当前位置:文档之家› 平面图的理论与四色问题(Ⅱ)――五色定理与四色问题的形式

平面图的理论与四色问题(Ⅱ)――五色定理与四色问题的形式

平面图的理论与四色问题(Ⅱ)――五色定理与四色问题的形式
平面图的理论与四色问题(Ⅱ)――五色定理与四色问题的形式

《理论力学》动力学典型习题+答案

《动力学I 》第一章 运动学部分习题参考解答 1-3 解: 运动方程:θtan l y =,其中kt =θ。 将运动方程对时间求导并将0 30=θ代入得 34cos cos 22lk lk l y v ====θ θθ 938cos sin 22 3 2lk lk y a =-==θ θ 1-6 证明:质点做曲线运动,所以n t a a a +=, 设质点的速度为v ,由图可知: a a v v y n cos ==θ,所以: y v v a a n = 将c v y =,ρ 2 n v a = 代入上式可得 ρ c v a 3 = 证毕 1-7 证明:因为n 2 a v =ρ,v a a v a ?==θsin n 所以:v a ?= 3 v ρ 证毕 1-10 解:设初始时,绳索AB 的长度为L ,时刻t 时的长度 为s ,则有关系式: t v L s 0-=,并且 222x l s += 将上面两式对时间求导得: 0v s -= ,x x s s 22= 由此解得:x sv x -= (a ) (a)式可写成:s v x x 0-= ,将该式对时间求导得: 2 02 v v s x x x =-=+ (b) 将(a)式代入(b)式可得:32 20220x l v x x v x a x -=-== (负号说明滑块A 的加速度向上) 1-11 解:设B 点是绳子AB 与圆盘的切点,由于绳子相对圆盘无滑动,所以R v B ω=,由于绳子始终处 于拉直状态,因此绳子上A 、B 两点的速度在 A 、B 两点连线上的投影相等,即: θcos A B v v = (a ) 因为 x R x 2 2cos -= θ (b ) 将上式代入(a )式得到A 点速度的大小为: 2 2 R x x R v A -=ω (c ) 由于x v A -=,(c )式可写成:Rx R x x ω=--22 ,将该式两边平方可得: 222222)(x R R x x ω=- 将上式两边对时间求导可得: x x R x x R x x x 2232222)(2ω=-- 将上式消去x 2后,可求得:2 22 42) (R x x R x --=ω 由上式可知滑块A 的加速度方向向左,其大小为 2 22 42) (R x x R a A -=ω 1-13 解:动点:套筒A ; 动系:OA 杆; 定系:机座; 运动分析: 绝对运动:直线运动; 相对运动:直线运动; 牵连运动:定轴转动。 根据速度合成定理 r e a v v v += 有:e a cos v v =?,因为AB 杆平动,所以v v =a , o v o v a v e v r v x o v x o t

20115641039 张超 浅谈“四色问题”

浅谈四色问题 【摘要】在日常生活中,我们会发现一个有趣的现象,如果你仔细留心一张世界地图,你会发现用一种颜色给一个国家着色,那么一共只需要四种颜色就能保证每两个相邻国家的颜色不同,这样的着色效果能使每一个国家都能清楚地显示出来,这就是由地图着色问题引发的著名的数学问题:“四色问题”。但要证明这个结论却是一个著名的世界难题,许许多多的中外数学家都被这个问题所折服,最终借助计算机才得以解决,但结论并不是很完美,因此诸多数学学者都在寻找其严格的数学证明方法。 【关键词】四色问题的背景四色问题的解决历程四色问题的应用四色问题又称四色猜想、四色定理,与哥德巴赫猜想、费马大定理一起被称作世界三大著名数学难题。“四色问题”是世界数学史上一个非常著名的证明难题,它要求证明在平面地图上只用四种颜色就能使任何复杂形状的各块相邻区域之间颜色不会重复,也就是说相互之间都有交界的区域最多只能有四块。一百五十多年来有许多数学家用了很长时间,花了很多精力才艰难地证明了这个问题。下面我就来谈一谈著名的“四色问题”。 一、四色问题的背景 (一)四色问题的提出 四色猜想的提出来自英国。1852年,毕业于伦敦大学的弗南西斯·格思里来到一家科研单位搞地图着色工作时,发现了一种有趣的现象:“每幅地图都可以用四种颜色着色,使得有共同边界的国家都被着上不同的颜色。”这个现象能不能从数学上加以严格证明呢?他和在大学读书的弟弟格里斯决心试一试,兄弟二人为证明这一问题而使用的稿纸已经堆了一大叠,可是研究工作没有进展。1852年10月23日,他的弟弟就这个问题的证明请教了他的老师,著名数学家德·摩尔根,摩尔根也没有能找到解决这个问题的途径,于是写信向自己的

理论力学课后习题答案 第10章 动能定理及其应用 )

