恒力矩转动法测刚体转动惯量实验报告及数据处理
- 格式:pdf
- 大小:10.09 MB
- 文档页数:4
恒力矩转动法测刚体转动惯量转动惯量是刚体转动中惯性大小的量度。
它取决于刚体的总质量,质量分布、形状大小和转轴位置。
对于形状简单,质量均匀分布的刚体,可以通过数学方法计算出它绕特定转轴的转动惯量,但对于形状比较复杂,或质量分布不均匀的刚体,用数学方法计算其转动惯量是非常困难的,因而大多采用实验方法来测定。
转动惯量的测定,在涉及刚体转动的机电制造、航空、航天、航海、军工等工程技术和科学研究中具有十分重要的意义。
测定转动惯量常采用扭摆法或恒力矩转动法,本实验采用恒力矩转动法测定转动惯量。
一、实验目的1、学习用恒力矩转动法测定刚体转动惯量的原理和方法。
2、观测刚体的转动惯量随其质量,质量分布及转轴不同而改变的情况,验证平行轴定理。
3、学会使用智能计时计数器测量时间。
二、实验原理1、恒力矩转动法测定转动惯量的原理根据刚体的定轴转动定律:βJ M =(1)只要测定刚体转动时所受的总合外力矩M 及该力矩作用下刚体转动的角加速度β,则可计算出该刚体的转动惯量J 。
设以某初始角速度转动的空实验台转动惯量为J 1,未加砝码时,在摩擦阻力矩M μ的作用下,实验台将以角加速度β1作匀减速运动,即:11βμJ M =-(2)将质量为m 的砝码用细线绕在半径为R 的实验台塔轮上,并让砝码下落,系统在恒外力作用下将作匀加速运动。
若砝码的加速度为a ,则细线所受张力为T= m (g - a)。
若此时实验台的角加速度为β2,则有a= R β2。
细线施加给实验台的力矩为T R= m (g -R β2) R ,此时有:212)(ββμJ M R R g m =--(3)将(2)、(3)两式联立消去M μ后,可得:1221)(βββ--=R g mR J (4)同理,若在实验台上加上被测物体后系统的转动惯量为J 2,加砝码前后的角加速度分别为β3与β4,则有:3442)(βββ--=R g mR J (5)由转动惯量的迭加原理可知,被测试件的转动惯量J 3为:123J J J -=(6)测得R 、m 及β1、β2、β3、β4,由(4),(5),(6)式即可计算被测试件的转动惯量。
篇一:大学物理实验报告测量刚体的转动惯量测量刚体的转动惯量实验目的:1.用实验方法验证刚体转动定律,并求其转动惯量;2.观察刚体的转动惯量与质量分布的关系3.学习作图的曲线改直法,并由作图法处理实验数据。
二.实验原理:1.刚体的转动定律具有确定转轴的刚体,在外力矩的作用下,将获得角加速度β,其值与外力矩成正比,与刚体的转动惯量成反比,即有刚体的转动定律:m = iβ (1)利用转动定律,通过实验的方法,可求得难以用计算方法得到的转动惯量。
2.应用转动定律求转动惯量如图所示,待测刚体由塔轮,伸杆及杆上的配重物组成。
刚体将在砝码的拖动下绕竖直轴转动。
设细线不可伸长,砝码受到重力和细线的张力作用,从静止开始以加速度a下落,其运动方程为mg – t=ma,在t时间内下落的高度为h=at/2。
刚体受到张力的力矩为tr和轴摩擦力力矩mf。
由转动定律可得到刚体的转动运动方程:tr - mf = iβ。
绳与塔轮间无相对滑动时有a = rβ,上述四个方程得到:22m(g - a)r - mf = 2hi/rt (2)mf与张力矩相比可以忽略,砝码质量m比刚体的质量小的多时有a<<g,所以可得到近似表达式:2mgr = 2hi/ rt (3)式中r、h、t可直接测量到,m是试验中任意选定的。
因此可根据(3)用实验的方法求得转动惯量i。
