当前位置:文档之家› 高速电气化铁路接触网施工技术研究

高速电气化铁路接触网施工技术研究

高速电气化铁路接触网施工技术研究
高速电气化铁路接触网施工技术研究

摘要

接触网是沿铁路线路架设的为电力牵引机车提供电源的特殊供电装置,它的用途是将变电所输出的电能通过接触网的接触导线供给沿线运行的电力机车。接触网的特殊性表现在三个方面:露天设备。无备用,机电一体化,这也是接触网的基本特点。

接触网是沿铁路线架设的露天设备,分布区域广,气候对其状态有重要影响,气候条件的变化的变化对接触网的运营状态,如线索的弛度,张力,接触悬挂的弹性,网上零件的机械位置和机械松紧度,设备的电气性能都有很大的影响,严重时会造成重大行车事故。因此,接触网的设计,施工。运营,都必须认真研究气候对接触网状态的影响。

接触网是沿铁路线架设的无备用设备,一旦出现故障就会影响行车。由于接触网特殊的工作环境和工作状态,它不能像其它电气设备一样设置备用设备。而接触网的运营状态和运行安全对电气化铁路的运营安全又有重大影响。因此应该利用现货科技加强接触网的在线检测,真正实现接触网的状态维修。

接触网不仅在电气上要能满足电力机车牵引功率,电气强度,电压水平,绝缘安全等一系列电气技术的要求,而且在机械上就能满足机械强度,机械位置,弓网动态弹性等一系列机械技术上的要求。因此,接触网是一个典型的机电复合体。

目录

第一章接触网的组成及要求

1-1接触网的基本组成

1-2牵引供电对接触网的要求

第二章我国接触网施工中存在的若干问题2-1我国接触网施工队伍的现状

2-2 接触网施工标准及工艺

2-3 我国施工技术应解决的问题

第三章对接触网施工中若干就技术的研究

3-1电气化接触风超技工艺的研究

3-2 电气化铁道隧道内接触网悬挂方式研究

3-3 刚性悬挂接触网设计若干技术问题

3-4刚性悬挂接触网施工方法的探究

结论

致谢

参考文献

第一章接触网的组成及要求

1-1接触网的基本组成

电气化铁道接触网是沿铁路线上空架设的向电力机车供电的特殊形式的输电线路,也称为架空式接触网,如图所示。从结构形式看可分为以下几个部分。

(1)接触悬挂:主要包括承力索,吊弦,接触线及连接它们的零件等。与电力机车受电弓直接接触的是接触线。接触悬挂种类很多,图示为弹

性链形悬

挂。

(2)支持装置:

支持装置由

腕臂,拉杆,

定位装置等

连接件组

成,用来悬

吊和支持接

触悬挂,并

将其负荷传

递给支柱或

者其它建筑

物。根据接

触网所在区

间,车站和

大型建筑物

而有所不

同。

(3)支柱与基础:支柱与基础用以承受接触悬挂和支持装置的全部负荷,并把接触悬挂固定在规定的位置和高度上。支柱有金属支柱和钢筋混

凝土支柱。

1-2牵引供电对接触网的基本要求

为了满足接触网全天候不间断地向电力机车提供电能,保证弓网之间的良好匹配特性,提高接触网的性价比,接触网应能满足以下几个方面的基本要求:

(1)设备安全可靠,在恶劣气候条件下能保证向电力机车正常供电。(2)有足够的电气强度,保证在牵引高峰时正常地向电力机车提供电能。(3)有足够的机械强度,保证接触悬挂具有可靠的稳定性。

(4)网上设备的空间位置不影响受电弓取流。

(5)网上设备的质量应轻且分布均匀,保证接触网的弹性尽量一致。(6)有足够的防腐蚀性能各耐磨性能,使用寿命应尽可能长。

(7)在保证接触悬挂稳定性的前提下,结构应尽量简化,有利于施工,维护及事故抢修。

(8)在最高运行速度下,弓网离线率应在容许的范围内。

总的来说,要求接触网无论在任何条件下,都能保证良好地供给电力机车电能,保证电力机车在线路上安全,高速运行,并在符合上述要求的情况下,尽可能地做到节省投资,结构合理,维修简便,便于新技术的应用。

第二章我国高速接触网施工中存在的若干问题

随着电气化铁路的不断发展,我国在学习和引进国外新技术、新材料、新结构的同时,广大工程技术人员也自主研发了许多接触网新金具和新设备,随着新技术、新材料、新工艺的不断更新,传统的施工方法和手段已不能满足要求,主要表现为施工队伍的技术素质和施工技术两大方面滞后。

2-1我国接触网施工队伍的现状

1.施工人员的整体技术素质偏低

上前从事接触网工程施工的队伍中,除少数工程技术人员和管理人员具有大专以上学历外,一线工作的大多数施工人员都是些没有受过专业教育的普通工人或民工,其文化素质、专业技能和技术水平相对较差。

2.技术装配落后

目前,国内各施工单位的技术装配与高速铁路发达国家相比,其施工设备功能不强、性能不高、新度系数偏低;施工设备综合性能低,笨重。检测手段和检测设备的精确度不够。

2-2我国接触网施工标准和工艺存在的问题

1.施工技术及工艺滞后

从全国范围来看,目前我国除少数施工单位外,大多数施工单位的施工工艺和施工技术还停留在上世纪九十年代初的水平,很难适应目前高速接触网的施工要求。

2.施工的技术标准不协调

接触网的施工与路基、轨道的施工技术标准不协调,接触网一般是以轨面标高作为施工基准点的,而轨道施工的允许偏差较大,导至接触网工程施工质量难以满足技术要求。

3.技术规范和操作规范不够完善

我国目前还没有一部高速电气化铁路的施工标准,每一条线路的施工技术要求除参照国外相应线路制定外,没有更多的通用性和标准化。

我国目前也没有一套高速接触网的施工操作规范,除个别施工单位具有较为系统的施工工艺手册外,大部分施工单位或施工队伍在施工时的随意性较大,应及时完善我国高速电气化接触网的标准化操作规范。

2-3我国施工技术应重点解决的问题

由于高速接触网的技术要求较高,为了保证施工的精确度,必须在施工前对相关的施工参数进行准确的参数计算,对装配结构进行预装配工作,在高速接触网施工中应实现施工作业工厂化、标准化,简单现场作业内容,缩短现场作业时间,要实现以上目标,应重点研究和解决以下几项内容:

1.开发和研制新型测量仪器设备,提高施工定测技术的准确度和精度;

2.重视基础工程的施工,消除因基础位移或偏斜对接触网的影响;

3.研究和完善支持装配计算及安装调整计算,提高支持结构的调整速度

和精确度:

4.研究和完善软硬横跨的安装调整及其计算,提高软横跨的调整速度和精确度;

5.研究和完善整体吊弦预制及施工技术,将因整体吊弦长度引起的接触

线高度和弛度变化控制在最小范围内;

6.研究和完善高速接触网线岔布置技术,消除线岔处的硬点;

7.积极研究恒张力放线的技术特点和施工工艺;

8.积极研究组合定位装置施工技术;

9.积极研究接触线高度偏差的控制技术。

第三章对接触网施工中若干新技术的研究

3-1电气化接触网超拉工艺的探讨

为使新线初伸长(蠕变)一次基本出尽,保证接触悬挂调整一次到位,符合设计要求,超拉是解决这一问题的关键措施。为适应国民经济的飞速发展,铁路提速及建造高速的客运专线已成为我国铁路发展的趋势,随着行车速度的不断提高,对接触网的静、动弹性和不均匀度要求越来越高,为了使接触线和承力索架设后一次安装到位并达到设计要求,世界各国针对初伸长对接触悬挂质量影响的这一主要矛盾,各国都采用了不同的超拉方法。

1“超拉”的定义

承力索和接触线在额定张力下的蠕变伸长是一个漫长的过程,其主要影响因素就是所加张力和时间。同样的蠕变伸长量,所加张力和时间成反比,即张力越大,时间就越短。在施工中,往往为了缩短施工周期,以便后序工作(安装、调试)能迅速展开,而在保证线材不被破坏的前提下通过加大额定张力来完成承力索和接触线大部分蠕变伸长过程,这就是超拉。

2 为什么要进行超拉

2.1 承力索和接触线的蠕变伸长对接触悬挂的影响。

①在链型悬挂中,承力索和接触线往往因为不同材质,其线胀系数不同,蠕变伸长量是不相同的;同一种材质的承力索和接触线,因生产方法、线材结构、补偿张力等因素不同,其蠕变伸长量也不一样。吊弦安装时呈铅垂,因上下蠕变伸长量不同,吊弦偏斜超出规范、验标允许范围,时间越长,偏斜越严重,且越靠近下锚地方偏斜越严重,使得接触网的安装、调试不准确,造成反复施工和额外返工,对整体吊弦的计算、安装、调试影响更大,而且引起接触线导高发生变化,加大施工误差。

②承力索和接触线的蠕变伸长,通过补偿滑轮成倍(1:3或1:4)关系反映到坠砣串上,坠陀串下落距离则成倍增长,致使其下落至地面,影响自动补偿功能,承力索和接触线的张力比额定张力偏小,必须重新调整补偿坠砣串的高度,使其离开地面,方可进行后序施工;另外,也会影响补偿坠砣串的b值调整的准确,甚至还会造成b值的反复调整。

2.2超拉作用

以上分析蠕变伸长对接触悬挂的影响,对承力索和接触线进行超拉的目的就是

为了消除新线材的蠕变伸长对接触悬挂的影响,对整体吊弦区段更为重要。

新线在一定张力作用下,经过一定时间(一般是较长时间, 甚至十几年, 几十年) 以后其长度比新使用时要增加, 形成塑性伸长, 其用蠕变率来量化, 即蠕变引起的线材伸长与原始长度之比, 用百分数表示,计算公式如下:r=(△L/L)x100% 其中:r表示蠕变率;△L表示全锚段(承力索或接触线)的蠕变伸长量;L表示全锚段(承力索或接触线)的总长度。

材质不同,其蠕变率也不同,但同种材质制成同样规格的线材,蠕变率是相同的,因此经过超拉施工时所测量的数据,计算蠕变率,可以作为检测每个锚段的承力索或接触线是否符合技术要求。

