当前位置:文档之家› Windows下多线程同步机制

Windows下多线程同步机制

Windows下多线程同步机制
Windows下多线程同步机制

多线程同步机制

Critical section(临界区)用来实现“排他性占有”。适用范围是单一进程的各线程之间。它是:

·一个局部性对象,不是一个核心对象。

·快速而有效率。

·不能够同时有一个以上的critical section被等待。

·无法侦测是否已被某个线程放弃。

Mutex

Mutex是一个核心对象,可以在不同的线程之间实现“排他性占有”,甚至几十那些现成分属不同进程。它是:

·一个核心对象。

·如果拥有mutex的那个线程结束,则会产生一个“abandoned”错误信息。

·可以使用Wait…()等待一个mutex。

·可以具名,因此可以被其他进程开启。

·只能被拥有它的那个线程释放(released)。

Semaphore

Semaphore被用来追踪有限的资源。它是:

·一个核心对象。

·没有拥有者。

·可以具名,因此可以被其他进程开启。

·可以被任何一个线程释放(released)。

Ev ent Object

Ev ent object通常使用于overlapped I/O,或用来设计某些自定义的同步对象。它是:

·一个核心对象。

·完全在程序掌控之下。

·适用于设计新的同步对象。

· “要求苏醒”的请求并不会被储存起来,可能会遗失掉。

·可以具名,因此可以被其他进程开启。

Interlocked Variable

如果Interlocked…()函数被使用于所谓的spin-lock,那么他们只是一种同步机制。所谓spin-lock是一种busy loop,被预期在极短时间内执行,所以有最小的额外负担(overhead)。系统核心偶尔会使用他们。除此之外,interlocked variables主要用于引用技术。他们:·允许对4字节的数值有些基本的同步操作,不需动用到critical section或mutex之类。

·在SMP(Symmetric Multi-Processors)操作系统中亦可有效运作。

///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

有关多线程的一些技术问题:

1、何时使用多线程?

2、线程如何同步?

3、线程之间如何通讯?

4、进程之间如何通讯?

先来回答第一个问题,线程实际主要应用于四个主要领域,当然各个领域之间不是绝对孤立的,他们有可能是重叠的,但是每个程序应该都可以归于某个领域:

1、offloading time-consuming task。由辅助线程来执行耗时计算,而使GUI有更好的反应。我想这应该是我们考虑使用线程最多的一种情况吧。

2、Scalability。服务器软件最常考虑的问题,在程序中产生多个线程,每个线程做一份小的工作,使每个CPU都忙碌,使CPU(一般是多个)有最佳的使用率,达到负载的均衡,这比较复杂,我想以后再讨论这个问题。

3、Fair-share resource allocation。当你向一个负荷沉重的服务器发出请求,多少时间才能获得服务。一个服务器不能同时为太多的请求服务,必须有一个请求的最大个数,而且有时候对某些请求要优先处理,这是线程优先级干的活了。

4、Simulations。线程用于仿真测试。

我把主要的目光放在第一个领域,因为它正是我想要的。第二和第三个领域比较有意思,但是目前不在我的研究时间表中。

线程的同步机制:

1、Event

用事件(Event)来同步线程是最具弹性的了。一个事件有两种状态:激发状态和未激发状态。也称有信号状态和无信号状态。事件又分两种类型:手动重置事件和自动重置事件。手动重置事件被设置为激发状态后,会唤醒所有等待的线程,而且一直保持为激发状态,直到程序重新把它设置为未激发状态。自动重置事件被设置为激发状态后,会唤醒“一个”等待中的线程,然后自动恢复为未激发状态。所以用自动重置事件来同步两个线程比较理想。MFC中对应的类为CEvent.。CEvent的构造函数默认创建一个自动重置的事件,而且处于未激发状态。共有三个函数来改变事件的状态:SetEvent,ResetEvent和PulseEvent。用事件来同步线程是一种比较理想的做法,但在实际的使用过程中要注意的是,对自动重置事件调用SetEvent和PulseEvent有可能会引起死锁,必须小心。

2、Critical Section

使用临界区域的第一个忠告就是不要长时间锁住一份资源。这里的长时间是相对的,视不同程序而定。对一些控制软件来说,可能是数毫秒,但是对另外一些程序来说,可以长达数分钟。但进入临界区后必须尽快地离开,释放资源。如果不释放的话,会如何?答案是不会怎样。如果是主线程(GUI线程)要进入一个没有被释放的临界区,呵呵,程序就会挂了!临界区域的一个缺点就是:Critical Section不是一个核心对象,无法获知进入临界区的线程是生是死,如果进入临界区的线程挂了,没有释放临界资源,系统无法获知,而且没有办法释放该临界资源。这个缺点在互斥器(Mutex)中得到了弥补。Critical Section在M FC中的相应实现类是CcriticalSection。CcriticalSection::Lock()进入临界区,CcriticalSection::UnLock()离开临界区。

3、Mutex

互斥器的功能和临界区域很相似。区别是:Mutex所花费的时间比Critical Section多的多,但是Mutex是核心对象(Ev ent、Semaphore 也是),可以跨进程使用,而且等待一个被锁住的Mutex可以设定TIMEOUT,不会像Critical Section那样无法得知临界区域的情况,而一直死等。MFC中的对应类为CMutex。Win32函数有:创建互斥体CreateMutex() ,打开互斥体OpenMutex(),释放互斥体ReleaseMutex()。Mutex的拥有权并非属于那个产生它的线程,而是最后那个对此Mutex进行等待操作(WaitForSingleObject等等)并且尚未进行ReleaseMutex()操作的线程。线程拥有Mutex就好像进入Critical Section一样,一次只能有一个线程拥有该Mutex。如果一个拥有Mutex的线程在返回之前没有调用ReleaseMutex(),那么这个Mutex就被舍弃了,但是当其他线程等待(WaitForSingleObject等)这个Mutex时,仍能返回,并得到一个

