当前位置:文档之家› 分子遗传学论文

分子遗传学论文

分子遗传学论文
分子遗传学论文

生命科学学院

生物科学专业

姓名:王光莉

学号:1004114127

分子遗传学研究进展

【中文摘要】:分子遗传学是在分子水平上研究基因的活动和功能的科学。近年来,分子遗传技术发展极为迅速,并对其它的生物学领域产生了巨大的影响。开始,分子遗传技术仅应用于一些细菌和病毒,而现在的分子遗传工具却能应用于几乎所有方面。

【英文摘要】:Molecular genetics is the activity of genes at the molecular level and function of science. In recent years, molecular genetic technology development is very rapid, and has a huge impact on other field of biology. Beginning, molecular genetic technique applies only to some bacteria and viruses, and now the molecular genetic tools can be applied to almost all aspects.

【关键词】:分子遗传学、中心法则、遗传工程、转基因、PCR、人类基因组计划、克隆

遗传学这个名称,最初是由英国科学家贝特森于1906年根据拉丁文延长(Latin genetikos)之意创造的。根据不同历史时期的学术水平和工作特点,遗传学的研究进程大体上可以分为经典遗传学、生化遗传学、分子遗传学、基因工程学、基因组学和表观遗传学等数个既彼此相对独立,又前后相对交融的不同发展阶段。这当中,分子遗传学的地位无疑是相当重要的,它起到了承上启下等的作用。

遗传学是研究基因的结构、功能、变异、传递和表达规律的学科。分子遗传学是遗传学的一个分支学科,是在分子水平上研究基因的结构与功能以揭示生物遗传和变异以及表达的分子机制。它研究的范畴包含基因在生命系统中的

储存、组织结构、基因的复制与传递的分子机制、基因表达与调控规律、基因表达产物的结构与功能、基因变异的分子机制、基因在控制细胞分裂、生长和分化以及形态发生与个体发育中的作用机制。

分子遗传学的早期研究都用微生物为材料,它的形成和发展与微生物遗传学和生物化学有密切关系。

分子遗传学的诞生:

1868年瑞士科学家F.Miescher从外科绷带上的脓细胞中分离一种有机物质-核素是人类第一次有了核酸的概念;1928年英国医生Griffith的肺炎球菌转化实验,发现遗传物质是DNA;1944年Avery纯化了Griffith所说的转化因子,直接证明遗传物质是DNA;1952年Hershey 和 Chase利用Ecoli噬菌体的重建实验证明噬菌体的遗传物质为DNA;1953年Watson 和Crick发现DNA双螺旋结构,揭示了生命第一原理,标志着分子遗传学的诞生。

分子遗传学的发展:

分子遗传学它全面继承和发展了经典遗传学和生化遗传学的科学内涵,又孕育并催生了基因工程学、基因组学和表观遗传学等3个现代遗传学主要分支的相继问世。毫无疑义在整个遗传学的发展史上,分子遗传学的确起到了承上启下的传承作用。

应该说二十世纪50年代初期至70年代初期,是分子遗传学迅猛发展快速进步的年代。在这短短的二十余年间,许多有关分子遗传学的基本原理相继提出,大量的重要发现不断涌现。其中比较重要的有:1956年,美国科学家科恩伯格(A.Kornberg)在大肠杆菌中发现了DNA聚合酶Ⅰ,这是可以在试管中合成DNA链的头一种核酸酶,从此拉开了DNA合成研究的序幕;1957年,弗伦克尔-康拉特和

辛格证实,烟草花叶病毒TMV的遗传物质是RNA,进一步表明RNA同样具有重要的生物学意义;1958年梅塞尔森和斯塔尔发现了DNA半保留复制机理,揭示了基因之所以能够代代相传准确保留的分子本质;同年克里克提出了描述遗传信息流向的中心法则,阐明了在基因表达过程中,遗传信息从DNA到RNA 再到蛋白质的传递途径;1961年两位法国科学家雅各布和莫洛建立了解释原核基因表达调节机理的操纵子模型,说明基因不但在结构上是可分的,而且在功能上也是有分工的;自1961年开始,经过尼伦伯格和库拉钠等科学家的努力,至1966年全部64种遗传密码子均已成功破译,从而将RNA分子上的核苷酸顺序同蛋白质多肽链中的氨基酸顺序联系起来,它是分子遗传学发展过程中影响最为深远的科学发现之一;1970年,美国科学家特明和巴尔帝摩发现了RNA

病毒及其反转录酶,证明遗传信息也可以从RNA反向传递到DNA,这是对中心法则的重大修正;1970年,史密斯等人从流感嗜血菌中首先分离到Ⅱ型核酸内切限制酶,它与1967年发现的DNA连接酶,同为DNA体外重组技术的建立提供了酶学基础。

70年代之后分子遗传学的研究依然保持着迅猛的发展势头,并取得了一系列重大的研究成果。1973年,美国斯坦福大学的P.Berg第一次在体外DNA重组成功,标志遗传工程的诞生,使分子遗传学真正成为既有理论又有应用的学科;1977年,F. Sanger, G.Maxam创立酶法、化学降解法测定DNA序列;1983年,Zambryske育成第一株转基因植物,引发了20世纪的“新绿色革命”(绿色革命指20世纪70年代十年中,利用传统遗传学方法育成高产水稻、玉米、小麦,解决人类的饥饿);1985年,Cetus公司发明了PCR技术,可以使DNA 在体外大量扩增,提供了对DNA研究的有效方法;1990年10月1号,美国正

式启动

“人类基因组计划”,2000年,人类基因组计划完成,标志着分子遗传学进入了一个全新的阶段1997年,英国科学家威尔穆特第一次用体细胞育成克隆羊“多莉”。

【参考文献】:

1、《分子遗传学》南京大学出版社孙乃恩孙东旭 2001

2、《分子遗传学》科学出版社张玉静 2002

3、《现代分子生物学》高等教育出版社朱玉贤 1997

4、《现代遗传学教程》中山大学出版社贺竹梅 2002

5、《分子遗传学原理》吴乃虎、黄美娟第一章

6、《普通遗传学》科学出版社方宗熙 1979

7、《分子遗传学》科学出版社张玉静 2000

(注:可编辑下载,若有不当之处,请指正,谢谢!)

