当前位置:文档之家› ABB功率因数控制器RVC

ABB功率因数控制器RVC

ABB功率因数控制器RVC
ABB功率因数控制器RVC

SVG静止无功补偿器

无功功率补偿 编辑词条分享 ?新知社新浪微博人人网腾讯微博移动说客网易微博开心001天涯MSN ? 1 定义 ? 2 产生和影响 ? 3 作用 ? 4 装置 无功功率指的是交流电路中,电压U与电流I存在一相角差时,电流流过容性电抗(X C)或感性电抗(X L)时所形成的功率分量(分别为)。这种功率在电网中会造成电压降落(感性电抗时)或电压升高(容性电抗时)和焦耳(电阻发热)损失,却不能做出有效的功。因而需要对无功功率进行补偿。合理配置无功补偿(包括在什么地点、用多大容量和采用何种型式)是电力系统规划和设计工作中一项重要内容。在运行中,合理使用无功补偿容量,控制无功功率的流动是电力系统调度的主要工作之一。 在交流电力系统中,发电机在发有功功率的同时也发无功功率,它是主要的无功功率电源;运行中的输电线路,由于线间和线对地间的电容效应也产生部分无功功率,称为线路的充电功率,它和电压的高低、线路的长短以及线路的结构等因素有关。电能的用户(负荷)在需要有功功率 (P)的同时还需要无功功率(Q),其大小和负荷的功率因数有关;有功功率和无功功率在电力系统的输电线路和变压器中流动会产生有功功率损耗(ΔP)和无功功率损耗(ΔQ),也会产生电压降落(ΔU)。 一般情况下,电力系统中发电机所发的无功功率和输电线的充电功率不足以满足负荷的无功需求和系统中无功的损耗,并且为了减少有功损失和电压降落,不希望大量的无功功率在网络中流动,所以在负荷中心需要加装无功功率电源,以实现无功功率的就地供应、分区平衡的原则。 无功补偿可以收到下列的效益:①提高用户的功率因数,从而提高电工设备的利用率;②减少电力网络的有功损耗;③合理地控制电力系统的无功功率流动,从而提高电力系统的电压水平,改善电能质量,提高了电力系统的抗干扰能力;④在动态的无功补偿装置上,配置适当的调节器,可以改善电力系统的动态性能,提高输电线的输送能力和稳定性;⑤装设静止无功补偿器(SV

功率因数自动补偿控制器

功率因数自动补偿控制器/低压无功补偿柜专用补偿器 ARC-10/J 安科瑞徐孝峰 江苏安科瑞电器制造有限公司江苏江阴214405 1概述 ARC系列功率因数自动补偿控制器是用于低压配电系统进行无功功率补偿的专用控制器,可以与电压等级在400V以下的静态电容屏(柜)配套使用。输出路数有6、8、10、12四种规格。产品符GB/T15576-2008国家标准,具有功能完善、运行稳定可靠、控制精度高等特点。-低压无功补偿柜专用补偿器ARC-10/J ARC系列功率因数自动补偿控制器具备RS485通讯接口,其所采样得到的电压、电流、频率、有功功率、无功功率、谐波含量、功率因数、温度可通过通讯接口传送到其它外部设备。 具备过电压保护、欠流锁定、电网谐波过大保护功能。 可选配开关量输入与温度控制,扩展开关量输入,能对外部中间控制接触器进行监控。温度控制能对电容屏(柜)降温风机进行自动控制。 2型号说明 3选型表

4使用条件 ●海拔高度不超过2500米 ●周围环境温度为-25℃~60℃,24小时的平均温度不高于40℃ ●空气的相对湿度在25℃时不大于85%,不结露 ●周围环境无腐蚀性气体,无导电尘埃,无易燃易爆介质存在 ●工作的电网电压波动幅度不得大于±20% ●安装地点无剧烈震动、无雨雪直接侵蚀 5技术参数 6面板图示 7外形及尺寸(mm)

8接线端子 上排端子 中排端子 下排端子 9接线图

工作电源为AC220V,相电压采样,继电器输出 工作电源为AC380V,线电压采样,继电器输出 工作电源为AC220V,相电压采样,带隔离的复合开关输出

工作电源为AC380V,线电压采样,带隔离的复合开关输出

功率因数控制器RVC的使用说明

功率因数控制器RVC的使用 1)、控制器RVC上电后可看到其默认界面为自动状态(Auto),按Mode键进入手动界面; 2)、按Mode键进入自动设定参数的界面; 3)、按Mode键进入手动设定目标功率因数cosψ的界面,通过按“+”和“-”键调整其大小,推荐cosψ为0.92--0.98; 4)、按Mode键进入设定灵敏系数C/k的界面,通过按“+”和“-”键调整其大小,可查阅RVC使用说明书的C/k表得到其值,也可通过下面的方法计算: 其中: Q:单步无功功率(kvar); U:系统电压(V); K:电流互感器变比。 5)、按Mode键进入手动设定相位值PHASE的界面,通过按“+”和“-”键调整其大小。严格按照RVC使用说明书要求的接线方式进行电压电流互感器信号的输入接线的前提下,可查阅使用说明书中的相位表得到相位值,也可以用以下方法设置: 确定RVC测试点实际的功率因数cosψ,然后调整相位值,进入RVC的自动界面查看其显示的功率因数是否与先前的实际值一致,若否,则调整相位值直到与实际值一致; 6)、按Mode键进入手动设定投切延迟时间Delay的界面,通过按“+”和“-”键调整其大小,推荐运行时的延迟时间为10秒,也可根据调试需要将其增大至40秒; 7)、按Mode键进入手动设定输出组数Output的界面,通过按“+”和“-”键调整其大小,补偿柜中的组数即为其值; 8)、按Mode键进入手动设定序列Sequence的界面,通过按“+”和“-”键调整其设定,可参见下表: 序列类型(组间容量的比例关系)显示值 1∶1∶1∶1∶1∶…∶1 1.1.1 1∶2∶2∶2∶2∶…∶2 1.2.2 1∶2∶4∶4∶4∶…∶4 1.2.4 1∶2∶4∶8∶8∶…∶8 1.2.8 1∶1∶2∶2∶2∶…∶2 1.1.2 1∶1∶2∶4∶8∶…∶8 1.1.8 1∶2∶3∶3∶3∶…∶3 1.2.3 1∶2∶3∶6∶6∶…∶6 1.2.6 1∶1∶2∶3∶3∶…∶3 1.1.3 1∶1∶2∶3∶6∶…∶6 1.1.6 9)、按Mode键进入自动界面(Auto),显示值即为测试到的功率因数值。若显示值与实际值不符,可以通过调整相位值PHASE改变相位关系,直到与实际值一致,

