当前位置:文档之家› 高等数学 函数与极限 教案

高等数学 函数与极限 教案

高等数学 函数与极限 教案
高等数学 函数与极限 教案

第一章函数与极限

教学目的:

1、理解函数的概念,掌握函数的表示方法,并会建立简单应用问题中的函数关系式。

2、了解函数的奇偶性、单调性、周期性和有界性。

3、理解复合函数及分段函数的概念,了解反函数及隐函数的概念。

4、掌握基本初等函数的性质及其图形。

5、理解极限的概念,理解函数左极限与右极限的概念,以及极限存在与左、右极限

之间的关系。

6、掌握极限的性质及四则运算法则。

7、了解极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限

的方法。

8、理解无穷小、无穷大的概念,掌握无穷小的比较方法,会用等价无穷小求极限。

9、理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。

10、了解连续函数的性质和初等函数的连续性,了解闭区间上连续函数的性质(有

界性、最大值和最小值定理、介值定理),并会应用这些性质。

教学重点:

1、复合函数及分段函数的概念;

2、基本初等函数的性质及其图形;

3、极限的概念极限的性质及四则运算法则;

4、两个重要极限;

5、无穷小及无穷小的比较;

6、函数连续性及初等函数的连续性;

7、区间上连续函数的性质。

教学难点:

1、分段函数的建立与性质;

2、左极限与右极限概念及应用;

3、极限存在的两个准则的应用;

4、间断点及其分类;

5、闭区间上连续函数性质的应用。

§1. 1 映射与函数

一、集合

1. 集合概念

集合(简称集): 集合是指具有某种特定性质的事物的总体. 用A, B, C….等表示.

元素: 组成集合的事物称为集合的元素. a是集合M的元素表示为a M.

集合的表示:

列举法: 把集合的全体元素一一列举出来.

例如A ={a , b , c , d , e , f , g }.

描述法: 若集合M 是由元素具有某种性质P 的元素x 的全体所组成, 则M 可表示为 A ={a 1, a 2, ? ? ?, a n }, M ={x | x 具有性质P }.

例如M ={(x , y )| x , y 为实数, x 2+y 2=1}. 几个数集:

N 表示所有自然数构成的集合, 称为自然数集. N ={0, 1, 2, ? ? ?, n , ? ? ?}. N +={1, 2, ? ? ?, n , ? ? ?}. R 表示所有实数构成的集合, 称为实数集. Z 表示所有整数构成的集合, 称为整数集. Z ={? ? ?, -n , ? ? ?, -2, -1, 0, 1, 2, ? ? ?, n , ? ? ?}.

Q 表示所有有理数构成的集合, 称为有理数集.

},|{互质与且q p q Z p q

p

+∈∈=N Q

子集: 若x ∈A , 则必有x ∈B , 则称A 是B 的子集, 记为A ?B (读作A 包含于B )或B ?A . 如果集合A 与集合B 互为子集, A ?B 且B ?A , 则称集合A 与集合B 相等, 记作A =B . 若A ?B 且A ≠B , 则称A 是B 的真子集, 记作A ≠?B . 例如, N ≠?Z ≠?Q ≠?R .

不含任何元素的集合称为空集, 记作?. 规定空集是任何集合的子集. 2. 集合的运算

设A 、B 是两个集合, 由所有属于A 或者属于B 的元素组成的集合称为A 与B 的并集(简称并), 记作A ?B , 即

A ?

B ={x |x ∈A 或x ∈B }.

设A 、B 是两个集合, 由所有既属于A 又属于B 的元素组成的集合称为A 与B 的交集(简称交), 记作A ?B , 即

A ?

B ={x |x ∈A 且x ∈B }.

设A 、B 是两个集合, 由所有属于A 而不属于B 的元素组成的集合称为A 与B 的差集(简称差), 记作A \B , 即

A \

B ={x |x ∈A 且x ?B }.

如果我们研究某个问题限定在一个大的集合I 中进行, 所研究的其他集合A 都是I 的子集. 此时, 我们称集合I 为全集或基本集. 称I\A 为A 的余集或补集, 记作A C . 集合运算的法则:

设A 、B 、C 为任意三个集合, 则 (1)交换律A ?B =B ?A , A ?B =B ?A ;

(2)结合律 (A ?B )?C =A ?(B ?C ), (A ?B )?C =A ?(B ?C );

(3)分配律 (A ?B )?C =(A ?C )?(B ?C ), (A ?B )?C =(A ?C )?(B ?C ); (4)对偶律 (A ?B )C =A C ?B C , (A ?B )C =A C ?B C . (A ?B )C =A C ?B C 的证明:

x∈(A?B)C?x?A?B?x?A且x?B?x∈A C且x∈B C?x∈A C?B C, 所以(A?B)C=A C?B C.

直积(笛卡儿乘积):

设A、B是任意两个集合, 在集合A中任意取一个元素x, 在集合B中任意取一个元素y, 组成一个有序对(x, y), 把这样的有序对作为新元素, 它们全体组成的集合称为集合A与集合B的直积, 记为A?B, 即

A?B={(x, y)|x∈A且y∈B}.

例如, R?R={(x, y)| x∈R且y∈R }即为xOy面上全体点的集合, R?R常记作R2.

3. 区间和邻域

有限区间:

设a

(a, b)={x|a

类似地有

[a, b] = {x | a ≤x≤b }称为闭区间,

[a, b) = {x | a≤x

其中a和b称为区间(a, b)、[a, b]、[a, b)、(a, b]的端点, b-a称为区间的长度.

无限区间:

[a, +∞) = {x | a≤x }, (-∞, b] = {x | x < b } , (-∞, +∞)={x | | x | < +∞}.

区间在数轴上的表示:

邻域: 以点a为中心的任何开区间称为点a的邻域, 记作U(a).

设δ是一正数, 则称开区间(a-δ, a+δ)为点a的δ邻域, 记作U(a, δ), 即

U(a, δ)={x | a-δ< x < a+δ}

={x | | x-a|<δ}.

其中点a称为邻域的中心, δ称为邻域的半径.

去心邻域

U(a, δ):

U(a, δ)={x |0<| x-a |<δ}

二、映射

1. 映射的概念

定义设X、Y是两个非空集合, 如果存在一个法则f, 使得对X中每个元素x, 按法则f, 在Y中有唯一确定的元素y与之对应, 则称f为从X到Y的映射, 记作

f : X→Y ,

其中y称为元素x(在映射f下)的像, 并记作f(x), 即

y=f(x),

而元素x称为元素y(在映射f下)的一个原像; 集合X称为映射f的定义域, 记作D f, 即

D f =X ;

X 中所有元素的像所组成的集合称为映射f 的值域, 记为R f , 或f (X ), 即

R f =f (X )={f (x )|x ∈X }. 需要注意的问题:

(1)构成一个映射必须具备以下三个要素: 集合X , 即定义域D f =X ; 集合Y , 即值域的范围: R f ?Y ; 对应法则f , 使对每个x ∈X , 有唯一确定的y =f (x )与之对应.

(2)对每个x ∈X , 元素x 的像y 是唯一的; 而对每个y ∈R f , 元素y 的原像不一定是唯一的; 映射f 的值域R f 是Y 的一个子集, 即R f ?Y , 不一定R f =Y . 例1设f : R →R , 对每个x ∈R , f (x )=x 2.

显然, f 是一个映射, f 的定义域D f =R , 值域R f ={y |y ≥0}, 它是R 的一个真子集. 对于R f 中的元素y , 除y =0外, 它的原像不是唯一的. 如y =4的原像就有x =2和x =-2两个. 例2设X ={(x , y )|x 2+y 2=1}, Y ={(x , 0)||x |≤1}, f : X →Y , 对每个(x , y )∈X , 有唯一确定的(x , 0)∈Y 与之对应.

显然f 是一个映射, f 的定义域D f =X , 值域R f =Y . 在几何上, 这个映射表示将平面上一个圆心在原点的单位圆周上的点投影到x 轴的区间[-1, 1]上. (3) f :]2 ,2[ππ-→[-1, 1], 对每个x ∈]2

,2[π

π-, f (x )=sin x .

f 是一个映射, 定义域D f =]2

,2[π

π-, 值域R f =[-1, 1].