蠕变伸长与线材的生产和施工方法有密切关系,一般由三部分组成:一部分是线材在张力的作用下, 因生产过程中绞制结构中单线面相互挤压, 接触点上产生畸变等引起的, 这部分塑性伸长与线材结构及材料性能有关, 一般经几百小时才趋向稳定。第二部分是在架线施工时,架线张力短时过大而引起的塑性伸长,因此, 在施工架线时要避免瞬时的机械冲击力,尽量保持恒张力架线或额定张力架线。第三部分是线材在额定工作张力下引起的塑性伸长(纯金属蠕变引起的)。通过以上分析,对接触网的承力索和接触线进行超拉不仅能够消除蠕变伸长对接触悬挂安装、调试的影响,做到安装、调整一次到位,而且能缩短接触网的施工周期,加快施工进度,提高工作效率。

3 超拉的张力标准及方式

承力索和接触线在额定工作张力的基础上究竟再加多大的力才能在短时内将蠕变伸长基本拉出,目前国内属于摸索阶段,还没有统一标准,国外也没有统一的标准,日本、法国、德国等都有不同的要求。在武广线和秦沈线超拉加载的标准均是参考日本模式的, 即承力索超拉张力为额定工作张力的1.6倍, 接触线的超拉张力为额定工作张力的2.0倍。

最常用的超拉方式有两种,一、利用机械作业,提供超拉所需的张力并持续到相应的时间,一般采用作业车进行作业,这种方法需要的天窗点时间较长,在日本采用过,其夜间没有列车运营。二、增加坠砣数量(即加大坠砣串的重力)来进行超拉, 这种方法简便、易操作、甚至可以不需要天窗点,国内既有线电气化接触网施工一般采用第二种超拉方式。武广线和秦沈线结合实际的施工情况,都是采用增加用坠砣数量的方式进行超拉的。

4 超拉的劳动力、机、具、料安排

①施工人员:现场负责人1名,作业梯车2组共12名。

②机械设备:作业梯车 2 组。

③材料及工具:临时拉线2组,超拉肩架2组,温度计2支,坠砣若干,φ40铁线若干, 平腕臂2组(含底座),大滑轮2组,加固肩架若干,棕绳2根,链条葫芦2套,锲形线夹4个,钢丝卡子4个,钢丝套4套,断线钳2把,钢卷尺2把,对讲机5台,防护旗(红、黄各一面)。

5 超拉的施工流程

同一锚段内的承力索和接触线是必须单独进行超拉, 其超拉流程是一致的

6 超拉的施工方法

①承力索和接触线分别超拉,先超拉承力索,完毕后再超拉接触线,超拉宜在白天进行。承力索和接触线同时超拉会加大支柱、腕臂的负载,甚至超出支柱、腕臂的设计容量。超拉时承力索或接触线不装吊弦且置于放线滑轮的槽中。

②用作业梯车在中心锚结处卡牢中锚。中心锚结不仅能缩小因超拉而出现的事故范围,缩短事故时间,还可以减小因两端加载不均而引起的左右偏移量,保证加载后测量数据的准确。

③两组作业梯车分别从中锚处向下锚处进行加固。支柱在曲内部分,采用角钢或平腕臂支持加固腕臂;支柱在曲外部分,采用Ф40铁丝将承力索或接触线分别拉在支柱上或腕臂底座上,防止超拉时线材滑出轮槽影响行车;在转换柱处,由于腕臂底座受力较大,超拉时底座受压易弯, 用平腕臂将底座受力直接过渡到支柱上, 另外,该处承力索或接触线有明显导角, 超拉时张力过大容易损伤线材, 用大滑轮的圆导角来避免对导线损伤;在孔外安装的下锚角钢处,拧紧各连接螺栓,且在角钢的下面,砼柱采用同样的下锚角钢进行加固,钢柱采用卡砣加固。④在下锚支柱处设置临时拉线各一组,与地面夹角不宜大于450,对设置锚板形式的拉线根据实际情况可增加设置临时拉线。

⑤调整坠砣串b值,以满足超拉时坠砣有自由活动的空间。根据中心锚结距下锚处的长度(L1或L2)、及相应线材每单位长度在承受由额定工作张力至超拉张力时伸长量(△r)。因此,线材在由额定工作张力到超拉张力时,在下锚处线材伸长量(△L1或△L2)为:△L1=L1x△r;△L2=L2x△r

再由补偿滑轮传动比关系(1:3或1:4),折算到坠砣串下降高度,并结合温度的变化,将坠砣的b值调整到适当高度,以防止超拉时坠砣串着地,达不到超拉张力,影响超拉效果。

⑥超拉加载,由施工负责人统一负责指挥。根据施工前制定的超拉张力标准,通过补偿滑轮转传动比计算出加载坠砣的数量和重量(超拉坠砣宜采用铁坠砣, 便于施工和重复使用)进行加载。加载时, 用对讲机加强联系,尽量做到同时加载, 每一次加4块坠砣,待稳定后测出b值及温度, 每隔10min后, 重复以上操作, 加载完毕后, 每隔一定时间记录下b值及温度, 承力索超拉持续时间宜为4小时,接触线超拉持续时间宜为6小时。

⑦超拉完毕后,同时拆除超拉坠砣, 恢复至额定张力,测出b值及温度并作好记录,将坠砣串调整到适量的高度。由于为满足超拉时坠砣能有自由活动的空间,将其b值调整偏大,温度变化时,补偿滑轮与坠砣杆间距小,坠砣杆卡在滑轮槽中,承力索和接触线无法随温度降低而收缩,补偿装置失去正常的功能,情况严重时,导致承力索和接触线断裂,因此,超拉完毕后必须将坠砣串的b值调整到适量的高度,

⑧拆除临时拉线及相应加固装置, 同时检查超拉锚段是否存在安全隐患,将检查结果报告给施工负责人,确认无安全隐患后方可撤出施工现场。

⑨施工记录数据的处理。根据测量温度、b值及锚段长度,计算出承力索或接触线的蠕变率。

7 施工安全注意事项

①超拉前,对支柱的容量及关键受力部位的零件强度必须进行校核。

②临时拉线、曲内外支柱、转换柱加固装置必须牢固。

③通讯联系保持畅通,同时加载、防止偏载。

④加载时,必须设置可靠的行车防护。

⑤超拉时必须加强巡视,特别是关键部位可设置专人盯防。

⑥孔外安装的下锚角钢,防止下滑。

⑦超拉肩架平行铁路放置,防止侵限。

⑧超拉完毕后,检查承力索或接触线是否引起变形、变性。

3-2电气化铁道隧道内接触悬挂方式探究

一、研究的目的及必要性

1.高速铁路对接触网悬挂的要求

高速铁路反映与代表了一个国家的经济技术水平,是当今世界铁路发展的趋势和潮流。接触网系统是牵引供电系统中主要的供电设备之一,它直接与机车相连,当列车高速运行时,接触导线和机车受电弓之间是一种动态稳定的系统,受流质量既取决于弓的参数,又取决于网的参数,两者参数应合理的匹配才能实现高质量的取流,才能确保列车高速运行。因此接触网悬挂系统的选择,应能保证在车速变化等各种恶劣条件下正常取流,以提高运行可靠性。

列车要高速运行,弓网受流质量是高速电气化铁路需要解决的最要害的问题。评价受流质量通常有离线率、动态接触压力、动态抬升量、接触网的弹性、受电弓的追随特性等因素,下面是世界各国对高速接触网悬挂弓网受流质量的普遍评价标准:

(1)最大接触压力(Fmax):<200N

(2)最小接触压力(Fmin):>40N

(3)接触压力标准偏差(δ):δ=20%~30%F

(4)平均接触压力(F):(F-3δ)>0

(5)离线:离线率(μ):μ<5%

最大持续时间<50ms

(6)弹性不均匀系数:U<30%

要满足以上要求,除提高接触线、承力索张力外,接触网的悬挂形式也是非常重要的研究课题。

2.水平悬挂存在的问题

目前,我国单线隧道内接触网所采取的悬挂方式为水平悬挂方式,该方式从我国第一条电气化铁路就一直沿用。长期运营经验证实:该方式结构简单、稳定、可靠,其装配形式得到广泛推广和使用。见下图:

水平悬挂方式存在以下缺陷:

(1)在接触线定位点集中了定位装置的全部重量约9.5kg,局部形成硬点,影响接触网弹性的均匀度;

(2)定位绝缘子已伸到了受电弓的工作范围内,成为不安全隐患;

(3)承力索柔性悬挂,接触网的稳定性差;

在列车高速运行的情况下,由于该悬挂的弹性非均匀度较大,轻易形成离线,离线时产生的火花与电弧,不但使受电弓受流质量差,造成接触线及受电弓局部磨耗加大,缩短接触网、受电弓使用寿命,而且其高次谐波形成对临近环境的电磁污染。由于高速线路接触压力的增大,引起接触线的抬升增大,受电弓可能直接与定位绝

缘子碰撞,造成行车事故。因此水平悬挂方式已不能满足高速线路的运营模式,必须对其进行改进。

3.遂渝铁路工程设计需要

遂渝铁路为我院设计的第一条山区高速铁路,其技术设计鉴定时确定的速度目标值为160km/h。根据铁道部跨越式发展的要求,对铁路大中型在建项目,进行提速研究,遂渝铁路的速度目标值提高为200km/h,并且全线按通过装载高度为5847mm的双层集装箱设计。遂渝线共有41座隧道,总长约22550m。在提速到200km/h后,车体与隧道限界均要相应变化;考虑双层集装箱的情况后,隧道净空为7760mm。由于隧道占线路全长18.8%,其中很多为单线隧道,因此遂渝工程设计迫切需要研究与确定高速铁路单线隧道内的接触网悬挂形式。

综上所述,为满足遂渝高速铁路的设计需要,我们必须对单线隧道内的接触网悬挂安装形式进行研究,以便确定适合高速线路运营要求的接触网悬挂方案。

二、隧道内接触网悬挂方案研究思路

目前国外高速铁路隧道外及双线隧道内的接触网悬挂形式均采用直链形全补偿简单或弹性悬挂,该悬挂方式,在特定的接触线、承力索张力条件下,接触网波传播速度可达500km/h以上,已可以满足350km/h高速铁路的运营需要,其结构高度为1100mm~1800mm之间,最短吊弦应大于400mm,而单线隧道内,由于隧道净空的限制,结构高度要大大降低,所以采用弹性链形悬挂是无法安装的。针对水平悬挂的稳定性差,接触网弹性非均匀性高的问题,我们设计的思路应重点放在解决这两方面的问题上。基于以上思想我们确定了以下研究思路:

(1)不改变悬挂方式,仍然采用直链形全补偿简单链形悬挂;(2)方案研究中尽量采用既有、成熟的接触网悬挂零部件,减少新零件的研制工作,提高悬挂零件的通用性;

(3)充分利用隧道净空,加大结构高度,增加悬挂的稳定性;

(4)设计新的接触线定位方式,减少定位器分配于接触线上的重量,提高悬挂的弹性均匀度。根据以上思路,我们研究设计了多种悬挂方案,采用现有的接触网零件,按照1:1的比例绘制了设计方案图。每种方案均有其优缺点,通过反复设计比较,最后确定了以下几种比较理想的悬挂方案。

二、单线隧道内接触网悬挂方案介绍

1.悬挂方案一:

(1)设计思路:采用水平悬挂方式固定承力索,单支撑腕臂方式固定接触线。

(2)特点:隧道内水平悬挂方式是一种成熟的承力索悬挂方案,具有安全和可靠性;而单支撑腕臂悬挂方式也是一种通过了鉴定的悬挂方式。该方案对隧道净空的利用非常充分,其净空利用的限制条件仅取决于滑轮框架对隧道壁的绝缘距离;隧道内接触网悬挂方式可采用全补偿简单或弹性链型悬挂。隧道内接触网悬挂方式可采用全补偿简单或弹性链型悬挂。理论上也可以满足200Km/h以上速度。

(3)存在问题:

①. 承力索悬挂为柔性悬挂,对接触网的振动是否有不好的影响应进一步研究;

②. 承力索采用悬吊滑轮悬挂,悬吊滑轮对承力索的磨损依然存在,需要对悬吊滑轮进行改进。

2.悬挂方案二

(1)设计思路:本方案采用原V型简单悬挂方式悬挂承力索,套管铰环+悬吊滑轮固定承力索,单支撑腕臂悬挂方式进行接触线定位。

(2)特点:隧道内V型简单方式也是一种成熟的悬挂方案,具有安全和可靠性,施工简单,运营维护方便;对隧道净空利用的限制条件取决于V型悬挂的结构尺寸。日本新干线采用的隧道悬挂方式的原理与此相似。

(3)存在问题:

①因为增加了悬挂重量,必须对V型悬挂相应零部件进行力学校验;

②方案三中承力索采用悬吊滑轮悬挂,悬吊滑轮对承力索的磨损依然存在,需要对悬吊滑轮进行改进。

③该方案接触线定位全部采用反定位方式,定位管受压。

(4)该方案可将V形悬挂顺线路安装,结构高度可增加至750mm。

3.悬挂方案三:

(1)设计思路:参照水平悬挂方式采用单支撑腕臂悬挂组成水平悬挂,用套管铰环+悬吊滑轮进行承力索悬挂,单支撑腕臂悬挂方式进行接触线定位。

(2)特点:该方案中承力索的稳定性最好,对隧道净空利用的限制条件取决于隧道吊柱安装结构尺寸对隧道断面的充分利用,隧道内接触网悬挂方式可采用全补偿简单或弹性链型悬挂。

(3)存在问题:

①.承力索采用悬吊滑轮悬挂,悬吊滑轮对承力索的磨损依然存在,需要对悬吊滑轮进行改进。

②工程造价较高。

③悬挂承力索的零件占

用净空约200mm(套管绞环100mm+悬吊滑轮100mm),应进一步优化悬挂零件。(4)方案变化:悬挂承力索的水平悬挂改为顺线路安装。

4.悬挂方案四

(1)设计思路:该方式在承力索和接触线支撑之间用定位管支撑连接起来,构成“菱形”,温度变化导致的承力索和接触线位移依靠定位管支撑使之相互带动,更加提高了接触网的受流状态及线路运行安全可靠性,并改善了定位点的弹性及受电弓的振动量。单支撑腕臂悬挂方式进行接触线定位。

(2)特点:该方案中悬挂重量分别由两悬臂支撑,接触网的稳定性较好,对隧道净空利用的限制条件取决于隧道吊柱安装结构尺寸对隧道断面的充分利用,该方案能最大限度地利用隧道净空高度加大结构高度,提高支持结构的稳定型从而获得良好的动态性能;另外该方案交之方案六,减少一个绝缘子,节约了投资。

(3)存在问题:

①悬挂承力索的承力索座,要进行新零件的试制,另外需进一步研究承力索受温度影响的位移情况。

5.悬挂方案五

(1)设计思路:采用单支撑弓型腕臂+旋转腕臂斜腕臂+双线隧道吊柱构成变形三角形悬挂支撑,承力索座固定承力索,定位管+定位器固定接触线。

(2)特点:弓形腕臂与斜腕臂构成三角形结构,增强悬挂稳定性。弓型腕臂、QBNS2绝缘子均应重新设计,并可作图一~图三变形设计。隧道内接触网悬挂方式可采用全补偿简单或弹性链型悬挂。

(3)存在问题:

①弓型腕臂、QBNS2绝缘子均必须重新设计。

②该结构的稳定性应进一步研究。

③图二、图三中,弓形腕臂与斜腕臂的旋转轴不在同一平面,对悬挂装置旋转灵活程度的影响应进一步研究。

6.定位方案

(1)方案一:采用单支撑平腕臂+ JL9101(D1)定位器+吊柱

该方案调整方便,零部件现成,但受绝缘子长度、吊柱安装尺寸限制及绝缘距离限制,在接触网悬挂高度较高的双层集装箱通行条件下安装困难。

(2)方案二:采用单支撑平腕臂+ JL9101(D1)定位器+隧道腕臂调整底座。该方案垂直方向调整困难。

(3)方案三:采用单支撑弓形腕臂+ 定位管+JL9101(D1)定位器+隧道腕臂。解决了垂直方向调整问题,但净空要求较大。

3-3刚性悬挂接触网设计若干问题

刚性悬挂接触网是我国近几年从国外引进的一种新型悬挂类型,广州地铁二号线刚性悬挂接触网已于2003年6月建成并投入运行。干线铁路25kV接触网也开始了试验和局部采用。无论从理论分析还是从实际运行情况来看,刚性悬挂具有比较明显的特点和优势。改建铁路焦柳线石门北至怀化段(以下简称石怀段)扩能工程有6座隧道内需设锚段关节,既有隧道改造困难大,造价高,采用刚性悬挂不失为一个好的解决方案。

1 刚性悬挂的形式

地铁设计规范指出刚性悬挂架空接触网用T形或Π型汇流排。Π型汇流排采用铝合挤压制造,单根长度可达12m以上,采用接头板和螺栓连接满足任意长度要求。汇流排通过对材料的优化设计,巧妙利用其弹性,通过专用放线小车可方便地架设和夹紧接触线,比T形汇流排采用螺栓和夹板夹紧接触线更为方便和可靠。Π型汇流排具有技术的成熟性和先进性,广州地铁二号线、三号线和宝兰线(宝鸡—兰州)25kV试验段以及石怀段隧道试验段的刚性悬挂接触网均采用了Π型汇流排。Π型和T形汇流排示意如图1所示。

2 悬挂定位安装方式

刚性悬挂定位安装方式有垂直和悬臂悬挂定位2种。如何选定刚性悬挂接触网的悬挂定位安装,应根据隧道净空高度和断面情况,考虑安装结构简单可靠。

地铁1500V刚性悬挂接触网采用垂直悬挂定位方式安装结构比悬臂悬挂定位方式结构简单,可靠性高。但在悬臂悬挂定位方式下绝缘子受弯矩较大。广州地铁二号线选用了垂直悬挂定位方式。25kV干线铁路刚性悬挂接触网采用垂直悬挂定位安装方式和悬臂悬挂定位安装方式均可。

石怀段几座隧道为既有隧道,断面形式为ZSOO01,是不同心的3段圆弧构成的尖拱隧道,净空高度不相等,为6390~7080mm,接触线高度确定为5700mm,列车运行速度为80~120km/h。设计了2种安装方式。

(1)垂直悬挂定位安装方式。采用角钢焊接底座,隧道顶部安装,用4根螺栓调整接触线的空间位置,适用隧道净空高度为6390~6700mm;当隧道净空高度为6700~7080mm时,需改用厚度为400mm角钢焊接底座。

(2)悬臂悬挂安装形式。在距受电弓中心线650mm的隧道顶部安装吊柱,采用通用的高强度瓷质支柱绝缘子或硅橡胶棒形绝缘子倾斜悬臂悬挂刚性悬挂,采用300~1000mm长度的吊柱,可适用隧道净空高度为6390~7080mm,通过悬臂偏离垂直受电弓方向安装,适应拉出值在±150mm范围变化的需要。

考虑到石怀段隧道净空高度低于6450mm的悬挂定位点不多,建议:如果采用悬臂悬挂定位形式,在隧道净空高度大于6700mm时,吊柱中心线与受电弓中心线的距离为1085mm,悬臂改为可随汇流排的伸缩旋转方式,靠悬挂定位调节架来保证刚性悬挂的拉出值,以避免悬挂线夹卡滞汇流排。3 刚性悬挂的跨距