无功功率补偿器设计.

目录 摘要............................................................... 错误!未定义书签。 1 绪论............................................................. 错误!未定义书签。 1.1 课题背景与意义............................................. 错误!未定义书签。 1.1.1 无功功率的产生....................................... 错误!未定义书签。 1.1.2 无功功率的影响....................................... 错误!未定义书签。 1.1.3 无功补偿的作用....................................... 错误!未定义书签。 1.2 国内外研究现状............................................. 错误!未定义书签。 1.3 论文的主要研究内容......................................... 错误!未定义书签。 2 SVG的基础理论 (4) 2.1 无功功率和功率因数的定义 (4) 2.1.1正弦电路无功功率和功率因数 (4) 2.1.2 非正弦电路无功功率和功率因数 (4) 2.2 无功功率动态补偿原理 (5) 2.3阻抗补偿方案 (6) 2.3.1 晶闸管投切电容器TSC (6) 2.3.2 晶闸管控制电抗器TCR (7) 2.3.3晶闸管控制串联电容器TSC (8) 2.4 电压源变流器型补偿方案 (8) 2.4.1 无功功率发生器 (9) 2.4.2 开关型串联基波电压补偿器 (10) 3静止无功发生器(SVG)的设计 (11) 3.1 静止无功发生器(SVG)主电路 (11) 3.2 无功电流检测电路 (14) 3.3 无功控制电路 (15) 4系统仿真及分析 (17) 4.1 系统仿真模型 (17) 4.2 仿真结果与分析 (19) 小结与体会 (23) 参考文献 (24)

无功补偿控制器及动态补偿装置工作原理

无功功率补偿装置在电子供电系统中所承担的作用是提高电网的功率因数,降低供电变压器及输送线路的损耗,提高供电效率,改善供电环境。所以无功功率补偿装置在电力供电系统中处在一个不可缺少的非常重要的位置。合理的选择补偿装置,可以做到最大限度的减少网络的损耗,使电网质量提高。反之,如选择或使用不当,可能造成供电系统,电压波动,谐波增大等诸多因素。 一、按投切方式分类: 1.延时投切方式 延时投切方式即人们熟称的”静态”补偿方式。这种投切依靠于传统的接触器的动作,当然用于投切电容的接触器专用的,它具有抑制电容的涌流作用,延时投切的目的在于防止接触器过于频繁的动作时,电容器造成损坏,更重要的是防备电容不停的投切导致供电系统振荡,这是很危险的。当电网的负荷呈感性时,如电动机、电焊机等负载,这时电网的电流滞带后电压一个角度,当负荷呈容性时,如过量的补偿装置的控制器,这是电网的电流超前于电压的一个角度,即功率因数超前或滞后是指电流与电压的相位关系。通过补偿装置的控制器检测供电系统的物理量,来决定电容器的投切,这个物理量可以是功率因数或无功电流或无功功率。 下面就功率因数型举例说明。当这个物理量满足要求时,如COSΦ超前且》0.98,滞后且》0.95,在这个范围内,此时控制器没有控制信号发出,这时已投入的电容器组不退出,没投入的电容器组也不投入。当检测到COSΦ不满足要求时,如COSΦ滞后且《0.95,那么将一组电容器投入,并继续监测COSΦ如还不满足要求,控制器则延时一段时间(延时时间可整定),再投入一组电容器,直到全部投入为止。当检测到超前信号如COSΦ《0.98,即呈容性载荷时,那么控制器就逐一切除电容器组。要遵循的原则就是:先投入的那组电容器组在切除时就要先切除。如果把延时时间整定为300S,而这套补偿装置有十路电容器组,那么全部投入的时间就为30分钟,切除也这样。在这段时间内无功损失补只能是逐步到位。如果将延时时间整定的很短,或没有设定延时时间,就可能会出现这样的情况。当控制器监测到COSΦ〈0.95,迅速将电容器组逐一投入,而在投