满射、单射和双射:

设f 是从集合X 到集合Y 的映射, 若R f =Y , 即Y 中任一元素y 都是X 中某元素的像, 则称f 为X 到Y 上的映射或满射; 若对X 中任意两个不同元素x 1≠x 2, 它们的像f (x 1)≠f (x 2), 则称f 为X 到Y 的单射; 若映射f 既是单射, 又是满射, 则称f 为一一映射(或双射). 上述三例各是什么映射? 2. 逆映射与复合映射

设f 是X 到Y 的单射, 则由定义, 对每个y ∈R f , 有唯一的x ∈X , 适合f (x )=y , 于是, 我们可定义一个从R f 到X 的新映射g , 即

g : R f →X ,

对每个y ∈R f , 规定g (y )=x , 这x 满足f (x )=y . 这个映射g 称为f 的逆映射, 记作f -1, 其定义域1-f D =R f , 值域1-f R =X .

按上述定义, 只有单射才存在逆映射. 上述三例中哪个映射存在逆映射? 设有两个映射

g : X →Y 1, f : Y 2→Z ,

其中Y 1?Y 2. 则由映射g 和f 可以定出一个从X 到Z 的对应法则, 它将每个x ∈X 映射成f [g (x )]∈Z . 显然, 这个对应法则确定了一个从X 到Z 的映射, 这个映射称为映射g 和f 构成的复合映射, 记作f o g , 即 f o g : X →Z ,

(f o g )(x )=f [g (x )], x ∈X . 应注意的问题:

映射g 和f 构成复合映射的条件是: g 的值域R g 必须包含在f 的定义域内, R g ?D f . 否则, 不能构成复合映射. 由此可以知道, 映射g 和f 的复合是有顺序的, f o g 有意义并不表示g o f 也有意义. 即使f o g 与g o f 都有意义, 复映射f o g 与g o f 也未必相同. 例4 设有映射g : R →[-1, 1], 对每个x ∈R , g (x )=sin x , 映射f : [-1, 1]→[0, 1], 对每个u ∈[-1, 1], 21)(u u f -=. 则映射g 和f 构成复映射f o g : R →[0, 1], 对每个x ∈R , 有 |cos |sin 1)(sin )]([))((2x x x f x g f x g f =-=== .

三、函数 1. 函数概念

定义 设数集D ?R , 则称映射f : D →R 为定义在D 上的函数, 通常简记为

y =f (x ), x ∈D ,

其中x 称为自变量, y 称为因变量, D 称为定义域, 记作D f , 即D f =D . 应注意的问题:

记号f 和f (x )的含义是有区别的, 前者表示自变量x 和因变量y 之间的对应法则, 而后者表示与自变量x 对应的函数值. 但为了叙述方便, 习惯上常用记号“f (x ), x ∈D ”或“y =f (x ), x ∈D ”来表示定义在D 上的函数, 这时应理解为由它所确定的函数f .

函数符号: 函数y =f (x )中表示对应关系的记号f 也可改用其它字母, 例如“F ”, “?”等. 此时函数就记作y =? (x ), y =F (x ). 函数的两要素:

函数是从实数集到实数集的映射, 其值域总在R 内, 因此构成函数的要素是定义域D f 及对应法则f . 如果两个函数的定义域相同, 对应法则也相同, 那么这两个函数就是相同的, 否则就是不同的. 函数的定义域:

函数的定义域通常按以下两种情形来确定: 一种是对有实际背景的函数, 根据实际背景中变量的实际意义确定.

求定义域举例:

求函数41

2--=x x

y 的定义域.

要使函数有意义, 必须x ≠0, 且x 2 - 4≥0. 解不等式得| x |≥2.

所以函数的定义域为D ={x | | x |≥2}, 或D =(-∞, 2]?[2, +∞]).

单值函数与多值函数:

在函数的定义中,对每个x ∈D , 对应的函数值y 总是唯一的, 这样定义的函数称为单值函数. 如果给定一个对应法则, 按这个法则, 对每个x ∈D , 总有确定的y 值与之对应, 但这个y 不总是唯一的, 我们称这种法则确定了一个多值函数. 例如, 设变量x 和y 之间的对应法则由方程x 2+y 2=r 2 给出. 显然, 对每个x ∈[-r , r ],由方程x 2+y 2=r 2,可确定出对应的y 值, 当x =r 或x =-r 时, 对应y =0一个值; 当x 取(-r , r )内任一个值时, 对应的y 有两个值. 所以这方程确定了一个多值函数.

对于多值函数, 往往只要附加一些条件, 就可以将它化为单值函数, 这样得到的单值函数称为多值函数的单值分支. 例如, 在由方程x 2+y 2=r 2给出的对应法则中, 附加“y ≥0”的条件, 即以“x 2+y 2=r 2且y ≥0”作为对应法则, 就可得到一个单值分支221)(x r x y y -==; 附加“y ≤0”的条件, 即以“x 2+y 2=r 2且y ≤0”作为对应法则, 就可得到另一个单值分支

222)(x r x y y --==.

表示函数的主要方法有三种: 表格法、图形法、解析法(公式法), 这在中学里大家已经熟悉. 其中, 用图形法表示函数是基于函数图形的概念, 即坐标平面上的点集 {P (x , y )|y =f (x ), x ∈D }

称为函数y =f (x ), x ∈D 的图形. 图中的R f 表示函数y =f (x )的值域. 函数的例子:

例. 函数?

??<-≥==0 0

||x x x x x y .

称为绝对值函数. 其定义域为D =(-∞, +∞), 值域为R f =[0, +∞). 例. 函数??

?

??<-=>==01000 1sgn x x x x y .

称为符号函数. 其定义域为D =(-∞, +∞), 值域为R f ={-1, 0, 1}.

例 设x 为任上实数. 不超过x 的最大整数称为x 的整数部分, 记作[ x ]. 函数

y = [ x ]

称为取整函数. 其定义域为D =(-∞, +∞), 值域为R f =Z .

0]7

5

[=, 1]2[=, [π]=3, [-1]=-1, [-3. 5]=-4.

分段函数:

在自变量的不同变化范围中, 对应法则用不同式子来表示的函数称为分段函数. 例。 函数??

???>+≤≤=111

0 2x x x x y .

这是一个分段函数, 其定义域为D =[0, 1]?(0, +∞)= [0, +∞).

当0≤x ≤1时, x y 2=; 当x >1时, y =1+x .

例如22

1

2

)21(==f ; 2 1 2)1(==f ; f (3)=1+3=4. 2. 函数的几种特性

(1)函数的有界性

设函数f (x )的定义域为D , 数集X ?D . 如果存在数K 1, 使对任一x ∈X , 有f (x )≤K 1, 则称函数f (x )在X 上有上界, 而称K 1为函数f (x )在X 上的一个上界. 图形特点是y =f (x )的图形在直线y =K 1的下方.

如果存在数K 2, 使对任一x ∈X , 有f (x )≥ K 2, 则称函数f (x )在X 上有下界, 而称K 2为函数f (x )在X 上的一个下界. 图形特点是, 函数y =f (x )的图形在直线y =K 2的上方.

如果存在正数M , 使对任一x ∈X , 有| f (x ) |≤M , 则称函数f (x )在X 上有界; 如果这样的M 不存在, 则称函数f (x )在X 上无界. 图形特点是, 函数y =f (x )的图形在直线y = - M 和y = M 的之间.

函数f (x )无界, 就是说对任何M , 总存在x 1∈X , 使| f (x ) | > M . 例如

(1)f (x )=sin x 在(-∞, +∞)上是有界的: |sin x |≤1.

(2)函数x

x f 1

)(=在开区间(0, 1)内是无上界的. 或者说它在(0, 1)内有下界, 无上界.

这是因为, 对于任一M >1, 总有x 1: 1

101<<

x , 使 M x x f >=111)(,

所以函数无上界.

函数x

x f 1

)(=在(1, 2)内是有界的.

(2)函数的单调性

设函数y = f (x )的定义域为D , 区间I ?D . 如果对于区间I 上任意两点x 1及x 2, 当x 1

f (x 1)< f (x 2), 则称函数f (x )在区间I 上是单调增加的.

如果对于区间I 上任意两点x 1及x 2, 当x 1 f (x 2), 则称函数f (x )在区间I 上是单调减少的.