由于刚性悬挂不施加张力,刚性悬挂的允许跨距和运行速度有关,并受限制。根据国外试验和运行经验,速度和跨距的对应关系见表1。

电气化铁路接触网

电气化铁路接触网 电气化铁路接触网是沿铁路线上空架设的向电力机车供电的特殊形式的输电线路。其由接触悬挂、支持装置、定位装置、支柱与基础几部分组成。 接触悬挂包括接触线、吊弦、承力索以及连接零件。接触悬挂通过支持装置架设在支柱上,其功用是将从牵引变电所获得的电能输送给电力机车。 支持装置用以支持接触悬挂,并将其负荷传给支柱或其它建筑物。根据接触网所在区间、站场和大型建筑物而有所不同。支持装置包括腕臂、水平拉杆、悬式绝缘子串,棒式绝缘子及其它建筑物的特殊支持设备。 定位装置包括定位管和定位器,其功用是固定接触线的位置,使接触线在受电弓滑板运行轨迹范围内,保证接触线与受电弓不脱离,并将接触线的水平负荷传给支柱。 支柱与基础用以承受接触悬挂、支持和定位装置的全部负荷,并将接触悬挂固定在规定的位置和高度上。我国接触网中采用预应力钢筋混凝土支柱和钢柱,基础是对钢支柱而言的,即钢支柱固定在下面的钢筋混凝土制成的基础上,由基础承受支柱传给的全部负荷,并保证支柱的稳定性。预应力钢筋混凝土支柱与基础制成一个整体,下端直接埋入地下。 接触网的电压等级 接触网的电压等级:工频单相交流制:25KV 接触悬挂的类型 电气化铁路接触网的分类大多以接触悬挂的类型来区分。我们所讲的接触悬挂的分类是对接触网的每个锚段而言的。接触悬挂的种类较多,一般根据其结构的不同分成简单接触悬挂和链形接触悬挂两大类。 简单接触悬挂(以下简称简单悬挂)系由一根接触线直接固定在支柱支持装置上的悬挂形式。国内外对简单悬挂做了不少研究和改进。我国现采用的带补偿装置的弹性简单悬挂系在接触线下锚处装设了张力补偿装置,以调节张力和弛度的变化。在悬挂点上加装8~16m 长的弹性吊索,通过弹性吊索悬挂接触线,这就减少了悬挂点处产生的硬点,改善了取流条件。另外跨距适当缩小,增大接触线的张力去改善弛度对取流的影响。 链形悬挂的接触线是通过吊弦悬挂在承力索上。承力索悬挂于支柱的支持装置上,使接触线在不增加支柱的情况下增加了悬挂点,利用调整吊弦长度,使接触线在整个跨距内对轨面的距离保持一致。链形悬挂减小了接触线在跨距中间的弛度,改善了弹性,增加了悬挂重量,提高了稳定性,可以满足电力机车高速运行取流的要求。

电气化铁路接触网关节式电分相的研究

电气化铁路接触网关节式电分相的研究 摘要:本文针对电气化铁路两种较常应用的关节式电分相的特点、存在的问题和解决的方案进行研究。。 关键词:电气化、电分相、锚段关节 一、关节式电分相的结构特点 1.七跨锚段关节式电分相结构分析 七跨式绝缘锚断关节式电分相,它是由二个4跨绝缘锚段关节交叉组合而成,从头到尾共有七个跨距,故称七跨锚段关节式电分相。其原理是利用2个四跨绝缘锚段关节的空气绝缘间隙来达到电分相的目的。中性区正常情况下不带电(无机车通过时),但不允许接地,其对地仍按25kv电压等级要求绝缘。一般考虑在关节处行车方向远端设置一台手动隔离开关,以疏导中性区的故障机车。七跨锚段关节式电分相如图1、2所示。 图1 七跨锚段关节式电分相结构图 图2 七跨锚段关节式电分相直线平面图 当电力机车准备经过电分相时,机车主断路器打开,受电弓不降弓通过。电力机车在电分相中性无电区范围内利用中性锚段来作工作支,使受电弓平稳的由一端正线锚段运行到另一端的正线锚段,该中性嵌入线从左侧的中1处变为工作支,到右侧中2处开始抬升,变为非工作支,可保证约有100~150m长的中性区。机车乘

务人员须按照设置的“断”、“合”、电力机车禁“停”标志断、合机车主断路器(如图3、4所示)。 为了保证电力机车正常通过绝缘锚段关节式电分相绝缘器,原则上要求单台受电弓升弓运行,确需多台受电弓同时升弓时,对受电弓间距离应做限制。 图3 下行方向行车标志的设置 图 4 上行方向行车标志的设置 2.八跨锚段关节式电分相结构分析 八跨锚段关节式电分相的结构如图5所示。图中Z表示直线区段;J表示绝缘锚段关节;ZJ为支柱装配形式。 图 5 八跨锚段关节式电分相的平面图不管是哪种型式,其结构都是利用2个绝缘锚段关节重合1跨或2跨,再增加1个分相锚段组成,即:分相锚段与既有接触网的2个下锚支组成2个绝缘锚段关

接触网硬点产生的原因及防治方法

北京交通大学 实习报告 年级:2011春 专业:电气化铁道供电层次:大专 姓名:王浩宇 远程与继续教育学院

北京交通大学实习单位评议表

北京交通大学 实习报告成绩评议

关于对接触网硬点的调研报告 一.实习目的: 1.了解接触网硬点产生的原因 2.了解硬点的危害 3.接触网硬点的硬点检修注意事项 二.实习单位及岗位介绍 我所调研的单位是沈阳铁路局吉林供电段,是长吉车间供电一工区的一名接触网学员。具体调研的地方是长吉线拉拉屯到吉林区段电气化铁路接触网。长吉线电气化铁路始建于2007。2010年竣工同时于2010年12月30日上午9时正式开通。长吉线电气化铁路还是东北第一条高速城际铁路,连接长春、吉林两市。设长春站、龙嘉机场站、九台南站、双吉站、吉林站5个站。长吉设计速度250Km/h,牵引种类为电力,机车类型为动车组,列车运行方式为自动控制,行车指挥方式为综合调度集中。长吉城际采用AT供电方式和直供加回流方式(双吉站到吉林城际场),网上电压27.5KV,全线正线均采用全补偿弹性链型悬挂,站线采用全补偿简单链型悬挂。正线、站线承力索均采用铜合金绞线,接触线均采用铜锡合金导线站线。接触网的正馈线、保护线、供电线等附加导线一般采用抗拉强度高、耐腐蚀性能好的铝包钢芯铝绞线。全线设2个牵引变电所:西营城子牵引变电所、双吉牵引变电所。2个分区所:拉拉屯分区所、鸭通河分区所。3个AT所:西子房AT所、关家沟AT所、乔家屯AT所。2个变电所:龙嘉机场变电所、双吉变电所。3个配电所:龙嘉机场配电所、桦皮厂西配电所、吉林中心配电所。 三.实习内容及过程: 1.接触网硬点产生原因分析。 2.接触硬点的危害。 3.接触网硬点的硬点检修注意事项 我国铁路大面积提速调图成功实施和对高速电气化铁路的研究逐步加深,在高速铁路中,与列车速度直接相关的一个重要参数是受流质量。高速电气化接触网一受电弓系统的理想运行状态是弓网间可靠接触,为电力机车不间断地

电气化铁路隧道接触网预埋槽道施工安装工艺

资质证书

方瑞公司有关槽道在隧道内接触网固定基础方案的应用及施工工艺 一、哈芬预埋滑槽国内外高速铁路应用情况 哈芬热轧滑槽解决方案发源于德国,距今有近一百年的历史,最初广泛应用于欧洲各国,例如德国、比利时、卢森堡、意大利、瑞士、荷兰以及奥地利的隧道等,由于哈芬热轧滑槽具有非常高的防腐能力、优秀的动荷载能力、安装与维修方便以及高质量、高可靠性等特点,产品在欧美等发达国家的各项隧道工程得到完美应用,只要是铁路隧道需要安装接触网,大家都知道只有找哈芬,并成为业界公认的标准。哈芬热轧槽钢产品也被推广到亚洲各地,如韩国的首尔-釜山铁路隧道,新加坡的地铁环线、台湾的台北-高雄高速铁路线以及香港的双行车隧道-高速公路5号线。目前,哈芬产品在我们国内也已经广泛应用到道路隧道的建设,如上海地铁、石家庄-太原、郑州-西安、武汉-广州、合肥-武汉、哈尔滨-大连,特别是在我国第一条真正意义上的高速铁铁京沪高铁的大规模全线应用,取得了很好的效果,并将以往的线路出现的槽道安装因施工工艺不成熟造成的报废比例由30%左右降到0,因我们方瑞公司本身拥有2家工厂,工程技术人才众多,在郑西以及武广反映有一定的报废率的情况下,专门针对报废的情况做了详细的专题调研,并在此基础上制定了详细专业的施工工艺,在京沪高铁上的运用取得了理想的效果。

接触网荷载要求: 1.静荷载能力:根据最大结构设计风速49m/s,计算每个螺栓处的最大拉力和剪力,隧道专业根据荷载要求与吊柱底板螺栓分布进行隧道衬砌加强设计。 隧道衬砌的设计应能满足以上荷载时的强度要求。在此基础上进行接触网基础的预留设计。 2.动荷载能力:动荷载能力是槽道的最重要安全指标之一,在欧洲和美国要满足德国建筑材料监事会DIBt官方认证。 3.接触网固定基础防腐性能要求:热轧槽道表面采用热浸锌处理,处理好后的表面要颜色一致厚度均匀,不起皮。禁止用油漆层代替镀锌层,因油漆层与混凝土结合不紧密,因此也禁止槽道表面采用油漆或者在镀锌层外再覆盖油漆层。 4. 接触网固定基础防火性能要求:防范火灾,要求所有隧道内的设计和材料应采用阻燃、防止火灾蔓延、低烟、无毒气的物质。对于长度大于5km的隧道,应能保证火灾发生后15min的列车运行能力,符合DIN 4102-2防火标准要求。 5.展性能的要求:延展性是一种物理特性。其所指的是,材料在受力而产生破坏之前的塑性变形能力,不至于产生脆性破坏,特别在冲击和振动荷载作用下,要求结构的材料能够吸收较大的能量,同时能产生一定的变形而不致破坏,即要求槽道有较好的延展性。