WAIT_ABANDONED_0返回值。能够知道一个Mutex被舍弃是Mutex特有的。

4、Semaphore

信号量是最具历史的同步机制。信号量是解决producer/consumer问题的关键要素。对应的MFC类是Csemaphore。Win32函数CreateSemaphore()用来产生信号量。ReleaseSemaphore()用来解除锁定。Semaphore的现值代表的意义是目前可用的资源数,如果Semaphore 的现值为1,表示还有一个锁定动作可以成功。如果现值为5,就表示还有五个锁定动作可以成功。当调用Wait…等函数要求锁定,如果Semaphore 现值不为0,Wait…马上返回,资源数减1。当调用ReleaseSemaphore()资源数加1,当时不会超过初始设定的资源总数。

线程之间的通讯:

线程常常要将数据传递给另外一个线程。Worker线程可能需要告诉别人说它的工作完成了,GUI线程则可能需要交给Worker线程一件新的工作。

通过PostThreadMessage(),可以将消息传递给目标线程,当然目标线程必须有消息队列。以消息当作通讯方式,比起标准技术如使用全局变量等,有很大的好处。如果对象是同一进程中的线程,可以发送自定义消息,传递数据给目标线程,如果是线程在不同的进程中,就涉及进程之间的通讯了。下面将会讲到。

进程之间的通讯:

当线程分属于不同进程,也就是分驻在不同的地址空间时,它们之间的通讯需要跨越地址空间的边界,便得采取一些与同一进程中不同线程间通讯不同的方法。

1、Windows专门定义了一个消息:WM_COPYDATA,用来在线程之间搬移数据,――不管两个线程是否同属于一个进程。同时接受这个消息的线程必须有一个窗口,即必须是UI线程。WM_COPYDATA必须由SendMessage()来发送,不能由PostMessage()等来发送,这是由待发送数据缓冲区的生命期决定的,出于安全的需要。

2、WM_COPYDATA效率上面不是太高,如果要求高效率,可以考虑使用共享内存(Shared Memory)。使用共享内存要做的是:设定一块内存共享区域;使用共享内存;同步处理共享内存。

第一步:设定一块内存共享区域。首先,CreateFileMapping()产生一个f ile-mapping核心对象,并指定共享区域的大小。MapViewOfFile ()获得一个指针指向可用的内存。如果是C/S模式,由Server端来产生file-mapping,那么Client端使用OpenFileMapping(),然后调用MapViewOfFile()。

第二步:使用共享内存。共享内存指针的使用是一件比较麻烦的事,我们需要借助_based属性,允许指针被定义为从某一点开始起算的32位偏移值。

第三步:清理。UnmapViewOfFile()交出由MapViewOfFile()获得的指针,CloseHandle()交出file-mapping核心对象的handle。

第四步:同步处理。可以借助Mutex来进行同步处理。

3、IPC

1)Anonymous Pipes。Anonymous Pipes只被使用于点对点通讯。当一个进程产生另一个进程时,这是最有用的一种通讯方式。

2)Named Pipes。Named Pipes可以是单向,也可以是双向,并且可以跨越网络,步局限于单机。

3)Mailslots。Mailslots为广播式通讯。Server进程可以产生Mailslots,任何Client进程可以写数据进去,但是只有Serv er进程可以取数据。

4)OLE Automation。OLE Automation和UDP都是更高阶的机制,允许通讯发生于不同进程间,甚至不同机器间。

5)DDE。DDE动态数据交换,使用于16位Windows,目前这一方式应尽量避免使用。

实验2-2windows2000 线程同步

实验2 并发与调度 2.2 Windows 2000线程同步 (实验估计时间:120分钟) 背景知识 实验目的 工具/准备工作 实验内容与步骤 背景知识 Windows 2000提供的常用对象可分成三类:核心应用服务、线程同步和线程间通讯。其中,开发人员可以使用线程同步对象来协调线程和进程的工作,以使其共享信息并执行任务。此类对象包括互锁数据、临界段、事件、互斥体和信号等。 多线程编程中关键的一步是保护所有的共享资源,工具主要有互锁函数、临界段和互斥体等;另一个实质性部分是协调线程使其完成应用程序的任务,为此,可利用内核中的事件对象和信号。 在进程内或进程间实现线程同步的最方便的方法是使用事件对象,这一组内核对象允许一个线程对其受信状态进行直接控制 (见表4-1) 。 而互斥体则是另一个可命名且安全的内核对象,其主要目的是引导对共享资源的访问。拥有单一访问资源的线程创建互斥体,所有想要访问该资源的线程应该在实际执行操作之前获得互斥体,而在访问结束时立即释放互斥体,以允许下一个等待线程获得互斥体,然后接着进行下去。 与事件对象类似,互斥体容易创建、打开、使用并清除。利用CreateMutex() API 可创建互斥体,创建时还可以指定一个初始的拥有权标志,通过使用这个标志,只有当线程完成了资源的所有的初始化工作时,才允许创建线程释放互斥体。