静止无功补偿器的研究课程设计

1 静止无功补偿器的总体设计 1.1 静止无功补偿器的主电路 ASVG 分为采用电压型桥式电路和电流型桥式电路两种类型。两者的区别是直流侧分别采用的是电容和电感这两者不同储能元件,对电压型桥式电路,还需要串联上电抗器才能并上电网;对电流型桥式电路,还需要并联上电容器才能并上电网。实际上,由于运行效率的原因,实际应用的ASVG 大多采用的是电压型桥式电路。因此ASVG 专指采用自换相的电压型桥式电路作为动态无功补偿的装置。ASVG 的基本结构如图1-1。它由下列几部分组成:电压支撑电容,其作用是为装置提供一个电压支撑;由大功率电力电子开关器件(IGBT 或GTO )组成的电压源逆变器(VSC ),通过脉宽调制(PWM )技术控制电力电子开关的通断,将电容器上的直流电压变换为具有一定频率和幅值的交流电压;耦合变压器或电抗器,一方面通过它将大功率变流装置与电力系统耦合在一起,另一方面还可以通过它将逆变器输出电压中的高次谐波滤除,使ASVG 的输出电压接近正弦波。 图1-1 电压型补偿器结构图 上图为电压型的补偿器,如果将直流侧的电容器用电抗器代替,交流侧的串联电感用并联电容代替,则为电流型的补偿器。交流侧所接的电感L 和电容C 的作用分别为阻止高次谐波进入电网和吸收换相时产生的过电压。无论是电压型,还是电流型的SVG 其动态补偿的机理是相同的。当送到逆变器的脉宽恒定时,调节逆变器输出电压与系统电压之间的夹角δ就可以调节无功功率和逆变器直流侧电容电压Uc ,同时调节夹角δ和逆变器脉宽,即可以在保持Uc 恒定的情况下, 发出或吸收所需的无功功率。SVG 装置的核心部分是逆变电路,它将整流后的直流电压进行逆变以产生-个频率与系统相同的交流电压,并且这个电压的幅值和相位都可调,然后通过电抗器把这个电压并到电网上去,从而产生所需的交流无功功率。利用IGBT 智能模块后,逆变器电路无论是在体积、性能、稳定性上还是控制方式上都得到了极大的简化。本文中所介绍到的静止无功发生器是电压型的SVG ,它具有主电路的拓扑结构简单,且逆变装置所用的电压型器件IGBT 易于控制,灵活方便。 1.2 静止无功补偿器的工作原理 系统线 路 整流器..系统线路 V dc 电压源逆变器耦合变压器 系统电压

功率因数表的结构与工作原理及示波图法测量功率因数

功率因数表的结构与工作原理及示波图法测量功率因数 摘要:本文主要描述测量功率因数的方法,介绍相关仪表的结构及其工作原理,在测量功率因数时产生误差的因素。现在常见的是采用单片机测量功率因数,说明它的工作原理。阐述通过示波图测量功率因数的方法。 关键字:功率因数机械式电子式 1.功率因数的定义 在交流电路中,电压(U)与电流(I)之间的相位差(Φ)的余弦叫做功率因数,用符号cosΦ表示,在数值上,功率因数是有功功率和视在功率的比值,即cos Φ=P/S。 在直流电路里,电压乘电流就是有功功率。但在交流电路里,电压乘电流是视在功率,而能起到作功的一部分功率(即有功功率)将小于视在功率。有功功率与视在功率之比叫做功率因数,以cosΦ表示,其实最简单的测量方式就是测量电压与电流之间的相位差,得出的结果就是功率因数。 功率因数也可以由电路中纯阻值与总阻抗的比值求得。在实际电路中由于有电机设备中(如鼓风机、抽水机、压缩机等)等感性负载,使功率因数降低即产生了无功功率.无功功率使得电能没有全部转化为人们所用(即有功功率),而有一部分损耗(即无功功率)。也就是因为感性负载的存在,造成了系统里的一个KVAR 值,视在功率、有功功率、无功功率三者是一个三角函数的关系:KVA2=KW2+KVAR2 功率因数一般用仪表测量,有机械式功率因数表,电子式功率因数表。也可以通过示波图测量,以下分别阐述他们的结构与工作原理。 2.机械式功率因数表的结构及工作原理 单项功率因数表一般用于单相交流电路或使用对称负载平衡的三相交流电路中。单相表在频率不同时会影响读数准确性。常见机械式功率因数表一般有电动式,铁磁电动式,电磁式和变换器式几种。 现在以单相功率因数表为例来介绍机械式功率因数表的原理:

功率因数过补偿

功率因数过补偿 由于大部分用电负荷都是感性的,未补偿前功率因数为滞后,如果为补偿无功电流而投入的电容器过多,则会使功率因数变为超前,这就是过补偿。在过补偿的情况下,系统中出现容性的无功电流,使视在电流增大,因此使系统的损耗加大,多投入了电容器反而使系统损耗加大当然不是好事。另外,由于投入电容器会使电压升高(这里电压升高主要是因为供电线路的电感及变压器的漏感造成,与同步发电机的关系不大),在过补偿的情况下电压进一步升高,在夜间负荷较低电网电压较高的情况下影响更大。因此人们总是不希望发生过补偿。 但是事物都有两面性,过补偿不一定总是坏事。 通常的补偿装置都是安装在变压器的低压侧,在低压侧进行检测并进行控制将负荷的无功电流补偿掉,却无法补偿变压器自身的无功电流。一般人总认为变压器自身的无功只能在高压侧进行补偿,其实不然,通过在低压侧适量过补偿的办法,同样可以补偿变压器自身的无功电流。因为变压器属于理想元件,所谓理想元件就是能量传送没有方向的元件,同一台变压器,如果将高压侧接电源低压侧接负荷就是一台降压变压器,如果将低压侧接电源高压侧接负荷就是一台升压变压器。根据这个原理,对变压器进行无功补偿在低压侧进行与在高压侧进行没有区别。 对于为降低用户力率电费(功率因数调整电费)而安装的无功补偿装置,如果不采取适量过补偿的方法,就有可能出问题。 设某一单位,变压器为S7-500KV A,高压计量,用电设备主要是金属切削机床,一班生产,无夜班,每周5天生产,不生产时无负荷,月均用电量为2万度。未安装补偿装置之前月平均功率因数为0.5,按功率因数0.9为标准值需加收45%的力率电费。按功率因数0.85为标准值需加收35%的力率电费。 假定安装补偿装置后,在生产期间可以将低压侧功率因数补偿到0.95,停产期间由于无负荷没有电容器投入。那么根据cos(x)=0.95 我们可以算出x=18.2°, sin(x)=0.31 无功与有功的比值为0.31/0.95=0.33 由负荷形成的无功电量为20000×0.33=6600 度。 由于该单位是高压计量,因此变压器自身的无功电流也会使无功表走数。该单位的变压器为500KV A,按空载电流2%计算则变压器的无功功率为500×2% =10Kvar,每月形成的无功电量为10×24×30 = 7200 度,每月的总无功电量为6600+7200=13800度,无功与有功的比值为13800/20000=0.69即tg(x)=0.69 ,x=34.6°,cos(x)=0.82,还是要交利率电费。 从以上的分析我们可以看出,对于这样的用户,不补偿变压器自身的无功电流是不可能消除力率电费的。 解决的方案有三种: 方案1,在变压器的高压侧固定接一台10Kvar的高压电容器,这种方案为保证安全性较难操作。 方案2,在变压器的低压侧固定接一台10Kvar的低压电容器,这就是一种低压侧过补偿方法,并且这台电容器可以装在补偿装置柜内,比方案1的操作简单。但是要注意,这台电容器的电源线必须单独引出接在补偿装