分子遗传学名词解释

2014分子遗传学复习 一、名词解释 1、结构基因(Structural gene):可被转录形成mRNA,并进而翻译成多肽链,构成各种结构蛋白质,催化各种生化反应的酶和激素等。 2、调节基因(Regulatory gene):指某些可调节控制结构基因表达的基因,合成阻遏蛋白和转录激活因子。其突变可影响一个或多个结构基因的功能,或导致一个或多个蛋白质(或酶)量的改变。 3、基因组(genome):基因组(应该)是整套染色体所包含的DNA分子以及DNA 分子所携带的全部遗传指令。或单倍体细胞核、细胞器或病毒粒子所含的全部DNA或RNA。 4、C值悖理(C-v a l u e p a r a d o x):生物基因组的大小同生物在进化上所处的地位及复杂性之间无严格的对应关系,这种现象称为C值悖理(C——value paradox)。 N值悖理(N-v a l u e p a r a d o x):物种的基因数目与生物进化程度或生物复杂性的不对应性,这被称之为N(number of genes)值悖理(N value paradox)或G(number of genes)值悖理。 5、基因家族(gene family):由同一个祖先基因经过重复(duplication)与变异进化而形成结构与功能相似的一组基因,组成了一个基因家族。 6、孤独基因(orphon):成簇的多基因家族的偶尔分散的成员称为孤独基因(orphon) 。 7、假基因(pseudogene): 多基因家族经常包含结构保守的基因,它们是通过积累突变产生,来满足不同的功能需要。在一些例子中,突变使基因功能完全丧失,这样的无功能的基因拷贝称为假基因,经常用希腊字母表示 8、①卫星DNA(Satellite DNA):是高等真核生物基因组重复程度最高的成分,由非常短的串联多次重复DNA序列组成。 ②小卫星DNA(Minisatellite DNA) :一般位于端粒处,由几百个核苷酸对的单元重复组成。 ③微卫星DNA (Microsatellite DNA):由2-20个左右的核苷酸对的单元重复成百上千次组成。 ④隐蔽卫星DNA(cryptic satellite DNA):用密度梯度离心分不出一条卫星带,但仍然存在于DNA主带中的高度重复序列 9、DNA指纹(DNA fingerprints):小卫星DNA是高度多态性的,不同个体,各自不同。但其中有一段序列则在所有个体中都一样,称为“核心序列”,如果把核心序列串联起来作为探针,与不同个体的DNA进行分子杂交,就会呈现出各自特有的杂交图谱,它们和人的手纹一样,具有专一性和特征性,因个体而异,因而称为“DNA指纹”。 10、超基因(super gene) :是指真核生物基因组中紧密连锁的若干个基因座,它们作用于同一性状或一系列相关性状。 超基因家族(supergene family):是DNA序列相似,但功能不一定相关的若干个单拷贝基因或若干组基因家族的总称。 11、单核苷酸多态性(single nucleotide polymorphism,SNP):主要是指基因组水平上由单个核苷酸的变异所引起的DNA顺序多态性。它是人类可遗传变异中最常见的一种,占所有已知多态性的90%以上。 12、遗传标记(Genetic marker):可示踪染色体、染色体片段、基因等传递轨

_高血压分子遗传学研究现状_高血压分子遗传学研究现状

·学习园地· 高血压分子遗传学研究现状 宋卫华,惠汝太 关键词高血压;基因 高血压的家族聚集性间接证明了遗传因素在高血压发病机制中的作用,由家系研究从而引发了高血压遗传学的研究。而遗传高血压动物模型的成功更进一步支持遗传在高血压发生发展中的关键作用。依据目前国内外研究资料,公认高血压是环境因素和遗传因素共同作用的复杂疾病,遗传因素对高血压的影响占20% 55%[1]。 1单基因高血压 单基因遗传性高血压是由某个基因突变造成的,符合孟德尔遗传定律,又称孟德尔型高血压。目前明确为单基因高血压的至少有6种:糖皮质激素可治疗性醛固酮增多症(GRA)、Liddle氏综合征、类盐皮质激素增多征(AME)、盐皮质激素受体活性突变(MR mu-tations)、Gordon’s综合征(也称为假性低醛固酮血症Ⅱ型)、高血压伴短指畸形(也称Bilginturan综合征)。单基因高血压较为少见,通过基因突变筛查可做出准确的基因诊断,指导治疗。但是对单基因高血压致病基因的研究,拓新了对原发性高血压发病机理和防治的认识,使高血压发病机制的研究深入到肾脏离子通道基因水平,同时也为依据基因变异不同(基因诊断)个体化抗高血压治疗提供了良好的范例。 2原发性高血压易感基因 原发性高血压是复杂的多基因疾病。基因研究已经表明不同人群间有多个共同的高血压相关基因定位区域,即人类血压相关的数量性状遗传位点(BP-QTLs)。目前正在对定位于这些区域的基因功能以及影响血压变异的功能变异位点进行研究。近年发展的全基因组扫描技术使人们认识到,多个高血压致病基因可能位于传统血压调节通路内外。个体间血压差异约30%是遗传变异造成的,而70%由环境因素及环境与基因的相互作用造成的。目前关于原发高血压相关的易感基因的研究现状:1号染色体位于1p36.1的ECE1基因以及1q42-q43的AGT基因是人类血压调节的候选基因[2]。2号染色体2p25-p24是原发高血压的易感位点[3]。3号染色体位于3q21-q25的AGTR1A基因以及3p14.1-q12.3是与原发高血压相关。4号染色体位于4p16.3的ADD1基因与盐敏感性原发性高血压相关。7号染色体位于7q22.1的CYP3A5基因与盐敏感性原发性高血压相关;位于7q36的NOS3基因与妊娠高血压相关。11号染色体研究提示位于11q的数量性状遗传位点与血压的调节相关[4]。12号染色体位于12p13的GNB3基因是原发性高血压的易感基因[5]。17号染色体位于17cen-q11的NOS2A基因是原发性高血压的易感基因[6]。18号染色体位于18q21的MEX3C基因原发性高血压的易感基因[7]。20号染色体位于20q13的PTGIS基因是人类血压调节的候选基因[8]。 3继发性高血压的遗传因素 遗传因素在继发高血压的发病机制中同样起着关键作用。比如:原发性色素性结节状肾上腺皮质病(PPNAD),常染色体显性多囊肾病(ADPKD)和嗜铬细胞瘤。这些都是少见病,嗜铬细胞瘤只占新发高血压的0.1%。但在难治性高血压和反复看病的高血压人群中,这些疾病的患病率较高。假性嗜铬细胞瘤一种新的继发性高血压,特征是发作性和不稳定性血压升高。 目前已能成功对单基因高血压和继发性高血压进行基因检测,清楚的表明基因研究的进展已有助于高血压的临床诊断和治疗。另外,家系筛选和基因筛查正逐渐成为新的临床手段。继发性高血压的遗传研究进展令人鼓舞,有希望将分子生物学和标准临床诊断整合在一起。 4参考文献 [1]Jeanemaitre X,Gimenez-Roqueplo A,Disse-Nicodeme S,et al.Em-ery and rimoin’s principles and practice of medical genetics e-dition principles of medical genetics,5th ed.philadelphia:Churchill Liying- ston Elsevier,2007,283-330. [2]Caulfield M,Lavender P,Farrall M,et al.Linkage of the angio-tensinogen gene to essential hypertension.N Engl J Med,1994,330: 1629-1633. [3]Angius A,Petretto E,Maestrale GB,et al.A new essential hyper-tension susceptibility locus on chromosome2p24-p25,detected by genomewide search.Am J Hum Genet,2002,71:893-905. [4]Rutherford S,Cai G,Lopez-Alvarenga JC,et al.A chromosome11q quantitative-trait locus influences change of blood-pressure measure- ments over time in Mexican Americans of the San Antonio Family Heart Study.Am J Hum Genet,2007,81:744-755. [5]Siffert W,Rosskopf D,Siffert G,et al.Association of a human G-protein beta-3subunit variant with hypertension.Nat Genet,1998,18:45-48. [6]Rutherford S,Johnson MP,Curtain RP,et al.Chromosome17and the inducible nitric oxide synthase gene in human essential hyperten- sion.Hum Genet,2001,109:408-415. [7]Guzman B,Cormand B,Ribases M,et al.Implication of chromosome 18in hypertension by sibling pair and association analyses:putative in- volvement of the RKHD2gene.Hypertension,2006,48:883-891.[8]Nakayama T,Soma M,Watanabe Y,et al.Splicing mutation of the prostacyclin synthase gene in a family associated with hypertension. Biochem Biophys Res Commun,2002,297:1135-1139. (收稿日期:2012-02-07) (编辑:常文静) 551 中国循环杂志2012年4月第27卷第2期(总第174期)Chinese Circulation Journal,April,2012,Vol.27No.2(Serial No.174) 作者单位:100037北京市,中国医学科学院北京协和医学院心血管病研究所阜外心血管病医院高血压诊治中心作者简介:宋卫华副主任医师博士研究方向为高血压临床与基础研究Email:songweihua926@https://www.doczj.com/doc/2218888629.html, 通讯作者:惠汝太hurutai@https://www.doczj.com/doc/2218888629.html, 中图分类号:R54文献标识码:C文章编号:1000-3614(2012)02-0155-01doi:10.3969/j.issn.1000-3614.2012.02.023