铁路电气化接触网硬点处理措施

铁路电气化接触网硬点处理措施 发表时间:2017-11-30T16:02:31.543Z 来源:《防护工程》2017年第17期作者:陈兵 [导读] 在电气化铁路结构中,接触网是重要的组成部分。 哈尔滨铁路局牡丹江供电段黑龙江省牡丹江市 157000 摘要:电气化铁路接触网硬点会对整个电力机车的弓网关系造成不利影响,严重时还会对机车的稳定受流造成破坏。本文将会对电气化铁路接触网硬点的危害、形成原因进行一定的分析,并给出一定的防治措施。 关键词:铁路;电气化;接触网;硬点处理 引言 在电气化铁路结构中,接触网是重要的组成部分。随着我国铁道建设的不断发展以及相关技术的推动作用,我国的铁路弓网关系越来越受到各界的关注。接触网硬点问题一直是影响弓网的重要问题,因此为避免造成严重损失,需要对接触网硬点进行进一步的研究,从形成原因入手,有针对性的采取相应措施,降低危害的影响范围,保证电力机车稳定运行。 1、接触网硬点形成及危害 1.1 硬点形成 在铁路机车行驶过程中,受电弓和导线接触面存在相互摩擦,为了确保取流的正常性,弓网之间存在一定的相对压力,某种因素的变化会导致机车相对位置、行驶速度发生变化,导致弓网关系出现突然性的变动,在这种变动达到一定程度时,就会形成所谓的接触网硬点。事实上,接触网硬点是非常态的物流现象,会破坏弓网之间的相互接触和受流情况,导致受电弓和导线的非常态磨损,会在接触部位产生拉弧或火花,进而损坏受电弓和接触导线。另外,接触网硬点的形成会破坏牵引电机的取流,尤其是在拉弧暂态情况下会损坏牵引电机,从而降低电机的牵引质量。 1.2 硬点危害 接触网硬点的产生会影响高速运行的电力机车对电能的获取,受弓一旦长时间处于异常情况,会加速弓网之间的机械磨损,最终对整个弓网结构造成严重伤害。通过一定的研究,可以将接触网硬点的危害概括为物理危害和化学危害两个层面。(1)物理危害。从物理角度来看,接触网硬点的产生会引起接触导线和受弓的严重擦伤,在长期的作用下,会对整个供电系统造成严重影响,影响机车的运行状况;(2)化学危害。接触网硬点对弓网造成的化学伤害会引发一系列的问题,随着时间的累积作用,这种危害会不断扩大。主要表现为在弓网处于离线状态时,高温电弧引发的受弓以及接触网的灼伤等情况。严重时,还会引发安全事故。另外,由于高温条件的影响,会产生强烈的电磁波,对周围环境的通信造成严重破坏,带来一定的经济损失。 2、接触网硬点产生原因分析 2.1 设计原因 接触网接触悬挂方式质量评价的重要标准之一即接触网弹性,接触网设计过程中,分相绝缘及绝缘锚段关节需要采用定位器件,但这些器件的重量较大,可能会导致接触网定位器位置出现比较严重的重量集中的不良现象,使得这一部位的接触网弹性降低。此外,设备元件分相、分段接头、避雷设备、隔离开关等位置或者部件的重量比较大,也容易导致接触网弹性不够均匀,使得受电弓接触过程中发生接触力突变的不良现象,形成冲击硬点。 2.2 悬挂方式 接触网的悬挂方式需要根据机车运行情况、悬挂形式等因素进行选择。半补偿的简单联形悬挂方式比较常用,但在一些特殊情况下,接触线与锚段中下部之间的张力差比较大,进而影响到接触网的张力及弹性的均匀性,此时,接触网支点处就很可能会出现硬点。转换接触线的三跨锚段关节存在一个正负坡度的过渡点,过渡的过程中,受电弓会受到较大的冲击,因此实际的设计工作中要综合考虑环境、线路等多重因素,合理选择接触网悬挂的方式。 2.3 材质原因 随着高速铁路运行速度的迅速增加,对电气机车接触网线材质的要求也更高,传统的接触线材质已经不能满足电气机车的运行需求,必须要选用更高质量的接触线,降低接触线材质对于接触网线硬点的影响。不同材质的接触线对于弓网振动的影响各不相同,实际的选择过程中,工作人员可以通过接触导线张力试验对不同材质接触线的使用情况进行研究分析,通过对受电弓加载纵向加速度及垂向力模拟冲击及硬点,观察不同材质接触网接触信号及波形情况,合理选择接触线材质。 2.4 日常检修 接触网检修工作中,由于定位点处设备临时调整、接触线与分段绝缘设备之间连线不平滑过度等原因可能会导致受电弓抬升量较小,继而出现硬点。日常检查过程中,工作人员选择的测量方法不合理、测量工具存在偏差或测量人员操作不恰当等原因可能会使得接触网线跨距发生明显变化,使得机车高速通过受电弓时产生较大的接触冲击,形成硬点。1202564825680 3、铁路电气化接触网硬点处理措施 3.1 优化接触网设计 在进行工程的设计时,应该根据电气化铁路接触网结构的特殊性,对综合结构设计、环境因素以及材料的使用进行严格的分析,通过一定的筛选选择最稳定、材料最轻的设计方式,完成结构的设计工作,从而在根本上解决由于设计问题出现的硬点。在进行接触网施工时,应该对施工单位的施工水平进行严格的评估,通过评估之后,应该有专门的监督部门完成对施工现场的监督工作,确保各个环节都是按照有关规定严格执行。具体的工艺流程必须由专业的人员完成。通过对细节的处理,降低硬点出现的可能。 3.2 加强重点部分检测 电力机车及电力线路设计规划之前一般会安排专门的检测车对机车运行过程中可能会出现的各种问题进行模拟检测,找出电力机车运行时存在的数据明显叠加、数值突变、硬点数值较大的地方。接触网硬点整治过程中要根据检测车检查出的硬点数据,利用接触网激光,

浅谈电气化铁路接触网施工技术探讨

浅谈电气化铁路接触网施工技术探讨 发表时间:2017-11-08T19:46:11.360Z 来源:《基层建设》2017年第19期作者:顿喜文 [导读] 摘要:社会经济不断发展,科学技术进步飞快,在这样的背景下,电气化的铁路接触网有关施工技术得到了很大程度上的进步,但是在实际工作中,仍然发现,技术的实施过程中还是会存在一些不足的地方,这就引起了相关工作人员的重视。 中铁上海设计院集团有限公司 200070 摘要:社会经济不断发展,科学技术进步飞快,在这样的背景下,电气化的铁路接触网有关施工技术得到了很大程度上的进步,但是在实际工作中,仍然发现,技术的实施过程中还是会存在一些不足的地方,这就引起了相关工作人员的重视。技术人员都知道,接触网有着怎样施工状态,同电气化的铁路运行有着什么样运行状况,存在着非常紧密的联系。电气化的铁路使用的牵引供电系统中核心设备就是接触网,所以说其在电气铁路中是非常重要的。本篇文章就简单地探讨一下,接触网在施工中技术的知识。 关键词:接触网;电气铁路;施工技术 近些年,我们国家的经济飞速发展,铁路行业取得了很大的进步,铁路运输快速发展,运输的速度也日益加快。确保铁路能高速安全运行的重要因素就是接触网提供源源不断的电力能源。想要保证电力能源的充足,接触网的质量就必须要得到保证。可是,接触网不存在储备资源,不能随时更换,这就显示出接触网的重要性。从以上的分析中可以看出,如果接触网一旦受到损害,就会直接影响到整体的铁路运行情况,给铁路带来不可估量的损失。想要有效保证铁路运行的稳定安全,就必须重视为其提供电源的接触网施工技术,认真研究接触网施工中的技术,在施工过程中严格按照标准施工。 1、电气化铁路中接触网的概况 电气化铁路设备中核心部分是接触网,它是铁路沿线的上空架设一种输电线路,主要的作用是向电力机车提供电源。接触网的组成部分有支持装置和一级的接触悬挂以及支柱还有包括基础。其中支持装置包括了定位装置以及腕臂,专用的支持装置在多线桥的软硬横跨。支柱和基础则会承担着来自支持装置上的重量,以及接触的悬挂上的重量,并要将接触到的悬挂固定在一定的高度。 2、接触网施工技术要点 2.1基础的浇筑 接触网在开展基础浇筑工程时,主要的程序包括:钢柱基础、拉线基础、杯型基础等等,施工工艺应该按照一定的程序进行,一是,施工的准备阶段,二是,检查和复核基坑的不同部位的尺寸,三是,安装外模并浇筑底部的混凝土和垫层;四是,对内膜安装和浇筑的混凝土开展矫正工作并进行试块取样;五是,抹面和拆模工作的实施,并进行基础的养护;六是,填写一些工程的检查项目,隐蔽工程的记录工作要做好。主要的注意事项包含以下方面: 第一点:浇筑垫层和底部的混凝土时,精确计算出具体需要的混凝土数量,计算出垫层和底部混凝土的厚度,进而能够达到节省混凝土的目的。 第二点:外钢膜的安装,基础顶面、水平基准点、设计的长宽都是要依据的标准,进而能在基坑上架设固定的外模,保证定位桩同外模的距离是吻合的,外模顶部同原有基础面是平齐的状态,外模四周要被固定好,保证外模基础的浇筑工程开展时,外模不会移位。 第三点:内膜的安放,把脱模剂要涂在内膜的混凝土上,将内膜放到浇筑完成后的底下混凝土上,调整并固定好内膜,内膜的中心线还有定位桩的中心线是符合标准的。 第四点:内膜矫正以及混凝土的浇筑,内膜四个边要做好重点的标记,内膜正确的位置就是中心线和定位桩的连线上中心线能够重合在一起。 第五点:抹面,基本的抹平工作完成后,混凝土在浇筑了两个小时后,要开始处理基础表面,使得基础表面是平整的。 第六点:基础的养护以及拆模工作,拆模共组结束后,基础的状态应该是蜂窝麻面、棱角完整、没有漏浆、表面比较平整。基础养护的时间应该是一个星期多,对基础进行浇水,保证基础是湿润的,还有就是要取到一些样块进行抗压的实验,隐蔽工程的记录也一定要做好。 2.2支柱施工工作 接触网中基本和使用最为广泛的支撑设备就是支柱,其作用是承受接触悬挂以及支持设备重量。接触网的支柱,从材质上分为钢筋混凝土类型和钢支柱类型,在其施工中应该注意以下几点: 第一点:立杆,立杆作业有一个必要基础条件,基底混凝土的垫层强度值必须要超过自身的75%。 第二点:整正,整正工作时,在条件同意时,可以使用撬棍、木楔子、风绳相互配合,开展整正工作。 第三点:支柱的回填,想要保证其回填的强度标准,混凝土的水灰配比要严格的执行,把混凝土回填,需要使用电动捣固棒每间隔24cm就进行一次夯实工作,回填支柱处于稳定的状态,或者说混凝土应该是凝固的,把稳定的木楔移除,杯口的部分加高或者是对其进行抹平工作。 第四点:基础的养护工作,混凝土回填在结束了浇筑工作后,12天内,把混凝土进行覆盖,并且做好保湿的养护,基础养护时间是一个星期左右,如果气温低于5摄氏度,就不要进行保湿的养护,也就是不要浇水。 2.3安装腕臂 腕臂的安装同样是接触网施工中非常重要的一个环节,在各个方面的施工中要注意到施工的技术。 第一点:腕臂底座的安装工作,轨面要使用钢尺以及高度的测量仪将上下底座的安装点找到,并标注好。再把上下底座的力矩安装标记的位置上,使用水平尺,把底座的位置调平,使用固定的工具把它紧固,然后检验固紧后的力矩。 第二点:安装腕臂,保证作业车是停在支柱附近的,在支柱的不远的地方设置旋转形式的作业平台,将斜的腕臂棒瓷,使用的连接板在底座上插好,并且固定好,下底座的连接板孔同连接板孔对接好,穿好螺栓销。安装好腕臂,检查一下安装的质量,状态是否符合规定,填写好各种工程的检查信息。 2.4软横跨的施工 第一点:辅助绳的设置,支柱的两头固定好牵引绳以及辅助绳,一般的情况下使用钢绞线当做辅助绳,具体的长度依据实际情况而定。