单调增加和单调减少的函数统称为单调函数. 函数单调性举例:

函数y = x 2在区间(-∞, 0]上是单调增加的, 在区间[0, +∞)上是单调减少的, 在(-∞, +∞)

上不是单调的.

(3)函数的奇偶性

设函数f(x)的定义域D关于原点对称(即若x∈D, 则-x∈D). 如果对于任一x∈D, 有

f(-x) =f(x),

则称f(x)为偶函数.

如果对于任一x∈D, 有

f(-x) =-f(x),

则称f(x)为奇函数.

偶函数的图形关于y轴对称, 奇函数的图形关于原点对称,

奇偶函数举例:

y=x2, y=cos x都是偶函数. y=x3, y=sin x都是奇函数, y=sin x+cos x是非奇非偶函数.

(4)函数的周期性

设函数f(x)的定义域为D. 如果存在一个正数l , 使得对于任一x∈D有(x±l)∈D, 且

f(x+l) =f(x)

则称f(x)为周期函数, l称为f(x)的周期.

周期函数的图形特点: 在函数的定义域内, 每个长度为l的区间上, 函数的图形有相同的形状.

3.反函数与复合函数

反函数:

设函数f : D→f(D)是单射, 则它存在逆映射f-1: f(D)→D, 称此映射f-1为函数f的反函数.

按此定义, 对每个y∈f(D), 有唯一的x∈D, 使得f(x)=y, 于是有

f-1(y)=x.

这就是说, 反函数f-1的对应法则是完全由函数f的对应法则所确定的.

一般地, y=f(x), x∈D的反函数记成y=f-1(x), x∈f(D).

若f是定义在D上的单调函数, 则f : D→f(D)是单射, 于是f的反函数f-1必定存在, 而且容易证明f-1也是f(D)上的单调函数.

相对于反函数y=f-1(x)来说, 原来的函数y=f(x)称为直接函数. 把函数y=f(x)和它的反函数

y=f-1(x)的图形画在同一坐标平面上, 这两个图形关于直线y=x是对称的. 这是因为如果P(a, b)是y=f(x)图形上的点, 则有b=f(a). 按反函数的定义, 有a=f-1(b), 故Q(b, a)是y=f-1(x)图形上的点; 反之, 若Q(b, a)是y=f-1(x)图形上的点, 则P(a, b)是y=f(x)图形上的点. 而P(a, b)与Q(b, a)是关于直线y=x对称的.

复合函数:

复合函数是复合映射的一种特例, 按照通常函数的记号, 复合函数的概念可如下表述.

设函数y=f(u)的定义域为D 1, 函数u=g(x)在D上有定义且g(D)? D 1, 则由下式确定的函数

y=f[g(x)], x∈D

称为由函数u =g (x )和函数y =f (u )构成的复合函数, 它的定义域为D , 变量u 称为中间变量. 函数g 与函数f 构成的复合函数通常记为g f , 即 (g f )=f [g (x )].

与复合映射一样, g 与f 构成的复合函数g f 的条件是: 是函数g 在D 上的值域g (D )必须含在f 的定义域D f 内, 即g (D )?D f . 否则, 不能构成复合函数. 例如, y =f (u )=arcsin u , 的定义域为[-1, 1], 212)(x x g u -==在]1 ,2

3[]23 ,1[?--=D 上有定义, 且g (D )?[-1, 1], 则g 与f 可构成复合函数 212arcsin x y -=, x ∈D ;

但函数y =arcsin u 和函数u =2+x 2不能构成复合函数, 这是因为对任x ∈R , u =2+x 2均不在y =arcsin u 的定义域[-1, 1]内. 多个函数的复合: 4. 函数的运算

设函数f (x ), g (x )的定义域依次为D 1, D 2, D =D 1?D 2≠?, 则我们可以定义这两个函数的下列运算:

和(差)f ±g : (f ±g )(x )=f (x )±g (x ), x ∈D ; 积f ?g : (f ?g )(x )=f (x )?g (x ), x ∈D ;

商g f : )()

())((x g x f x g f =, x ∈D \{x |g (x )=0}.

例11设函数f (x )的定义域为(-l , l ), 证明必存在(-l , l )上的偶函数g (x )及奇函数h (x ), 使

f (x )=

g (x )+

h (x ).

分析 如果f (x )=g (x )+h (x ), 则f (-x )=g (x )-h (x ), 于是 )]()([21)(x f x f x g -+=, )]()([2

1

)(x f x f x h --=.

证 作)]()([21)(x f x f x g -+=, )]()([21

)(x f x f x h --=, 则 f (x )=g (x )+h (x ),

且 )()]()([2

1

)(x g x f x f x g =+-=-,

)()]()([2

1

)]()([21)(x h x f x f x f x f x h -=---=--=-.

5. 初等函数 基本初等函数:

幂函数: y =x μ (μ∈R 是常数); 指数函数: y =a x (a >0且a ≠1);

对数函数: y =log a x (a >0且a ≠1, 特别当a =e 时, 记为y =ln x ); 三角函数: y =sin x , y =cos x , y =tan x , y =cot x , y =sec x , y =csc x ;

反三角函数: y =arcsin x , y =arccos x , y =arctan x , y =arccot x . 初等函数:

由常数和基本初等函数经过有限次的四则运算和有限次的函数复合步骤所构成并可用一个式子表示的函数, 称为初等函数. 例如 21x y -=, y =sin 2x , 2

cot x y = 等都是初等函数. 双曲函数:

双曲正弦: 2sh x

x e e x --=;

双曲余弦: 2

ch x

x e e x -+=;

双曲正切: x

x x

x e e e e x x x --+-=

=ch sh th .

双曲函数的性质:

sh(x +y )=sh x ?ch y ±ch x ?sh y ; ch(x ±y )=ch x ?ch y ±sh x ?sh y . ch 2x -sh 2x =1; sh2x =2sh x ?ch x ; ch2x =ch 2x +sh 2x .

下面证明 sh(x +y )=sh x ?ch y +ch x ?sh y :

2

222sh ch ch sh y

y x x y y x x e e e e e e e e y x y x -----?

+++?-=+ 44)

()(y x y x x y y x y x y x x y y x e e e e e e e e +---++---+--++

-+-= )(sh 2

)

(y x e e y x y x +=-=+-+.

反双曲函数:

双曲函数y =sh x , y =ch x (x ≥0), y =th x 的反函数依次为 反双曲正弦: y =arsh x ; 反双曲余弦: y =arch x ;

O

x

y

y =th x

反双曲正切: y =arth x . 反双曲函数的表示达式:

y =arsh x 是x =sh y 的反函数, 因此, 从 2

y

y e e x --=

中解出y 来便是arsh x . 令u =e y , 则由上式有

u 2-2x u -1=0.

这是关于u 的一个二次方程, 它的根为 12+±=x x u .

因为u =e y >0, 故上式根号前应取正号, 于是 12++=x x u . 由于y =ln u , 故得

)1ln(arsh 2++==x x x y .

函数y =arsh x 的定义域为(-∞, +∞), 它是奇函数, 在区间(-∞, +∞)内为单调增加的. 类似地可得

)1ln(arch 2-+==x x x y , x

x

x y -+==11ln 21arth .

§1. 2 数列的极限

一个实际问题:

如可用渐近的方程法求圆的面积?

设有一圆, 首先作内接正四边形, 它的面积记为A 1;再作内接正八边形, 它的面积记为A 2;再作内接正十六边形, 它的面积记为A 3;如此下去, 每次边数加倍, 一般把内接正8×2n -1边形的面积记为A n . 这样就得到一系列内接正多边形的面积:

A 1, A 2, A 3, ? ? ? ? ? ? , A n , ? ? ?

设想n 无限增大(记为n →∞, 读作n 趋于穷大), 即内接正多边形的边数无限增加, 在这个过程中, 内接正多边形无限接近于圆, 同时A n 也无限接近于某一确定的数值, 这个确定的数值就理解为圆的面积. 这个确定的数值在数学上称为上面有次序的数(数列) A 1, A 2, A 3, ? ? ? , A n , ? ? ?当n →∞时的极限.

数列的概念:如果按照某一法则, 使得对任何一个正整数n 有一个确定的数x n , 则得到一列有次序的数

x 1, x 2, x 3, ? ? ? , x n , ? ? ?