为了获得互斥体,首先,想要访问调用的线程可使用OpenMutex() API来获得指向对象的句柄;然后,线程将这个句柄提供给一个等待函数。当内核将互斥体对象发送给等待线程时,就表明该线程获得了互斥体的拥有权。当线程获得拥有权时,线程控制了对共享资源的访问——必须设法尽快地放弃互斥体。放弃共享资源时需要在该对象上调用ReleaseMute() API。然后系统负责将互斥体拥有权传递给下一个等待着的线程(由到达时间决定顺序) 。 实验目的 在本实验中,通过对事件和互斥体对象的了解,来加深对Windows 2000线程同步的理解。 1) 回顾系统进程、线程的有关概念,加深对Windows 2000线程的理解。 2) 了解事件和互斥体对象。 3) 通过分析实验程序,了解管理事件对象的API。 4) 了解在进程中如何使用事件对象。 5) 了解在进程中如何使用互斥体对象。 6) 了解父进程创建子进程的程序设计方法。 工具/准备工作 在开始本实验之前,请回顾教科书的相关内容。 您需要做以下准备: 1) 一台运行Windows 2000 Professional操作系统的计算机。 2) 计算机中需安装Visual C++ 6.0专业版或企业版。 实验内容与步骤 1. 事件对象 2. 互斥体对象 1. 事件对象 清单2-1程序展示了如何在进程间使用事件。父进程启动时,利用CreateEvent() API创建一个命名的、可共享的事件和子进程,然后等待子进程向事件发出信号并终止父进程。在创建时,子进程通过OpenEvent() API打开事件对象,调用SetEvent() API使其转化为已接受信号状态。两个进程在发出信号之后几乎立即终止。 步骤1:登录进入Windows 2000 Professional。 步骤2:在“开始”菜单中单击“程序”-“Microsoft Visual Studio 6.0”–“Microsoft Visual C++ 6.0”命令,进入Visual C++窗口。

LINUX 内核的几种锁介绍

spinlock(自旋锁)、 mutex(互斥量)、 semaphore(信号量)、 critical section(临界区) 的作用与区别 Mutex是一把钥匙,一个人拿了就可进入一个房间,出来的时候把钥匙交给队列的第一个。一般的用法是用于串行化对critical section代码的访问,保证这段代码不会被并行的运行。 Semaphore是一件可以容纳N人的房间,如果人不满就可以进去,如果人满了,就要等待有人出来。对于N=1的情况,称为binary semaphore。一般的用法是,用于限制对于某一资源的同时访问。 Binary semaphore与Mutex的差异: 在有的系统中Binary semaphore与Mutex是没有差异的。在有的系统上,主要的差异是mutex一定要由获得锁的进程来释放。而semaphore可以由其它进程释放(这时的semaphore实际就是个原子的变量,大家可以加或减),因此semaphore 可以用于进程间同步。Semaphore的同步功能是所有系统都支持的,而Mutex能否由其他进程释放则未定,因此建议mutex只用于保护critical section。而semaphore则用于保护某变量,或者同步。 另一个概念是spin lock,这是一个内核态概念。spin lock与semaphore的主要区别是spin lock是busy waiting,而semaphore是sleep。对于可以sleep 的进程来说,busy waiting当然没有意义。对于单CPU的系统,busy waiting 当然更没意义(没有CPU可以释放锁)。因此,只有多CPU的内核态非进程空间,

Windows多线程程序设计

Windows多线程程序设计- - 1、产生一个线程,只是个框架,没有具体实现。理解::CreateThread函数用法。 #include DWORD WINAPI ThreadFunc(LPVOID); int main() { HANDLE hThread; DWORD dwThreadID; hThread = ::CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE)(ThreadFunc), NULL, 0, &dwThreadID); ...; return 0; } DWORD WINAPI ThreadFunc(LPVOID lParam) { ...; return 0; } 2、一个真正运转的多线程程序,当你运行它的时候,你会发现(也可能会害怕),自己试试吧。说明了多线程程序是无法预测其行为的,每次运行都会有不同的结果。 #include #include using namespace std; DWORD WINAPI ThreadFunc(LPVOID); int main() { HANDLE hThread; DWORD dwThreadID; // 产生5个线程 for(int i=0; i<5; i++)

{ hThread = ::CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE)(ThreadFunc), (LPVOID)&i, 0, &dwThreadID); if(dwThreadID) cout << "Thread launched: " << i << endl; } // 必须等待线程结束,以后我们用更好的处理方法 Sleep(5000); return 0; } DWORD WINAPI ThreadFunc(LPVOID lParam) { int n = (int)lParam; for(int i=0; i<3; i++) { cout << n <<","<< n <<","<< n << ","< } return 0; } 3、使用CloseHandle函数来结束线程,应该是“来结束核心对象的”,详细要参见windows 多线程程序设计一书。 修改上面的程序,我们只简单的修改if语句。 if(dwThreadID) { cout << "Thread launched: " << i << endl; CloseHandle(dwThreadID); } 4、GetExitCodeThread函数的用法和用途,它传回的是线程函数的返回值,所以不能用GetExitCodeThread的返回值来判断线程是否结束。 #include #include using namespace std;