第九章-生化与分子遗传学(答案)

第九章生化与分子遗传学(答案) 一、选择题 (一)单项选择题 1.基因突变对蛋白质所产生的影响不包括: A.影响活性蛋白质的生物合成B.影响蛋白质的一级结构 C.改变蛋白质的空间结构D.改变蛋白质的活性中心 E.影响蛋白质分子中肽键的形成 2.原发性损害指: A.突变改变了protein的一级结构,使其失去正常功能 B.突变改变了糖元的结构,使糖元利用障碍 C.突变改变了脂肪的分子结构,使脂肪动员受阻 D.突变改变了核酸的分子结构,使其不能传给下一代 E.突变主要使蛋白质的亚基不能聚合 *3.苯丙酮尿症的发病机理是苯丙氨酸羟化酶缺乏导致: A.代谢底物堆积B.代谢旁路产物堆积C.代谢中间产物堆积 D.代谢终产物缺乏E.代谢终产物堆积 4.半乳糖血症Ⅰ型的发病机理是由于基因突变导致酶遗传性缺乏使: A.代谢底物堆积B.代谢旁路产物堆积C.代谢中间产物堆积 D.代谢终产物缺乏E.代谢终产物堆积 5.色氨酸加氧酶缺乏症的发病机理是由于基因突变导致: A.5-羟色胺增多B.色氨酸不能被吸收C.色氨酸吸收过多 D.烟酰胺生成过多E.代谢终产物堆积 6.下列何种疾病不属于分子病? A. 肝豆状核变性 B. 先天性睾丸发育不全综合征 C. 血友病 D. 镰形细胞贫血 E. 家族性高胆固醇血症 7.关于苯丙酮尿症(PKU),下列哪项说法是不正确的? A.可进行新生儿筛查 B. 可进行产前检查 C. 不通过DNA分析不能确定出携带者 D. 是一种表现为智力低下的常染色体隐性遗传病 E. 是由于遗传性缺乏苯丙氨酸羟化酶所致 8.人类珠蛋白基因包括: A. 位于16p13上的类α珠蛋白基因簇,包括α和ζ基因 B. 位于llpl5上的类β珠蛋白基因簇,包括α、β、γ、ε和ζ等基因 C. 位于llpl5上的类α珠蛋白基因簇 D. 位于16p13上的类β珠蛋白基因簇 E. 位于Xp21的STR序列 *9.镰状细胞贫血是由于血红蛋白β链上的第6位氨基酸被下列哪种氨基酸替代? A. 脯氨酸 B. 色氨酸 C. 苏氨酸 D. 缬氨酸 E. 亮氨酸 *10.正常HbA的α链为141个氨基酸,有一种称为Hb Constant Spring的突变型,其α链为172个氨基酸,推测可能发生了: A. 无义突变 B. 终止密码突变 C. 移码突变 D.错义突变 E. 同义突变 11.一个溶血性贫血病人,经检查Hb A2为30%,肽链裂解后见有α、γ、δ三种肽链,其最可能被诊断为: A.α—地中海贫血 B.β-地中海贫血 C. HbS病 D. 高铁血红蛋白病 E.遗传性非球形红细胞贫血 12.由于代谢中间产物缺乏而引起的代谢缺陷是: A. 半乳糖血症 B.白化病 C. 糖原累积病 D. 苯丙酮尿症 E.家族性高胆固醇血症 13.以下五种血液病中,哪一种不是遗传病? A. 红细胞G6PD缺乏症 B. 地中海贫血 C. 血友病 D. 血小板无力症 E. 特发性血小板减少性紫癜 14.缺乏3个α基因引起:

分子遗传学综述作业

视网膜母细胞瘤研究进展 姓名:学号:学院:医学院 [摘要]视网膜母细胞瘤(Retinoblastoma,Rb)是一种起源于视网膜胚胎性核层细胞的恶性肿瘤,通常发生于5岁之前的儿童。Rb由位于13q14.1-q14.2RB1区Rb1基因突变引起,其发生率约为1:15000,在新生儿中约为1:20000,我国每年新发患儿数在1100-1500例左右。临床上Rb以白瞳症、斜视、青光眼、眼眶蜂窝织炎、葡萄膜炎、前房出血、玻璃体出血等为特征;临床治疗Rb以眼球摘除术、化学疗法、温热疗法、放射疗法和基因疗法为主。本文结合最新的研究进展,对Rb的临床特征、发病机理、检测方法和治疗方法等方面,进行以下综述。[关键词]Rb;Rb1;临床特征;发病机理;检测;治疗 1概述 1.1分类与研究现状 Rb通常按3种不同的方式:家族性或散发性、单侧或双侧、遗传性或非遗传性进行分类[1]。临床上我们倾向于使用前两种分类法[2]。因此,Rb临床病例可分别归类为单侧散发性、双侧散发性、单侧家族性及双侧家族性。 Rb患者中,约60%的患者为单侧,平均诊断年龄为24个月。单侧患者的RB肿瘤通常为单病灶,少数为多灶性肿瘤(单侧多发性Rb)。大多数人的单侧Rb无家族史,肿瘤较大,有时不能确定是否是一个单一的肿瘤。约40%的患者有双侧RB,平均诊断年龄为15个月。初步诊断时,两只眼睛均受累。双侧Rb患者表现为多肿瘤灶,有些孩子最初诊断为单侧RB也可发展为双侧RB。极少数情况下,双侧Rb和松果体母细胞瘤同时发生称为三侧Rb,且通常致死。 发生Rb后,其他特异性的眼外原发肿瘤的发生风险增加(统称为继发性肿瘤)。大部分的继发性肿瘤为骨肉瘤、软组织肉瘤(大多数为肉瘤和横纹肌肉瘤)或黑色素瘤[3]。这些肿瘤通常在青春期或成年期出现。在接受外放射治疗的RB患者中,继发性肿瘤的发病率会增加50%[4]。即使没有暴露于高剂量的放疗的遗传性视网膜母细胞瘤幸存者一生发展的迟发性癌的风险也会增加[5]。 我国Rb的临床和基础研究一直是眼科学重点探索的研究课题之一,近15年国家自然科学基金资助项目,仅Rb研究课题就有11项。其研究不仅从染色体和分子水平证明了Rb基因的异常[6],建立了多个Rb瘤细胞系[7],制备Rb单克隆抗体和开展了Rb的免疫导向和基因治疗等实验性研究[8];更重要的是在我国形成了多个以Rb为研究的团队,近20年国内各期刊发表的Rb有关文章共531篇,其中临床研究314篇(59.31%),基础研究217篇(40.87%),其内容广泛且有深度 1.2临床特征 Rb是一种通常发生于小于5岁的儿童的视网膜的恶性肿瘤。RB来源于具有癌症突变倾向的细胞,这些细胞均含有RB1基因的重复序列。Rb呈单灶或多灶分布,大约60%患者的RB1基因来源于单系,平均诊断年龄为24个月;另外40%患者的RB1基因来源于双系,平均诊断年龄为15个月。遗传性的RB是一种常染色体RB易感疾病,患有遗传性的RB个体患其它非眼部的肿瘤的风险也会增加。 1.3临床描述 视网膜母细胞瘤(Rb)。最常见的症状是一种白色瞳孔反射(白瞳症)。斜视是第二个最常见的症状,可能伴随或之前的白瞳症。不正常的症状还包括青光眼、眼眶蜂窝织炎、葡

分子遗传学

第一章
公元前4000年,伊拉克 的古代巴比伦石刻上记 载了马头部性状在5个 世代的遗传。
浙江大学


第一节 遗传学研究的对象 和任务
遗传学第一章
1
浙江大学
遗传学第一章
2
1.遗传学的研究内容: 1.遗传学的研究内容:
(1).是研究生物遗传和变异的科学: 遗传学与生命起源和生物进化有关。 (2).是研究生物体遗传信息和表达规律的科学: 解决问题:物种 代代相传; 性状 遗传。 (3).是研究和了解基因本质的科学: 遗传物质是什么? 遗传物质 性状?
浙江大学 遗传学第一章 3
∴ 遗传学是一门涉及生命起源和生物进化的理论科学, 同时也是一门密切联系生产实际的基础科学,直接指导 医学研究和植物、动物、微生物育种。
浙江大学
遗传学第一章
4
2.遗传和变异的概念: 2.遗传和变异的概念:
(1).遗传(heredity):亲子间的相似现象。 “种瓜得瓜、种豆得豆” (2).变异(variation):个体之间的差异。 “母生九子,九子各别” (3).遗传和变异是一对矛盾。 (4).遗传、变异和选择是生物进化和新品种选育的 三大因素: 遗传 + 变异 + 自然选择 遗传 + 变异 + 人工选择 形成物种 动、植物品种
自然选择
人工选择
(5).遗传和变异的表现与环境不可分割。
浙江大学 遗传学第一章 5 浙江大学 遗传学第一章 6

3.遗传学研究的对象: 3.遗传学研究的对象:
以微生物(细菌、真菌、病毒)、
植物和动物以及人类为对象,研究其 遗传变异规律。
4.遗传学研究的任务: 4.遗传学研究的任务:
(1).阐明:生物遗传和变异现象 (2).探索:遗传和变异原因 (3).指导:动植物和微生物育种 表现规律; 物质基础 内在规律;
提高医学水平。
浙江大学
遗传学第一章
7
浙江大学
遗传学第一章
8
第二节
遗传学的发展
一、现代遗传学发展前
浙江大学
遗传学第一章
9
浙江大学
遗传学第一章
10
1.遗传学起源于育种实践:
人类 生产实践 遗传和变异 选择
2. 18世纪下半叶和19世纪上半叶期间,拉马克和达尔文对
生物界遗传和变异进行了系统的研究: (1).拉马克(Lamarck J. B., 1744~1829): ①.环境条件改变是生物变异的根本原因; ②.用进废退学说和 获得性状遗传学说 如长颈鹿、家鸡翅膀。
育成优良品种。
浙江大学
遗传学第一章
11
浙江大学
遗传学第一章
12

96-02分子遗传学试题(博)

博士研究生入学考试试题 一九九六年分子遗传学 一、请说明高等动植物的基因工程与大肠杆菌基因工程的异同。什么是当前真核生物基因工 程的前沿?你认为目前动植物基因工程进一步发展的瓶颈是什么?(20分) 二、在遗传学的发展中模式生物的应用起了重要的作用,请用一种你最熟悉的模式生物,较 为系统地阐述应用该模式生物进行研究对分子遗传学的贡献。(15分) 三、从突变产生的机制看能否实现定向突变?试从离体和活体两种情况予以说明。(15分) 四、什么是基因组大小与C值的矛盾?造成这种矛盾的因素有哪些?如何估计真核生物基因 组的基因数目?在进化过程中自然选择是否作用于基因组的大小,请阐述你的观点。(15分) 五、水稻黄矮病毒含有负链RNA基因组,在完成对该病毒核衣壳蛋白基因(N)序列测定的 基础上,将N的编码序列置于水稻Actl基因(是一种组成性表达的基因)的启动子下游,通过基因枪方法导入一个水稻的粳稻品种,研究结果表明转基因的水稻植株在攻毒试验中表现出对黄矮病毒的抗性。请你进一步设计实验,证明以下两点: 1.转基因水稻的抗性确实是由于N基因导入水稻基因组表达的结果,而不是在转化过程中由于突变造成的; 2.转基因水稻的抗性是由于N基因的转录产物造成的,而不是该基因的翻译产物造成的。(20分) 六、限制性核酸内切酶在分子遗传学中广泛地用于各类研究,请具体地说明限制性内切酶在 研究工作中的应用范围。 (15分)

