空间受限制的地方,可以使用0.047"宽的热电极,可是,热电极的寿命与性能将减少。

电线(flex)焊盘宽度

注意,电线焊盘短于PCB焊盘(图四),这样方便焊点的检查。

PCB焊盘宽度

额外的宽度允许额外的焊锡和方便检查。PCB焊盘大约是热电极宽度的三倍。表一的尺寸只是指导性的。可能要求一些试验,因为焊锡量不同。

热电极定位

当在暴露的或开窗的电线(flex)上面定位热电极时,热电极不应该定位太靠近电线主体的边缘(图五)。一些柔性电路有较薄和较厚的涂层在其中等迹线两面。如果是这样,将迹线较薄的一面定位在PCB上,这将减少当热电极推下迹线时热电极损伤迹线的机会。

热电极制造、温度特性

现代线路腐蚀技术如EDM和高级材料已经允许精密设计的热电极的制造,以适合大多数应用。三维的热电极在表面周围通过电流,因此,在迹线之间具有零电势。在机器工艺中的这些技术进步产生在横跨长度上的恒温设计,专门的合金取得平整与共面性。焊锡将不会熔湿到使用的材料,它们对氧化是有弹性的。

工具与零件定位

热弹性的、高温塑料如peek(Kepton?) 或 tuffnel 应该用在回流区域的下面,来防止从焊接区散热。模具座应该完全平整,因为该工艺的质量决定于当施加热电极压力时达到热量均匀分布。最好的表面处理技术是用磨削来抛磨表面。如果可能,零件应该定位在与回流区靠近的定位销上。经常,电线(flex)上的定位孔用铜迹线来加固,得到更好的强度与精度。如果不可能有定位孔,零件可以从方边上定位和夹紧。因为电线(flex)不是刚性的,可能要求零件座中的真空孔来把它保持平整。对于密间距电线,X-Y定位台和相机系统可能是有用的。由于设计零件时尺寸上的误差或批量与批量之间的变化,夹具是重要的。

准备

较常见的,两个零件都要预先镀锡。如果没有,达到单面电线(flex)与镀金或锡的焊盘之间的熔湿还是可能的。两个零件的基础电镀经常有足够的焊锡达到单面电线的可靠焊点。

可是,多数电线设计将要求额外的焊锡,通常用丝印工艺来施用,预先回流。对于较密间距的应用,焊锡通常在回流之前通过热空气均匀。热空气均匀法(hot air leveling)可使焊盘上的焊锡均匀分布,达到更好的热传导。这个方法也使在加热条的压力作用下的对位更容易保持。零件必须没有灰尘,一般要清

洁和没有氧化。通常用助焊剂来保证清除任何氧化物障碍,以允许适当的熔湿发生。

助焊剂

助焊剂有两个重要特性:把热传导给焊锡和通过清洁和除掉表面氧化物来促进表面熔湿(wetting)。对于容易焊接的零件,脉冲加热焊接工艺只要求少量非活性的助焊剂。通常使用免洗助焊剂。推荐使用低固含量的助焊剂,因为固体含量越低,热电极的污染越少。在开始焊接工艺之前,应该允许任何有的溶剂干燥。

安全

脉冲加热热电极焊接工艺是安全的,因为当压向零件时只有加热单元是热的。另外,只需要很少数量的助焊剂,比传统的焊接产生较少的烟雾。操作员在这个期间还应该防止碰到热电极,也应该防止夹住的危险。

焊接方法:工艺步骤

基板放入夹具,助焊剂施加到焊盘。

电线定位在零件夹具内,保证两套焊盘的对准。

给出工艺开始信号到焊接控制器。

焊接控制器驱动焊接头和热电极模块到零件

以一个预设的压力,开始加热过程。

加热过程

预热

将一个长度达到2"的现代设计的热电极加热到焊接温度需要大约两秒钟。在这期间,助焊剂活化,开始通过去掉氧化层来提高熔湿。预热只是当过多的散热片影响热电极时使用,或者当应用了脆弱的基板如陶瓷需要以更加受控的方式加热以避免破裂的时候。

升温

升温到焊接温度的时间应该可编程,以允许精确的加热率控制。当脆弱基板可容易地被太快的加热率损坏时,这个特性特别有用。对于大多数热电极一般的升温时间为 1.5~2 秒。