一个多线程的windows控制台应用程序

一个多线程的windows控制台应用程序 一、要求: 编写一个单进程、多线程的windows控制台应用程序。 二、平台: Window XP C# 三、内容: 每个进程都有分配给它的一个或多个线程。线程是一个程序的执行部分。 操作系统把极短的一段时间轮流分配给多个线程。时间段的长度依赖于操作系统和处理器。 每个进程都开始一个默认的线程,但是能从它的线程池中创建一个新的线程。 线程是允许进行并行计算的一个抽象概念:在一个线程完成计算任务的同时,另一个线程可以对图像进行更新,两个线程可同时处理同一个进程发出的两个网络请求。 如图所示,选择操作: 1、创建和启动一个线程。在一个进程中同时教和运行两个线程,并且可以不需要停止或者释放一个线程。 相关代码及其解释: public class Threading1:Object { public static void startup() { //创建一个线程数组 Thread[] threads=new Thread[2]; for(int count=0;count

public static void Count() { for(int count=1;count<=9;count++) Console.Write(count+" "); } } 输出结果: 这里通过new方法创建了两个线程,然后使用start()方法来启动线程,两个线程的作用是:两个线程同时从1数到9,并将结果打印出来。 运行上面的程序代码时,可能会在控制台上输出多种不同的结果。从123456789123456789到112233445566778899或121233445566778989在内的各种情况都是可能出现的,输出结果可能与操作系统的调度方式有关。 2、停止线程。当创建一个线程后,可以通过多种属性方法判断该线程是否处于活动状态,启动和停止一个线程等。相关代码及其解释: public class MyAlpha { //下面创建的方法是在线程启动的时候的时候调用 public void Beta() { while(true) { Console.WriteLine("MyAlpha.Beta is running in its own thread."); } } } public class Simple { public static int Stop() { Console.WriteLine("Thread Start/Stop/Join"); MyAlpha TestAlpha=new MyAlpha(); //创建一个线程对象 Thread MyThread=new Thread(new ThreadStart(TestAlpha.Beta)); //开起一个线程 MyThread.Start(); while(!MyThread.IsAlive);

Java_2实用教程第4版_第12章_Java多线程机制

2014/1/20 第 1 页 注意:开始用功了! 1 2014/1/20 第 2 页 《Java2实用教程(第4版)》第12章 配合例子源代码一起使用 Power point 制作:耿祥义张跃平 Java多线程机制 2 2014/1/20 第 3 页 导读 主要内容 Java中的线程 Thread类与线程的创建 线程的常用方法 线程同步 协调同步的线程 线程联合 GUI线程 计时器线程 3 2014/1/20 第 4 页 §12.1 进程与线程 §12.1.1 操作系统与进程 程序是一段静态的代码,它是应用软件执行的蓝本。 进程是程序的一次动态执行过程,它对应了从代码加载、执行至执行完毕的一个完整过程,这个过程也是进程本身从产生、发展至消亡的过程。 现代操作系统可以同时管理一个计算机系统中的多个进程,即可以让计算机系统中的多个进程轮流使用CPU资源。 4 2014/1/20 第 5 页 §12.1.2 进程与线程 线程是比进程更小的执行单位,一个进程在其执行过程中,可以产生多个线程,形成多条执行线索,每条线索,即每个线程也有它自身的产生、存在和消亡的过程。 线程间可以共享进程中的某些内存单元(包括代码与数据),线程的中断与恢复可以更加节省系统的开销。 5 2014/1/20 第 6 页

§12.2 Java中的线程 §12.2.1 Java的多线程机制 Java语言的一大特性点就是内置对多线程的支持。 Java虚拟机快速地把控制从一个线程切换到另一个线程。这些线程将被轮流执行,使得每个线程都有机会使用CPU资源。 6 2014/1/20 第7 页 §12.2.2 主线程(main线程) 每个Java应用程序都有一个缺省的主线程。 当JVM(Java Virtual Machine 虚拟机)加载代码,发现main方法之后,就会启动一个线程,这个线程称为“主线程”(main线程),该线程负责执行main方法。 JVM一直要等到Java应用程序中的所有线程都结束之后,才结束Java应用程序。 7 2014/1/20 第8 页 §12.2.3 线程的状态与生命周期 建的线程在它的一个完整的生命周期中通常要经历如下的四种状态: 1.新建: 当一个Thread类或其子类的对象被声明并创建时,新生的线程对象处于新建状态。2.运行:线程必须调用start()方法(从父类继承的方法)通知JVM,这样JVM就会知道又有一个新一个线程排队等候切换了。一旦轮到它来享用CPU资源时,此线程的就可以脱离创建它的主线程独立开始自己的生命周期了。 3.中断:有4种原因的中断: ◆JVM将CPU资源从当前线程切换给其他线程,使本线程让出CPU的使用权处于中断状态。 ◆线程使用CPU资源期间,执行了sleep(int millsecond)方法,使当前线程进入休眠状。 ◆线程使用CPU资源期间,执行了wait()方法。 ◆线程使用CPU资源期间,执行某个操作进入阻塞状态。 4.死亡:处于死亡状态的线程不具有继续运行的能力。线程释放了实体。 8 2014/1/20 第9 页 例子1(Example12_1.java )通过分析运行结果阐述线程的4种状态。例子1在主线程中用Thread的子类创建了两个线程(SpeakElephant.java , SpeakCar.java ),这两个线程分别在命令行窗口输出20句“大象”和“轿车”;主线程在命令行窗口输出15句“主人”。 例子1的运行效果如图12.4。 例子1在不同的计算机运行或在同一台计算机反复运行的结果不尽相同,输出结果依赖当前CPU资源的使用情况。 9 2014/1/20 第10 页 §12.2.4 线程调度与优先级 处于就绪状态的线程首先进入就绪队列排队等候CPU资源,同一时刻在就绪队列中的线程可能有多个。Java虚拟机(JVM)中的线程调度器负责管理线程,调度器把线程的优先

Linux中直接IO机制的介绍

Linux 中直接 I/O 机制的介绍https://www.doczj.com/doc/225713312.html,/developerworks/cn/linux/l-cn-...

https://www.doczj.com/doc/225713312.html,/developerworks/cn/linux/l-cn-...