1997年博士研究生入学试题 分子遗传学(A卷) 一、在通过测序获得一个基因组克隆的DNA序列后,怎样才能了解该序列可能具有的基因功能,请提出你的研究方案。(20分) 二、请简单介绍你的硕士论文研究(或相当于硕士论文研究)的工作。如果这些工作涉及分子遗传学,请提出你深入研究的设想;如果你以前的工作与分子遗传学无关,也请你提出深入到分子水平的设想。(20分) 三、请指出目前阶段基因工程技术的局限性,并分析这些局限性的原因(你可以在人类基因冶疗,动物基因工程和植物基因工程三个方面任选一个来回答,也可以都回答)。(20分) 四、请说明基因组计划与生物技术的关系。(20分) 五、请说明真核生物染色体的结构和组成在分子水平上的特征。(20分) 1997年博士研究生入学试题 分子遗传学(B卷) 一、请简单介绍你的硕士论文研究(或相当于硕士论文研究)的工作。如果这些工作涉及分子遗传学,请提出你深入研究的设想,如果你以前的工作与分子遗传学无关,也请你提出深入到分子水平的设想。(20分) 二、请说明真核生物染色体的结构和组成在分子水平上的特征。(20分) 三、目前在遗传图谱和物理图谱的研究中使用哪些分子标记?请说明每种标记的

遗传学发展历史及研究进展(综述)

遗传学发展历史及研究进展 湛江师范学院09生本一班徐意媚2009574111 摘要:遗传学是一门探索生命起源和进化历程的学科,起源于人类的育种实践,于1910年进入现代遗传学阶段,并依次经历个体遗传学时期、细胞遗传学时期、数量遗传学和群体遗传学时期、细胞水平向分子水平过渡时期、分子遗传学时期。目前遗传学在医学、农牧业等领域取得重大突破,如表遗传学在肿瘤的治疗方面。21世纪将是遗传学迅猛发展的世纪,在经济、微生物、工业、制造业等许多领域都将有重大的突破。 关键词:遗传学发展历史研究现状发展前景 1 现代遗传学发展前 1.1遗传学起源于育种实践 人类在新石器时代就已经驯养动物和栽培植物,渐渐地人们学会了改良动植物品种的方法。写于公元60年左右的《论农作物》和533~544年间中国学者贾思勰在所著的《齐民要术》中均记载了嫁接技术,后者还特别记载了果树的嫁接,树苗的繁殖,家禽、家畜的阉割等技术。[1] 1.2 18世纪下半叶和19世纪上半叶期间 许多人都无法阐明亲代与子代性状之间的遗传规律,直到18世纪下半叶之后,拉马克和达尔文对生物界遗传和变异进行了系统的研究。拉马克通过长颈鹿的颈、家鸡的翅膀等认为环境条件的改变是生物变异的根本原因,并提出用进废退学说和获得性状遗传学说。达尔文达尔文以博物学家的身份进行了五年的考察工作,广泛研究遗传变异与生物进化关系,终于在1859年发表著作《物种起源》,书中提出自然选择和人工选择的进化学说,认为生物是由简单到复杂、低级再到高级逐渐进化的。除此之外,达尔文承认获得性状遗传的一些论点,并提出了“泛生论”假说,但至今未获得科学的证实。 1.3 新达尔文主义 以魏斯曼(Weismann A.,1834-1914) 为代表的等人支持达尔文选择理论否定获得性遗传,魏斯曼等人提出种质连续论,认为种质是世代连续不绝的。他们还通过对老鼠22代的割尾巴试验,否定后天获得性遗传,明确地区分种质和体质,认为种质可以影响体质,而体质不能影响种质,在理论上为遗传学的发展开辟了道路。[2] 2.现代遗传学的发展阶段

分子遗传学复习题及答案-

分子遗传学复习题 1.名词解释: DNA甲基化(DNA methylation):是指由DNA甲基化转移酶介导,催化甲基基团从S-腺苷甲硫氨酸向胞嘧啶的C-5位点转移的过程。 ENCODE计划(The Encyclopedia of DNA Elements Project):即“DNA元件百科全书计划”,简称ENCODE计划,是在完成人类基因组全序列测定后的2003年9月由美国国立人类基因组研究所(National Human Genome Research Institute,NHGRI)组织的又一个重大的国际合作计划,其目的是解码基因组的蓝图,鉴定人类基因组中已知的和还不知功能的多个物种的保守序列等在内的所有功能元件。ENCODE计划的实施分为3个阶段:试点阶段(a pilot phase)、技术发展阶段(a technology development phase)和生产阶段(a producttion phase)。 gRNA (guide RNA):既指导”RNA(gRNA,guide RNA),能通过正常的碱基配对途径,或通过G—U配对方式与mRNA上的互补序列配对,指导编辑的进行。 GT--AG规律(GT-AG rule):真核生物所有编码蛋白质的结构基因,其RNA前体在内含子和外显子交界处有两个较短的保守序列,内含子的左端均为GT,右端均为AG,此规律称GT-AG规律。 miRNA:即小RNA,长度为22nt左右,5′端为磷酸基团、3′端为羟基。miRNA广泛存在于真核生物中,不具有开放阅读框架,不编码蛋白质,其基因的转录产物是发夹状结构,在RNaseⅢ酶切后以双链形式存在,是近几年在真核生物中发现的一类具有调控功能的非编码RNA,它们主要参与基因转录后水平的调控。 RNA编辑(RNA editing) :是指通过碱基修饰、核苷酸插入或删除以及核苷酸替换等方式改变RNA的碱基序列的转录后修饰方式。 RNA诱导的沉默复合体(RNA Induced Silencing Complex,RISC):与siRNA结合后可识别并切断mRNA。 RNA指导的DNA甲基化(RNA Directed DNA Methylation RDDM):活性RISC进入核内,指导基因发生DNA的甲基化。 密码子摆动假说(wobble hypothesis):密码子的第1,2位核苷酸(5’→3’)与反密码子的第2,3核苷酸正常配对;密码子的的第3位与反密码子的第1位配对并不严谨,当反密码子的第1位为U时可识别密码子第3位的A或G,而G则可识别U或C,I(次黄嘌呤)可识别U或C或A。 比较基因组学(comparative genomics):是一门通过运用数理理论和相应计算机程序,对不同物种的基因组进行比较分析来研究基因组大小和基因数量、基因排列顺序、编码序列与非编码序列的长度、数量及特征以及物种进化关系等生物学问题的学科。 表观遗传变异(epigenetic variation):基因的碱基序列未发生改变,而是由于DNA甲基化,组蛋白的乙酰化和RNA编辑等修饰导致基因活性发生了变化,使基因决定的表型发生变化,且可遗传少数世代,但这种变化是可逆的。 超基因家族(supergene family):是DNA序列相似,但功能不一定相关的若干个单拷贝基因或若干组基因家族的总称。 沉默子(silencer):一种转录负调控元件,当其结合特异蛋白因子时,对基因转录起阻遏作用。特点很象增强子,但不增强转录,而是减弱转录,故称负增强子。 代谢组学(metabolomics):是对某一生物或细胞在一特定生理时期内所有低分子量代谢产物同时进行定性和定量分析的一门新学科。 端粒(telomere):是由独特的DNA序列及相关蛋白质组成的线性真核染色体的末端结构,它具有防止末端基因降解、染色体末端间的粘连和稳定染色体末端及其精确复制等功能。