回流

实际时间与温度可以在这个阶段编程控制。理想地,可编程时间为 0.1 秒递增,温度为一度的递增。通常,对于用直接热电极接触到零件的开放式焊点,温度设定点为 280~330°C。虽然正常的焊锡在180°C回流,热电极必须设定更高,因为热传导损失。一个典型的单面电线将要求 330~400°C,由于在Kapto n材料内的温度损失。用最少的时间和温度来达到所希望的焊接点,以减少零件对热的暴露和损坏的机会。冷却

冷却是一个可编程温度,在这一点,控制器将驱动头到上面的位置。这个温度将设定到刚好在焊锡的固化温度之下。因此,只要焊锡变成固体,过程即终止,焊点形成。冷却过程可用强制空气冷却来缩短。电源供应可编程来触发一个继电器,这个继电器是控制回流阶段结束时的空气流动和迅速冷却焊接点与热电极。因为多数连接都有相对高的散热,焊锡的温度比测量的热电极的温度较低,甚至当使用冷却空气时。因此,在大多数情况下,释放温度可以设定在180°C,而没有机会碰到干焊点。

力的控制和简单系统的例子

多数这类回流焊点要求少于20磅的压力。压力必须精确控制。应该校准,设定到正确的水平,以达到适当的热传导到达焊接点。热电极安装应该包括共面性调整,或者头本身易于安装。现代设计有或者气动或者马达驱动装置,热电极冷却的内置阀。许多头结构上是模块式的,因此,对定位与半自动夹具都是通用的。线性滑动允许零件从焊接区域的安装与卸装。对于高产量的生产可能宁可使用旋转式工作台系统,因为操作员可在一套零件正在焊接的同时装载另一套零件。

质量控制与检查

当焊点冷却时维持压力,减少干焊点(dry joint)的可能性。热电极的压印应该在焊接点上看到,甚至宽度与长度。视觉迹象应该显示回流已经发生,当零件撕开时结果焊点应该在焊接区域有颗粒状外形。焊

盘到板或电线的熔焊或脱层不应该明显。在使用单面电线的地方,在聚酰亚胺的上面可能有记号或变色,但不应该看到烧结或分离。助焊剂残留物可以在回流过程之后清洁。免洗、低残留助焊剂不要求焊后清洁。

温度与时间过程数据可以从控制器收集,以图表格式显示,以说明过程的稳定性。

过程维护

要求零件夹具清洁度的维护,以保证零件继续平齐地坐入底座。热电极的定期维护也是必要的,以防止烤焦的助焊剂的积累。使用助焊剂溶剂或用很细的金刚砂或研磨纸放置在平的刚性表面清洗热电极,将维持对零件的良好的热传导。不要圆整热电极的边或损坏平整性。在对那些热电极直接定位在与焊锡接触的引脚上的焊接过程和对那些热电极接触Kapton表面的焊接过程的热电极污染之间有明显的不同。在第一种情况,污染与热电极磨损是高得多的,清洁必须定期进行。热电偶节点连接必须保持清洁和整齐,以保证可重复的温度控制。热电偶类型K与E不受助焊剂腐蚀,但J型可能被侵蚀。

结论

如果遵循某种基本的设计规则,将柔性电路焊接到PCB的脉冲加热热电极回流焊接是一个稳定的和很好控制的工艺过程。这些规则不同于应用于传统焊接工艺的规则。通过焊点设计提供容易和均等的热量产生,工艺窗口可以实际上更宽。窗口甚至可以通过一个设计增加更多,该设计接纳焊锡流动和可以补偿在前面工艺步骤中的变化。良好的焊点设计和可重复的焊锡量的精密控制是生产成功的关键。对产品小型化和减少重量的日益增长的需求是电子工业柔性电路使用增加的主要驱动力。今天的对热电极焊接工艺的控制为这个增长市场的内连接需求提供一个适于生产的、可靠的解决方案。

几种SMT焊接缺陷及其解决措施

2.1.2 回流焊中的锡球

2.1.2.1 回流焊中锡球形成的机理

回流焊接中出的锡球,常常藏于矩形片式元件两端之间的侧面或细距引脚之间。在元件贴装过程中,焊膏被置于片式元件的引脚与焊盘之间,随着印制板穿过回流焊炉,焊膏熔化变成液体,如果与焊盘和器件引脚等润湿不良,液态焊锡会因收缩而使焊缝填充不充分,所有焊料颗粒不能聚合成一个焊点。部分液态焊锡会从焊缝流出,形成锡球。因此,焊锡与焊盘和器件引脚润湿性差是导致锡球形成的根本原因。