当应用程序需要直接访问文件而不经过操作系统页高速缓冲存储器的时候,它打开文件的时候需要指定 O_DIRECT 标识符。 操作系统内核中处理 open() 系统调用的内核函数是 sys_open(),sys_open() 会调用 do_sys_open() 去处理主要的打开操作。它主要做了三件事情:首先,它调用 getname() 从进程地址空间中读取文件的路径名;接着,do_sys_open() 调用 get_unused_fd() 从进程的文件表中找到一个空闲的文件表指针,相应的新文件描述符就存放在本地变量 fd 中;之后,函数 do_?lp_open() 会根据传入的参数去执行相应的打开操作。清单 1 列出了操作系统内核中处理 open() 系统调用的一个主要函数关系图。 清单 1. 主要调用函数关系图 sys_open() |-----do_sys_open() |---------getname() |---------get_unused_fd() |---------do_filp_open() |--------nameidata_to_filp() |----------__dentry_open() 函数 do_?ip_open() 在执行的过程中会调用函数 nameidata_to_?lp(),而 nameidata_to_?lp() 最终会调用 __dentry_open()函数,若进程指定了 O_DIRECT 标识符,则该函数会检查直接 I./O 操作是否可以作用于该文件。清单 2 列出了 __dentry_open()函数中与直接 I/O 操作相关的代码。 清单 2. 函数 dentry_open() 中与直接 I/O 相关的代码 if (f->f_flags & O_DIRECT) { if (!f->f_mapping->a_ops || ((!f->f_mapping->a_ops->direct_IO) && (!f->f_mapping->a_ops->get_xip_page))) { fput(f); f = ERR_PTR(-EINVAL); } } 当文件打开时指定了 O_DIRECT 标识符,那么操作系统就会知道接下来对文件的读或者写操作都是要使用直接 I/O 方式的。 下边我们来看一下当进程通过 read() 系统调用读取一个已经设置了 O_DIRECT 标识符的文件的时候,系统都做了哪些处理。函数read() 的原型如下所示: ssize_t read(int feledes, void *buff, size_t nbytes) ; 操作系统中处理 read() 函数的入口函数是 sys_read(),其主要的调用函数关系图如下清单 3 所示: 清单 3. 主调用函数关系图 sys_read() |-----vfs_read() |----generic_file_read() |----generic_file_aio_read() |--------- generic_file_direct_IO()

Java第七单元练习题 Java多线程机制

7Java多线程机制 7.1单项选择题 1. 线程调用了sleep()方法后,该线程将进入()状态。 A. 可运行状态 B. 运行状态 C. 阻塞状态 D. 终止状态 2. 关于java线程,下面说法错误的是() A. 线程是以CPU为主体的行为 B. java利用线程使整个系统成为异步 C. 创建线程的方法有两种:实现Runnable接口和继承Thread类 D. 新线程一旦被创建,它将自动开始运行 3. 在java中的线程模型包含() A. 一个虚拟处理器 B. CPU执行的代码 C. 代码操作的数据 D. 以上都是 4.在java语言中,临界区可以是一个语句块,或者是一个方法,并用()关键字标识。 A. synchronized B. include C. import D. Thread 5. 线程控制方法中,yield()的作用是() A. 返回当前线程的引用 B. 使比其低的优先级线程执行 C. 强行终止线程 D. 只让给同优先级线程运行 6. 线程同步中,对象的锁在()情况下持有线程返回 A. 当synchronized()语句块执行完后 B. 当在synchronized()语句块执行中出现例外(exception)时 C. 当持有锁的线程调用该对象的wait()方法时 D. 以上都是 7. 在以下()情况下,线程就进入可运行状态 A. 线程调用了sleep()方法时 B. 线程调用了join()方法时 C. 线程调用了yield()方法时 D. 以上都是 8. java用()机制实现了进程之间的异步执行 A. 监视器

B. 虚拟机 C. 多个CPU D. 异步调用 9.Thread类的方法中,toString()方法的作用是() A. 只返回线程的名称 B. 返回当前线程所属的线程组的名称 C. 返回当前线程对象 D. 返回线程的名称 10.Java语言具有许多优点和特点,下列选项中,哪个反映了Java程序并行机制的特点() A. 安全性 B. 多线程 C. 跨平台 D. 可移值 11.以下哪个关键字可以用来对对象加互斥锁() A. transient B. synchronized C. serialize D. static 12.下面关于进程、线程的说法不正确的是( )。 A.进程是程序的一次动态执行过程。一个进程在其执行过程中,可以产生多个线程——多线程,形成多条执行线索。 B.线程是比进程更小的执行单位,是在一个进程中独立的控制流,即程序内部的控制流。线程本身不能自动运行,栖身于某个进程之中,由进程启动执行。 C.Java多线程的运行与平台无关。 D.对于单处理器系统,多个线程分时间片获取CPU或其他系统资源来运行。对于多处理器系统,线程可以分配到多个处理器中,从而真正的并发执行多任务。 7.2填空题 1.________是java程序的并发机制,它能同步共享数据、处理不同的事件。 2.线程是程序中的一个执行流,一个执行流是由CPU运行程序的代码、__________所形 成的,因此,线程被认为是以CPU为主体的行为。 3.线程的终止一般可以通过两种方法实现:自然撤销或者是__________. 4.线程模型在java中是由__________类进行定义和描述的。 5.线程的创建有两种方法:实现_________接口和继承Thread类。 6.多线程程序设计的含义是可以将程序任务分成几个________的子任务。 7.按照线程的模型,一个具体的线程也是由虚拟的CPU、代码与数据组成,其中代码与数 据构成了___________,线程的行为由它决定。 8.ava中,新建的线程调用start()方法、如myThread.start(),将使线程的状态从New(新建状 态)转换为_________。 9.多线程是java程序的________机制,它能同步共享数据,处理不同事件。 10.进程是由代码、数据、内核状态和一组寄存器组成,而线程是表示程序运行状态的 ______,如程序计数器、栈指针以及堆栈组成。 11.Thread类提供了一系列基本线程控制方法,如果我们需要让与当前进程具有相同优先 级的线程也有运行的机会则可以调用________方法。 12.在多线程系统中,多个线程之间有________和互斥两种关系。 13. 在一个时间只能由一个线程访问的资源称为临界资源,访问临界资源的代码