功率因数调整表

功率因数的标准值及其适用范围 功率因数标准0.90,适用于160千伏安以上的高压供电工业用户(包括社队工业用户)、装有带负荷调整电压装置的高压供电电力用户和3200千伏安及以上的高压供电电力排灌站; 功率因数标准0.85,适用于100千伏安(千瓦)及以上的其他工业用户(包括社队工业用户),100千伏安(千瓦)及以上的非工业用户和100千伏安(千瓦)及以上的电力排灌站; 功率因数标准0.80,适用于100千伏安(千瓦)及以上的农业用户和趸售用户,但大工业用户未划由电业直接管理的趸售用户,功率因数标准应为0.85。 功率因数的计算 凡实行功率因数调整电费的用户,应装设带有防倒装置的无功电度表,按用户每月实用有功电量和无功电量,计算月平均功率因数; 凡装有无功补尝设备且有可能向电网倒送无功电量的用户,应随其负荷和电压变动及时投入或切除部分无功补尝设备,电业部门并应在计费计量点加装有防倒装置的反向无功电度表,按倒送的无功电量与实用无功电量两者的绝对值之和,计算月平均功率因数; 根据电网需要,对大用户实行高峰功率因数考核,加装记录高峰时段内有功、无功电量的电度表,据以计算月平均高峰功率因数;对部分用户还可试行高峰、低谷两个时段分别计算功率因数,由试行的省、市、自治区电力局或电网管理局拟订办法,报水利电力部审批后执行。 电费的调整 根据计算的功率因数,高于或低于规定标准时,在按照规定的电价计算出其当月电费后,再按照“功率因数调整电费表”(表一、二、三、)所规定的百分数增减电费。如用户的功率因数在“功率因数调整电费表”所列两数之间,则以四舍五入计算。 根据电网的具体情况,对不需增设补尝设备,用电功率因数就能达到规定标准的用户,或离电源点较近,电压质量较好、勿需进一步提高用电功率因数的用户,可以降低功率因数标准或不实行功率因数调整电费办法,但须经省、市、自治区电力局批准备,并报电网管理局备案。降低功率因数标准的用户的实际功率因数,高于降低后的功率因数标准时,不减收电费,但低于降低后的功率因数标准时,应增收电费。 表一以0.90为标准值的功率因数调整电费表 减收电费增收电费 实际功率因数月电费减少%实际功率因数月电费增加%实际功率因数月电费增加% 0.90 0.00 0.89 0.5 0.75 7.5 0.91 0.15 0.88 1.0 0.74 8.0 0.92 0.30 0.87 1.5 0.73 8.5 0.93 0.45 0.86 2.0 0.72 9.0 0.94 0.60 0.85 2.5 0.71 9.5 0.95~1.00 0.75 0.84 3.0 0.70 10.0 0.83 3.5 0.69 11.0 0.82 4.0 0.68 12.0 0.81 4.5 0.67 13.0 0.80 5.0 0.66 14.0 0.79 5.5 0.65 15.0

静止无功补偿器的控制方式

SVC 输出容量控制主要有电压控制和恒导纳控制两种方式,可以在运行人员的指令下互相切换。 3.1.1电压控制模式 这种控制模式下控制系统将测量所得到的母线电压Vmeas与一个设定的参考电压Vref 进行比较,然后将差值进行计算, 得到一个标么值电纳信号Bref ,该电纳值除以单组机械可投切电容(电抗) 器的电纳值可以确定需要的电容(电抗)器数目,而差值由TCR来补充。随后将该标么值电纳送往脉冲触发发生电路,控制TCR 的触发角。SVC稳态特性曲线的斜率采用电流反馈来实现,这种方法能够保证在SVC 控制范围内使端电压和端电流之间保持线性关系。实测的SVC电流ISVC与代表调差率的系数KSL相乘,构成信号VSL再输入到加法节点。当ISVC为感性时, VSL取正;当ISVC为容性时,VSL取负。其传递函数为:G( s) =K1(1+s T Q)/s(1+s Tp),其中T Q=Tp+Kp/K1 由于Tp通常设为零,因而控制器转化为简单的比例积分器,比例系数Kp 反映响应速度。电压调节器输出的电纳参考信号被送到触发计算单元,该单元计算出6 组触发角,送至脉冲发生电路,从而在SVC 母线上得到期望的电纳值,达到设定的控制目标。 3.1.2恒导纳控制模式 在该模式下,SVC 的等效导纳Bord 由运行人员设定,且该导纳可以在规定范围内连续可调。Bref来自电压调节器的输出,在恒导纳模式下被偏置。首先根据监控单元提供的开入量需要确定已投运的电容(电抗) 器组的等效电纳,然后经过电纳计算,得出仍需投切的电容(电抗) 器组以及需要的TCR 触发角连续调节的等效感性电纳。最后换算成触发角发送到触发脉冲发生电路。 3.1.3 PWM电流控制 对PWM电路的电流控制可分为间接电流控制和直接电流控制。前者通过控制整流器产生的交流电压基波分量的相位和幅值来实现PWM 交流侧的电流控制;后者采用跟踪型PWM控制技术对交流侧的电流进行直接控制。在目前的STATCOM 系统中,考虑到PWM开关频率较低以及功耗问题,因此多采用间接电流控制。但间接电流控制其网侧电流的动态响应慢,且对系统参数变化灵敏。相比之下,直接电流控制更能精确地控制PWM输出的电流,因此在DSTATCOM设计中,采用直接电流控制方法,从而可以设置较高的PWM 开关频率,减少输出电流谐波,获得较好的输出电流波形,进而降低系统设计成本,提高运行可靠性。该实验控制方法采用基于矢量变换的直接电流控制,其控制方案如下图所示。