分子遗传学考博试题

分子遗传学试题(2003年) 一、名词解释 1.持家基因:在哺乳动物各类不同的细胞中均有相同的一组基因在表达,这组基因数目在10000左右,它们的功能对于每个细胞都是必需的,这组基因叫做持家基因。 2.DNA指纹: 3.剪接体: 4.操纵子:又称操纵元,是原核生物基因表达和调控的一个完整单元,其中包括结构基因、调节基因、操作子和启动子。 5.S-D序列: 6.内含子:在原初转录物中通过RNA拼接反应而被去除的RNA序列或基因中与这段序列相应的DNA序列。有些基因的内含子可以编码蛋白质(RNA成熟酶或转座酶)。 7.AP位点: 8.基因簇: 9.冈崎片段: 10.Alu序列:Alu族序列大约有300000个,平均每6kbDNA就有一个。每个长度约300bp,在其第170位置附近都有AGCT这样的序列,可被限制性内切酶AluⅠ所切割(AG↓CT)。11.核酶: 12.琥珀突变: 13.弱化子: 14.同功tRNA:携带氨基酸相同而反密码子不同的一族tRNA称为同功tRNA。 15.颠换:由一个嘌呤碱基变为一个嘧啶碱基或由一个嘧啶碱基变为一个嘌呤碱基的突变,就做颠换。 16.核小体: 17.拟基因: 18.增变基因:研究发现有一些基因的突变可以大大提高整个基因组其它基因的突变率,这些基因被称为增变基因。 19.异源双链体:是指重组DNA分子两条链不完全互补的区域。 二、问答题: 1.简述snRNA的生物学功能 2.真核mRNA和原核mRNA在结构上有何区别 3.真核生物体内的重复序列有哪几种类型?有何生物学意义?在分子研究中有何应用?4.病毒8s(+)RNA复制的表达特点 5.以乳糖操纵子为例,说明正调控和负调控的作用 分子遗传学试题(2002年) 一、名词解释 1.拓扑异构酶(topoisomerase):催化DNA拓扑异构体相互转化的酶,有Ⅰ、Ⅱ两类,Ⅰ类使一条链产生切口,Ⅱ类使两条链都产生缺口,Ⅱ使DNA超螺旋化,Ⅰ使DNA松驰化。2.同裂酶(Isoschizomer):能识别和切割同样的核苷酸靶序列的不同内切酶。 3.卫星DNA(Satellite-DNA):DNA碱基的高度重复序列,用CsCl密度梯度离心时,在高峰外有几个小峰处于不同密度位置,长度为2~10bp,可 4.接酶(ribozyme):具有催化活性的RNA,如L19,有些只作用于,有些可作用于。5.同功tRNA(isoacceptor):由于简并性原理,一个aa可有不同的密码子,也就不同的6.冈崎片段:DNA复制过程中后随链方向的3-5端DNA合成

分子遗传学论文

分 子 遗 传 学 论 文 生命科学学院 生物科学专业 姓名:王光莉 学号:1004114127

分子遗传学研究进展 【中文摘要】:分子遗传学是在分子水平上研究基因的活动和功能的科学。近年来,分子遗传技术发展极为迅速,并对其它的生物学领域产生了巨大的影响。开始,分子遗传技术仅应用于一些细菌和病毒,而现在的分子遗传工具却能应用于几乎所有方面。 【英文摘要】:Molecular genetics is the activity of genes at the molecular level and function of science. In recent years, molecular genetic technology development is very rapid, and has a huge impact on other field of biology. Beginning, molecular genetic technique applies only to some bacteria and viruses, and now the molecular genetic tools can be applied to almost all aspects. 【关键词】:分子遗传学、中心法则、遗传工程、转基因、PCR、人类基因组计划、克隆 遗传学这个名称,最初是由英国科学家贝特森于1906年根据拉丁文延长(Latin genetikos)之意创造的。根据不同历史时期的学术水平和工作特点,遗传学的研究进程大体上可以分为经典遗传学、生化遗传学、分子遗传学、基因工程学、基因组学和表观遗传学等数个既彼此相对独立,又前后相对交融的不同发展阶段。这当中,分子遗传学的地位无疑是相当重要的,它起到了承上启下等的作用。 遗传学是研究基因的结构、功能、变异、传递和表达规律的学科。分子遗传学是遗传学的一个分支学科,是在分子水平上研究基因的结构与功能以揭示生物遗传和变异以及表达的分子机制。它研究的范畴包含基因在生命系统中的