实验四 Linux进程互斥

实验四 Linux进程互斥 一、实验目的 熟悉Linux下信号量机制,能够使用信号量实现在并发进程间的互斥和同步。 二、实验题目 使用共享存储区机制,使多个并发进程分别模拟生产者-消费者模式同步关系、临界资源的互斥访问关系,使用信号量机制实现相应的同步和互斥。 三、背景材料 (一)需要用到的系统调用 实验可能需要用到的主要系统调用和库函数在下面列出,详细的使用方法说明通过“man 2 系统调用名”或者“man 3 函数名”命令获取。 fork() 创建一个子进程,通过返回值区分是在父进程还是子进程中执行; wait() 等待子进程执行完成; shmget() 建立一个共享存储区; shmctl() 操纵一个共享存储区; s hmat() 把一个共享存储区附接到进程内存空间; shmdt() 把一个已经附接的共享存储区从进程内存空间断开; semget() 建立一个信号量集; semctl() 操纵一个信号量集,包括赋初值; semop() 对信号量集进行wait和signal操作; signal() 设置对信号的处理方式或处理过程。 (二)模拟生产者-消费者的示例程序 本示例主要体现进程间的直接制约关系,由于使用共享存储区,也存在间接制约关系。进程分为服务进程和客户进程,服务进程只有一个,作为消费者,在每次客户进程改变共享存储区内容时显示其数值。各客户进程作为生产者,如果共享存储区内容已经显示(被消费),可以接收用户从键盘输入的整数,放在共享存储区。 编译后执行,第一个进程实例将作为服务进程,提示: ACT CONSUMER!!! To end, try Ctrl+C or use kill. 服务进程一直循环执行,直到用户按Ctrl+C终止执行,或使用kill命令杀死服务进程。 其他进程实例作为客户进程,提示: Act as producer. To end, input 0 when prompted. 客户进程一直循环执行,直到用户输入0。 示例程序代码如下: #include #include #include #include #include #include #include #include

CWinForm多线程开发剖析

C# WinForm多线程开发 一Thread类库 Windows是一个多任务的系统,如果你使用的是windows 2000及其以上版本,你可以通过任务管理器查看当前系统运行的程序和进程。什么是进程呢?当一个程序开始运行时,它就是一个进程,进程所指包括运行中的程序和程序所使用到的内存和系统资源。而一个进程又是由多个线程所组成的,线程是程序中的一个执行流,每个线程都有自己的专有寄存器(栈指针、程序计数器等),但代码区是共享的,即不同的线程可以执行同样的函数。多线程是指程序中包含多个执行流,即在一个程序中可以同时运行多个不同的线程来执行不同的任务,也就是说允许单个程序创建多个并行执行的线程来完成各自的任务。 一关于Thread的说明 在.net framework class library中,所有与多线程机制应用相关的类都是放在System.Threading 命名空间中的。其中提供Thread类用于创建线程,ThreadPool类用于管理线程池等等,此外还提供解决了线程执行安排,死锁,线程间通讯等实际问题的机制。如果你想在你的应用程序中使用多线程,就必须包含这个类。Thread类有几个至关重要的方法,描述如下:Start():启动线程 Sleep(int):静态方法,暂停当前线程指定的毫秒数 Abort():通常使用该方法来终止一个线程 Suspend():该方法并不终止未完成的线程,它仅仅挂起线程,以后还可恢复。 Resume():恢复被Suspend()方法挂起的线程的执行 线程入口使程序知道该让这个线程干什么事,在C#中,线程入口是通过ThreadStart代理(delegate)来提供的,你可以把ThreadStart理解为一个函数指针,指向线程要执行的函数,当调用Thread.Start()方法后,线程就开始执行ThreadStart所代表或者说指向的函数。ThreadState在各种情况下的可能取值如下: Aborted:线程已停止 AbortRequested:线程的Thread.Abort()方法已被调用,但是线程还未停止 Background:线程在后台执行,与属性Thread.IsBackground有关 Running:线程正在正常运行 Stopped:线程已经被停止 StopRequested:线程正在被要求停止 Suspended:线程已经被挂起(此状态下,可以通过调用Resume()方法重新运行)SuspendRequested:线程正在要求被挂起,但是未来得及响应 Unstarted:未调用Thread.Start()开始线程的运行 WaitSleepJoin:线程因为调用了Wait(),Sleep()或Join()等方法处于封锁状态 二Winform中使用的thread 首先可以看看最直接的方法,也是.net 1.0下支持的方法。但请注意的是,此方法在.net 2.0以后就已经是一种错误的方法了。 [csharp] view plain copy 在CODE上查看代码片派生到我的代码片 public partial class Form1 : Form