2.1.2.2 原因分析与控制方法

造成焊锡润湿性差的原因很多,以下主要分析与相关工艺有关的原因及解决措施:

a)回流温度曲线设置不当。焊膏的回流是温度与时间的函数,如果未到达足够的温度或时间,焊膏就不会回流。预热区温度上升速度过快,达到平顶温度的时间过短,使焊膏内部的水分、溶剂未完全挥发出来,到达回流焊温区时,引起水分、溶剂沸腾,溅出焊锡球。实践证明,将预热区温度的上升速度控制在1~4°C/s是较理想的。

b)如果总在同一位置上出现焊球,就有必要检查金属板设计结构。模板开口尺寸腐蚀精度达不到要求,对于焊盘大小偏大,以及表面材质较软(如铜模板),造成漏印焊膏的外形轮廓不清晰,互相桥连,这种情况多出现在对细间距器件的焊盘漏印时,回流焊后必然造成引脚间大量锡珠的产生。因此,应针对焊盘图形的不同形状和中心距,选择适宜的模板材料及模板制作工艺来保证焊膏印刷质量。

c)如果在贴片至回流焊的时间过长,则因焊膏中焊料粒子的氧化,焊剂变质、活性降低,会导致焊膏不回流,焊球则会产生。选用工作寿命长一些的焊膏(我们认为至少4小时),则会减轻这种影响。

d)另外,焊膏印错的印制板清洗不充分,使焊膏残留于印制板表面及通孔中。回流焊之前,被贴放的元器件重新对准、贴放,使漏印焊膏变形。这些也是造成焊球的原因。因此应加强操作者和工艺人员在生产过程的责任心,严格遵照工艺要求和操作规程行生产,加强工艺过程的质量控制。

SMT工程师必备名词解释二

5S是由日本企业研究出来的一种环境塑造方案,其目的在藉由整理(SEIRI)、整顿(SEITON)、清扫(SEISO)、清洁(SEIKETSU)及身美(SHITSUKE)五种行为来创造清洁、明朗、活泼化之环境,以提高效率、品质及顾客满意度。在原文中(日文),这五项皆是以"S"为其发音开头故称此种方案为「5S」。

5S活动的对象原本是针对现场的环境,它对生产现场环境全局进行综合考虑,并制订切实可行的计划与措施,从而达到规范化管理,有许多公司扩展到办公室的管理以增进办公效率,常见的手法为红牌作战,看板及衍生的目视管理。

ABC作业制成本制度 (Activity-Based Costing)

ABC及ABM(Activity-Base Management)作业制成本管理,以作业别作为分摊成本的基础,在企业管理上可运用在定价决策、生产及产能决策、产品管理、顾客管理及企业策略上,同时具有提供决策者实时且有效、精确信息的特性,对企业在创造竞争优势上,是具有相当大的功能,其做法常为最古老的簿记再加上计算机分类系统,由于会计数据数量庞大,在计算机尚未普及前必须采行种种简化如订定分摊比例,但简化可能会导致失真。

ASP应用程序服务供货商(Application Service Provider)

对企业提供IT业务应用服务和管理服务,主要透过软件与硬件租用或租赁形式来实施,服务商的收入和利润来自客户的租金。

AVL认可的供货商(Approved Vendor List)

对提供企业产品或服务的众多供货商中,某些符合公司的策略、对产品服务的要求,而成为合格或认可的供货商。

BOM物料清单 (Bill Of Material)

一般亦可称为产品结构表或用料结构表,它乃用来表示一产品﹝成品或半成品﹞是由那些零组件或素材原料所结合而成之组成元素明细,其该元素构成单一产品所需之数量称之为基量,BOM是所有MRP系统的基础,如果BOM表有误,则所有物料需求都会不正确。天瀚定义90阶为PCBA

95阶为Driver或Bundle的程序

97阶为Engine 或组合好的主机

98阶为连包装盒的产品(不连外箱)

BPR企业流程再造 (Business Process Reengineering)

关心客户的需求,对现有的经营过程进行思考和再设计,利用新的制造、信息技术及现代化的管理手段,打破传统的职能型组织结构(Function-Organization),建立全新的过程型组织结构(Process-Oriented Organization)。以作业流程为中心,打破金字塔状的组织结构,使企业能适应新经济的高效率和快节奏,让企业员工参与企业管理,实现企业内部上下左右的有效沟通,具有较强的应变能力和较大的灵活性。BP R的主要原则有三:

1. 以顾客为中心:全体员工建立以顾客服务中心的原则。顾客可以是外部的,如在零售商业企业,柜台营业员直接面对的是真正的顾客;也可以是内部的,如商场内的理货员,他的顾客是卖场的柜台小组。每个人的工作质量由他的「顾客」作出评价,而不是主管。

2. 企业的业务以「流程」为中心,而不以一个专业职能部门为中心进行。一个流程是一系列相关职能部门配合完成的,体现于为顾客创造有益的服务。对流程运行不利的障碍将被铲除,职能部门的意义将被减弱,多余的部门及重迭的流程将被合并。

3.「流程」改进需具有显效性。改进后的流程提高效率、消除浪费,提高顾客满意度和公司竞争力,降低整个流程成本。

BSC平衡记分卡 (Balanced ScoreCard)

平衡计分卡 (Balanced Scorecard)是一绩效衡量制度,亦是一项与策略、报酬制度相结合的策略性管理工具。此方法要求经理人自四个方面或层次以评估一组织的表现,即「顾客」、「内部业务程序」、「学习与成长」及「财务绩效」,而这四方面的努力必须在「愿景和策略」的引导和整合下才有意义。

CPM要径法 (Critical Path Method)

用来决定一个项目的开始和完工日期的一种方法。这种方法所得到结果就是找出一条要径(critical pat h),或者是从开始到结束将活动串成一条活动縺(chain of activities)。从项目开始起,要径上的任何一项活动的落后,结果都会让整个项目无法如期完成。因为这些活动对项目是非常的重要,所以关键活动(c

ritical activities)在资源分配和管理(management efforts)上享有最高的优先。

CPM客户抱怨比 (Complaint per Million)

为公司产品品质验证的最高指针,包含自原料到送交消费者手上的所有流程,世界级企业的目标是在1位数,通常1个客户抱怨代表100个消费者的心声,即1个客户抱怨代表万分之一的不良率。但会随文化而有差异,如日本的1个客户抱怨代表20个消费者的心声。

CRM客户关系管理 (Customer Relationship Management)

是指企业为了赢取新顾客,巩固保有既有顾客,以及增进顾客利润贡献度,而透过不断地沟通以了解并影响顾客行为的方法;其主要以运用资料仓储为基础,将有关企业活动之信息,透过数据采矿﹝Data Minin g﹞的工具,分析汇整出对顾客有效并可供参考之信息,以提升顾客之满意度。

CRP产能需求规划 (Capacity Requirement Planning)

制定、测量和调整产能的标准,以决定要投入多少的人力及机器来完成生产。将现场的订单,和计划中的订单,输入CRP中,这些订单将转换成在每一时期、每一个工作站的工作时数。

以有限产能为导向,主控产能与时间,检验在规划的范围内,确定是否有足够的产能来处理所有的订单;而在确定之后,会建立一个可接受的MPS,而后CRP要决定每一个期间、每一个工作站的工作量。

DBE限制驱导式排程法 (Drum-Buffer-Rope)

限制驱导式排程法的观念是由TOC而来,认为制造系统只需排瓶颈站之排程(Drum Schedule)、投料时间之排程(Rope Schedule)及适当的缓冲时间(克服制造系统的 Murphy’s Law)与缓冲的管理,则该制造系统便能运作顺畅而得到不错的绩效。

Drum-Buffer-Rope的原意,Drum代表鼓声就如同一个军队的小鼓,可使得行进整齐。Buffer就如同两个士兵中间的距离,可以利用它来应付突发的情形。Rope代表的是军队中的纪律,可以确定行进步伐如同鼓声一样。而反应至生产过程中解释如下:

Drum:每个生产系统都需要控制点以控制系统中产品流量大小的变化。若此系统中有一瓶颈,这瓶颈就是最佳的控制点,而这个控制点就称为鼓(drum)。

Buffer:使系统能在不同的状况下正常运作。一个系统会因为停工、当机或是原料短缺等因素而造成系统不稳定。而缓冲区(buffer)就是用来保护系统使其正常运作的工具,所以并非每台机器前都需要,但是在瓶颈点前一定要有缓冲区,用以保护系统,正常运作。