分子遗传学要点整理

Chapter 1: Genomes, Transcriptomes and Proteomes 1. 概述 基因组(Genome):指生物的整套染色体所含有的全部DNA或RNA 序列。基因组是地球上每一物种具有的生物学信息的存储库。 基因组学(Genomics):指研究生物的整个基因组,涉及基因组作图、测序和功能分析的一门学科。 基因组所包含的生物信息的利用需要酶及其他参与基因组表达过程中一系列复杂生化反应的蛋白质的协同活性。 基因组表达的最初产物是转录组,即那些含有细胞在特定时间所需生物信息、编码蛋白质的基因衍生而来的RNA分子的集合。转录组由转录过程来维持。 基因组表达的第二个产物是蛋白质组,即细胞中那些决定细胞能够进行生化反应的所有蛋白质组分。这是通过翻译过程来完成的。 2.1 Genes are made of DNA 奥地利神父孟德尔1865年根据7个碗豆性状的实验提出了遗传因子假说,认为每个性状由遗传因子控制,并提出了遗传因子的分离与自由组合两大遗传规律。 证明基因由核酸 (DNA或RNA) 组成的3个著名实验: ①肺炎双球菌的转化试验;DNA是遗传物质 ②噬菌体感染实验;只有DNA是联系亲代和子代的物质 ③烟草花叶病毒的感染实验。RNA也是遗传物质 2.2 The structure of DNA A. Nucleotides and polynucleotides B. The model of double helix DNA 晶体X射线衍射图谱?为揭示DNA分子的二级结构提供了重要实验证据 a. Watson and Crick (1953) 提出的 DNA双螺旋结构模型: "?DNA分子通常以右手双螺旋形式存在,两条核苷酸链反向平行,且互为互补链。 "?戊糖-磷酸骨架在分子的外铡,在分子表面形成大沟和小沟,碱基堆积于螺旋内部。 "?碱基间通过氢键相互连接,A 和T 以2个氢键配对, G和C 以3个氢键配对。"?螺旋中相邻碱基间相隔0.34nm ,每10个碱基对螺旋上升一圈,螺距为 3.4nm ,直径为2.37 nm 。 b. DNA双螺旋结构的稳定力: ??碱基间形成的氢键/ ??相邻碱基间的疏水堆积力/ ??碱基相互作用的范德华力 尽管氢键使得双链中的碱基间的配对具有特异性(只有互补的两条链之间才能形成DNA双链),但其对于双螺旋的总体上的稳定性并无太大贡献。 核酸分子的稳定性的根源在于碱基对之间的疏水堆积力。作为芳香族化合物,

分子遗传学综述

分子遗传学综述 【摘要】:分子遗传学是在分子水平上研究生物遗传和变异机制的遗传学分支学科。经典遗传学的研究课题主要是基因在亲代和子代之间的传递问题;分子遗传学则主要研究基因的本质、基因的功能以及基因的变化等问题。 关键词:医学分子遗传学发展内容研究方法 分子遗传学是遗传学中的一门新兴分支学科。分子生物学的重要组成部分。广义地说,分子遗传学是研究分子水平描述的遗传体系或其组分的情形。狭义地说,它是研究遗传机理的分子基础以及受遗传物质控制的代谢过程。从分子水平研究遗传和变异的物质基础,是在遗传物质脱氧核糖核酸(DNA)的分子结构确认后迅速发展起来的。20世纪以来,随着对大分子化合物的研究不断取得突破,特别是脱氧核糖核酸分子双螺旋结构模型的建立,人们能够从主要生命物质结构的分予层次上得以合理地解释基因复制的机理、信息传递的途径、阐明生物遗传变异的运动形态,从而使整个遗传学的研究由形态描述、逻辑推理为主,转变为以物质结构与功能相统一为分析着眼点的新的发展阶段。分子遗传学的目的在于阐明脱氧核糖核酸的复制机理,脱氧核糖核酸、核糖核酸与蛋白质之间的关系,基因的本质、表达、传递及其调节机制,基因突变的分子基础,核外遗传的分子机制,以及细胞核质之间的关系等等.可从分子层次为探索生物发育、分化和进化等重大问题提供新的理论说明和实验手段.分子遗传学是遗传学发展的一个重要方向,遗传工程是分子遗传学的应用。

一、发展简史 1944年,美国学者埃弗里等首先在肺炎双球菌中证实了转化因子是脱氧核糖核酸(DNA),从而阐明了遗传的物质基础。1953年,美国分子遗传学家沃森和英国分子生物学家克里克提出了DNA分子结构的双螺旋模型,这一发现常被认为是分子遗传学的真正开端。1955年,美国分子生物学家本泽用基因重组分析方法,研究大肠杆菌的T4噬菌体中的基因精细结构,其剖析重组的精细程度达到DNA 多核苷酸链上相隔仅三个核苷酸的水平。这一工作在概念上沟通了分子遗传学和经典遗传学。 关于基因突变方面,早在1927年马勒和1928年斯塔德勒就用X射线等诱发了果蝇和玉米的基因突变,但是在此后一段时间中对基因突变机制的研究进展很慢,直到以微生物为材料广泛开展突变机制研究和提出DNA分子双螺旋模型以后才取得显著成果。例如碱基置换理论便是在T4噬菌体的诱变研究中提出的,它的根据便是DNA复制中的碱基配对原理。 美国遗传学家比德尔和美国生物化学家塔特姆根据对粗糙脉孢菌的营养缺陷型的研究,在40年代初提出了一个基因一种酶假设,它沟通了遗传学中对基因的功能的研究和生物化学中对蛋白质生物合成的研究。 按照一个基因一种酶假设,蛋白质生物合成的中心问题是蛋白质分子中氨基酸排列顺序的信息究竟以什么形式储存在DNA分子结构中,这些信息又通过什么过程从DNA向蛋白质分子转移.前一问题是

分子遗传学要点总结

第一章 1.理解Genomes, Transcriptomes 和Proteomes三个名词,并阐明它们在基因组表达过程中是如何联系在一起的; Genomes:基因组(Genome):由德国汉堡大学威克勒教授于1920年首创,指生物的整套染色体所含有的全部DNA或RNA序列。基因组是地球上每一物种具有的生物学信息的存储库。 基因组学(Genomics):由罗德里克于1986年首创,指研究生物的整个基因组,涉及基因组作图、测序和功能分析的一门学科。 Transcriptomes:基因组表达的最初产物是转录组,即那些含有细胞在特定时间所需生物信息、编码蛋白质的基因衍生而来的RNA分子的集合。 ?转录组中的RNA分子以及其他来自非编码基因的RNA都由转录过程产生。 ?Proteomes:基因组表达的第二个产物是蛋白质组,即细胞中那些决定细胞能够进行生化反应的所有蛋白质组分。 ?这些蛋白质是通过翻译那些组成转录组的mRNA分子而合成的。 ?蛋白质组包括了在特定时间存在于细胞中的所有蛋白质。 阐明三者在基因组表达过程中是如何联系在一起的? ?基因组所包含的生物信息的利用需要酶及其他参与基因组表达过程中一系列复杂生化反应的蛋白质的协同活性。 ?基因组表达的最初产物是转录组,即那些含有细胞在特定时间所需生物信息、编码蛋白质的基因衍生而来的RNA分子的集合。转录组由转录过程来维持。 ?基因组表达的第二个产物是蛋白质组,即细胞中那些决定细胞能够进行生化反应的所有蛋白质组分。这是通过翻译过程来完成的。 ?The genome tells you what could be happened theoretically in the cell. ?Transcriptome tells you what might be happened. ?And the proteome tells you what is happening. 2.掌握双螺旋结构的关键特征; Watson and Crick (1953) 提出的DNA双螺旋结构模型: DNA分子通常以右手双螺旋形式存在,两条核苷酸链反向平行,且互为互补链; 戊糖-磷酸骨架在分子的外铡,在分子表面形成大沟和小沟,碱基堆积于螺旋内部; 碱基间通过氢键相互连接,A和T以2个氢键配对,G和C以3个氢键配对; 螺旋中相邻碱基间相隔0.34nm,每10个碱基对螺旋上升一圈,螺距为3.4nm,直径为2.37 nm。 3.正确区分编码RNA和功能性RNA;