linux通讯

线程+定时实现linux下的Qt串口编程 2010-06-26 10:49 转: 线程+定时实现linux下的Qt串口编程 作者:lizzy115 时间:2010,5,14 说明:本设计采用的是线程+定时实现linux下的Qt串口编程,而非网上资料非常多的Qt编写串口通信程序全程图文讲解系列,因为Qt编写串口通信程序全程图文讲解系列是很好实现,那只是在windows下面的,可是在linux 下面实现串口的通信并非如此,原因在于QextSerialBase::EventDriven跟QextSerialBase::Polling这两个事件的区别,EventDriven属于异步,Polling 属于同步,在windows下面使用的是EventDriven很容易实现,只要有数据就会触发一个串口事件,网上说linux下面需要的是Polling,可是还是不行的,只要串口有数据的时候他会在QByteArray temp = myCom->readAll(); 这句一直读取数据,没能退出,直到断掉串口的时候才能把接受到的串口数据通过 ui->textBrowser->insertPlainText(temp);打印在界面上,一直没能解决这个问题,所以只好采用线程+定时实现linux下的Qt串口编程进行设计。 一、安装环境: 系统平台:Ubuntu-8.04,内核2.6.24-27-generic,图形界面 二、软件需求及下地地址: Qt版本 qt-linux-SDK-4.6.2 注意:此处使用的是qt-linux-SDK-4.6.2版本,编译通过了,之后需要把他移植到qt-embedded-linux-opensource-src-4.5.3.tar.gz,通过qte编译后移植到开发板中,采用的测试开发板为Micro2440, 下载地址:略 三、程序编写过程 程序编程流程: 先新建一个工程空白工程,再建立Ui文件,通过designer进行Ui 界面设计,设计完保存,编译生成ui_mainwindow.h头文件,编写线程头文件及线程处理.cpp文件,建立串口处理头文件及 .cpp文件,最后完成main.cpp 文件。

操作系统课内实验大纲(2014)

操作系统原理课内实验大纲(2014版) 实验一:用户接口实验 实验目的 1)理解面向操作命令的接口Shell。 2)学会简单的shell编码。 3)理解操作系统调用的运行机制。 4)掌握创建系统调用的方法。 操作系统给用户提供了命令接口和程序接口(系统调用)两种操作方式。用户接口实验也因此而分为两大部分。首先要熟悉Linux的基本操作命令,并在此基础上学会简单的shell 编程方法。然后通过想Linux内核添加一个自己设计的系统调用,来理解系统调用的实现方法和运行机制。在本次实验中,最具有吸引力的地方是:通过内核编译,将一组源代码变成操作系统的内核,并由此重新引导系统,这对我们初步了解操作系统的生成过程极为有利。 实验内容 1)控制台命令接口实验 该实验是通过“几种操作系统的控制台命令”、“终端处理程序”、“命令解释程序”和“Linux操作系统的bash”来让实验者理解面向操作命令的接口shell和进行简单的shell 编程。 查看bash版本。 编写bash脚本,统计/my目录下c语言文件的个数 2)系统调用实验 该实验是通过实验者对“Linux操作系统的系统调用机制”的进一步了解来理解操作系统调用的运行机制;同时通过“自己创建一个系统调用mycall()”和“编程调用自己创建的系统调用”进一步掌握创建和调用系统调用的方法。 编程调用一个系统调用fork(),观察结果。

编程调用创建的系统调用foo(),观察结果。 自己创建一个系统调用mycall(),实现功能:显示字符串到屏幕上。 编程调用自己创建的系统调用。 实验要求 1)按照实验内容,认真完成各项实验,并完成实验报告。 2)实验报告必须包括:程序清单(含注释)、实验结果、实验中出现的问题、观察到 的现象的解释和说明,以及实验体会。

C#的多线程机制探索

一.多线程的概念 Windows是一个多任务的系统,如果你使用的是windows 2000及其以上版本,你可以通过任务管理器查看当前系统运行的程序和进程。什么是进程呢?当一个程序开始运行时,它就是一个进程,进程所指包括运行中的程序和程序所使用到的内存和系统资源。而一个进程又是由多个线程所组成的,线程是程序中的一个执行流,每个线程都有自己的专有寄存器(栈指针、程序计数器等),但代码区是共享的,即不同的线程可以执行同样的函数。多线程是指程序中包含多个执行流,即在一个程序中可以同时运行多个不同的线程来执行不同的任务,也就是说允许单个程序创建多个并行执行的线程来完成各自的任务。浏览器就是一个很好的多线程的例子,在浏览器中你可以在下载JAVA小应用程序或图象的同时滚动页面,在访问新页面时,播放动画和声音,打印文件等。 多线程的好处在于可以提高CPU的利用率——任何一个程序员都不希望自己的程序很多时候没事可干,在多线程程序中,一个线程必须等待的时候,CPU可以运行其它的线程而不是等待,这样就大大提高了程序的效率。 然而我们也必须认识到线程本身可能影响系统性能的不利方面,以正确使用线程:?线程也是程序,所以线程需要占用内存,线程越多占用内存也越多 ?多线程需要协调和管理,所以需要CPU时间跟踪线程 ?线程之间对共享资源的访问会相互影响,必须解决竞用共享资源的问题 ?线程太多会导致控制太复杂,最终可能造成很多Bug 基于以上认识,我们可以一个比喻来加深理解。假设有一个公司,公司里有很多各司其职的职员,那么我们可以认为这个正常运作的公司就是一个进程,而公司里的职员就是线程。一个公司至少得有一个职员吧,同理,一个进程至少包含一个线程。在公司里,你可以一个职员干所有的事,但是效率很显然是高不起来的,一个人的公司也不可能做大;一个程序中也可以只用一个线程去做事,事实上,一些过时的语言如fortune,basic都是如此,但是象一个人的公司一样,效率很低,如果做大程序,效率更低——事实上现在几乎没有单线程的商业软件。公司的职员越多,老板就得发越多的薪水给他们,还得耗费大量精力去管理他们,协调他们之间的矛盾和利益;程序也是如此,线程越多耗费的资源也越多,需要CPU时间去跟踪线程,还得解决诸如死锁,同步等问题。总之,如果你不想你的公司被称为“皮包公司”,你就得多几个员工;如果你不想让你的程序显得稚气,就在你的程序里引入多线程吧! 本文将对C#编程中的多线程机制进行探讨,通过一些实例解决对线程的控制,多线程间通讯等问题。为了省去创建GUI那些繁琐的步骤,更清晰地逼近线程的本质,下面所有的程序都是控制台程序,程序最后的Console.ReadLine()是为了使程序中途停下来,以便看清楚执行过程中的输出。 好了,废话少说,让我们来体验一下多线程的C#吧! 二.操纵一个线程 任何程序在执行时,至少有一个主线程,下面这段小程序可以给读者一个直观的印