这一列有次序的数就叫做数列, 记为{x n }, 其中第n 项x n 叫做数列的一般项. 数列的例子: {1+n n }: 21, 32, 43, ? ? ? , 1+n n ? ? ?;

{2n }: 2, 4, 8, ? ? ? , 2n , ? ? ?; {n 21}: 21, 41, 81, ? ? ? , n 21, ? ? ? ;

{(-1)n +1}: 1, -1, 1, ? ? ? , (-1)n +1, ? ? ? ; {

n n n 1)1(--+}: 2, 21, 3

4, ? ? ? , n n n 1

)1(--+, ? ? ? . 它们的一般项依次为1+n n , 2n , n 2

1, (-1)n +1

, n n n 1)1(--+.

数列的几何意义:数列{x n }可以看作数轴上的一个动点, 它依次取数轴上的点x 1, x 2, x 3, ? ? ? , x n , ? ? ?.

数列与函数:数列{x n }可以看作自变量为正整数n 的函数:

x n =f (n ), 它的定义域是全体正整数. 数列的极限:

数列的极限的通俗定义:对于数列{x n }, 如果当n 无限增大时, 数列的一般项x n 无限地接近于某一确定的数值a , 则称常数a 是数列{x n }的极限, 或称数列{x n }收敛a . 记为

a x n n =∞

→lim . 如果数列没有极限, 就说数列是发散的.

例如

11lim =+∞→n n n ,021lim =∞→n n , 1)1(lim

1

=-+-∞→n

n n n ; 而{2n

}, { (-1)n +1}, 是发散的.

对无限接近的刻划:

x n 无限接近于a 等价于|x n -a |无限接近于0, 极限的精确定义:

定义 如果数列{x n }与常a 有下列关系:对于任意给定的正数ε (不论它多么小), 总存在正整数N , 使得对于n >N 时的一切x n , 不等式

|x n -a |<ε

都成立, 则称常数a 是数列{x n }的极限, 或者称数列{x n }收敛于a , 记为 a x n n =∞

→lim 或x n →a (n →∞).

如果数列没有极限, 就说数列是发散的.

数列极限的几何解释: 例题:

例1. 证明1)1(lim

1

=-+-∞→n

n n n . 分析: |x n -1|=n

n n n 1|1)1(|

1

=--+-. 对于?ε >0, 要使|x n -1|<ε , 只要εn .

证明: 因为?ε >0, ?]1[ε=N ∈N +, 当n >N 时, 有 |x n -1|=ε<=--+-n

n n n 1|1)1(|1

, 所以1)1(lim

1

=-+-∞→n

n n n .

例2. 证明0)1()1(lim 2

=+-∞→n n

n .

分析: |x n -0||0)1()1(|

2-+-=n n 1

1)1(12+<+=n n . 对于?ε >0, 要使|x n -0|<ε , 只要ε<+11n , 即11->εn .

证明: 因为?ε >0, ?]11[-=ε

N ∈N +, 当n >N 时, 有

|x n -0|=ε<+<+=-+-1

1)1(1|0)1()1(|

22n n n n , 所以0)1()1(lim

2

=+-∞→n n

n .

例3. 设|q |<1, 证明等比数列 1, q , q 2, ? ? ? , q n -1, ? ? ? 的极限是0.

分析: 对于任意给定的ε >0, 要使 |x n -0|=| q n -1-0|=|q | n -1<ε ,

只要n >log |q |ε +1就可以了, 故可取N =[log |q |ε +1]。

证明: 因为对于任意给定的ε >0, 存在N =[ log |q |ε +1], 当n >N 时, 有

| q n -1-0|=|q | n -1<ε , 所以0lim 1=-∞

→n n q .

收敛数列的性质:

定理1(极限的唯一性) 数列{x n }不能收敛于两个不同的极限. 证明: 假设同时有a x n n =∞

→lim 及b x n n =∞

→lim , 且a

按极限的定义, 对于2a b -=ε>0, 存在充分大的正整数N ,

使当n >N 时, 同时有

|x n -a |<2a b -=ε 及|x n -b |<2a b -=ε,

因此同时有

2a b x n +<及2

a b x n +>,

这是不可能的. 所以只能有a =b .

数列的有界性: 对于数列{x n },如果存在着正数M ,使得对一切x n 都满足 不等式

|x n |≤M ,

则称数列{x n }是有界的; 如果这样的正数M 不存在,就说数列 {x n }是无界的

定理2(收敛数列的有界性) 如果数列{x n }收敛, 那么数列{x n }一定有界.

证明: 设数列{x n }收敛, 且收敛于a , 根据数列极限的定义, 对于ε =1, 存在正整数N , 使对于n >N 时的一切x n , 不等式 |x n -a |<ε =1

都成立. 于是当n >N 时,

|x n |=|(x n -a )+a | ≤| x n -a |+|a |<1+|a |.

取M =max{|x 1|, |x 2|, ? ? ?, |x N |, 1+| a |}, 那么数列{x n }中的一切x n 都满足不等式|x n |≤ M . 这就证明了数列{x n }是有界的.

定理3收敛数列的保号性) 如果数列{x n }收敛于a , 且a >0(或a <0), 那么存在正整数N , 当n >N 时, 有x n >0(或x n <0).

证 就a >0的情形证明. 由数列极限的定义, 对02

>=a

ε, ?N ∈N +, 当n >N 时, 有

2

||a a x n <

-, 从而

02

2>=->a

a a x n .

推论 如果数列{x n }从某项起有x n ≥0(或x n ≤0), 且数列{x n }收敛于a , 那么a ≥0(或a ≤0). 证明 就x n ≥0情形证明. 设数列{x n }从N 1项起, 即当n >N 1时有x n ≥0. 现在用反证法证明, 或a <0, 则由定理3知, ?N 2∈N +, 当n > N 2时, 有x n <0. 取N =max{ N 1, N 2 }, 当n >N 时, 按假定有x n ≥0, 按定理3有x n <0, 这引起矛盾. 所以必有a ≥0.

子数列: 在数列{x n }中任意抽取无限多项并保持这些项在原数列中的先后次序, 这样得到的一个数列称为原数列{x n }的子数列.

例如, 数列{x n }: 1, -1, 1, -1, ? ? ?, (-1)n +1? ? ?的一子数列为{x 2n }: -1, -1, -1, ? ? ?, (-1)2n +1? ? ? 定理3(收敛数列与其子数列间的关系) 如果数列{x n }收敛于a , 那么它的任一子数列也收敛, 且极限也是a .

证明: 设数列}{k n x 是数列{x n }的任一子数列.

因为数列{x n }收敛于a , 所以?ε >0, ?N ∈N +, 当n >N 时, 有|x n -a |<ε .

取K =N , 则当k >K 时, n k ≥k >K =N . 于是|k n x -a |<ε . 这就证明了a x k n k =∞

→lim .

讨论:

1. 对于某一正数ε 0, 如果存在正整数N , 使得当n >N 时, 有|x n -a |<ε 0. 是否有x n →a (n →∞).

2. 如果数列{x n }收敛, 那么数列{x n }一定有界. 发散的数列是否一定无界? 有界的数列

是否收敛?

3.数列的子数列如果发散,原数列是否发散? 数列的两个子数列收敛,但其极限不同,原数列的收敛性如何?发散的数列的子数列都发散吗?

4.如何判断数列1,-1, 1,-1,???, (-1)N+1,???是发散的?

§1. 3 函数的极限 一、函数极限的定义

函数的自变量有几种不同的变化趋势: x 无限接近x 0 : x →x 0,

x 从x 0的左侧(即小于x 0)无限接近x 0 : x →x 0-, x 从x 0的右侧(即大于x 0)无限接近x 0 : x →x 0+, x 的绝对值|x |无限增大: x →∞,

x 小于零且绝对值|x |无限增大: x →-∞, x 大于零且绝对值|x |无限增大: x →+∞. 1.自变量趋于有限值时函数的极限 通俗定义:

如果当x 无限接近于x 0 , 函数f (x )的值无限接近于常数A , 则称当x 趋于x 0 时, f (x )以A 为极限. 记作

lim x x →f (x )=A 或f (x )→A (当x →0x ).