功率因数自动补偿控制器工作原理

功率因数自动补偿控制器工作原理 功率因数自动补偿器是提高电网系统中功率因数的全自动化电子装置,通过它的调节作用,使电网中的无功消耗降到最小,达到充分利用电能、节约用电的目的。我站使用的GBK4-1C 型控制器,是通过检测系统中的负荷的功率因数自动投、切补偿电容器使系统功率因数在规定的范围内运行。 检测功率因数投、切法的思想是,当一个系统功率因数下降至低于下限整定值时投入补偿电容器,当功率因数超过上限整定值时切除补偿电容器。图一说明此控制方式的原理。 图中OA为功率因数下限整定值COSj A线,OB为功率因数上限整定值COSj B线,假设负荷线沿OD直线增加,其功率因数为COSj ,当负荷增至临界调节功率点M1时,电容器C1投入,这时补偿的无功功率为M1K1,视在功率为OK1,使功率因数在OA、OB两直线限定的范围内。若负荷继续增至M2点时,电容器C2又投入运行,又将功率因数控制在规定的范围内,负荷若再增至M3点时,电容器C3投入,使功率因数维持在规定的范围内。当负荷减少时,如由K3点减少至N1点时,电容器C1被切除,负荷若减少到N2点时,电容器C2又被切除,当负荷减少至临界调节功率线左面时,电容器被全部切除。这里临界调节线的位置取决于最小补偿电容器组的容量,负荷的性质以及所规定的功率因数的调节范围。图二为自动补偿控制器原理图。 图中按虚线将控制器分成:、测量部分;、直流放大部分;、执行部分;、电源部分。工作如下:先将交流电压与电流间的相位差,转换成直流电压信号,再将直流信号放大驱动执行部分动作,投入或切除补偿电容器。 测量部分的交流信号取自电网系统中母线A、C相线电压uAC和B相电流iB,由图三知三相交流系统中,当B相电流iB与B相电压uB同相,即COSj =1时,相电流iB与线电压uAC相差为p /2,当iB超前或滞后uB时,iB、uAC相位差就会小于或大于p /2,为了测出这种相位关系的变化,测量部分采用半波相敏差分放大线路,u1、u2分别反映交流侧uAC 及iB相位的两个交流电压值。由图知,只有当u2处于负半周时T1、T2的发射结正向偏置,才有可能导通。根据u1的极性决定是否产生集电极电流i1、i2。图四、图五、图六是反映u1与u2的相位关系与检测回路中T1、T2集电极电流流通的情况。图四为u1、u2同相在一周内只有T1导通,由于发射极与集电极所加的电压u1、u2的平均值最大,集电极电流i1最大而T2不会导通,故一周内a、b间的直流输出电压Uab=i1R1>0并为最大。图五为u1超前、u2相位p /2,由图可见,在0~p /2时,u1处于正半周,u2处于负半周,T2发射结正向偏置而导通,集电极电流i2经过二极管D2流达电阻R2,在3p /2~2p 期间,u1、u2均处于负半周,T1发射结正向偏置导通,集电极电流i1经二极管D1流过电阻R1,这样在一个周期内,T1、T2均导通p /2,而且导通期间两只三极管基极电压和集电极电压平均值相同,故i1=i2,选择R1=R2,则此时在一周内直流输出电压Uab=i1R1-i2R2=0。图六为u1与u2相差小于p /2,显而易见,T2导通时间比T1导通时间短,此时一周内i1平均值大于i2平均值,故Uab=i1R1-i2R2>0,此时Uab小于u1与u2同相位时的直流输出值,如果u1与u2相位差大于p /2时,同样可得Uab=i1R1-i2R2AC与电流iB的相位差使相敏放大线路输出不同的直流电压去控制直流放大部分,在Uabab经D4、R4加到T3、T5的发射结,再由T3、T5放大后驱动继电器J1动作,反之Uab>0时,Uab经D3、R3加到T4、T6发射结,由T4、T6放大后驱动J2动作。当J1动作后,J1常闭触点打开,C5经R7由负电源充电,使T7基极电位不断下降,经过一段时间(延时)后T7、T9导通,继电器J3动作,使第一组电容器投入系统运行,同时控制第二组电容器投入的J3的常闭触点打开,第二组开始延时,如果第一组电容器投入系统运行后系统功率因数仍达不到要求,测量回路的直流

JKF8说明书(补偿控制器)教学文稿

J K F8说明书(补偿控 制器)