C v ? A B C r v 1 v 1 v 1 ω?(a) C C ωC v ωO (a) 第10章 动能定理及其应用 10-1 计算图示各系统的动能: 1.质量为m ,半径为r 的均质圆盘在其自身平面内作平面运动。在图示位置时,若已知圆盘上A 、B 两点的速度方向如图示,B 点的速度为v B ,= 45o(图a )。 2.图示质量为m 1的均质杆OA ,一端铰接在质量为m 2的均质圆盘中心,另一端放在水平面上,圆盘在地面上作纯滚动,圆心速度为v (图b )。 3.质量为m 的均质细圆环半径为R ,其上固结一个质量也为m 的质点A 。细圆环在水平面上作 纯滚动,图示瞬时角速度为 (图c )。 解: 1.2 22222163)2(2121)2(212121B B B C C C mv r v mr v m J mv T =?+=+= ω 2.2 22122222214321)(21212121v m v m r v r m v m v m T +=?++= 3.2 2222222)2(2 12121ωωωωmR R m mR mR T =++= 10-2 图示滑块A 重力为1W ,可在滑道内滑动,与滑块A 用铰链连接的是重力为2W 、长为l 的匀质杆AB 。现已知道滑块沿滑道的速度为1v ,杆AB 的角速度为1ω。当杆与铅垂线的夹角为?时,试求系统的动能。 解:图(a ) B A T T T += )2 121(21222211ωC C J v g W v g W ++= 21 221121212211122]cos 22)2 [(22ω?ωω??+?++++=l g W l l v l v l g W v g W ]cos 3 1 )[(2111221222121?ωωv l W l W v W W g +++= 10-3 重力为P F 、半径为r 的齿轮II 与半径为r R 3=的固定内齿轮I 相啮合。齿轮II 通过匀质的曲柄OC 带动而运动。曲柄的重力为Q F ,角速度为ω,齿轮可视为匀质圆盘。试求行星齿轮机构的动能。 解: C OC T T T += 2222)21(212121C C C C OC O r m v m J ωω++= 22P 2P 22Q )2(41)2(21])2(31[21r r r g F r g F r g F ωωω++= 习题10-2图 习题10-3图 B v A C θ (a) v O ω A 习题10-1图 (b) (c) A

初中物理力学经典例题难题

1..如图22所示装置,杠杆OB 可绕O 点在竖直平面内转动,OA ∶AB =1∶2。当在杠杆A 点挂一质量为300kg 的物体甲时,小明通过细绳对动滑轮施加竖直向下的拉力为F 1,杠杆B 端受到竖直向上的拉力为T 1时,杠杆在水平位置平衡,小明对地面的压力为N 1;在物体甲下方加挂质量为60kg 的物体乙时,小明通过细绳对动滑轮施加竖直向下的拉力为F 2,杠杆B 点受到竖直向上的拉力为T 2时,杠杆在水平位置平衡,小明对地面的压力为N 2。已知N 1∶N 2=3∶1,小明受到的重力为600N ,杠杆OB 及细绳的质量均忽略不计,滑轮轴间摩擦忽略不计,g 取10N/kg 。求: (1)拉力T 1; (2)动滑轮的重力G 。 39.解: (1)对杠杆进行受力分析如图1甲、乙所示: 根据杠杆平衡条件: G 甲×OA =T 1×OB (G 甲+G 乙)×OA =T 2×OB 又知OA ∶AB = 1∶2 所以OA ∶OB = 1∶3 N 300010N/kg kg 300=?==g m G 甲甲 N 600N/kg 10kg 60=?==g m G 乙乙 N 0001N 0300311=?==甲G OB OA T N 2001N 03603 1)(2=?= += 乙甲G G OB OA T (1分) (2)以动滑轮为研究对象,受力分析如图2甲、乙所示 因动滑轮处于静止状态,所以: T 动1=G +2F 1,T 动2=G +2F 2 又T 动1=T 1,T 动2=T 2 所以: G G G T F 21N 5002N 1000211-=-=-= (1分) G G G T F 2 1N 6002 N 12002 22- =-= -= (1分) 以人为研究对象,受力分析如图3甲、乙所示。 人始终处于静止状态,所以有: F 人1+ N 1, = G 人, F 人2+N 2, =G 人 因为F 人1=F 1,F 人2=F 2,N 1=N 1, ,N 2=N 2, 且G 人=600N 所以: 图22 甲 乙 图1 T B T 动2 F 2 动1 F 1 人 人1 人2 人 图3 甲 乙

高中物理力学典型例题

高中物理力学典型例题 1、如图1-1所示,长为5米的细绳的两端分别系于竖立在地面上相距 为4米的两杆顶端A、B。绳上挂一个光滑的轻质挂钩。它钩着一个重 为12牛的物体。平衡时,绳中张力T=____ 分析与解:本题为三力平衡问题。其基本思路为:选对象、分析力、画 力图、列方程。对平衡问题,根据题目所给条件,往往可采用不同的方 法,如正交分解法、相似三角形等。所以,本题有多种解法。 解法一:选挂钩为研究对象,其受力如图1-2所示,设细绳与水平夹角 为α,由平衡条件可知:2TSinα=F,其中F=12牛,将绳延长,由图 中几何条件得:Sinα=3/5,则代入上式可得T=10牛。 解法二:挂钩受三个力,由平衡条件可知:两个拉力(大小相等均为T) 的合力F’与F大小相等方向相反。以两个拉力为邻边所作的平行四边形 为菱形。如图1-2所示,其中力的三角形△OEG与△ADC相似,则: 得:牛。 想一想:若将右端绳A 沿杆适当下移些,细绳上张力是否变化? (提示:挂钩在细绳上移到一个新位置,挂钩两边细绳与水平方向夹角仍相等,细绳的张力仍不变。) 2、如图2-1所示,轻质长绳水平地跨在相距为2L的两个小定滑轮A、 B上,质量为m的物块悬挂在绳上O点,O与A、B两滑轮的距离相 等。在轻绳两端C、D分别施加竖直向下的恒力F=mg。先托住物块, 使绳处于水平拉直状态,由静止释放物块,在物块下落过程中,保持 C、D两端的拉力F不变。 (1)当物块下落距离h为多大时,物块的加速度为零? (2)在物块下落上述距离的过程中,克服C端恒力F做功W为多少? (3)求物块下落过程中的最大速度Vm和最大距离H? 分析与解:物块向下先作加速运动,随着物块的下落,两绳间的夹角 逐渐减小。因为绳子对物块的拉力大小不变,恒等于F,所以随着两 绳间的夹角减小,两绳对物块拉力的合力将逐渐增大,物块所受合力 逐渐减小,向下加速度逐渐减小。当物块的合外力为零时,速度达到 最大值。之后,因为两绳间夹角继续减小,物块所受合外力竖直向上, 且逐渐增大,物块将作加速度逐渐增大的减速运动。当物块下降速度 减为零时,物块竖直下落的距离达到最大值H。 当物块的加速度为零时,由共点力平衡条件可求出相应的θ角,再由θ角求出相应的距离h,进而求出克服C端恒力F所做的功。 对物块运用动能定理可求出物块下落过程中的最大速度Vm和最大距离H。 (1)当物块所受的合外力为零时,加速度为零,此时物块下降距离为h。因为F恒等于mg,所以绳对物块拉力大小恒为mg,由平衡条件知:2θ=120°,所以θ=60°,由图2-2知: h=L*tg30°= L [1] (2)当物块下落h时,绳的C、D端均上升h’,由几何关系可得:h’=-L [2] 克服C端恒力F做的功为:W=F*h’[3]