3.验证转动定律,求转动惯量从(3)出发,考虑用以下两种方法:2a.作m – 1/t图法:伸杆上配重物位置不变,即选定一个刚体,取固定力臂r和砝码下落高度h,(3)式变为:2m = k1/ t (4)2式中k1 = 2hi/ gr为常量。
上式表明:所用砝码的质量与下落时间t的平方成反比。
实验中选用一系列的砝码质量,可测得一组m与1/t的数据,将其在直角坐标系上作图,应是直线。
即若所作的图是直线,便验证了转动定律。
222从m – 1/t图中测得斜率k1,并用已知的h、r、g值,由k1 = 2hi/ gr求得刚体的i。
恒力矩转动法测刚体转动惯量转动惯量是刚体转动中惯性大小的量度。
它取决于刚体的总质量,质量分布、形状大小和转轴位置。
对于形状简单,质量均匀分布的刚体,可以通过数学方法计算出它绕特定转轴的转动惯量,但对于形状比较复杂,或质量分布不均匀的刚体,用数学方法计算其转动惯量是非常困难的,因而大多采用实验方法来测定。
转动惯量的测定,在涉及刚体转动的机电制造、航空、航天、航海、军工等工程技术和科学研究中具有十分重要的意义.测定转动惯量常采用扭摆法或恒力矩转动法,本实验采用恒力矩转动法测定转动惯量.一、实验目的1、学习用恒力矩转动法测定刚体转动惯量的原理和方法。
2、观测刚体的转动惯量随其质量,质量分布及转轴不同而改变的情况,验证平行轴定理.3、学会使用智能计时计数器测量时间.二、实验原理1、恒力矩转动法测定转动惯量的原理根据刚体的定轴转动定律:βJ M =(1)只要测定刚体转动时所受的总合外力矩M 及该力矩作用下刚体转动的角加速度β,则可计算出该刚体的转动惯量J 。
设以某初始角速度转动的空实验台转动惯量为J 1,未加砝码时,在摩擦阻力矩M μ的作用下,实验台将以角加速度β1作匀减速运动,即:11βμJ M =-(2)将质量为m 的砝码用细线绕在半径为R 的实验台塔轮上,并让砝码下落,系统在恒外力作用下将作匀加速运动.若砝码的加速度为a ,则细线所受张力为T= m (g - a )。
若此时实验台的角加速度为β2,则有a= Rβ2。
细线施加给实验台的力矩为T R= m (g -Rβ2) R ,此时有:212)(ββμJ M R R g m =--(3)将(2)、(3)两式联立消去M μ后,可得:1221)(βββ--=R g mR J (4)同理,若在实验台上加上被测物体后系统的转动惯量为J 2,加砝码前后的角加速度分别为β3与β4,则有:3442)(βββ--=R g mR J (5)由转动惯量的迭加原理可知,被测试件的转动惯量J 3为:123J J J -=(6)测得R 、m 及β1、β2、β3、β4,由(4),(5),(6)式即可计算被测试件的转动惯量。
恒力矩转动法测刚体转动惯量转动惯量是刚体转动中惯性大小的量度。
它取决于刚体的总质量,质量分布、形状大小和转轴位置。
对于形状简单,质量均匀分布的刚体,可以通过数学方法计算出它绕特定转轴的转动惯量,但对于形状比较复杂,或质量分布不均匀的刚体,用数学方法计算其转动惯量是非常困难的,因而大多采用实验方法来测定。
转动惯量的测定,在涉及刚体转动的机电制造、航空、航天、航海、军工等工程技术和科学研究中具有十分重要的意义。
测定转动惯量常采用扭摆法或恒力矩转动法,本实验采用恒力矩转动法测定转动惯量。
一、实验目的1、学习用恒力矩转动法测定刚体转动惯量的原理和方法。
2、观测刚体的转动惯量随其质量,质量分布及转轴不同而改变的情况,验证平行轴定理。
3、学会使用智能计时计数器测量时间。
二、实验原理1、恒力矩转动法测定转动惯量的原理根据刚体的定轴转动定律:βJ M =(1)只要测定刚体转动时所受的总合外力矩M 及该力矩作用下刚体转动的角加速度β,则可计算出该刚体的转动惯量J 。