1.概述 JKF8智能型低压无功功率自动补偿控制器(以下简称控制器)是低压配电 系统补偿无功功率的专用控制器,依据机械工业标准JB/T9663-1999及电力行 业标准DL/T597-1996设计,其控制物理量为无功功率和功率因数,有二种规格 (最大6回路、最大12回路)。控制器采用国际上最先进的微处理器进行智能 测量与控制,可与各种型号的低压电容柜、屏配套使用,具有功能完善,抗干 扰能力强,运行稳定可靠,并在有谐波的场合下能正确显示电网功率因数等特 点,具有全自动模式,“傻瓜”式设计,是目前国内无功补偿控制器性价比最好 的产品之一。 型号及其含义: F8 输出回路规格 产品设计序号 控制物理量—复合型 低压无功补偿控制器 2.功能特点 2.1 采用无功功率、功率因数复合控制,确保低负荷时可靠投入,避免投切振荡。 2.2 实时显示网络状况,包括功率因数、电压、电流、有功功率、无功功率等五种参数。 2.3 自动识别取样信号极性,无极性接错之虑。

2.4 电网电压低于300V或超过设定值时自动快速(5秒)逐级切除已投入的电容器组,并 显示电压值。 2.5 当电流互感器次级信号小于150mA时,封锁电容器的投入,同时自动快速(5秒)逐级切除 已投入的电容器组。 2.6 同组电容器切投封锁时间为3分钟。(电容放电时间) 2.7 有循环自检功能,便于电容屏出厂试验用。 3.使用条件 3.1环境温度:-10℃~+40℃ 3.2相对湿度:40℃≤50%,20℃≤90% 3.3海拔高度:≤2000m 3.4环境条件:无有害气体和蒸气,无导电性或爆炸性尘埃,无剧烈的机械振动 3.5工作电压:380V±20% 4.技术参数

功率因数控制器RVC的使用说明

功率因数控制器R V C的使 用说明 Prepared on 24 November 2020

?功率因数控制器RVC的使用 1)、控制器RVC上电后可看到其默认界面为自动状态(Auto),按Mode键进入手动界面; 2)、按Mode键进入自动设定参数的界面; 3)、按Mode键进入手动设定目标功率因数cosψ的界面,通过按“+”和“-”键调整其大小,推荐cosψ为; 4)、按Mode键进入设定灵敏系数C/k的界面,通过按“+”和“-”键调整其大小,可查阅RVC使用说明书的C/k表得到其值,也可通过下面的方法计算:其中: Q:单步无功功率(kvar); U:系统电压(V); K:电流互感器变比。 5)、按Mode键进入手动设定相位值PHASE的界面,通过按“+”和“-”键调整其大小。严格按照RVC使用说明书要求的接线方式进行电压电流互感器信号的输入接线的前提下,可查阅使用说明书中的相位表得到相位值,也可以用以下方法设置: 确定RVC测试点实际的功率因数cosψ,然后调整相位值,进入RVC的自动界面查看其显示的功率因数是否与先前的实际值一致,若否,则调整相位值直到与实际值一致; 6)、按Mode键进入手动设定投切延迟时间Delay的界面,通过按“+”和“-”键调整其大小,推荐运行时的延迟时间为10秒,也可根据调试需要将其增大至40秒; 7)、按Mode键进入手动设定输出组数Output的界面,通过按“+”和“-”键调整其大小,补偿柜中的组数即为其值; 8)、按Mode键进入手动设定序列Sequence的界面,通过按“+”和“-”键调整其设定,可参见下表: 序列类型(组间容量的比例关系)显示值 1∶1∶1∶1∶1∶…∶1 1.1.1 1∶2∶2∶2∶2∶…∶2 1.2.2 1∶2∶4∶4∶4∶…∶4 1.2.4 1∶2∶4∶8∶8∶…∶8 1.2.8 1∶1∶2∶2∶2∶…∶2 1.1.2 1∶1∶2∶4∶8∶…∶8 1.1.8 1∶2∶3∶3∶3∶…∶3 1.2.3 1∶2∶3∶6∶6∶…∶6 1.2.6 1∶1∶2∶3∶3∶…∶3 1.1.3 1∶1∶2∶3∶6∶…∶6 1.1.6 9)、按Mode键进入自动界面(Auto),显示值即为测试到的功率因数值。若显示值与实际值不符,可以通过调整相位值PHASE改变相位关系,直到与实际值一致,设定参数结束。 ?智能电流表DH8的使用

无功功率自动补偿控制器按装调试方法

JK系列无功功率自动补偿控制器,适用于电容器补偿装置的自动调节(以下简称控制器),使功率因数达到用户预定状态,提高电力变压器的利用效率,减少线损,改善供电的电压质量,从而提高经济效益。? 二、工作条件? 1.海拔高度不高于2500米 2.环境温度-25℃~+50℃ 3.空气湿度在40℃时不超过50%,20℃时不超过90%。 4.周围环境无腐蚀性气体,无导电尘埃,无易燃易爆的介质存在。 5.安装地点无剧烈震荡。? 三、技术数据? 1.基本技术参数 额定工作电压AC220/380V/50/60Hz 额定工作电流AC0-5A 50Hz 输出触点容量AC220 7A 50Hz 显示功率因数滞后0.01-超前0.01控制方式自动寻优/循环投切灵敏度100mA 防护等级外壳IP40? 2.控制参数可调范围及出厂整定值? 技术参数参数值出厂设定值?