分析: 在x →x 0的过程中, f (x )无限接近于A 就是|f (x )-A |能任意小, 或者说, 在x 与x 0接近到一定程度(比如|x -x 0|<δ, δ为某一正数)时, |f (x )-A |可以小于任意给定的(小的)正数ε , 即|f (x )-A |<ε . 反之, 对于任意给定的正数ε , 如果x 与x 0接近到一定程度(比如|x -x 0|<δ, δ为某一正数)就有|f (x )-A |<ε , 则能保证当x →x 0时, f (x )无限接近于A .

定义1 设函数f (x )在点x 0的某一去心邻域内有定义. 如果存在常数A , 对于任意给定的正数ε (不论它多么小), 总存在正数δ, 使得当x 满足不等式0<|x -x 0|<δ 时, 对应的函数值f (x )都满足不等式 |f (x )-A |<ε ,

那么常数A 就叫做函数f (x )当x →x 0时的极限, 记为

A x f x x =→)(lim 0

或f (x )→A (当x →x 0).

定义的简单表述:

函数极限的几何意义: 例1. 证明c c x x =→0

lim .

证明: 这里|f (x )-A |=|c -c |=0,

因为?ε>0, 可任取δ>0 , 当0<|x -x 0|<δ 时, 有 |f (x )-A |=|c -c |=0<ε , 所以c c x x =→0

lim .

例2. 证明00

lim x x x x =→.

分析: |f (x )-A |=|x -x 0|. 因此?ε >0, 要使|f (x )-A |<ε , 只要|x -x 0|<ε .

证明: 因为?ε >0, ?δ =ε , 当0<|x -x 0|<δ 时, 有|f (x )-A |=|x -x 0|<ε , 所以00

lim x x x x =→.

例3. 证明1)12(lim 1

=-→x x .

分析: |f (x )-A |=|(2x -1)-1|=2|x -1|. ?ε >0, 要使|f (x )-A |<ε , 只要2

|1|ε

<

-x .

证明: 因为?ε >0, ?δ=ε /22

ε

δ=, 当0<|x -1|<δ 时, 有|f (x )-A |=|(2x -1)-1|=2|x -1|<ε ,

所以1)12(lim 1

=-→x x .

例4. 证明21

1

lim

21=--→x x x .

分析: 注意函数在x =1是没有定义的, 但这与函数在该点是否有极限并无关系. 当x ≠1时, |f (x )-A ||21

1

|

2---=x x =|x -1|. ?ε >0, 要使|f (x )-A |<ε , 只要|x -1|<ε . 证明: 因为?ε >0, ?δ=ε , 当0<|x -1|<δ 时, 有| f (x )-A ||21

1

|

2---=x x =|x -1|<ε , 所以21

1

lim

21=--→x x x .

单侧极限:

若当x →x 0- 时, f (x )无限接近于某常数A , 则常数A 叫做函数f (x )当x →x 0时的左极限, 记为A x f x x =-→)(lim 0

或f (0x -)=A ;

若当x →x 0+ 时, f (x )无限接近于某常数A , 则常数A 叫做函数f (x )当x →x 0时的右极限, 记为A x f x x =+

→)(lim 0或f (0x +)=A .

讨论:1.左右极限的ε --δ定义如何叙述?

2. 当x →x 0时函数f (x )的左右极限与当x →x 0时函数f (x )的极限之间的关系怎样?

提示: 左极限的ε --δ 定义:

A x f x x =-→)(lim 0

??ε >0, ?δ >0, ?x : x 0-δ

|f (x )-A |<ε .

A x f x x =+→)(lim 0

??ε >0, ?δ >0, ?x : x 0

|f (x )-A |<ε .

A x f x x =→)(lim 0

?A x f x x =-→)(lim 0

且A x f x x =+→)(lim 0

.

例5 函数???

??>+=<-=0

10 00 1)(x x x x x x f 当x →0时的极限不存在.

这是因为,

1)1(lim )(lim 0

-=-=-

-→→x x f x x ,

1)1(lim )(lim 0

=+=+

+→→x x f x x , )(lim )(lim 0

x f x f x x +

-→→≠.

2.自变量趋于无穷大时函数的极限

设f (x )当|x |大于某一正数时有定义. 如果存在常数A , 对于任意给定的正数ε , 总存在着正数X , 使得当x 满足不等式|x |>X 时, 对应的函数数值f (x )都满足不等式 |f (x )-A |<ε,

则常数A 叫做函数f (x )当x →∞时的极限, 记为

A x f x =∞

→)(lim 或f (x )→A (x →∞).

类似地可定义

A x f x =-∞

→)(lim 和A x f x =+∞

→)(lim .

结论: A x f x =∞

→)(lim ?A x f x =-∞

→)(lim 且A x f x =+∞

→)(lim .

极限A x f x =∞

→)(lim 的定义的几何意义

例6. 证明01

lim

=∞→x

x . 分析: ||1

|01||)(|x x A x f =-=-. ?ε >0, 要使|f (x )-A |<ε , 只要ε1||>x .

证明: 因为?ε >0, ?01>=εX , 当|x |>X 时, 有ε<=-=-|

|1

|01||)(|x x A x f ,

所以01

lim

=∞→x

x . 直线y =0 是函数x

y 1

=的水平渐近线.

一般地, 如果c x f x =∞

→)(lim , 则直线y =c 称为函数y =f (x )的图形的水平渐近线.

二、函数极限的性质

定理1(函数极限的唯一性)

如果极限)(lim 0

x f x x →存在, 那么这极限唯一.

定理2(函数极限的局部有界性)

如果f (x )→A (x →x 0), 那么存在常数M >0和δ, 使得当0<|x -x 0|<δ时, 有|f (x )|≤M . 证明 因为f (x )→A (x →x 0), 所以对于ε =1, ?δ>0, 当0<|x -x 0|<δ时, 有

|f (x )-A |<ε =1,

于是

|f (x )|=|f (x )-A +A |≤|f (x )-A |+|A |<1+|A |.

这就证明了在x 0的去心邻域{x | 0<|x -x 0|<δ }内, f (x )是有界的. 定理3(函数极限的局部保号性)

如果f (x )→A (x →x 0), 而且A >0(或A <0), 那么存在常数δ>0, 使当0<|x -x 0|<δ时, 有f (x )>0(或f (x )<0).

证明: 就A >0的情形证明.

因为A x f x x =→)(lim 0, 所以对于2A

=ε, ?δ >0, 当0<|x -x 0|<δ 时, 有

2|)(|A A x f =

<-ε?)(2x f A A <-?2

)(A

x f >>0. 定理3'

如果f (x )→A (x →x 0)(A ≠0), 那么存在点x 0的某一去心邻域, 在该邻域内, 有||2

1

|)(|A x f >.

推论 如果在x 0的某一去心邻域内f (x )≥0(或f (x )≤0), 而且f (x )→A (x →x 0), 那么A ≥0(或A ≤0).

证明: 设f (x )≥0. 假设上述论断不成立, 即设A <0, 那么由定理1就有x 0的某一去心邻域, 在该邻域内 f (x )<0, 这与f (x )≥0的假定矛盾. 所以A ≥0.