四色猜想四色猜想四色定理

四色猜想-四色猜想四色定理 地图四色定理(Four color theorem)最先是由一位叫古德里Francis Guthrie 的英国大学生提出来的。四色问题的内容是“任何一张地图只用四种颜色就能使具有共同边界的国家着上不同的颜色。”用数学语言表示即“将平面任意地细分为不相重叠的区域每一个区域总可以用1234这四个数字之一来标记而不会使相邻的两个区域得到相同的数字。”这里所指的相邻区域是指有一整段边界是公共的。如果两个区域只相遇于一点或有限多点就不叫相邻的。因为用相同的颜色给它们着色不会引起混淆。四色问题的内容是“任何一张地图只用四种颜

色就能使具有共同边界的国家着上不同的颜色。”也就是说在不引起混淆的情况下一张地图只需四种颜色来标记就行发展历史 不过情况也不是过分悲观。数学家希奇早在1936年就认为讨论的情况是有限的不过非常之大大到可能有10000种。对于巨大而有限的数,最好由谁去对付?今天的人都明白:计算机。 从1950年起希奇就与其学生丢莱研究怎样用计算机去验证各种类型的图形。这时计算机才刚刚发明。两人的思想可谓十分超前。 1972年起黑肯与阿佩尔开始对希奇的方法作重要改进。到1976年他们认为问题已经压缩到可以用计算机证明的地步了。于是从1月份起他们就在伊利诺伊大学的IBM360机上分1482种情况检查历时1200个小时,作了100亿个判断最终证明了四色定理。在当地的信封上盖“Four colorssutfice”四色,足够了的邮戳就是他们想到的一种传播这一惊人消

息的别致的方法。 人类破天荒运用计算机证明著名数学猜想应该说是十分轰动的。赞赏者有之,怀疑者也不少,因为真正确性一时不能肯定。后来也的确有人指出其错误。1989年,黑肯与阿佩尔发表文章宣称错误已被修改。1998年托马斯简化了黑肯与阿佩尔的计算程序但仍依赖于计算机。无论如何四色问题的计算机解决给数学研究带来了许多重要的新思维。 问题影响 一个多世纪以来,数学家们为证明这条定理绞尽脑汁,所引进的概念与方法刺激了拓扑学与图论的生长、发展。在“四色问题”的研究过程中,不少新的数学理论随之产生,也发展了很多数学计算技巧。如将地图的着色问题化为图论问题,丰富了图论的内容。四色猜想不仅如此,“四色问题”在有效地设计航空班机日程表,设计计算机的编码程序上都起到了推动作用。 实际应用

四色套印的原理

四色套印的原理 四色网印其实很简单,可以机器印刷,也可以纯手工印刷。 材料: 1:网布,一定要选单丝平织的网纱;300目以上,如果是印制120线,就必须选420目以上的网布。 2:崩网,铝框机器崩,这样网布拉力比较均匀。如果是80线以下的图案,手工木框也一样用。拉力一定要紧,最好是40N以上的拉力,张力越大印制的图案越清晰。 3:感光胶,其实国产进口都一样用,分辨率都差不多,单组分的感光胶分辨率更好点。 4:晒版灯,最好是1000瓦的灯,其实40瓦的棒管紫外线灯也一样用。1000瓦晒的版质量会好很多,如果是配合单组分的感光胶会很容易晒出细微的图案。 5:刮刀,精印120线的图画就必须选用90度以上的刮刀,这样图画会很清晰。刮刀度数低,网点容易变形。 6:油墨,四色精印120线图画,当然是UV油墨,这样才能保证印刷质量,不会塞网堵版。普通油墨印制100线以下的还可以,如果不用慢干膏的话最多只能印制60线才能保证质量。 7:色序,CMYK,先印C蓝,然后印Y黄,再印M红,最后印K黑。如果是有机玻璃反着印,色序应该是KMYC,一定要先印黑,不然会很难看滴。 8:刮两下试试,搞定了吧?四色网印就这么简单。

小提示: 分色胶片是激光照排的,也叫菲林片,一般城市都有发排中心,发排价格很便宜。 家庭打印机也可以打印分色片,只要在PS软件里处理一下就OK啦。最好选用激光打印机,当然喷墨的能凑合,一般电脑市场都有专供打印机打印的胶片,1包100多人民币,不算太贵。 丝印界有句行话:一学就会,一看就懂,一干就傻!!要精印120线以上的图画是很难的,到目前为止还没有哪个敢说能印出175线。慢慢研究吧,反正丝印界迟早难以一定会突破175线的。