设以某初始角速度转动的空实验台转动惯量为J 1,未加砝码时,在摩擦阻力矩M μ的作用下,实验台将以角加速度β1作匀减速运动,即:11βμJ M =-(2)将质量为m 的砝码用细线绕在半径为R 的实验台塔轮上,并让砝码下落,系统在恒外力作用下将作匀加速运动。
若砝码的加速度为a ,则细线所受张力为T= m (g - a)。
若此时实验台的角加速度为β2,则有a= Rβ2。
细线施加给实验台的力矩为T R= m (g -Rβ2) R ,此时有:212)(ββμJ M R R g m =--(3)将(2)、(3)两式联立消去M μ后,可得:1221)(βββ--=R g mR J (4)同理,若在实验台上加上被测物体后系统的转动惯量为J 2,加砝码前后的角加速度分别为β3与β4,则有:3442)(βββ--=R g mR J (5)由转动惯量的迭加原理可知,被测试件的转动惯量J 3为:123J J J -=(6)测得R 、m 及β1、β2、β3、β4,由(4),(5),(6)式即可计算被测试件的转动惯量。
实验一 测量刚体的转动惯量【实验目的】1.学习用恒力矩转动法测定刚体转动惯量的原理和方法。
2.观测转动惯量随质量、质量分布及转动轴线的不同而改变的状况,验证平行轴定理。
3.学会使用通用电脑计时器测量时间。
【实验仪器】ZKY —ZS 转动惯量实验仪,ZKY —JI 通用电脑计时器。
【实验原理】1.恒力矩转动法测定转动惯量的原理根据刚体的定轴转动定律:βJ M = (1-1)只要测定刚体转动时所受的总合外力矩M 及该力矩作用下刚体的角速度 β,则可计算出该刚体的转动惯量J 。
设以某初始角速度转动的空实验台转动惯量J 1,未加砝码时,在摩擦阻力矩M μ 的作用下,实验台将以角速度β1作匀减速运动,即:-M μ = J 1β1 (1-2 ) 将质量为m 的砝码用细线绕在半径为R 的实验台塔轮上,并让砝码下落,系统在恒外力作用下将作匀加速运动。
若砝码的加速度为a ,则细线所受张力为T = m (g -a )。
若此时实验台的角加速度β2,则有a = R β2。
细线施加给实验台的力矩为TR = m (g -R β2) R ,此时有:m (g -R β2)R - M μ= J 1β2 (1-3) 将(1-2)、(1-3)两式联立消去M μ后,可得:J 1=122)(βββ--R g mR (1-4) 同理,若在实验台上加上被测物体后系统的转动惯量为J 2,加砝码前后的角加速度分别为β3与β4,则有:J 2=344)(βββ--R g mR (1-5) 由转动惯量的迭加原理可知,被测试件的转动惯量J 3为:J 3= J 2-J 1 (1-6)测得R 、m 及β1、β2、β3、β4,由(23-4)、(23-5)、(23-6)式即可计算被测试件的转动惯量。
2.β 的测量实验中采用ZKY-JI 通用电脑计时器记录遮挡次数和相应的时间。
固定在载物台圆周边缘相差π角的两遮光细棒,每转动半圈遮挡一次固定在底座上的光电门,即产生一个计数光电脉冲,计数器计下遮挡次数K 和相应得时间t 。
转动惯量的测定转动惯量是刚体转动中惯性大小的量度。
它取决于刚体的总质量,质量分布、形状大小和转轴位置。
对于形状简单,质量均匀分布的刚体,可以通过数学方法计算出它绕特定转轴的转动惯量,但对于形状比较复杂,或质量分布不均匀的刚体,用数学方法计算其转动惯量是非常困难的,因而大多采用实验方法来测定。
转动惯量的测定,在涉及刚体转动的机电制造、航空、航天、航海、军工等工程技术和科学研究中具有十分重要的意义。