高等数学求极限的常用方法附例题和详解完整版

高等数学求极限的常用 方法附例题和详解 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

高等数学求极限的14种方法 一、极限的定义 1.极限的保号性很重要:设 A x f x x =→)(lim 0 , (i )若A 0>,则有0>δ,使得当δ<-<||00x x 时,0)(>x f ; (ii )若有,0>δ使得当δ<-<||00x x 时,0A ,0)(≥≥则x f 。 2.极限分为函数极限、数列极限,其中函数极限又分为∞→x 时函数的极限和0x x →的极限。要特别注意判定极限是否存在在: (i )数列{}的充要条件收敛于a n x 是它的所有子数列均收敛于a 。常用的是其推论,即 “一个数列收敛于a 的充要条件是其奇子列和偶子列都收敛于a ” (ii ) A x x f x A x f x =+∞ →= -∞ →? =∞ →lim lim lim )()( (iii)A x x x x A x f x x =→=→? =→+ - lim lim lim 0 )( (iv)单调有界准则 (v )两边夹挤准则(夹逼定理/夹逼原理) (vi )柯西收敛准则(不需要掌握)。极限 )(lim 0 x f x x →存在的充分必要条件是: εδεδ<-∈>?>?|)()(|)(,0,021021x f x f x U x x o 时,恒有、使得当 二.解决极限的方法如下:

1.等价无穷小代换。只能在乘除.. 时候使用。例题略。 2.洛必达(L ’hospital )法则(大题目有时候会有暗示要你使用这个方法) 它的使用有严格的使用前提。首先必须是X 趋近,而不是N 趋近,所以面对数列极限时候先要转化成求x 趋近情况下的极限,数列极限的n 当然是趋近于正无穷的,不可能是负无穷。其次,必须是函数的导数要存在,假如告诉f (x )、g (x ),没告诉是否可导,不可直接用洛必达法则。另外,必须是“0比0”或“无穷大比无穷大”,并且注意导数分母不能为0。洛必达法则分为3种情况: (i )“ 00”“∞ ∞ ”时候直接用 (ii)“∞?0”“∞-∞”,应为无穷大和无穷小成倒数的关系,所以无穷大都写成了 无穷小的倒数形式了。通项之后,就能变成(i)中的形式了。即 )(1)()()()(1)()()(x f x g x g x f x g x f x g x f ==或;) ()(1 )(1 )(1 )()(x g x f x f x g x g x f -=- (iii)“00”“∞1”“0∞”对于幂指函数,方法主要是取指数还取对数的方法,即 e x f x g x g x f ) (ln )()()(=,这样就能把幂上的函数移下来了,变成“∞?0”型未定式。 3.泰勒公式(含有x e 的时候,含有正余弦的加减的时候) 12)! 1(!!21+++++++=n x n x x n e n x x x e θ ; cos=221242)! 22(cos )1()!2()1(!4!21+++-+-+-+-m m m m x m x m x x x θ

高等数学函数的极限与连续习题及答案

1、函数 ()12 ++=x x x f 与函数()11 3--=x x x g 相同. 错误 ∵当两个函数的定义域和函数关系相同时,则这两个函数是相同的。 ∴ ()12 ++=x x x f 与()113--=x x x g 函数关系相同,但定义域不同,所以()x f 与() x g 是不同的函数。 2、如果()M x f >(M 为一个常数),则()x f 为无穷大. 错误 根据无穷大的定义,此题是错误的。 3、如果数列有界,则极限存在. 错误 如:数列()n n x 1-=是有界数列,但极限不存在 4、a a n n =∞ →lim ,a a n n =∞ →lim . 错误 如:数列()n n a 1-=,1) 1(lim =-∞ →n n ,但n n )1(lim -∞ →不存在。 5、如果()A x f x =∞ →lim ,则()α+=A x f (当∞→x 时,α为无穷小). 正确 根据函数、极限值、无穷小量的关系,此题是正确的。 6、如果α~β,则()α=β-αo . 正确 ∵1lim =α β ,是 ∴01lim lim =?? ? ??-=-αβαβα,即βα-是α的高阶无穷小量。 7、当0→x 时,x cos 1-与2 x 是同阶无穷小. 正确 ∵2122sin 412lim 2sin 2lim cos 1lim 2 02 2020=????? ? ????==-→→→x x x x x x x x x 8、 01 sin lim lim 1sin lim 000=?=→→→x x x x x x x . 错误 ∵x x 1 sin lim 0→不存在,∴不可利用两个函数乘积求极限的法则计算。 9、 e x x x =?? ? ??+→11lim 0 . 错误 ∵e x x x =?? ? ??+∞ →11lim 10、点0=x 是函数x x y =的无穷间断点. 错误 =-→x x x 00lim 1lim 00-=--→x x x ,=+→x x x 00lim 1lim 00=+→x x x ∴点0=x 是函数x x y =的第一类间断点. 11、函数()x f x 1 =必在闭区间[]b a ,内取得最大值、最小值.

同济第六版《高等数学》教案WORD版-第01章 函数与极限

第一章函数与极限 教学目的: 1、理解函数的概念,掌握函数的表示方法,并会建立简单应用问题中的函数关系式。 2、了解函数的奇偶性、单调性、周期性和有界性。 3、理解复合函数及分段函数的概念,了解反函数及隐函数的概念。 4、掌握基本初等函数的性质及其图形。 5、理解极限的概念,理解函数左极限与右极限的概念,以及极限存在与左、右极限 之间的关系。 6、掌握极限的性质及四则运算法则。 7、了解极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限 的方法。 8、理解无穷小、无穷大的概念,掌握无穷小的比较方法,会用等价无穷小求极限。 9、理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。 10、了解连续函数的性质和初等函数的连续性,了解闭区间上连续函数的性质(有 界性、最大值和最小值定理、介值定理),并会应用这些性质。 教学重点: 1、复合函数及分段函数的概念; 2、基本初等函数的性质及其图形; 3、极限的概念极限的性质及四则运算法则; 4、两个重要极限; 5、无穷小及无穷小的比较; 6、函数连续性及初等函数的连续性; 7、区间上连续函数的性质。 教学难点: 1、分段函数的建立与性质; 2、左极限与右极限概念及应用; 3、极限存在的两个准则的应用; 4、间断点及其分类; 5、闭区间上连续函数性质的应用。 §1. 1 映射与函数 一、集合 1. 集合概念 集合(简称集): 集合是指具有某种特定性质的事物的总体. 用A, B, C….等表示. 元素: 组成集合的事物称为集合的元素. a是集合M的元素表示为a?M. 集合的表示: 列举法: 把集合的全体元素一一列举出来. 例如A?{a, b, c, d, e, f, g}. 描述法: 若集合M是由元素具有某种性质P的元素x的全体所组成, 则M可表示为

高等数学求极限的常用方法

高等数学求极限的14种方法 一、极限的定义 1.极限的保号性很重要:设 A x f x x =→)(lim 0 , (i )若A 0>,则有0>δ,使得当δ<-<||00x x 时,0)(>x f ; (ii )若有,0>δ使得当δ<-<||00x x 时,0A ,0)(≥≥则x f 。 2.极限分为函数极限、数列极限,其中函数极限又分为∞→x 时函数的极限和0x x →的极限。要特别注意判定极限是否存在在: (i )数列{} 的充要条件收敛于a n x 是它的所有子数列均收敛于a 。常用的是其推论,即“一个数列收敛于a 的充要条件是其奇子列和偶子列都收敛于a ” (ii )A x x f x A x f x =+∞ →=-∞ →?=∞ →lim lim lim )()( (iii) A x x x x A x f x x =→=→?=→+ - lim lim lim 0 )( (iv)单调有界准则 (v )两边夹挤准则(夹逼定理/夹逼原理) (vi )柯西收敛准则(不需要掌握)。极限 ) (lim 0 x f x x →存在的充分必要条件是: εδεδ<-∈>?>?|)()(|)(,0,021021x f x f x U x x o 时,恒有、使得当 二.解决极限的方法如下: 1.等价无穷小代换。只能在乘除.. 时候使用。例题略。 2.洛必达(L ’hospital )法则(大题目有时候会有暗示要你使用这个方法) 它的使用有严格的使用前提。首先必须是X 趋近,而不是N 趋近,所以面对数列极限时候先要转化成求x 趋近情况下的极限,数列极限的n 当然是趋近于正无穷的,不可能是负无穷。其次,必须是函数的导数要存在,假如告诉f (x )、g (x ),没告诉是否可导,不可直接用洛必达法则。另外,必须是“0比0”或“无穷大比无穷大”,并且注意导数分母不能为0。洛必达法则分为3种情况: (i )“ 00”“∞ ∞ ”时候直接用 (ii)“∞?0”“∞-∞”,应为无穷大和无穷小成倒数的关系,所以无穷大都写成了无穷小的倒数形式了。通 项之后,就能变成(i)中的形式了。即)(1)()()()(1)()()(x f x g x g x f x g x f x g x f ==或;) ()(1 )(1 )(1 )()(x g x f x f x g x g x f -=- (iii)“00”“∞1”“0 ∞”对于幂指函数,方法主要是取指数还取对数的方法,即e x f x g x g x f ) (ln )()()(=, 这样就能把幂上的函数移下来了,变成“∞?0”型未定式。 3.泰勒公式(含有x e 的时候,含有正余弦的加减的时候)