《理论力学》静力学典型习题+答案

1-3 试画出图示各结构中构件AB的受力图 1-4 试画出两结构中构件ABCD的受力图

1-5 试画出图a和b所示刚体系整体各个构件的受力图 1-5a 1-5b

1- 8在四连杆机构的ABCD 的铰链B 和C 上分别作用有力F 1和F 2,机构在图示位置平衡。试求二力F 1和F 2之间的关系。 解:杆AB ,BC ,CD 为二力杆,受力方向分别沿着各杆端点连线的方向。 解法1(解析法) 假设各杆受压,分别选取销钉B 和C 为研究对象,受力如图所示: 由共点力系平衡方程,对B 点有: ∑=0x F 045cos 0 2=-BC F F 对C 点有: ∑=0x F 030cos 0 1=-F F BC 解以上二个方程可得:2 2163.13 62F F F ==

解法2(几何法) 分别选取销钉B 和C 为研究对象,根据汇交力系平衡条件,作用在B 和 C 点上的力构成封闭的力多边形,如图所示。 对B 点由几何关系可知:0245cos BC F F = 对C 点由几何关系可知: 0130cos F F BC = 解以上两式可得:2163.1F F = 2-3 在图示结构中,二曲杆重不计,曲杆AB 上作用有主动力偶M 。试求A 和C 点处的约束力。 解:BC 为二力杆(受力如图所示),故曲杆AB 在B 点处受到约束力的方向沿BC 两点连线的方向。曲杆AB 受到主动力偶M 的作用,A 点和B 点处的约束力必须构成一个力偶才能使曲杆AB 保持平衡。AB 受力如图所示,由力偶系作用下刚体的平衡方程有(设力偶逆时针为正): 0=∑M 0)45sin(100=-+??M a F A θ a M F A 354.0= 其中:31 tan =θ 。对BC 杆有:a M F F F A B C 354.0=== A ,C 两点约束力的方向如图所示。 2-4 F F

重点高中物理力的平衡经典习题及参考答案

力的平衡经典习题 1、如图所示,两个完全相同的光滑球的质量均为m,放在竖直挡板和倾角为α的固定斜面间.若缓慢转动挡板至与斜面垂直,在此过程中 A.A、B两球间的弹力不变B.B球对挡板的压力逐渐减小 C.B球对斜面的压力逐渐增大D.A球对斜面的压力逐渐增大 2、如图所示,不计滑轮质量与摩擦,重物挂在滑轮下,绳A端固定,将B端绳由B移到C或D(绳长不变)其绳上张力分别为T B A.T B>T C>T D??? C.T B=T C

7、半圆柱体P放在粗糙的水平地面上,其右端有固定放置的竖直挡板MN,在P和MN之间放有一个光滑均匀的小圆柱体Q,整个装置处于静止状态,右图所示是这个装置的纵截面图.若用外力使MN保持竖直,缓慢地向右移动,在Q落到地面以前、发现P始终保持静止.在此过程中,下列说法中不正确的是 ??????A.MN对Q的弹力逐渐减小??????????????B.地面对P的摩擦力逐渐增大 ??????C.P、Q间的弹力先减小后增大?????????D.Q所受的合力逐渐增大 8、如图所示,两个质量都是m的小球A、B用轻杆连接后斜放在墙上处于平衡状态.已知墙面光滑,水平地面粗糙.现将A球向上移动一小段距离.两球再次达到平衡,那么将移动后的平衡状态和原来的平衡状态比较,地面对B球的支持力N和轻杆上的压力F的变化情况是 A.N不变,F 9Q A.夹角θ C 10k的 ???A.??????B..????D. 11 离为 A.?????????? B.????????? C.?? D. 12、如图所示,A、B两球用劲度系数为k1的轻弹簧相连,B球用长为L的细线悬于O点,A球固定在O点正下方,且O、A间的距离恰为L,此时绳子所受的拉力为F1,现把A、B间的弹簧换成劲度系数为k2的轻弹簧,仍使系统平衡,此时绳子所受的拉力为F2,则F1与F2的大小关系为 A.F1F2? C.F1=F2???????????????????D.因k1、k2大小关系未知,故无法确定 13、如图所示,表面粗糙的固定斜面顶端安有滑轮,两物块P、Q用轻绳连接并跨过滑轮(不计滑轮的质量和摩擦),P悬于空中,Q放在斜面上,均处于静止状态。当用水平向左的恒力推Q时,P.Q仍静止不动,则???????????????(???)

理论力学(机械工业出版社)第十二章动能定理习题解答

习 题 12–1 一刚度系数为k 的弹簧,放在倾角为θ的斜面上。弹簧的上端固定,下端与质量为m 的物块A 相连,图12-23所示为其平衡位置。如使重物A 从平衡位置向下沿斜面移动了距离s ,不计摩擦力,试求作用于重物A 上所有力的功的总和。 图12-23 ))((2 sin 2st 2 st s k s mg W +-+ ?=δδθ 2st 2 sin s k s k mgs --=δθ 22 s k -= 12–2 如图12-24所示,在半径为r 的卷筒上,作用一力偶矩M=a ?+b ?2 ,其中?为转角,a 和b 为常数。卷筒上的绳索拉动水平面上的重物B 。设重物B 的质量为m ,它与水平面之间的滑动摩擦因数为μ。不计绳索质量。当卷筒转过两圈时,试求作用于系统上所有力的功的总和。 图12-24 3 22π40 π3 64π8d )+ (d b a b a M W M + ===? ????? mgr r mg W F π4π4μμ-=?-= )3π16π6π(3 4 π4π364π8232mgr b a mgr b a W μμ-+=-+=∑ 12–3 均质杆OA 长l ,质量为m ,绕着球形铰链O 的铅垂轴以匀角速度ω转动,如图12-25所示。如杆与铅垂轴的夹角为θ,