windows 并发的多线程的应用

(1)苹果香蕉问题 #include using namespace std; #include #include int k; HANDLE Apple_;HANDLE Banana_; CRITICAL_SECTION mmutex; DWORD WINAPI Son(LPVOID n) {//HANDLE Apple_; CRITICAL_SECTION mmutex; int i=1; OpenSemaphore(MUTEX_ALL_ACCESS,false,"Apple_"); while(1) { ::WaitForSingleObject(Apple_,INFINITE);//等苹果 cout<<"Son eats"<

EJB中用JMS模拟多线程机制的设计和实现

收稿日期:2003-10-16 作者简介:高 燕(1976— ),女,四川人,硕士研究生,主要研究方向为计算机网络与信息系统。 E JB 中用JMS 模拟多线程机制的设计和实现 高 燕,李旭伟,文 震 (四川大学计算机学院,四川成都610064) 摘 要:多线程机制是提高系统执行效率的关键,但对于采用E JB 技术的服务器端,由于E JB 规范限制使用多线程机制,因此执行效率往往不那么令人满意。针对E JB 中不能使用线程这一缺陷,文中给出了在E JB 中如何用J MS 来模拟多线程机制并提供了一个具体的实现方案,将该方案用于网管系统中并发的获取各网络设备的MIB 信息以计算某一网络性能指标时取得了令人满意的成绩,大大缩短了系统运行的时间。从而可知在E JB 中采用J MS 技术来模拟多线程机制不仅在理论上可行,在实际应用中也是可行的。 关键词:多线程机制;企业JavaBean ;Java 消息服务 中图分类号:TP311.52 文献标识码:A 文章编号:1005-3751(2004)07-0040-03 Design and Implementation of Simulating Multithread Architecture with JMS in EJB G AO Yan ,L I Xu 2wei ,WEN Zhen (Department of Computer Science ,Sichuan University ,Chengdu 610064,China ) Abstract :It is a kind of key technology of multithread architecture to improve system executive efficiency ,but server uses E JB technology has not satisfying executive efficiency ,because E JB technology prohibits developers from using multithread architecture.This paper has explained how to simulate multithread architecture with J MS and presented a design according to the fact that multithread architecture can not be used in E JB ,when network management system uses the design to collect MIB information of network devices by which a network performance index can calculated ,the result is very good and executive time is shortened.So the design of simulating multithread architec 2ture with J MS in E JB is feasible not only in theory ,but also in application.K ey w ords :multithread architecture ;E JB ;J MS 随着J2EE 规范的成熟,E JB 技术已经在很多企业级的解决方案中得到了应用。针对软件执行效率这一客户关心的问题,一般采用的是多线程机制实现并发处理,但是对采用E JB 技术的应用服务器端这一问题却没能解决,因为E JB 规范为了消除与E JB 容器管理死锁、线程和并发问题的责任相冲突的可能性,限制使用任何方法启动、停止和管理线程。这就提出一个问题:在E JB 中如何实现多线程的机制?答案是采用J MS 技术。 1 相关技术介绍 1.1 EJB (E nterprise JavaB eans)简介 E JB 是实现了特定商业逻辑的JavaBean ,它部署在应 用服务器端的Container 中,可以灵活地加载、载出[1]。 J2EE 使用E JB Server 作为商业组件的部署环境,在E JB Server 中提供了分布式计算环境中组件需要的所有服务, 例如组件生命周期的管理、数据库连接的管理、分布式事务的支持、组件的命名服务等等,因此开发人员可以将精力更多的放在业务逻辑的实现上。 E JB 支持多种客户端的访问,HTTP 的客户端可以 通过Web Server 上的Java Servlet 或者J SP 发出请求,由 J SP 中嵌入的Java 代码调用运行在E JB Server 中的E JB 。 而其它的客户端,可以通过IIOP 直接访问运行在E JB Server 中的组件。E JB 主要由会话bean (Session Bean )和 实体bean (Entity Bean )、消息驱动bean (Message -Driven Bean )构成。会话bean 代表客户端代码需要调用的操作。 它是业务处理对象,实现了业务逻辑、业务规则、算法和工作流程。实体bean 用来代表底层的对象。最常用的是用实体bean 代表关系库中的资料。消息驱动bean 是在 E JB2.0规范中新增的一种Bean 类型。它是一种可以接 收J MS 消息的特殊的组件。由于MDB 不是RPC 组件,因此区别于其它类型的E JB ,MDB 不需要Remote 和 Home 接口。 1.2 JMS(Java Message Service)简介 (1)J MS 产生背景。 第14卷 第7期2004年7月 微 机 发 展Microcomputer Development Vol.14 No.7J uly 2004

相关主题
文本预览
相关文档 最新文档