(完整版)高中数学《函数的极限》教案

课 题:2.3函数的极限(二) 教学目的: 1.理解函数在一点处的极限,并会求函数在一点处的极限. 2.已知函数的左、右极限,会求函数在一点处的左右极限. 3.理解函数在一点处的极限与左右极限的关系教学重点:掌握当0x x →时函数的极限 教学难点:对“0x x ≠时,当0x x →时函数的极限的概念”的理解 授课类型:新授课 课时安排:1课时 教 具:多媒体、实物投影仪 内容分析: 上节课我们学习了当x 趋向于∞即x →∞时函数f (x )的极限.当x 趋向于∞时,函数f (x )的值就无限趋近于某个常数a .我们可以把∞看成数轴上的一个特殊的点.那么如果对于数轴上的一般的点x 0,当x 趋向于x 0时,函数f (x )的值是否会趋近于某个常数a 呢? 教学过程: 一、复习引入: 1.数列极限的定义: 一般地,如果当项数n 无限增大时,无穷数列}{n a 的项n a 无限趋近于.....某个常数a (即n a a -无限趋近于0),那么就说数列}{n a 以a 为极限,或者说a 是数列}{n a 的极限.记作lim n n a a →∞ =,读作“当n 趋向于无穷大时,n a 的极限等 于a ”“n →∞”表示“n 趋向于无穷大”,即n 无限增大的意思n a a →∞ =有 时也记作:当n →∞时,n a →a . 2.几个重要极限: (1)01 lim =∞→n n (2)C C n =∞ →lim (C 是常数) (3)无穷等比数列}{n q (1

高等数学求极限的14种方法(完整资料).doc

【最新整理,下载后即可编辑】 高等数学求极限的14种方法 一、极限的定义 1.极限的保号性很重要:设 A x f x x =→)(lim 0 , (1)若A 0>,则有0>δ,使得当δ<-<||00x x 时,0)(>x f ; (2)若有,0>δ使得当δ<-<||00x x 时,0A ,0)(≥≥则x f 。 2. 极限分为函数极限、数列极限,其中函数极限又分为∞→x 时函数的极限和0x x →的极限。 要特别注意判定极限是否存在在: (1)数列{}的充要条件收敛于a n x 是它的所有子数列均收敛于a 。常用的是其推论,即 “一个数列收敛于a 的充要条件是其奇子列和偶子列都收敛于a ” (2)A x x f x A x f x =+∞ →=-∞ →?=∞ →lim lim lim )()( (3) A x x x x A x f x x =→=→?=→+ - lim lim lim 0 )( (4) 单调有界准则 (5)两边夹挤准 (夹逼定理/夹逼原理) (6) 柯西收敛准则(不需要掌握)。极限)(lim 0 x f x x →存在的充分必要条件。是: εδεδ<-∈>?>?|)()(|)(,0,021021x f x f x U x x o 时,恒有、使得当 二.解决极限的方法如下: 1.等价无穷小代换。只能在乘除.. 时候使用。例题略。 2.洛必达(L ’hospital )法则(大题目有时候会有暗示要你使用这个方法) 它的使用有严格的使用前提。首先必须是X 趋近,而不是N 趋近,所以面对数列极限时候先要转化成求x 趋近情况下的极限,数列极限的n 当然是趋近于正无穷的,不可能是负无穷。其次,必须是函数的导数要存在,假如告诉f (x )、g (x ),没告诉是否可导,不可直接用洛必达法则。另外,必须是“0比0”或“无穷大比无穷大”,并且注意导数分母不能为0。洛必达法则分为3种情况: (1)“0 0”“∞ ∞”时候直接用 (2)“∞?0”“∞-∞”,应为无穷大和无穷小成倒数的关系,所以无穷大都写成

高等数学函数极限练习题

设 f ( x ) 2 x , 求 f ( x ) 的 定 义 域 及 值 域 。 1 x 设 f ( x) 对一切实数 x 1, x 2 成立 f ( x 1 x 2 ) f ( x 1 ) f ( x 2 ),且 f (0 ) 0, f (1) a , 求 f (0 )及 f ( n).(n 为正整数 ) 定 义 函 数 I ( x) 表 示 不 超 过 x 的 最 大 整 数 叫 做 x 的 取 整 函 数 ,若 f ( x) 表 示 将 x 之 值 保 留 二 位小数,小数第 3 位起以后所有数全部舍去,试用 表 示 f ( x) 。 I ( x) 定 义 函 数 I ( x) 表 示 不 超 过 x 的 最 大 整 数 叫 做 x 的 取 整 函 数 ,若 g ( x) 表 示 将 x 依 4 舍 5 入 法 则 保 留 2 位 小 数 , 试 用 I ( x) 表 示 g ( x) 。 在某零售报摊上每份报纸的进价为 0.25 元,而零售价为 0.40 元,并且如果报纸当天未售 出 不 能 退 给 报 社 ,只 好 亏 本 。若 每 天 进 报 纸 t 份 ,而 销 售 量 为 x 份 ,试 将 报 摊 的 利 润 y 表 示 为 x 的函数。 定义函数 I ( x)表示不超过 x 的最大整数叫做 x 的取整函数,试判定 ( x) x I ( x )的周期性。 判定函数 x x ln( 1 x x )的奇偶性。 f ( x ) ( e 1) 设 f ( x ) e x sin x , 问 在 0 , 上 f ( x ) 是 否 有 界 ? 函 数 y f ( x ) 的 图 形 是 图 中 所 示 的 折 线 O BA , 写 出 y f ( x) 的 表 达 式 。 x 2 , 0 x ; x , x ; 设 f ( x) 2 ( x) 0 4 求 f ( x ) 及f ( x ) . x x 4 x x , . , . 2 2 2 4 6 设 f ( x ) 1, x 0 ; ( x ) 2 x 1, 求 f ( x ) 及 f ( x) . 1 , x 0 . e x , x ; 0 , x 0 ; 设 f ( x ) 求 f ( x )的反函数 g ( x ) 及 f ( x ) . x x ( x) x 2, x 0 , . . 1 x ) , ( x ) x , x 0 ; 求 f ( x ) . 设 f ( x )( x x 2 , x 2 0 . 2 x , x 0 ; 求 f f ( x ) 设 f ( x ) x 0. . 2 , 0 , x ; x , x ; ( x ) 求 f ( x) ( x ). 设 f ( x ) x , x 0 . x , x . 1

高等数学-求极限的各种方法

求极限的各种方法 1.约去零因子求极限 例1:求极限1 1 lim 41--→x x x 【说明】1→x 表明1与x 无限接近,但1≠x ,所以1-x 这一零因子可以约去。 【解】6)1)(1(lim 1 ) 1)(1)(1(lim 2121=++=-++-→→x x x x x x x x =4 2.分子分母同除求极限 例2:求极限1 3lim 32 3+-∞→x x x x 【说明】 ∞ ∞ 型且分子分母都以多项式给出的极限,可通过分子分母同除来求。 【解】3131lim 13lim 3 11323= +-=+-∞→∞→x x x x x x x 【注】(1) 一般分子分母同除x 的最高次方; (2) ???? ??? =<∞>=++++++----∞→n m b a n m n m b x b x b a x a x a n n m m m m n n n n x 0lim 01101 1ΛΛ 3.分子(母)有理化求极限 例3:求极限)13(lim 22+-++∞ →x x x 【说明】分子或分母有理化求极限,是通过有理化化去无理式。 【解】1 3) 13)(13(lim )13(lim 2 2 22222 2 +++++++-+=+-++∞ →+∞ →x x x x x x x x x x 01 32lim 2 2 =+++=+∞ →x x x