接触网硬点产生原因及如何减少硬点的建议

接触网硬点产生原因及如何减少硬点的建议 【摘要】接触网硬点是电气化铁路一大顽疾。减少接触网硬点危害,保证弓网间正常接触和取流是高速电气化铁路可靠运行的前提。 【关键词】弓网关系;硬点;危害;原因;建议 随着我国电气化铁路的飞速发展和列车运行速度的不断提高,特别是时速350km/h高速动车组的投入运行,对弓网关系提出了更高的要求。正在运用各种先进的检测手段对接触网进行动态检测。其中,检测的一个重要项目:硬点。本文根据第六次大提速以来铁道部综合检测车对济南局京沪线、胶济客专线的检测结果,以及现场处理复测情况,分析了硬点产生的原因,指出其危害,并从优化接触网设计、提高接触网质量等方面提出减少、控制接触网硬点产生的建议。 1.接触网硬点 接触悬挂的硬点,是接触悬挂不均质状态的统称。接触悬挂的一个重要指标就是弹性均匀。如果在接触悬挂或接触线上的某些部分,如在跨距两端的定位点处弹性变差或有附加重量时,在列车高速运行的情况下,这些部分都会出现不正常升高(或降低),甚至出现撞弓、碰弓现象,也就是说在这些部位会出现力、位置、速度或加速度等量值的突然变化。形成这种现象的本征状态,称为硬点。所以,硬点是一种结构的本征缺欠,并且是相对的。越是高速时,表现越明显。硬点是一种有害的物理现象,它会加快导线和受电弓滑板的异常磨耗和撞击性损害。同时,破坏弓网间的正常接触和受流,常在这些部位造成火花或拉弧。目前,通常这种力、位置、速度或加速度的突然变化是通过在检测受电弓上安装加速度传感器来检测,具体量化表分类见表1.接触网硬点是评价和衡量高速电气化铁路弓网关系的一个重要参数。 表 1 2.接触网硬点的危害 接触网硬点危害主要有以下三个方面:一是造成受电弓和接触导线之间发生水平和垂直方向撞击,加大接触线和受电弓局部机械磨耗,甚至会在受电弓滑板上留下明显的撞击痕迹,长期运行会造成接触网断线和受电弓折断,引发弓网事故。二是导致受电弓和接触网接触不良,在瞬间发生接触导线和受电弓机械脱开,我们称这种现象为”离线”。离线发生时,会伴有火花或电弧产生,烧伤受电弓滑板和导线接触表面,形成麻面,加速导线损蚀。 3.接触网硬点产生原因分析 3.1施工过程产生的硬点 (1)采用无张力放或不稳定的小张力放线,造成接触导线在展放的过程中,导线时松时紧,损伤接触导线的平顺度;在导线展放过程中使用”S”钩悬吊导线,由于无张力或张力波动大造成导线顺线路方向前后窜动,导致”S”钩损伤导线接触线面。 (2)在完成承力索及接触线假设后,由于种种原因,都不能及时安装吊弦及定位装置,承力索与接触线间一般要采用临时吊线固定,而对临时吊弦的制作、安装没有统一规格,在现场施工过程中随意性较大,导致临时吊线的制作、安装没有统一规格,在现场施工过程中随意性较大,导致临时吊线的长度参差不齐,长度较短的临时吊线悬吊点因长时间承受较大的负荷而产生硬点。 (3)在假设后的接触导线初伸长(蠕变)还没有拉伸到位的情况下,便安

时速200公里电气化铁路接触网工程施工新工艺标准

时速200公里电气化铁路接触网工程施工新工艺标准 中铁建电气化局集团第二工程有限公司 二〇〇六年二月

目录 GS200-1 基础 (1) GS200-1-01 横腹杆式预应力混凝土支柱杯型基础 (1) GS200-1-02 硬横跨钢柱基础 (7) GS200-1-03 钢筋混凝土柱式拉线基础 (11) GS200-2 支柱安装与整正 (16) GS200-2-01 横腹杆式预应力混凝土支柱安装 (16) GS200-2-02 硬横跨钢柱安装 (20) GS200-3 支持结构装配 (23) GS200-3-01 硬横梁及吊柱安装 (23) GS200-3-02 支柱装配预配与安装 (26) GS200-4 接触网架线与超拉 (31) GS200-4-01 承力索额定张力架设与超拉 (31) GS200-4-02 接触线额定张力架设与超拉 (42) GS200-4-03 承力索、接触线同时架设与超拉 (47) GS200-5 接触悬挂调整 (54) GS200-5-01 载流整体吊弦制作 (54) GS200-5-02 自动过分相装置安装与调整 (58) GS200-5-03 交叉线岔安装与调整 (61) GS200-5-04 四跨绝缘锚段关节调整 (65) GS200-6 接触网检测 (70) GS200-6-01 动态包络线检测 (70)

GS200-1 基础 GS200-1-01 横腹杆式预应力混凝土支柱杯型基础1.施工准备 1.1.组织

2.1.操作程序 2.2.操作要领 2.2.1.测量 1)交桩:新线杯形基础施工一般在站前单位路基级配碎石碾压完成铺设道砟之间进行,若站前单位路基的底层做好后不能紧接着施工级配碎石,杯型基础亦可在碾压好

电气化铁路接触网考试题

接触网练习题121213 课程性质(任选) 一、多项选择题(本大题共10小题,每小题2分,总计20分) 1,弛度曲线是弛度相对于()的变化曲线。 A 温度; B 时间; C 跨距; D 张力 2,在锚段与()之间采用锚段关节。 A 承力索 B 站场; C 锚段; D 接触导线 3,基本风速高度是()米。 A 15; B 20; C 30; D 10 4,拉出值在直线段一般取()米。 A 300; B 200; C 270; D 400 5, 临界温度的定义 6中心锚结的作用 7,支柱所受风负载主要与()有关。 A 风速; B 空气密度; C 支柱的形状; D 风速不均匀系数 8, 当量跨距反映了 9,接触网站场平面设计的技术原则 10,大离线会造成()后果。 A 列车颠覆; B 机车供电时断时续; C 电弧灼烧导线; D 机车时快时慢 二、简答题(本大题共5小题,每小题4分) 1,一个好的接触网应该满足哪些基本要求? 2,接触网悬挂线索的风负载如何计算?(须写出公式并说明参数的含义)3,在链形悬挂中,引入结构系数Ф的意义是什么? 4,弓网间接触力大小对受流有些什么影响? 5,接触网检测装置主要检测哪些信号?试说明接触导线磨耗的检测方法。

三、填空题(每个空1分,共10分) 1、牵引网是由--------------和------------接触网及回流线组成的供电网。 2、架空式接触网主要由支柱与--------、支持装置和接触悬挂等几部分组成。 3、根据线索的紧固方法划分,链形悬挂分为----------------和 ---------------------------、------------------------及全补偿链形接触悬挂。 4、跨距-----------时,不等高悬挂的斜驰度F’等于等高悬挂的水平驰度F。 5、我国铁路接触导线的最高高度规定为-----------m。 6、临界跨距是接触线的最大张力可能发生在---------时,也可能发生在最大附加负载时的跨距。 7、电力机车受电弓的最大工作宽度为1250mm,而取许可风偏移值为-----------。 四、讨论题(20分) 已知接触导线的最大受风偏移公式为b jm=pl2/8T+a+1/l2; 式中 p为风负载,l 为跨距,T为张力,a 为拉出值 试讨论:其他条件不变,当偏移增加5%时,跨距如何变化? 五、推导题(10分)(必须有详细的推导过程) 1.试推导简单悬挂的状态方程。 六、说明题(12分) 1.(1)划分锚段的目的和主要依据分别是什么? (2)直线区段和曲线区段的锚段长度大约多长? 2.(1)技术跨距和经济跨距有何关系?(2)技术跨距主要由什么决定?

电气化铁路接触网运行安全管理

电气化铁路接触网运行安全管理 在电气化铁路的运行中,接触网随着铁路技术的不断发展,逐渐发挥出越来越重要的作用,也因此逐渐暴露诸多的问题,而问题的归结点就在于如何使得接触线能够安全、合理、科学地运作,但是无论是来自客观还是主观的问题均对接触线的安全问题构成了严重的威胁。首先是来自自然环境的因素,主要是由于接触线往往暴露于自然环境当中,容易因为天气、气候等因素造成腐蚀性损毁,其次就是来自与人为的因素,一方面是由于具体的操作过程中,由于技术或者是大意而造成的瑕疵和纰漏。因此我们必须积极采取措施,全力解决接触线的运行安全问题。 标签:电气化铁路;接触网运行;安全管理 1 电气化铁路接触网运行现状 “目前,我国电气化铁路约占全国铁路总营业里程的40%以上,它所承担的运量约占铁路总运量的70%左右,电气化铁路的优越性是毋庸置疑的。”[1]然而在电气化铁路的运行中,接触网随着铁路技术的不断发展,逐渐发挥出越来越重要的角色和地位,也因此而逐渐暴露诸多的问题,而问题的归结点就在于如何使得接触线能够安全、合理、科学地运作,但是无论是来自客观还是主观的问题均对接触线的安全问题构成了严重的威胁。首先是来自自然环境的因素,主要是由于接触线往往暴露于自然环境当中,容易因为天气、气候等因素造成腐蚀性损毁,其次就是来自于人为的因素,一方面是由于具体的操作过程中,由于技术或者是大意而造成的瑕疵和纰漏。因此我们必须积极采取措施,全力解决接触线的运行安全问题。 2 电气化铁路接触网事故分类及原因 电气化铁路接触网发生的事故按照其性质和后果可分为设备事故和人身事故两类。人身事故是指在检修或抢修接触网作业过程中,发生的检修作业人员及辅助作业人员的人身伤亡事故。造成人身伤亡事故的原因大多是没有牢固树立安全生产的思想,违章作业,责任心不强、玩忽职守、盲目蛮干、麻痹大意,也有的是作业人员业务不熟,工作经验少。但一般由于设备事故而引起的人身伤亡事故是极少见的,这在文章中不进行讨论。接触网设备事故是指接触网及其附属设备遭受不同程度的破坏。由于接触网设备事故类型不同、范围大小不同,其造成的影响也不同。现就接触网安全运行关键部件中经常发生的几种故障进行简单的阐述分析。 2.1 绝缘故障 “绝缘是实现带电体与接地体隔离的介质。”[1]就当前我国电气化铁路接触线所采用的绝缘材质而言,主要包括钢化玻璃绝缘子、有瓷质绝缘子和硅橡胶绝缘子三大类,并且因为三者的高效率性和相对而言的优越性发挥了重要的作用,也