试求杆的动能。 图12-25 x x l m x x l m v m E d )sin 2()sin )(d (21)(d 21d 2222k θωθω=== θωθω2220222k sin 6 1 d )sin 2(ml x x l m E l ?== 12–4 质量为m 1的滑块A 沿水平面以速度v 移动,质量为 m 2的物块B 沿滑块A 以相对速度u 滑下,如图12-26所示。试求 系统的动能。 图12-26 ])30sin ()30cos [(2 1 2 122221k ?++?+=u v u m v m E )30cos 2(212 122221?+++=uv v u m v m )3(2 1 2122221uv v u m v m +++= 12–5 如图12-27所示,滑块A 质量为m 1,在滑道内滑动,其上铰接一均质直杆AB ,杆AB 长为l ,质量为m 2。当AB 杆与铅垂线的夹角为?时,滑块A 的速度为A v ,杆AB 的角速度为ω。试求在该瞬时系统的动能。 图12-27 AB A E E E k k k += 22222221)12 1(21])sin 2()cos 2[(2121ω?ω?ωl m l l v m v m A A ++++= )12 1cos 41(212122222 221ω?ωωl lv l v m v m A A A ++++= )cos 3 1(2121222 221?ωωA A A lv l v m v m +++= 12–6 椭圆规尺在水平面内由曲柄带动,设曲柄和椭圆规

趣味数学故事之彻底解决“四色问题”

趣味数学故事之彻底解决“四色问题” 趣味数学故事之彻底解决“四色问题” 地图“四色问题”(又称“四色猜想”)最早由英国大学生法兰西斯·古特里(Francis Guthrie)于1852年在绘制地图时发现,他却找不出科学肯定的证明就去请教他在伦敦大学读书的哥哥费特里克·古特里(Frederick Guthrie)。兄弟俩搞了好些日子还是证明不了,就由哥哥去向伦敦大学的老师、当时非常著名的数学家奥古斯都·德·摩根(Augustus de morgan)请教,摩根教授当时也证明不了,就至函他在三一学院的好友——著名数学家威廉·哈密尔顿(William Rowan Hamilton),希望他能帮助证明。可哈密尔顿对这个问题研究了十三年,到死也没能给出证明。自从1879年至今全世界不断有人提出证明了“四色问题”,可是都叫人难以信服,不断又被别人否定,至今这个“四色问题”仍与“哥德巴赫猜想”及“费马最后定律”一起被全世界公认为数学史上最著名的三大难题。 本人2019年夏天刚接触到“拓扑学”,试着用“拓扑学”的方法去分析“四色问题”,只化半小时左右时间就证明了“四色问题”。我写的《关于“四色问题”的证明》(以下简称《证明》,可在电脑中文搜索栏打入“四色问题”或作者姓名“焦永溢”查看)2019年底在许多数学网站上刊登出来后,看了的人很多认为非常正确;但也有一部分不明白的

人认为证明了“相互间有连线的点不多于四个”并不是证明了“四色问题”,他们认为四点相互间有连线只是平面图上的局部现象,不能代表整个平面图,还提出比如中间一个点周围五个点的图形并没有四个点之间相互有连线却也要四种颜色。可我在这里要再强调一下:《证明》中三个定理概括讲就是“三点必闭,四点必围,五点必断”,并没有说一定要四点相互间有连线才需四色,证明“四色问题”关键在于“五色必断”。《证明》中分析了第五点E落在封闭图形ABC以内及以外的情况,也提到了第五点若落在连线上必定会隔断这条连线,只是没有把隔断的情况用图画出来,其实一画出来也是与另两种情况一样:三点包围一点,另一点又被小的封闭图形所包围。下面我再从第五点开始,接着第六点、第七点、第八点……直到无穷多点的情况下证明“四色永远足够”。 为了使分析的图形更直观明了,可以换一个角度来看四点相互间有连线的图形:把封闭图形放在球面上,各点间距离均匀,拉直各条连线,图形就成了一个正三棱锥。图1就是把ABC面当底,D点当顶点从上向下的俯视图,若把三棱锥翻一个面,比如将B点当顶点,ACD面就成了底面,所以外面三条线其实与里面三条线是一样的,图形的外面实际上就是三棱锥的底面,三棱锥的底面与三个侧面其实也是一样的。这样任何第五点只有放在三个小三角形(侧面)中间及里面

四色问题证明

一、问题描述: 问题1:平面上任意不重叠的区域,仅采用4种不同的颜色即可对区域进行填充,而使得相邻区域的颜色不同。 上述问题可转换为: 问题2:平面上只存在至多4个点能够互相连接,而连接的线不交叉。 二、问题1和问题2的等价性: 两个区域相邻具有特性:任意分别属于两区域的两点之间都存在一条线连接,这条线仅属于这两个区域。 对于4个区域,任意4个点分别属于不同的区域,4个点互相不交叉连接即代表区域之间是相邻的,因此需要4种颜色填充。而如果存在第5个点使得这个点与其它点能连接而不与其它连接线交叉,则意味着这5个点所属的5个区域相邻,则需要5种颜色进行填充。如果交叉即意味着连接线代表的区域被截断变成不相邻。 因此只需要证明平面上不可能存在第5个点符合下述条件: 条件:第5点与其它4个点连接而不与其它连接线交叉。 三、问题2的证明: 3.1、显然的,平面上任意3个不同点能够两两相连,形成一个封闭的区域,如下图所示。3个点连接线将平面划分成了2个部分:区域ΩABC与区域ΩABC~;ΩABC构成一个封闭的区域。 B 3.2、第4个点D的位置有两个选择: 3.2.1、选择1,第4个点D区域内:

B 此时区域ΩABC被分为3个区域:区域ΩABD、ΩACD、ΩBCD。且这3个区域均是封闭的。第五个点E,可选择的位置有两种情况: 第一种情况:点E在区域ΩABC~ 在这种情况下,由于E在封闭区域ΩABC外部,而D点在封闭区域内部,因此,E点与D 点相连必定要穿越区域ΩABC的边界,即E与D的连接必与其它连接线交叉。如下图所示: B 点E与点D连接与点B与点C的连接交叉。 因此区域ΩABC~中不存在符合条件的第5个点。 第二种情况:点E在ΩABD、ΩACD、ΩBCD3个区域的任何一个区域,设为区域Ω。 那么必存在A、B、C、D中的一点在区域Ω之外,假设为X点,则点E与点X相连必定要穿越区域Ω,即点E与点X的连接线必与其中的一条连接线交叉。如下图所示:

四色问题

四色问题 我们在数学选修2-3的学习中,在数学文化这栏目中遇到这样一个有趣的问题---地图染色问题,当时我们是通过二项式定理来计算这一问题。这到题的本质就是我们这研究性学习的主题---四色问题。 这是一个拓扑学问题,即找出给球面(或平面)地图着色时所需用的不同颜色的最小数目。着色时要使得没有两个相邻(即有公共边界线段)的区域有相同的颜色。这个看似简单的问题在1852年首次由格斯利提出,他在英国地图上色时发现,无论多么复杂的地图只需要4中颜色就能将相邻的区域分开。这件事引起了他的兴趣,他感到其中可能隐藏着某种科学道理,他把想法告诉了哥哥费特里,费特里又将问题转交给了著名的数学家德.摩根,德.摩根也解释不了,就写信给著名的数学家哈密顿,这位数学家也被此问题弄的一筹莫展,知道逝世也无结果。 1876年,著名的数学家凯莱在数学年会上把这个问题归纳为“四色猜想”提出,于是“四色问题猜想”开始引起人们的注意,但其关注度并不大。 首先宣布“证明”了四色猜想的是一名名叫肯普的律师。他在1879年发布了直接的证明方法,可是过去了11年,一位29岁的年轻数学家希伍德指出肯普的证明不能成立,接着希伍德成功的使用肯普的技巧,证明出平面地图最多用五种颜色着色就够了。 直到1879年,美国的数学家阿佩尔和哈肯设计出一个计算机程序,他们同时启动三太高速计算机,耗时1200个时机,终于用计算

机证明的“四色定理”,但这一证明一直没有得到所有数学家的认可,他们认为纯数学计算证明才是真正的证明。 如今这一问题主要是以肯普的方法来研究,所以我们也同过他的思路来研究这以课题。下面给出大致思路 先说明一下,本文分析的地图为球面地图,一个国家所占区域称 为一个”色块”,把地图边界的所有色块称为色块{A}。从一个色块的内部撕开球面地图,构建边界为一个色块的平面地图并着色,本文不妨设定平面地图最外色块着红色。如图001。 图001 现在来分析一种现象,如图003,中间有色块p1p2 p3,它在另一色块中间并与其相邻色块之间有且仅有2个公共顶点,如图004所示,现在以p1为例说明其在地图中的特点:只要是包围p1的色块着同一色,那么p1色块是否存在于地图中,对整个地图用几种颜色着色没有影响,在本文中称这种类型的色块为”过渡色块”。

四色定理

四色定理 四色定理(Four color theorem)最先是由一位叫古德里(Francis Guthrie)的英国大学生提出来的。德·摩尔根(Augustus De Morgan,1806~1871)1852年10月23日致哈密顿的一封信提供了有关四色定理来源的最原始的记载。四色问题又称四色猜想,是世界近代三大数学难题之一。 基本介绍 四色问题又称四色猜想、四色定理是世界近代三大数学难题之一。地图四色定理(Four color theorem)最先是由一位叫古德里FrancisGuthrie的英国大学生提出来的。德·摩尔根Augustus De Morgan180618711852年10月23日致哈密顿的一封信提供了有关四色定理来源的最原始的记载。他在信中简述了自己证明四色定理的设想与感受。一个多世纪以来数学家们为证明这条定理绞尽脑汁所引进的概念与方法刺激了拓扑学与图论的生长、发展。1976年美国数学家阿佩尔K.Appel与哈肯W.Haken宣告借助电子计算机获得了四色定理的证明又为用计算机证明数学定理开拓了前景。 地图四色定理(Four color theorem)最先是由一位叫古德里Francis Guthrie的英国大学生提出来的。四色问题的内容是“任何一张地图只用四种颜色就能使具有共同边界的国家着上不同的颜色。”用数学语言表示即“将平面任意地细分为不相重叠的区域每一个区域总可以用1234这四个数字之一来标记而不会使相邻的两个区域得到相同的数字。”这里所指的相邻区域是指有一整段边界是公共的。如果两个区域只相遇于一点或有限多点就不叫相邻的。因为用相同的颜色给它们着色不会引起混淆。四色问题的内容是“任何一张地图只用四种颜色就能使具有共同边界的国家着上不同的颜色。”也就是说在不引起混淆的情况下一张地图只需四种颜色来标记就行 发展历史:来自地图的启示 相传四色问题是一名英国绘图员提出来的此人叫格思里。1852年他在绘制英国地图的发现如果给相邻地区涂上不同颜色那么只要四种颜色就足够了。需要注意的是任何两个国家之间如果有边界那么其边界不能只是一个点否则四种颜色就可能不够。 格思里把这个猜想告诉了正在念大学的弟弟。弟弟认真思考了这个问题结果既不能证明也没有找到反例于是向自己的老师、著名数学家德·摩根请教。德·摩根解释不清当天就写信告诉自己的同行、天才的哈密顿。可是直到哈密顿1865年逝世为止也没有解决这个问题。从此这个问题在一些人中间传来传去当时三等分角和化圆为方问题已在社会上“臭名昭著”而“四色瘟疫”又悄悄地传播开来了。 问题的证明一波三折