Rope用来确认整个系统都会与瓶颈点同步生产的机构。如同信息的回馈(feedback)将瓶颈点的生产情况与上游的工作站沟通,使得上游工作站仅提供回馈信息所需要的量,以避免生产过多的存货堆积。故这种沟通的情形、信息的回馈,我们称之为绳子(rope)。

DMT成熟度验证(Design Maturing Testing)

以测试产品的稳定度及成熟度为主,通常包含EMC测试及环境测试,有时也包含掉落测试。

DVT 设计验证(Design Verification Testing)

以测试产品的功能性为主,通常还包含Debug。

DSS决策支持系统 (Decision Support System)

一个以计算机为基础的交互式系统,可用来协助决策者使用数据和模式,以解决非结构性问题。所以决策支持系统,可说是一个以快速、交互作用式且具有使用者接口来对特定领域提供信息以支持决策的软件(V lugt,1989)。决策支持系统之组成,可分为三大部分:数据库及管理系统、模式库及管理系统、沟通界面软件;其以模式库为核心,应用统计模式及管理数学等技术。

ECRN原件规格更改通知(Engineer Change Request Notice)

现有产品更换零件或原包材规格时,通知采购部门依新规格采购甚至变更BOM的凭据。

EIS主管决策系统 (Executive Information System)

过滤、排选内外部各式信息,提示主管偏离计划的状况,并警示给每个相关主管。可依主管喜好的格式提供信息,掌握情况,协助主管解决问题。

EMC电磁相容(Electric Magnetic Capability)

指电子产品的电磁辐射与对电磁的耐受能力

EOQ基本经济订购量 (Economic Order Quantity)

经济批量法乃指为使每次发单之订货成本、储存成本、购货成本之总和为最低的量,目前受到各种学说的攻击。

ERP企业资源规划 (Enterprise Resource Planning)

于1998年在制造业市场上掀起一阵热潮,ERP乃是一种企业再造的解决方案,藉由信息科技的协助,将企业的营运策略及经营模式导入整个以信息系统为主干的企业体之中,其非只是科技上的改变,而是牵涉到组织内部所有关于人员、资金、物流、制造及企业内部之跨地域或跨国际之流程整合管理。

FAE 应用工程师(Field Application Engineer)

在天瀚的定义为在产品上市后处理客户问题的窗口,在产品上市前之窗口为产品经埋(PM) 。

FCST 预估(Forecast)

目前只在报表中看到一次,通常会与报表的性质相关,如销售报表上为销售预估,库存报表上为库存预估。FMS弹性制造系统 (Flexible Manufacture System)

对任何制造业或非制造业而言,生产力是一个基本的要素,为了具有竞争力,必须增加生产力,因此弹性制造系统不仅提供使用者弹性,同时也要兼顾提升生产力。弹性制造系统涵盖了广泛的生产范围,包括机器、制程、组合和一些其它的工作,这些系统可以达到不同程度的弹性,完全与该系统的组成组件有关。自1960年代后半,顾客对于产品的要求趋向于多样化,如此工厂需要低生产成本及短交期来满足多样化的变化。为应付此种要求,需要一种适合中品种、中少量生产的生产系统。弹性制造系统可以被定义为一套生产系统,其利用计算机控制机器,装配生产单元,机器手臂,检验机器等设备并配合计算机整合物料搬运及储存系统。可以说是一个综合高层次分散是数据处理、自动化物流流动以及整合式物料处理与物料储存的系统。

FQC成品质量管理 (Finish or Final Quality Control)

成品未装箱前的品管工作。

IPQC制程质量管理 (In-Process Quality Control)

产品未完成前,尚在制程中的品管工作。

IQC进料质量管理 (Incoming Quality Control)

所有原物料在进厂前的质量管理,此时公司尚无原件的所有权,如未通过检验则订单并未完成,有些企业将IQC放在供货商内部执行。

ISO国际标准组织 (International Organization for Standardization)

于公元1946年由各国国家标准团体所组成之世界性联盟,制定各种规范或标准,如9000为一品质需求之系统标准,14000为环保标准,18000为安全卫生标准。其诉求之重点为要求企业内部之运作必须有一定之作业程序,且每个作业程序必须予以书面化,但其并不是在帮您企业制定作业标准,而是强调各项作业流程必须按照公司所自订之程序来执行之,毕竟每个行业或公司都有其不同之文化,其运作模式并非企业外之组织所能帮您制定,故以一简单之白话来表示:『把做的写下来,按照写的做』或『言出必行』,即为ISO所追求之最高宗旨。