浅析电气化铁路接触网硬点产生的原因及防治措施

浅析电气化铁路接触网硬点产生的原因及防治措施 摘要:近年来,随着我国电气化铁路的不断建设和现有有线电气化的改造,电 弧流量关系成为铁路安全运行的关键。但是,一旦接触网没有备用特征,可能会 导致列车和列车出现重大延误,因此越来越多的人关注接触网设备的运行状况。 下文重点阐述电气化铁路接触网硬点成因、检测方法及对策,并提出了如何合理 预防接触网硬点的措施。 关键词:电气化铁路;接触网硬点;产生原因;防治措施; 前言 当前,随着经济社会的发展建设,中国各地城乡铁路建设圈逐步完善。电气 化铁路的发展日益引起人们对交通便利和稳定的关注。因此,铁路施工质量更为 严格,提高列车运行速度对电气电弧和接触网提出了更高的质量要求。施工开始时,人员的理想使用状态是使电弧炉与接触网之间的接触可靠,在此基础上,电 力机车可以通过接触网获得正常、定期运行的电力资源。 一、电气化铁路接触网硬点概述 1.接触网硬点 一般来说,在电气化铁路中,接触网是电力线稳定牵引电流的专用高压电力线,其主要任务是不断给电力机车供电。在电力机车运行期间,电弧焊和接触线 之间存在滑动摩擦,只有电弧焊和接触线之间的接触压力稳定时,才能正常使用 电流。因为接触悬浮不是刚性的,而是弹性的。因此,电气化铁路接触网和电弧 炉之间的接触压力也是动态的。当此非线性变化达到一定程度时,称为硬点。硬 点源于悬挂结构固有的缺陷,并且是相对的。包括与导线接触引起的刚性弯曲; 与接触网相邻的两个放置点与轨道顶点之间的高度差太大。电力机车运行速度越高,性能越重要。目前,硬点检测通常是通过在电弧上安装压力传感器来测量的。准确和有效地评估铁路电网的硬点是加快电网运行的重要因素。 2.危害 当列车高速行驶时,电弧焊和接触线之间存在巨大的水平和垂直冲击,机械 冲击将继续发生,造成更大的机械损坏。另一方面,机械性能的轻微损害是由电 弧炉碳滑板造成的,机械性能的严重损害是由电弧炉击伤造成的,很可能造成重 大电弧炉事故、局部接触网击伤、严重倒塌事故,从而使电力机车无法工作其次,电弓损坏了一般而言,弧损坏是由于硬点在离线或离线时温度较高而造成的。当 火车低速运行时,由于与硬点接触不良,它会断开连接,并在断开连接时生成电 弧炉。由于下部线路尺寸小,速度慢,电弧焊接触线的高温燃烧更加明显。长期 高温燃烧可能导致接触线断裂。当由于硬点导致电气弧与接触线之间的电气弧脱 机时,电气弧和接触线之间的空气间隙可能会产生电气弧,电流取值可能会突然 变化形成谐波过电压和电磁波,导致会损坏系统设备。 二、接触网硬点产生的原因 1.施工因素 现场实施时,接触线的铺设过程通常是通过低压线的设置来完成的。在没有 关于重要电压参数的理论指导的情况下,稳定性降低,接触线铺设后形成的电压 更加不平衡,特别是在锚固和锚固方面,接触线需要进一步收紧和松动,从而加 剧了电压不对称,使接触线由于各种原因,接触线和承载电缆安装后,未能及时 在它们之间安装固定装置。此外,通常使用的临时悬置线路不符合统一的生产和 安装标准,导致用于现场工作的临时悬置线路长度差异很大。在长度较短的情况

常见接触网零件以及功能介绍汇总

常见接触网零件以及功能介绍[图文并茂] 套管双耳 JL14-2002 本零件适用腕臂或定位管上连接耳环型零件。 本零件采用Q235A或QAl9-4棒材,采用金属模锻工艺加工制造,材质为Q235A 时,表面三级热浸镀锌。 本零件的最大水平工作荷重为5.8kN;最大垂直工作荷重为4.9kN,滑动荷重不小于7.5kN。 本零件螺栓的紧固力矩为44N.m。 P型组合承力索座 本零件适用于平腕臂上悬挂支撑标称截面为80mm2、100mm2的钢承力索或95mm2、120mm2、127mm2的铜及铜合金承力索。 本零件选用牌号为ZG1Cr18Mn8Ni4N或ZG270-500的材料,采用熔模精密铸造 工艺制造,材质为ZG270-500时,表面三级热浸镀锌。本零件的最大水平工作荷重为5.8kN;垂直工作荷重为4.9kN;水平破坏荷重不小于17.4kN;垂直破坏荷重不小于14.7kN;滑动荷重不小于3.9kN;与腕臂之间的滑动荷重不小于6.0kN。本零件抱箍螺栓的紧固力矩为44N.m;线夹压块螺栓的紧固力矩为70N.m。

横承力索线夹 JL23-2002 本零件适用于软横跨GJ-70横承力索上悬挂吊线。 本零件采用Q235A或QAl9-4棒材,采用金属模锻工艺加工制造。材质为Q235A 时,表面三级热浸镀锌。 本零件最大垂直工作荷重为7.9kN;滑动荷重不小于9.8kN。 本零件U螺栓的紧固力矩为44N.m。 支持器 JL09-2002 本零件适用于接触网系统定位装置中,连接定位线夹,固定接触线。 本零件选用牌号为ZG1Cr18Mn8Ni4N或ZG270-500,采用熔模精密铸造工艺制造,材质为ZG270-500时,表面三级热浸镀锌。 本零件的最大水平工作荷重为2.5kN;滑动荷重不小于4.9kN;破坏荷重不小于7.5kN。 本零件螺栓的紧固力矩为44N.m. 长支持器 JL10-2002 本零件适用于固定在Φ34mm、Φ27mm的定位管上,连接定位线夹,固定接触线。本零件选用牌号为ZG1Cr18Mn8Ni4N或ZG270-500,采用熔模精密铸造工艺制造。

高速铁路接触网支持装置

高速铁路接触网支持装置 1.腕臂 腕臂安装在支柱上部,用以支持接触悬挂,并起传递负荷的作用。腕臂按其与支柱之间是否通过绝缘装置分为绝缘腕臂和非绝缘腕臂。在我国电气化铁路中广泛采用的是旋转绝缘腕臂,根据其在线路中的作用和性质,分为中间柱、非绝缘转换柱、绝缘转换柱、中心柱等。不同的腕臂,它们的支持装置也有所不同。(1)中间柱支持装置。在中间支柱上只安装一个腕臂,悬吊一支接触悬挂,并把承力索和接触线定位在所要求的位置上,这种支持装置称为中间柱支持装置。在线路的直线区段,支柱一般立于线路的同一侧,但是接触线需要按“之”字形布置,其拉出值一般在支柱点处要变换方向,所以定位为一正一反。 (2)非绝缘转换柱支持装置。对于3个跨距的非绝缘锚段关节,中间的两根支柱称为转换柱,它悬吊两支接触悬挂,其中一支为工作支,另一支为非工作支。工作支的接触线与受电弓接触;非工作支的接触线抬高约200 mm,不与受电弓接触,通过转换柱拉向锚柱。因此,转换柱需要安装两组定位器。 (3)绝缘转换柱支持装置。绝缘转换支柱的装配应能满足被衔接的两个锚段在电气上是互相绝缘的。所以,工作支和非工作支的接触线之间、承力索之间在垂直方向和水平方向上的投影都必须保持500 mm的绝缘距离,以保证在风力作用下及导线振动、摆动情况下,绝缘距离均不得小于最小的绝缘空气间隙。 (4)中心柱支持装置。位于四跨绝缘锚段关节的两转换柱之间的支柱,称为中心柱。在中心柱上同样要安装两套支持装置,悬吊的两支接触悬挂均为工作支,两根接触线等高。 2.绝缘子 接触网上所用的绝缘子一般为瓷质的,即在瓷土中加入石英和长石烧制而成,其表面涂有一层光滑的釉质。接触网上使用的绝缘子按结构分为悬式绝缘子和棒式绝缘子两类,按绝缘子表面长度(泄漏距离)分成普通型和防污型两种。近年

毕业论文——电气化铁路接触网施工技术

题目:电气化铁路接触网施工技术 系别:电气工程系 专业:电气化铁道铁道技术姓名:\

目录 摘要............................................................... III ABSTRACT .............................................................. IV 第1章前言 (1) 第2章电气化铁道相关规程规则 (2) 2.1接触网安全工作规程(总则) (2) 2.2接触网运行检修规程(总则) (2) 2.3电气化铁路有关人员电气安全规则(总则) (3) 第3章接触网简介 (4) 第4章接触网施工 (5) 4.1接触网基础工程 (5) 4.1.1 施工准备 (5) 4.1.2 接触网工程预概算 (7) 4.1.3 施工测量与定位 (7) 4.1.4 开挖基坑 (9) 4.1.5 混凝土工程 (10) 4.2立杆与整正 (11) 4.2.1 接触网支柱安装 (11) 4.2.2 接触网支柱整正 (12) 4.2.3 硬横梁安装 (14) 4.2.4 隧道内吊柱安装 (17) 4.3支柱装配预配安装 (18) 4.3.1 预配工艺流程 (18) 4.3.2 预配操作方法 (18) 4.4接触网架设 (21) 4.4.1承力索架设 (21) 4.4.2接触线架设 (24) 4.5接触网静态检测和动态检测 (27) 4.5.1静态检测 (27) 4.5.2低速动态检测(冷滑试验) (27) 4.5.3接触网送电(空载带电) (27) 4.5.4动态检测(热滑试验) (28) 结论 (29) 总结与体会 (30) 致谢 (31) 参考文献 (32)