Prader_Willi_Angelman综合征的分子遗传学研究进展及其基因诊断

#综述# Prader2Willi/Angelman综合征的分子遗传学 研究进展及其基因诊断 傅俊江李麓芸 Prader2Willi综合征(P rader2Willi syn2 drome,P WS)和Angelman综合征(Angel2 man syndr ome,AS)是两种临床上明显不同的神经遗传性疾病。PWS (MIM176270)的特点为:胎动减少,肥胖,婴儿期肌张力减退,智力障碍,身材短小,促性腺激素分泌不足的性腺机能减退和手足异常。AS(MIM105830)的特点是严重运动、智力障碍,共济失调,肌张力低下,癫痫,语言障碍和以巨大下颌及张口吐舌为特征的特殊面容。Bower和Jeav2 ons于1967年创造了名为愉快木偶综合征(AS)的疾病,称/安琪儿0(Angelman)。PWS和AS均为染色体15q11213缺陷,其发病率约为1/15000。现对PWS、AS的分子缺陷类别与分子遗传学研究进展及其基因诊断综述如下。 1PWS和AS的分子缺陷类别 1.1缺失约70%的PWS及AS患者均发现有染色体15q11213的缺失。P WS为父源染色体15q11213的缺失、母源基因不表达,而AS为其母源染色体15q11213的缺失、父源基因不表达。 1.2单亲二体(uniparental disomy,UPD) P WS和AS患者的两条15号染色体均正常,但PWS患者的两条15号染色体均来自母亲,即母亲单亲二体(UPD);而AS 患者的两条15号染色体均来自父亲,即父亲单亲二体(UPD)。PWS的UP D发生率较普遍(25%),而AS的较低(2%)。1.3印迹突变印迹,也叫基因组印迹或遗传印迹,指源自双亲的子代等位基因的差异表达。印迹突变是在世代传递过程中,由于控制印迹的基因发生突变导致在配子形成中发生重新设定和转换失败。约5%的PW S和AS患者虽然从双亲各遗传 作者单位:410078长沙,湖南医科大学生殖工程研究室了1条15号染色体,但是它们在印迹的 染色体15q11213区域呈现异常DNA的甲 基化和基因表达,提示这类患者在自身的 印迹过程中发生了突变。其中的一半(包 括家族性的)为微缺失,P WS缺失的共同 最小区域在SNRPN基因的第1外显子 (4kb),而AS在SNRPN基因的第1外显 子的上游(2kb),从而确定这类患者为印 迹中心(impr inting center,IC)发生突变 )))印迹突变引起。PWS的共同缺失区 与AS的并不重叠,因此认为IC具有双重 结构[1,2]。为何印迹突变导致沿15q11213 区域呈现异常DNA的甲基化和基因表 达,目前并不清楚。但有人提出顺式作用 的父母一方基因组的/遗传外标记0(epi2 genetic mark)被甲基化,从而调节增强子 与哪一个启动子结合的/增强子2竞争0 (enhancer competition)模型[123]。也可能 在配子形成中,IC和SNRP N基因的启动 子元件对于在控制双亲印迹在15q11213 的重新设定和启动印迹转换中起了重要 的作用。 遗传印迹与DNA的甲基化有关。探 讨PWS和AS在印迹转换过程中突变,不 仅对于了解15q11213区域印迹的分子机 理,而且对于了解染色体其它区域,如各 种肿瘤及Beckwith2Wiedeman syndrome (BWS)的印迹突变的分子机理都是有帮 助的。 在生命世代的循环过程中,印迹在每 一代都必须进行转换和在发育的生殖细 胞中进行重新设定,只有这样才能保证不 同性别的个体特异地发生父系或母系印 迹。当母源印迹突变通过男性传递,母源 表基因型(epigenotype)如果不能在男性精 子中重新设定为正常父源表基因型,则阻 碍了从母源到父源(mat y pat)的印迹转 换,因而将母源印迹传递给他的半数配 子,所生的后代基因型除了遗传正常的母 源表基因型外还从父亲那儿遗传了异常 配子的表基因型。这样所生的后代是母 源表基因型的纯合子,因而产生了PWS; 同样,当父源印迹突变通过其女儿传递时 发生印迹转换失败,从而患者从母亲那儿 遗传了异常的父源表基因型,导致其后代 是父源印迹的纯合子,因而产生了AS。 对于这些PWS和AS,突变并不会直接影 响其本人,而是突变阻碍了双亲配子发生 祖辈印迹转换,其后果是半数后代致病。 这是家族性PWS和AS的印迹突变为何 能在同性后代中默默传递不致病、而在异 性后代中传递就发病的根本原因。这是 一种全新的遗传疾病发病机理[124]。 1.4基因突变过去认为P WS和AS均 是由于染色体微缺失而引起的邻近基因 综合征,而不是单个基因异常引起的。但 发现有20%的AS患者既无15号染色体 的缺失,也无UP D和印迹突变,而是基因 突变。Ki shno和Matsuura等在4例AS患 者中检测到UBE3A基因突变,其中包括 一个新生的5bp的重复,一个2bp的缺失, 导致框架移动;一个由母亲遗传的剪切突 变,导致转译提前终止和一个错义突 变[5,6]。 UBE3A基因定位在P WS及AS所在 的15q11213区域,它至少含有16个外显 子,覆盖的基因组约120kb,转录方向是从 端粒至着丝粒,其mRNA大小为528kb,由 于选择剪切作用而至少有5个以上的转 录本,编码区约2.6kb[7]。人和小鼠的研 究表明,UBE3A基因仅在脑中发生特异 性印迹[8],至于为何在脑中缺乏UBE3A 蛋白就出现AS的临床症状目前还不清 楚。UBE3A编码一种遍在蛋白2蛋白质连 接酶,它的功能是识别遍在蛋白转移的底 物的特异性并且直接催化遍在蛋白转移 到底物上[9,10]。 目前,人们仍未在PWS患者中检测 到某个基因的突变,不过在15q11213区域 鉴定了仅父源染色体表达的基因至少7 个(SNR PN,ZNF127,NDN,IC,PAR5, PAR1,I PW)和多个EST[4]。印迹中心

相关主题
文本预览
相关文档 最新文档