ISAR首批样品认可(Initial Sample Approval Request)

在新产品上市时,所使用的组件常仍未有详细的规格,如有这类情况发生,由采购部门发出在首次生产时所用的组件规格请研发部门认可,此一程序称为ISAR。

JIT实时管理 (Just In Time)

JIT的基本原理是以需定供。即供方根据需方的要求(或称看板),按照需方需求的品种、规格、质量、数量、时间、地点等要求,将物品配送到指定的地点。不多送,也不少送,不早送,也不晚送,所送物品要个个保证质量,不能有任何废品。JIT供应方式具有很多好处,主要有以下三个方面:

1. 零库存。用户需要多少,就供应多少。不会产生库存,占用流动资金。

2.最大节约。用户不需求的商品,就不用订购,可避免商品积压、过时质变等不良品浪费,也可避免装卸、

搬运以及库存等费用。

3.零废品。JIT能最大限度地限制废品流动所造成的损失。废品只能停留在供应方,不可能配送给客户。JIT的观念简单但实行不易,特别是产品组件的Lead Time长,常见到的假象是库存建在供货商,但如此供货商成本增加而导致组件价格较高。

技术资料

技术资料

1.在机器参数中有一项设定:Mark Pos Fix和Mark Pos Alt.当设成前者时,更改program offset时,Mark座标位置固定,即可更改PCB整个的components shift.如果设成后者,Mark座标位置与元件座标位置相对固定,更改program offset不会对元件偏位产生影响,只会改变照Mark时的位置。有些PANASERT 机型可能没有这一项参数设定。

2.自动装着设备NC程序的分析

目前电子行业的自动装着包含自动插件(AI)和表面贴装(SMT)两大类。该行业在我国虽然属于较新的课题,经过近些年的实际生产总结仍然涌现了许多专业方面的技术人才。但基本上各自动装着厂家目前自动装着设备的NC程序编制和管理依然完全依赖进口设备厂家或由台湾、新加坡等地区编制的管理软件。首先,购买原厂软件及相关设施是一笔不小的费用,从普通编程电脑到专用编程机电设备其价格也从USD5 000至USD100000不等;其次,由其他公司提供的安装软件一旦出现问题或自身再引进新设备,那么往往又必须重新购买。所以许多中小型企业宁愿直接在装着设备上编制程序,这当然影响了设备的利用率。为此,我们希望针对自动装着设备使用的NC程序进行内部结构分析,从而为生产的顺利进行打下先行基础。

第一单元:NC程序的存储方式

无论是自插还是贴片机它们都是靠不断循环执行其所需的各项设定参数来完成每个元件的装着过程,而这些参数就记录在我们的NC数据当中。尽管各类型的设备有着不同的NC数据格式,但首先我们可以发现它们往往都能用您计算机Windows中的“写字板”来将其打开,换句话说,它们都是以文本文件的形式予以纪录存储,只不过使用了不同的扩展名来给予标示。NC数据的存储又分为单一文件存储和多文件存储两类,所谓单一文件存储是指设备所需的全部NC数据都包含在一个文件当中,如三洋等SMT设备用*.NCZ 数据,多文件存储的方式往往是为了方便管理和灵活运用而将一条NC数据存放在两个或多个文件当中,这一类程序以松下自插、贴片机用*.NCD和*.UDR数据为代表。了解NC程序的存储方式是编制程序的基础,也是相互转换不同设备用NC数据工作所必须了解的前提。

第二单元:NC程序的内容

前面提到NC程序是以文本文件的形式予以纪录存储,在此我们就利用Windows中的“写字板”来分别分析松下自插机和三洋贴片机用的NC程序。

以下是一条仅有2个元件自插的松下RH6用程序,假设它分别由

CF000000.NCD和CF000000.UDR构成。其中CF000000.NCD是RH6的数据文件,如下:

N 0001/0G 1M 000T 004X+000000Y+000000Z-00000V+00000W+00000 +00000D

N 0002/0G 0M 001T 001X+004950Y-020000Z+00001V+00000W+00000 +00000D

N 0003/0G 0M 011T 002X-006250Y-003950Z+00002V+00000W+00000 +00000D

N 0004/7G 0M 001T 002X-006750Y-003570Z+00003V+00000W+00000 +00000D

N 0005/0G 0M 000T 000X-006750Y-003570Z+00003V+00000W+00000 +00000D

熟悉松下自插机的技术人员马上就可以看出其中的“X、Y、Z”后面跟的分别是设定自插用的X、Y坐标和自插材料位号Z,对!并且X、Y是绝对坐标。那么其中的N0001至N0004是程序的序号;“/”是条件跳越参数;“G”是自插机的轴类型区分参数;“M”是自插动作控制参数;“T”是角度、速度和换板等参数;“V”是部品高度参数;“W”是部品宽度参数;“+00000D”是程序行结束,具有固定性;最后程序以“*”符号标志结尾。当然V和W仅适用于RHⅢ、AV系列等插件机而RH6设备中不要求,所以它们都是“0”。由于松下机是以多文件存储的方式存,它还需要一个扩展名为*.UDR的目录文件才能被数据终端(P

DT)识别。其中CF000000.UDR文件内容如下:

0001P014 ABCDE M3 CF000000.NCD.NCD RH6 200104130 i

A 00200B8.NCT C008 31

同样让我们对其中内容进行逐段分析。文件开头以“0001”表示该目录文件中仅有一条NC数据;“P 014 ABCDE

M3”是用户定义的程序名,可以根据不同的PCB板任意起名方便用户区分,但规则是第一位必须为“P”,后面的三位应是非“000”的任意数字,否则部分插件机会认定为非法名称;“CF000000.NCD.NCD”是NC 数据的DOS名称,它是目录文件中唯一不重复的区分标示;“RH6”当然就是代表程序适用于的设备名称;“200104130”表示程序做成的日期;“i”是increment相对坐标的缩写代码;“A00200B8.NCT

C008”是NC数据的标注信息,可以根据用户需要任意给予标注;“31”表示该NC数据有3个装着点(后面的1为固定,不代表装着点数据),其中一点被设为无效。

好了,现在我们可以根据以上两个数据文件和目录文件做一个总结:

其一、如果把以上两例中的代码原文分别拷贝到对应的CF000000.NCD和CF000000.UDR文件中(由于格式固定原因,其中的空格也必须包括在内),你会在PDT终端上发现这已经是一个完整可用的RH6机NC 程序,到此为止就可以算是具有编写NC程序的能力了。当然,一个实用的NC程序还应由相关的开发应用软件和优化软件来支持,这部分将在第三单元进一步讨论。

其二、你完全可以通过修改其中的数据或代码来改变程序的特征,例如除了修改坐标、料位号改变插件位置外,你还可以通过简单的修改目录文件中的“i”为“a”(绝对坐标absolute缩写代码)来改变其相对坐标为绝对坐标的特性,甚至修改“RH6”为“AE”实现NC程序的兼容移植。

其三、对于单一文件存储的NC程序(如三洋最新高速贴片机TCM-3000系列)也可触类旁通,只不过此类型NC程序将所有的信息按固定格式存储在一个文件当中。由于TCM-3000Z型贴片机用单一文件存储N C程序以及其自身内容的复杂性,即使是少量的贴装实例也包含了各类繁琐的参数,在此难以写下整个程序的内容,但只要通过打开其中的内容加以分析,其实也不难理解它的NC程序是用分段方式来进行逐项数据管理。

“程序内容首行”段:记录的是程序名、做成日期、版本信息等数据;

“:CORE”段:记录了方便用户识别的标示数据、线路板尺寸数据和各类OFFSET(偏移量)数据;

“:RECOG”段:识别点数据,用于选择识别点坐标和特征代码;

“:MARK”段:记录了线路板校示识别点的内容特征数据;

“:SETUP”段:工作台、轨道传送方向等数据;

“:OPE-C”&&“:OPE-D”段:贴片机操作数据,用于记录设备运转速度、临时原点、补件方式等数据;

“:PARTS && :PLT1”段:元件ID名数据;

“:PLT2 && :M-DAT01”段:贴装坐标、角度位置等数据;

“:A-DAT01”段:多面板重复偏移量数据。

需要提醒大家的是以上内容是由数字代码“1”、

“0”等等来区分“开”、“关”或“数量级”,并用“逗号”作为分隔符。而且并非所有程序都要一一对应,如工作台、轨道传送方向数据在客户选择设备订单的生产方式时就已经决定其内容,而我们的程序通常是为正常生产方式而编制,所以类似“设备运转速度”等一般固定为高速不变。