产品型号JKL5C、JKG2B JKW5C、JKL5C、JKL5B、JKL5A? 过压预置230~300V可调步长1V 400~500V可调步长1V 245V/440V? 延时预置1~250s可调步长1s 30s? C/K比值0.01~1.00可调步长0.01 0.10? 投入门限0.80~0.99可调步长0.01 0.95? 切除门限滞后0.91超前0.90可调步长0.01 1.00? 控制组数1~12 硬件允许最大值? 四、开孔尺寸及型号说明? 产品型号取样电压开孔尺寸? JKW5C 线电压380V 113×113mm? JKL5C 线电压380V 113×113mm? JKL5C 线电压220V 113×113mm? JKL5B 线电压380V 140×102mm? JKL5A 线电压380V 162×102mm? JKG2B 线电压220V 162×102mm?

静止无功补偿器SVG发展及应用

静止无功发生器SVG 发展及应用

目录 1. 电能质量 (1) 2. 无功补偿 (1) 2.1. FACTS简介 (1) 2.2. 可调无功补偿技术方案 (2) 2.3. 有源滤波与静止无功补偿技术 (3) 3. SVG介绍 (5) 3.1. 静止无功发生器主电路的拓扑结构 (5) 3.2. 静止无功发生器的基本工作原理 (6) 3.3. 常见的几种无功电流检测方法 (7) 3.4. SVG和SVC优劣性比较 (8) 4. SVG 的研究现状及发展趋势 (10) 4.1. SVG 的国内外应用实例 (10) 4.2. SVG 发展趋势 (11) 4.3. SVG 应用范围 (12)

1.电能质量 交流输电功率包括有功功率和无功功率。在有功功率不变的情况下,无功功率越大就会使功率因数降低,视在功率增大,从而需要增大发、输、配电设备的容量,增加投资和电力损耗费用;使输电线路电压降变大,不利于有功电力的输送与合理应用。但如果无功储备不足将会导致电网电压水平降低,冲击性的无功功率负载还会使电压产生剧烈的波动,恶化电网的供电质量。对于给定的有功分布,要想使无功潮流最小以减少系统的损耗,就要求对无功功率的流向与转移进行很好的控制。 随着电网的不断发展,对无功功率进行控制与补偿的重要性与日俱增:①输电网络对运行效率的要求日益提高,为了有效利用输变电容量,应对无功进行就地补偿;②电源(尤其水电)远离负荷中心,远距离的输电需要灵活调控无功以支撑解决稳定性及电压控制问题;③配电网中存在大量的屯感性负载,在运行中消耗大量无功,使得配电系统损耗大大增加;④直流输电系统要求在换流器的交流侧进行无功控制;⑤用户对于供电电能质量的要求日益提高。因此,对电网的无功进行就地补偿,尤其是动态补偿,在输配电系统中十分必要。 随着现代电力电子技术的发展,大量的大功率整流、变频装置应用于电力系统,由于这些设备大部分功率因数较低,在工作过程中需要大量的无功功率,给国家电网带来了很大的额外负担,直接影响到了电网的质量。电力电子装置本身还是一个谐波源,这些设备的大量应用使电网上的谐波污染日趋严重,严重影响了电力系统的供电质量,同时使系统留下严重的安全隐患。 2.无功补偿 2.1.FACTS简介 柔性交流输电系统(以下简称FACTS)是美国电力研究所(Electric Power Research Institule,EPRI)N.G.Hnigornai博士于1986年首先提出。它具有控制速度快、控制灵活、可靠性高、可连续调节、可迅速改变潮流分布等优点。近年来成为电力系统稳定控制的一个重要研究方向。 目前,主要的FACTS 装置包括三大类。第一类为并联装置,如静止无功补偿器(Static Var Compensator,SVC),它能够根据无功功率的需求自动补偿;静止无功发生器(Static Var Generator,SVG),它是最新出现的一种并联补偿装置,这是本文研究的主要对象。第二类为串联装置,如静止同步串联补偿器(Static Synchronous Series Compensator,SSSC)、晶闸管控制串联电容器(Thyristor Controlled Series Capacitor,TCSC)等。第三类为混合装置,如统一潮流控制器(United Power Flow Conrtollor,UPFC)相间潮流控制器(Interphase

PFC-02功率因数自动控制器使用说明

PFC-02功率因数自动控制器使用说明 注意事项: 1、PFC-02功率因数控制器不能与PFC-01控制器互换; 2、PFC-02功率因数控制器的C2和C3接线端子应接到发 电机的C2 和C3上,绝对不能短路,不能接到发电机 的A1和A3上,否则可能造成控制器的损坏; 3、当不用外部调压电位器时,应将发电机AVR板上的S3 开关闭合,即在上方位置; 4、交流电压信号为两相相电压和另外一相线电流; 5、PFC-02适用于1FC6发电机。 一、简介 由于电网电压的变化及发电机组有功功率的变化,机组的功率因数时常变化,功率因数自动控制器,就可以根据功率因数的变化情况输出一控制信号给发电机的电压调节器AVR,从而达到自动调节发电机输出无功功率的目的,即使功率因数保持恒定。 该装置的功率因数自动调节功能只适用于与电网并联运行的发电机组,对于并车运行的机组,可设定其工作在手动方式,从而实现机组之间无功功率的均匀分配,即功率因数的手动调整。 二、主要技术参数 工作电源:22VDC~28VDC

功率因数调节范围:0.5-1.0(滞后) 功率因数调整适用范围:5%-100%机组额定电流 功率因数控制精度:1~4%,可随意设定 发电机交流电压输入信号:380VAC 发电机交流电流输入信号:0~5A 三、主要特点 1、智能化:目标功率因数,控制精度,控制速度等多个参 数可任意设定。 2、人性化:当手动进行控制时,若“增加”或“减少”状态保持 2秒以上时,进行快速控制。 3、测量精度高,且与信号线的接线顺序无关:本控制器采 用两相相电压和另外一相电流的测量方法,测量的功率 因数只与发电机组的实际功率因数有关,而与接线方式 无关,也就是说,更换电压的接线顺序或者电流取样的 顺序不影响测量值;该方法测量准确,精度高。 四、参数设定 1、目标功率因数的设定 a)按“设定/保存”按键,直至显示“SET”字样; b)“SET”显示完毕之后,随后显示目前已设定的功率因数值; c)按“增加”键,增加设定功率因数值; d)按“减少”键,减少设定功率因数值; e)功率因数设定范围为0.5~1.0,超出范围时,显示“ERR”,并退