初中物理力学经典习题

初中物理力学难点巧突破 理解:力的作用是相互的;物体不受外力作用、物体受平衡力作用、物体受非平衡力作用。 物体不受外力作用时:物体保持匀速直线运动状态或静止状态。物体受平衡力作用时:物体保持匀速直线运动状态或静止状态。 物体保持匀速直线运动状态或静止状态时,要么是物体不受外力作用,如果受力只能是受平衡力作用。画线部分是语句的关键部分,表达了基本意思,把它们连起来读就是:匀速静止不受力,受力只受平衡力。 ???只 收脑白金。今年过节不收礼,收礼只受平衡力。匀速静止不受力,受力 “物体保持匀速直线运动状态或静止状态时,要么是物体不受外力作用,如果受力只能是受平衡力作用”这个分析过程必须要有。语句很长,我们只取其主干记忆,但浓缩后的语句所表达的物理原理是必须要记住的,否则就变成唱儿歌说笑话了,这一点必须牢记。 在遇到实际问题的时候,也是有效果的。 例.用水平向右50N 的力推放在水平地面上的木箱,木箱不动,则木箱与地面之间的摩擦力是______N ;如果推力变为80N ,木箱仍然保持静止,则此时木箱与地面之间的摩擦力是______N 。 解析:用50N 的水平力推,物体保持静止,在水平方向上物体受两个力作用——推力、摩擦力。用“匀速静止不受力,受力只受平衡力”来进行分析最好了。物体匀速(直线运动)还是静止?是静止,受不受力?受力,那么受力就受平衡力,而平衡力的大小是相等的,所以摩擦力与推力大小相等,等于50N 。那么,当推力变为80N 呢?学生很容易认为摩擦力是不变的,其实静摩擦力大小是会改变的。还是用刚才的模式进行分析:物体匀速(直线运动)还是静止?是静止;受不受力?受力,那么受力就受平衡力,而平衡力的大小是相等的,所以摩擦力与推力大小相等,等于80N 。 力的作用是相互的 常见的例题:人游泳时,向后划水,为什么人能够前进?具体的解释是:人划水给水一个向后的力,由于力的作用是相互的,所以水给人一个向前的力,所以人能够前进。回答的时候,必须要有关键的那句话“力的作用是相互的”,没有这句话就是没有说到点子上,答案就不全面了。 力学练习 1.在湖中划船时,使船前进的的动力是( ) A.桨划水的推力 B.水直接对船的推力 C.人对船的推力 D.水对桨的推力 2.踢到空中的足球,受到哪些力的作用( ) A 受到脚的作用力和重力 B 受到重力的作用 C 只受到脚的作有力 D 没有受到任何力的作用 3.一辆汽车分别以6米/秒和4米/秒的速度运动时,它的惯性大小:( ) A.一样大; B.速度为4米/秒时大; C.速度为6米/秒时大; D.无法比较 4.站在匀速行驶的汽车里的乘客受到几个力的作用( ) A.1个 B.2 个 C.3个 D.4个 5.甲、乙两个同学沿相反的方向拉测力计,各用力200牛.则测力计的示数为( )

四色原理

四色原理 目录[隐藏] 四色原理简介 四色定理的诞生过程 证明方法 四色定理的重要 德·摩尔根:地图四色定理 利用三角形和数学归纳法证明 [编辑本段] 四色原理简介 这是一个拓扑学问题,即找出给球面(或平面)地图着色时所需用的不同颜色的最小数目。着色时要使得没有两个相邻(即有公共边界线段)的区域有相同的颜色。1852年英国的格思里推测:四种颜色是充分必要的。1878年英国数学家凯利在一次数学家会议上呼吁大家注意解决这个问题。直到1976年,美国数学家阿佩哈尔、哈肯和考西利用高速电子计算机运算了1200个小时,才证明了格思里的推测。四色问题的解决在数学研究方法上的突破,开辟了机器证明的美好前景。 [编辑本段] 四色定理的诞生过程 世界近代三大数学难题之一(另外两个是费马定理和哥德巴赫猜想)。四色猜想的提出来自英国。1852年,毕业于伦敦大学的弗南西斯·格思里(Francis Guthrie)来到一家科研单位搞地图着色工作时,发现了一种有趣的现象:“看来,每幅地图都可以用四种颜色着色,使得有共同边界的国家着上不同的颜色。”,用数学语言表示,即“将平面任意地细分为不相重迭的区域,每一个区域总可以用1,2,3,4这四个数字之一来标记,而不会使相邻的两个区域得到相同的数字。”这个结论能不能从数学上加以严格证明呢?他和在大学读书的弟弟格里斯决心试一试。兄弟二人为证明这一问题而使用的稿纸已经堆了一大叠,可是研究工作没有进展。 1852年10月23日,他的弟弟就这个问题的证明请教他的老师、著名数学家德·摩尔根,摩尔根也没有能找到解决这个问题的途径,于是写信向自己的好友、著名数学