测定转动惯量常采用扭摆法或恒力矩转动法,本实验采用恒力矩转动法测定转动惯量。
一、实验目的1、学习用恒力矩转动法测定刚体转动惯量的原理和方法。
2、观测刚体的转动惯量随其质量,质量分布及转轴不同而改变的情况,验证平行轴定理。
3、学会使用智能计时计数器测量时间。
二、实验原理1、恒力矩转动法测定转动惯量的原理根据刚体的定轴转动定律:βJ M = (1)只要测定刚体转动时所受的总合外力矩M 及该力矩作用下刚体转动的角加速度β,则可计算出该刚体的转动惯量J 。
设以某初始角速度转动的空实验台转动惯量为J 1,未加砝码时,在摩擦阻力矩M µ的作用下,实验台将以角加速度β1作匀减速运动,即:11βµJ M =− (2) 将质量为m 的砝码用细线绕在半径为R 的实验台塔轮上,并让砝码下落,系统在恒外力作用下将作匀加速运动。
若砝码的加速度为a ,则细线所受张力为T= m (g - a)。
若此时实验台的角加速度为β2,则有a= R β2。
细线施加给实验台的力矩为T R= m (g -R β2) R ,此时有:212)(ββµJ M R R g m =−− (3) 将(2)、(3)两式联立消去M µ后,可得:1221)(βββ−−=R g mR J (4) 同理,若在实验台上加上被测物体后系统的转动惯量为J 2,加砝码前后的角加速度分别为β3与β4,则有:3442)(βββ−−=R g mR J (5) 由转动惯量的迭加原理可知,被测试件的转动惯量J 3为:123J J J −= (6) 测得R 、m 及β1、β2、β3、β4,由(4),(5),(6)式即可计算被测试件的转动惯量。
篇一:大学物理实验报告测量刚体的转动惯量测量刚体的转动惯量实验目的:1.用实验方法验证刚体转动定律,并求其转动惯量;2.观察刚体的转动惯量与质量分布的关系3.学习作图的曲线改直法,并由作图法处理实验数据。
二.实验原理:1.刚体的转动定律具有确定转轴的刚体,在外力矩的作用下,将获得角加速度β,其值与外力矩成正比,与刚体的转动惯量成反比,即有刚体的转动定律:m = iβ (1)利用转动定律,通过实验的方法,可求得难以用计算方法得到的转动惯量。
2.应用转动定律求转动惯量图片已关闭显示,点此查看如图所示,待测刚体由塔轮,伸杆及杆上的配重物组成。
刚体将在砝码的拖动下绕竖直轴转动。
设细线不可伸长,砝码受到重力和细线的张力作用,从静止开始以加速度a下落,其运动方程为mg – t=ma,在t时间内下落的高度为h=at/2。
刚体受到张力的力矩为tr和轴摩擦力力矩mf。
由转动定律可得到刚体的转动运动方程:tr - mf = iβ。
绳与塔轮间无相对滑动时有a = rβ,上述四个方程得到:22m(g - a)r - mf = 2hi/rt (2)mf与张力矩相比可以忽略,砝码质量m比刚体的质量小的多时有a<<g,所以可得到近似表达式:2mgr = 2hi/ rt (3)式中r、h、t可直接测量到,m是试验中任意选定的。
因此可根据(3)用实验的方法求得转动惯量i。
3.验证转动定律,求转动惯量从(3)出发,考虑用以下两种方法:2a.作m – 1/t图法:伸杆上配重物位置不变,即选定一个刚体,取固定力臂r和砝码下落高度h,(3)式变为:2m = k1/ t (4)2式中k1 = 2hi/ gr为常量。
上式表明:所用砝码的质量与下落时间t的平方成反比。
实验中选用一系列的砝码质量,可测得一组m与1/t的数据,将其在直角坐标系上作图,应是直线。
即若所作的图是直线,便验证了转动定律。
222从m – 1/t图中测得斜率k1,并用已知的h、r、g值,由k1 = 2hi/ gr求得刚体的i。