功率因数表的接线方法

功率因数表的接线方法 1、2、3、4、5接线柱哪两个为电流哪两个为电压呀 你用万用表测一下,电阻为0的两个端子就是电流,电阻无穷大的是电压端子,和外壳金属部分连的是接地端。 *I为电流的进线端,I为电流的出线端,此两端接A相,电源接BC两端,接错了,不准的。当线路上出现无功时,表头指针将从零刻度向滞后刻度盘摆动(向上)。当电容器过补偿时,表头指针将会向超前刻度盘摆动(向下)。如果电流端进出线接反,将出现显示不准确。 (1D1-cosφ型功率因数表的接线方法通常是:电压,接AB相,电流,接C相。 或者:任意两相的电压(线电压),和另外一相的电流。) 这个数显功率表怎么接线啊! 这个功率表接上一个开关电源测功率!你的输入电压和输入电流是什么概念?这个功率表不是串接在电路中的? 端子8、10是接电源220V;

端子1、2是接输入电压(V); 1(L)接电压负, 2(H)接电压正; 端子3、4为输入电流(I)的正,端子5、6为输入电流(I)负。 端子11、12为外部输出电流,如果用不上就不用接线。 功率表怎么接线 接两相的电流和三相电压。 电路图中的功率表两个*号端两个接线端 两个*号端两个接线端分别是怎么意思?在电路图中,测的是什么量? 如图,功率表那样接,是通过测电路什么量得到功率的?两个*号端两个接线端分别是什么意思?

测功率只有二个量电流、电压 *是电流电压线圈的一端电流线圈*号端必须接输入端,而电压线圈*号端可以接在输入输出端,只是接在输出端时测量的功率包括了电压线圈的功率,通常电压线圈都接在输入端。 功率因数表怎样接线 指针式功率因数表在设计时,是取A、B相电压和C相电流并且功率因数等于1时,指针在中间(1)位置设计的。低压供电网络的功率因数基本都是滞后。极少是等于1。(网络负荷显容性时才会超前。停电时表的指针应在中间,指1的位置。正常供电的网络,功率因数表很少在指1的位置。)

功率因数补偿控制器的工作原理及设计方案

功率因数补偿控制器的工作原理及设计方案 随着现代工业的发展,电网中使用的感性负载也愈来愈多,如感应式电动机、变压器等。这些设备在工作时不但要消耗有功功率,同时需要电网向其提供相应的无功功率,造成电网的功率因数偏低。在电网中并联电容器可以减少电网向感性负载提供的无功功率,从而降低输电线路因输送无功功率造成的输电损耗,改善电网的运行条件,因此功率因数补偿控制器一直有着广阔的应用市场。本文所介绍的功率因数补偿控制器符合JB/T9663-1999国家标准,主要功能有: (1)相序自动识别 (2)电压、电流、功率因数采样与显示 (3)过压解除、欠流封锁,从而保护电容器及避免循环投切 (4)采用先投入的先切除,先切除的先投入的原则,对补偿电容实行循环投切 (5)所有的工作参数都可以通过面板按键设定,包括投入门限、切除门限、过压保护门限、欠电流封锁门限、投切延时时间 一、工作原理 采样三相电源中一线电流(如A线)与另外两线的电压(如BC线)之间的相位差,通过一定的运算,得到当前电网的实时功率因数。此功率因数与设定的投入门限和切除门限比较,在整个投切延时时间内,若在投切门限以内,则不予动作;若小于投入门限,则另投入一组电容器;若大于切除门限或发现功率因数为负时,则切除一组已投入的

电容器。再经过投切延时时间,重复比较与投切,直到当前的功率因数达到投切门限以内。在投切过程中,若发现检测到的电压大于设定的过压保护门限,则按组切除所有已投入的电容;当检测到的电压超过设定的过压保护门限的10%时,则一次性切除所有已投入的电容,用以保护电容器。在投切时若发现检测到的电流小于欠电流封锁门限,则停止投切动作,避免系统出现循环投切现象。 由于在三相供电中有不同接线方法,不同的接线方法对功率因数的算法也不一样,因此我们规定ARC系列功率因数自动补偿控制仪的电流取自三相供电中的A线,电压取自BC间的线电压,同时为减少现场接线的复杂度,我们在程序中对相位进行自动判别。 在三相供电中,我们假设三相的相电压分别为Ua、Ub、Uc,A线电流为Ia 则有Ua=Usin(ωt),Ub=Usin(ωt+120o),Uc=Usin(ωt+240o),从而得到BC间的线电压为Ubc=Ub-Uc= Usin(ωt-90o) 若A线负载为纯阻性,则A线电流Ia与A线电压Ua同相,Ia超前Ubc 的角度为90o; 若A线负载为感性,则A线电流Ia滞后A线电压Ua角度为φ(0o≤φ≤90o),Ia超前Ubc的角度为90o-φ; 若A线负载为容性,则A线电流Ia超前A线电压Ua角度为φ(0o≤φ≤90o),Ia超前Ubc的角度为90o+φ 在我们的ARC功率因数自动补偿控制仪中,为了计算的方便,我们电流相位的采样为电压采样的第二个周期,即若没有相位差Ia滞后Ua

相关主题
文本预览
相关文档 最新文档