第三单元:用于开发NC程序的软件制作

了解了NC程序的各项内容特征后,要开发一套属于自己的软件编辑管理系统就不再是遥远的事。对于多文件存储(以前面松下RH6等设备为例)可以直接采取后台数据库调用编辑与导出,对于单一文件存储(以前面三洋TCM3000Z等设备为例)除了以上步骤外,在导出到NC程序时还应分别将各程序段进行汇总,还记得DOS时代的“COPY

File1+File2

File3”命令么?你所要做的正是在你的程序中实现这一命令的结果。就笔者而言,我认为一套优秀的开发NC程序软件制作关键不在于如何生成可用的NC程序,真正的难点在于实现程序的灵活性以及如何优化生成的NC程序,其中涉及到复杂的逻辑算法,这就要求我们的程序员既要有相应的编程能力,又要对自动装着有一定的了解,甚至可以成立相关成员小组联合开发。

了解对应装着设备的一些重要参数是实现一套实用NC程序管理软件的基础。这类数据大致有以下:

1、 Tact数据:它是设备在装着一个元件运转周期中所允许的最大移动范围。合理的限定Tact数据有助于我们的程序在最短时间内完成一块线路板的装着。考虑到实际生产时存在非理想状态,Tact数据应具有不完全限制性;

2、 Limit数据:是针对各类装着设备中的各项极限参数,例如材料的最大装载数、工作台允许线路板的大小极限尺寸、适用元件的大小极限尺寸等等。原则上Limit数据是采取严格限制,否则最终生成的NC程序可能会出现不可用,但考虑到各类型设备程序的兼容性移植,所以仍然建议设计成可修改形式;

3、 Speed数据:该数据是设备的能力数据的经验值。自动装着生产线的工序平衡是影响效率的重要原因,不同的设备搭配应有不同的工作量分配,否则会出现后面工序等前面或前道工序半成品严重堆积现象。所以Speed数据也应在一定程度上可调;

4、 PartsID数据:这是一个描述装着元件形态尺寸的数据库。虽然它和NC程序相对独立,早些年的自动装着设备也不需要PartsID数据,但现在却已广泛的采用在了SMT生产当中。就连松下卧式自插机AV F的改进型机AVKⅡ也加入了PartsID管理。其实即便是用于旧式自插机,PartsID数据还是能在工艺区分、死区(Dead

Space)防止等方面发挥它的作用。

这类数据在计算机生成各类NC程序的过程中会被随时调用,我们称之为基础数据,所以建议用专门的数据库给予保存管理,并在一定程度上允许高级用户修改,如此一来我们软件的灵活性会大大得以增强。

至于NC程序的优化方式可以说是计算机编程的软肋,有点像“深蓝”与卡斯帕罗夫的人机大战,似乎电脑永远无法超越人脑,但对于繁重而匆忙的编程任务时它又往往会优胜。不难想象一块两三百点的普通线路板其装着路径方案早已是接近无穷大。即使目前许多著名自动装着设备厂家销售的NC程序管理软件,其最终“优化”结果也实在让人不敢恭维,甚至存在优化后材料排列错乱的严重BUG。正因如此,众多的第三方软件提供商都会着重强调自己的软件在优化方面的杰出,同时也被当成商业机密而难以在业界内相互交流。其实NC程序的优化方式没有最好,只有更好或者说各有长处。相信在实际应用的过程中不断加以完善才能做出最符合本单位的专用NC程序编辑管理软件。

单一平台解决方案:One Platform

业界最高产能,0.06S/CHIP(60,000cph)

灵活的品种切换能力和广泛的元件对应能力

特征:

2支持大范围的chip元件贴装,高速机模式的贴装范围为从0201chip到24mm X 24mm的元件,多功能机模式的贴装范围为0201 chip 到 90mm X 100mm 的元件。

2产能高达60,000 CPH ,业界最高

2可放置多达216 种料 (用8mm 双料架)

2标准配置小推车式一括换料换料, 料带接驳,连续补料

2电路板传送时间实现 0.9秒灵活的电路板传送降低了传送时间损耗。

2根据生产对象的变化,用户可以在现场自由切换A,B,C三种生产模式

Type A 高速 Head+高速Head

Type B 多功能Head+多功能Head (可加挂托盘送料器)

Type C 高速 Head+多功能Head (可加挂托盘送料器)

下载Word文档免费下载:

SMT不良缺陷下载

(共38页)