家哈密尔顿爵士请教。哈密尔顿接到摩尔根的信后,对四色问题进行论证。但直到1 865年哈密尔顿逝世为止,问题也没有能够解决。 1872年,英国当时最著名的数学家凯利正式向伦敦数学学会提出了这个问题,于是四色猜想成了世界数学界关注的问题。世界上许多一流的数学家都纷纷参加了四色猜想的大会战。1878~1880年两年间,著名的律师兼数学家肯普和泰勒两人分别提交了证明四色猜想的论文,宣布证明了四色定理,大家都认为四色猜想从此也就解决了。 肯普的证明是这样的:首先指出如果没有一个国家包围其他国家,或没有三个以上的国家相遇于一点,这种地图就说是“正规的”(左图)。如为正规地图,否则为非正规地图(右图)。一张地图往往是由正规地图和非正规地图联系在一起,但非正规地图所需颜色种数一般不超过正规地图所需的颜色,如果有一张需要五种颜色的地图,那就是指它的正规地图是五色的,要证明四色猜想成立,只要证明不存在一张正规五色地图就足够了。 肯普是用归谬法来证明的,大意是如果有一张正规的五色地图,就会存在一张国数最少的“极小正规五色地图”,如果极小正规五色地图中有一个国家的邻国数少于六个,就会存在一张国数较少的正规地图仍为五色的,这样一来就不会有极小五色地图的国数,也就不存在正规五色地图了。这样肯普就认为他已经证明了“四色问题”,但是后来人们发现他错了。不过肯普的证明阐明了两个重要的概念,对以后问题的解决提供了途径。第一个概念是“构形”。他证明了在每一张正规地图中至少有一国具有两个、三个、四个或五个邻国,不存在每个国家都有六个或更多个邻国的正规地图,也就是说,由两个邻国,三个邻国、四个或五个邻国组成的一组“构形”是不可避免的,每张地图至少含有这四种构形中的一个。 肯普提出的另一个概念是“可约”性。“可约”这个词的使用是来自肯普的论证。他证明了只要五色地图中有一国具有四个邻国,就会有国数减少的五色地图。自从引入“构形”,“可约”概念后,逐步发展了检查构形以决定是否可约的一些标准方法,能够寻求可约构形的不可避免组,是证明“四色问题”的重要依据。但要证明大的构形可约,需要检查大量的细节,这是相当复杂的。 11年后,即1890年,数学家赫伍德以自己的精确计算指出肯普的证明是错误的。不久,泰勒的证明也被人们否定了。后来,越来越多的数学家虽然对此绞尽脑汁,但一无所获。于是,人们开始认识到,这个貌似容易的题目,其实是一个可与费马猜想相媲美的难题:先辈数学大师们的努力,为后世的数学家揭示四色猜想之谜铺平了道路。 进入20世纪以来,科学家们对四色猜想的证明基本上是按照肯普的想法在进行。1913年,伯克霍夫在肯普的基础上引进了一些新技巧,美国数学家富兰克林于1939年证明了22国以下的地图都可以用四色着色。1950年,有人从22国推进到35国。1960年,有人又证明了39国以下的地图可以只用四种颜色着色;随后又推进到了5 0国。看来这种推进仍然十分缓慢。电子计算机问世以后,由于演算速度迅速提高,加之人机对话的出现,大大加快了对四色猜想证明的进程。1976年,在J. Koch的

“四色定理”简捷证明(完整版)

“四色定理”简捷证明 王若仲(王洪) 贵州省务川自治县实验学校贵州564300 摘要:1852年,毕业于伦敦大学的格斯里(FrancisGuthrie)来到一家科研单位搞地图着色工作时,发现每幅地图都可以只用四种颜色着色。这个现象能不能从数学上加以严格证明呢?1872年,英国当时最著名的数学家凯利正式向伦敦数学学会提出了这个问题,于是四色猜想成了世界数学界关注的问题,世界上许多一流的数学家都纷纷参加了四色猜想的大会战。电子计算机问世以后,由于演算速度迅速提高,加之人机对话的出现,大大加快了对四色猜想证明的进程。就在1976年6月,在美国伊利诺斯大学的两台不同的电子计算机上,用了1200个小时,作了100亿判断,结果没有一张地图是需要五色的,最终证明了四色定理。我发现“四色定理”还有一种简捷的证明方法,就是利用球面几何的知识来证明“四色定理”。 关键词:四色定理;球面几何;线段;相交 中图分类号:0156 引言 1852年,毕业于伦敦大学的格斯里(FrancisGuthrie)来到一家科研单位搞地图着色工作时,发现每幅地图都可以只用四种颜色着色。这个现象能不能从数学上加以严格证明呢?他和他正在读大学的弟弟决心试一试,但是稿纸已经堆了一大叠,研究工作却是没有任何进展。1852年10月23日,他的弟弟就这个问题的证明请教了他的老师、著名数学家德·摩尔根,摩尔根也没有能找到解决这个问题的途径,于是写信向自己的好友、著名数学家哈密顿爵士请教,但直到1865年哈密顿逝世为止,问题也没有能够解决。1872年,英国当时最著名的数学家凯利正式向伦敦数学学会提出了这个问题,于是四色猜想成了世界数学界关注的问题,世界上许多一流的数学家都纷纷参加了四色猜想的大会战。 1878~1880年两年间,著名的律师兼数学家肯普(Alfred Kempe)和泰勒(Peter Guthrie Tait)两人分别提交了证明四色猜想的论文,宣布证明了四色定理。大家都认为四色猜想从此也就解决了,但其实肯普并没有证明四色问题。11年后,即1890年,在牛津大学就读的年仅29岁的赫伍德以自己的精确计算指出了肯普在证明上的漏洞。他指出肯普说没有极小五色地图能有一国具有五个邻国的理由有破绽。不久泰勒的证明也被人们否定了。人们发现他们实际上证明了一个较弱的命题——五色定理。就是说对地图着色,用五种颜色就够了。 不过,让数学家感到欣慰的是,郝伍德没有彻底否定肯普论文的价值,运用肯普发明的方法,郝伍德证明了较弱的五色定理。这等于打了肯普一记闷棍,又将其表扬一番,总的来说是贬大于褒。真不知可怜的肯普律师是什么心情。追根究底是数学家的本性。一方面,五种颜色已足够,另一方面,确实有例子表明

相关主题
文本预览
相关文档 最新文档