电气化铁路接触网常用名词术语(最新)

电气化接触网常用名词术语 (丁为民) 一、牵引供变电 1.电力牵引供电系统 由牵引变电所、牵引网以及其它辅助供电设施组成的供电系统。 2.牵引网 由接触网和回流回路构成的供电网络。 3.单相牵引变压器和三相V,v结线牵引变压器 包括单相结线、单相V,v结线和三相V,v结线牵引变压器。 ●单相结线方式,为双绕组变压器,一次侧(高压侧)绕组接入电力系统三相电网中的两相,二次侧(低压侧)绕组的一端接钢轨,另一端接入牵引侧母线。 ●单相V,v结线方式,在牵引变电所设置两台双绕组单相变压器,联结成开口三角形,一次侧(高压侧)绕组的两个开口端和一个公共端接入电力系统三相电网,二次侧(低压侧)绕组将公共端与钢轨大地相连,两个开口端分别接入牵引侧母线。 ●三相V,v结线方式,由一台三相双绕组牵引变压器连接成开口三角的结线方式。 单相结线单相/三相V,v结线

4.三相—二相平衡牵引变压器 当一次侧(高压侧)接到电力系统的三相电网时,则二次侧(低压侧)就产生相位差90°的二相平衡电压,当二次侧两个供电臂负载平衡时,一次侧三相为对称系的牵引变压器。 Scott结线平衡牵引变压器 5.三相牵引变压器 包括三相YN,d11结线和YN,d11,d1十字交叉结线牵引变压器。 YN,d11结线为双绕组变压器,一次侧(高压侧)三相结线为Y型,分别接入电力系统三相电网;二次侧(低压侧)结线为Δ型,其一角和大地相连,另两角分别接入牵引侧母线。 YN,d11,d1组成的十字交叉变压器,一次侧(高压侧)三相结线为Y型,二次侧(低压侧)d11,d1结线的两个三角形线圈结成对顶三角形,对顶角接大地,其他各角分别接入牵引侧不同母线。 三相YN,d11结线牵引变压器三相YN,d11,d1十字交叉结线牵引变压器

电气化铁路接触网硬点产生原因及改进措施

电气化铁路接触网硬点产生原因及改进措施 发表时间:2014-11-20T14:50:03.280Z 来源:《价值工程》2014年第4月上旬供稿作者:赵秀远 [导读] 当弓网处于理想状态时,接触压力是恒定的,受点弓会沿着接触线匀速前进,为电力机车提供稳定的电能和电压。 The Causes and Improvement Measures of Hard Spot of Electrified Railway Contact Net 赵秀远淤ZHAO Xiu-yuan曰冯红岩于FENG Hong-yan(淤济南铁路局青岛供电段,青岛266002;于济南铁路局调度所,济南250000)(淤Qingdao Power Supply Section,Ji'nan Railway Bureau,Qingdao 266002,China;于Ji'nan Railway Bureau Dispatch,Ji'nan 250000,China) 摘要院电气化铁路接触网硬点一旦形成,很容易造成破坏机车稳定受流,影响电力机车弓网关系,造成严重后果。本文就电气化铁路接触网硬点产生的原因,提出了防范与整治接触网“硬点”的几项措施。 Abstract: The hard spot of electrified railway contact net once formed, will easily result in the destruction of stable flow of locomotive,and affect the pantograph of electric locomotive, cause serious consequences. This paper puts forward several measures for the preventionand remediation of hard point, based on the analysis of its causes. 关键词院电气化铁路;接触网;硬点;整治措施 Key words: electrified railway;contact net;hard point;countermeasures 中图分类号院U225 文献标识码院A 文章编号院1006-4311(2014)10-0098-020 引言自2013 年12 月28 日零时起,我国铁路迎来了动作最大的一次运行图调整,沪哈高铁、厦深高铁、西宝高铁等7 条铁路同时开通运营。在增开的75 对客车中,尤以新增上海至哈尔滨、北京至桂林、广州至青岛的3 条长距离高铁线最为瞩目。列车在提速的同时,也对电气化铁路弓网关系提出了更为严格的要求。 当弓网处于理想状态时,接触压力是恒定的,受点弓会沿着接触线匀速前进,为电力机车提供稳定的电能和电压。然而在现实生活中,理想状态是不存在的,受种种条件的限制,受点弓和接触线间的压力不是恒定的,随时都在变化。列车在高速滑行的过程中,受电弓和接触网之间会出现冲击、离线和硬点。其中,硬点是破坏机车稳定气流,影响电力机车弓网关系的最主要原因之一。硬点产生后,不仅会加快接触导线和受电弓滑板的耗损和撞击,还会造成硬点部位出现火花或拉弧现象,大大减少了弓网的使用寿命,另外还会影响弓网的良好受流,甚至出现弓网故障危及行车安全。因此,怎样减少硬点,保证受电弓与接触改善接触网的质量,一直是铁路工作者们思考的问题。其中,找出硬点产生的原因并进行防治是保证良好的弓网关系的重要手段。 1 硬点产生的原因接触网产生硬点的原因很多,根据技术维修人员以往的维修处理经验,可主要归结为以下几点:淤施工工艺不规范。施工时,因放线张力不均或者踩踏接触线导致导线出现弯曲和扭面,从而出现硬点。于临时吊线不统一。施工时,在架设完承力索和接触线之后,如不能及时安装吊弦和定位装置,就往往需要用临时线来固定。但受条件限制,临时吊线的规格不一,势必会造成施工的随意性,临时吊线的长度不均,承重情况也不尽相同,长度较短的临时吊线承受负荷过大,从而出现硬点。盂接触线上的零部件安装不规范。在施工过程中,由于接触线的导高调整不当,造成坡度变化不符合规范;锚段关节处或者电分别锚段关节处或电分相处两转换柱之间导线交叉处没有在一条水平线上,等高部位接触线长度较短;定位点处导高与第一吊弦处导高没有处于一个水平线上;定位器坡度过小,造成限位间隙小从而出现硬点。榆线路质量不过关,施工不当。受轨道线路不平和运行时车体晃动等的影响,铁路接触网容易出现接触力突变,产生严重后果,如影响床的弹动系数和震动周期,还会造成道床和轨道危害。此外,在施工时,因施工不当,如违规作业,在没有与相关管理单位取得联系并得到允许的前提下,擅自进行拔道,造成铁路轨道面和侧面的限界超出正常值,都会出现硬点。因此,铁路接触网的线路质量对接触力的影响是很大的,必须谨慎对待。 2 接触网硬点的危害接触网一旦产生硬点,势必会影响弓网运行关系,造成极大危害。具体表现在:淤造成机械伤害。接触网硬点会造成受力电弓和接触导线的撞击,必然会加大机械耗损。长此以往,会出现接触网断线和受电弓的折断,出现电网事故。于电弧伤害。硬点会造成弓网离线,在离线瞬间产生的高温电弧,会严重危害到受点弓和接触网的安全。接触网硬点会造成机车受点弓离线,危害到机车牵引电机和受点弓等以及供电系统。 导线硬点会影响加速度,过大时会出现离线,造成机械破坏。对接触导线的伤害除了对接触导线的点蚀、汽化以外,就是对导线的高温退火。对受电弓的伤害主要表现在对弓头的点蚀、汽化;过小时会出现弓网接触不良。盂污染环境。弓网离线时,产生的高温电弧会产生强烈的电磁波和辐射,不仅对环境的危害巨大,还会严重干扰周围的线路。 3 接触网硬点治理措施目前,受技术水平和接触网本身结构的限制,以及铁路运行的状态下,要彻底消除接触网硬点很难做到,只能减少。本文根据电气化铁路接触网的硬点产生原因,提出了几点治理措施:淤因施工时人员踩踏和工艺不精造成导线扭曲和扭面,产生的硬点。可以通过作业车检查,用手触摸或者远距目测的方法发现硬点所在位置,再用导线直弯器和扭面器处理。于因中心锚结绳松弛产生的硬点。先检查补偿装置有无坠砣卡滞情况,处理完毕后再测量接触线中的锚的导高,调整中锚绳,在保证其基本不受力的情况下,增加吊弦,并让其受力,从而达到消除硬点的目的。盂因两相邻吊弦高差过大,超过10mm,产生的硬点。首先通过测量吊弦处导高的方法检查,一般使用测杆或激光测量仪。通过调整吊弦的长度的方式调节高度差。同时注意控制吊弦间距在8m 之内,确保吊弦受力情况均匀,从而消除硬点。榆因定位点处和第一根吊弦的高度不等,定位点处受力过大,产生的硬点。通过调整吊弦位置的方法来调整导高,若无法调整,则通过更换吊弦的方法从而消除硬点。虞因锚段关节处或者电分相处两转换柱间导线交叉处没有在一条水平线上,造成受点弓无法平滑过渡,产生的硬点。可以通过测量关节处的吊弦后,再相应的移动、调整和更换,延长等高处导线的长度,消除硬点。愚因电连接造成接触网附加重量增加,质量过于集中,产生的硬点。在安装时,要注意线夹的端正。此外接触线线夹安装点要超出设计值20-30mm。通过以上措施都可以有效减少或消除硬点。另外受温度变化,承力索和接触线会出现伸缩。因此,电连接线要留有一定余量,避免因线夹外泄而产生的硬点。舆因定位器坡度小造成高度差变大产生的硬点。定位器的坡度小,会减小限位间隙的余量,造成余量过小甚至没有余量。与此同时,定位点处的导线在静态情况下与第一吊弦点的导线高度相同,但在动态情况下,定位点会因与第一吊弦点的高度差变大,从而产生硬点。因此在维修时,要重新调整定位器的坡度至正常水平。 因此,在治理电气化铁路接触网的硬点时,要找出原因,有重点,有针对性的进行处理。结合轨检情况对接触网硬点检测数据进行分析,排除轨道和机车原因产生的硬点,提高硬点处理的针对性。

相关主题
文本预览
相关文档 最新文档