例4:求极限3 sin 1tan 1lim x x x x +-+→ 【解】x x x x x x x x x x sin 1tan 1sin tan lim sin 1tan 1lim 3030 +-+-=+-+→→ 41 sin tan lim 21sin tan lim sin 1tan 11 lim 30300 =-=-+++=→→→x x x x x x x x x x x 【注】本题除了使用分子有理化方法外,及时分离极限式中的非零因子...........是解题的关键 4.应用两个重要极限求极限 两个重要极限是1sin lim 0=→x x x 和e x n x x x n n x x =+=+=+→∞→∞→1 0)1(lim )11(lim )11(lim , 第一个重要极限过于简单且可通过等价无穷小来实现。主要考第二个重要极限。 例5:求极限x x x x ?? ? ??-++∞→11lim 【说明】第二个重要极限主要搞清楚凑的步骤:先凑出1,再凑X 1 + ,最后凑指数部分。 【解】22 212 12112111lim 121lim 11lim e x x x x x x x x x x x =???? ????????? ??-+???? ??+=??? ??-+=??? ??-+--+∞→+∞→+∞→ 例6:(1)x x x ??? ??-+∞→211lim ;(2)已知82lim =??? ??-++∞→x x a x a x ,求a 。 5.用等价无穷小量代换求极限 【说明】 (1)常见等价无穷小有: 当0→x 时,~)1ln(~arctan ~arcsin ~tan ~sin ~x x x x x x +1e x -, ()abx ax x x b ~11,2 1~ cos 12-+-; (2) 等价无穷小量代换,只能代换极限式中的因式.. ;

高等数学(同济五版)第一章 函数与极限知识点

第一章函数与极限 一、对于函数概念要注意以下几点: (1) 函数概念的本质特征是确定函数的两个要素:定义域和对应法则。定义域是自变量和因变量能相互联系构成函数关系的条件,无此条件,函数就没意义。对应法则是正确理解函数概念的关键。函数关系不同于一般的依赖关系,“y是x的函数”并不意味着y随x的变化而变化。函数关系也不同于因果关系。例如一昼夜的气温变化与时间变化是函数关系,但时间变化并不是气温变化的实际原因。y=f(x)中的“f”表示从x到y的对应法则,“f”是一个记号,不是一个数,不能把f(x)看作f乘以x。如果函数是用公式给出的,则“f”表示公式里的全部运算。 (2) 函数与函数表达式不同。函数表达式是表示函数的一种形式,表示函数还可以用其他的形式,不要以为函数就是式子。 (3) f(x)与f(a)是有区别的。f(x)是函数的记号,f(a)是函数值的记号,是f(x)当x=a时的函数值。 (4)两个函数,当其定义域相同,对应法则一样时,此二函数才是相同的。 二、函数的有界性、单调性、周期性和奇偶性: 对函数的有界性、单调性、周期性和奇偶性的学习应注意以下几点: (1) 并不是函数都具有这些特性,而是在研究函数时,常要研究函数是否具有这些特性。 (2) 函数是否“有界”或“单调”,与所论区间有关系。 (3) 具有奇、偶性的函数,其定义域是关于原点对称的。如果f(x)是奇函数,则f(0)=0。存在着既是奇函数,又是偶函数的函数,例f(x)=0。f(x)+f(-x)=0是判别f(x)是否为奇函数的有效方法。 (4) 周期函数的周期通常是指其最小正周期,但不是任何周期函数都有最小周期。

高等数学1.3-函数的极限

第三节 函数的极限(一) 教学目的:(1)理解函数极限和左、右极限的概念; (2)理解无穷小概念,掌握其性质 教学重点:函数极限的概念,无穷小概念 教学难点:函数极限的概念的理解与应用 教学方法:讲授法 教学时数:2课时 本节我们将数列极限的概念推广到一元实值函数,然后研究函数极限的性质及其运算法则. 一、函数极限的概念 1.自变量x 趋于无穷大时函数的极限 1)+∞→x 时的极限: +∞→x 读作“x 趋于正无穷大”,表示x 无限增加,0x > . 例:对于x x f 1)(= ,当自变量+∞→x 时,x x f 1 )(=与常数0无限接近 . 复习数列极限的定义:数列{}n x 以a 为极限即a x n n =∞ →lim ? 0>?ε,N ?,N n >时,ε<-a x n . 令()n f x n =,则()?=∞ →a n f n lim 0>?ε,N ?,当N n >时,()ε<-a n f .将n 换成连续变量x ,将a 改记为A ,就可以得到x →+∞时,()A x f →的极限的定义及其数学上的精确描述 . 定义3.1:设函数)(x f 在),(+∞a 内有定义,,A ∈若0>?ε,0X ?>,当x X >时,有()ε<-A x f ,则称数A 为函数()x f 当x →+∞时的极限,记作()lim x f x A →+∞ =, 或()A x f →,(x →+∞) . 几何意义:对任意给定的0ε>,在轴上存在一点X ,使得函数的图象 {(,)|(),(,)}x y y f x x a =∈+∞在X 右边的部分位于平面带形),(),(εε+-?+∞A A X 内 . 2)x →-∞时的极限: x →-∞读作“x 趋于负无穷大”,表示x 无限增加,0x < . 定义:设函数)(x f 在),(a -∞内有定义,,A ∈若0>?ε,0X ?>,当x X <-时,有()ε<-A x f ,则称数A 为函数()x f 当x →-∞时的极限,记作()lim x f x A →-∞ =

考研数学高数公式:函数与极限解读

考研数学高数公式:函数与极限 第一章:函数与极限 第一节:函数 函数属于初等数学的预备知识,在高数的学习中起到铺垫作用,直接考察的内容比较少,但是如果这章节有所缺陷对以后的学习都会有所影响。 基础阶段: 1.理解函数的概念,能在实际问题的背景下建立函数关系; 2.掌握并会计算函数的定义域、值域和解析式; 3.了解并会判断函数的有界性、单调性、周期性、奇偶性等性质; 4.理解复合函数和反函数的概念,并会应用它们解决相关的问题; 强化阶段: 1.了解函数的不同表现形式:显式表示,隐式表示,参数式,分段表示; 2.掌握基本初等函数的性质及其图形,了解初等函数的概念。 冲刺阶段: 1.综合应用函数解决相关的问题; 2.掌握特殊形式的函数(含极限的函数,导函数,变上限积分,并会讨论它们的相关性质。 第二节:极限

极限可以说是高等数学的基础,极限的计算也是高等数学中最基本的运算。在考试大纲中明确要求考生熟练掌握的基本技能之一。虽在考试中站的分值不大。但是在其他的试题中得到广泛应用。因此这部分学习直接营销到整个学科的复习结果 基础阶段 1.了解极限的概念及其主要的性质。 2.会计算一些简单的极限。 3.了解无穷大量与无穷小量的关系,了解无穷小量的比较方法,记住常见的等价无穷小量。 强化阶段: 1.理解极限的概念,理解函数左右极限的概念及其与极限的关系(数一数二/了解数列 极限和函数极限的概念(数三; ▲2.掌握计算极限的常用方法及理论(极限的性质,极限的四则运算法则,极限存在的两个准则,两个重要极限,等价无穷小替换,洛必达法则,泰勒公式; 3.会解决与极限的计算相关的问题(确定极限中的参数; 4.理解无穷大量和无穷小量的概念及相互关系,会进行无穷小量的比较,记住常见的等价无穷小量并能在计算极限时加以应用(数一数二/理解无穷小量的概念,会进行无穷小量的比较,记住常见的等价无穷小量并能在计算极限时加以应用,了解无穷大量的概念及其与无穷小量的关系(数三。 冲刺阶段: 深入理解极限理论在微积分中的中心地位,理解高等数学中其它运算(求导,求积分与极限之间的关系,建立完整的理论体系。

高等数学函数极限练习试题

设x x x f += 12)(,求)(x f 的定义域及值域。 ,,,且成立,对一切实数设a f f x f x f x x f x x x f =≠=+)1(0)0()()()()(212121)()()0(为正整数.及求n n f f 定义函数)(x I 表示不超过x 的最大整数叫做x 的取整函数,若)(x f 表示将x 之值保留二位小数,小数第3位起以后所有数全部舍去,试用)(x I 表示)(x f 。 定义函数)(x I 表示不超过x 的最大整数叫做x 的取整函数,若)(x g 表示将x 依4舍5入法则保留2位小数,试用)(x I 表示)(x g 。 在某零售报摊上每份报纸的进价为0.25元,而零售价为0.40元,并且如果报纸当天未售出不能退给报社,只好亏本。若每天进报纸t 份,而销售量为x 份,试将报摊的利润y 表示为x 的函数。 的取整函数,试判定的最大整数叫做表示不超过定义函数x x x I )(的周期性。)()(x I x x -=? 的奇偶性。 判定函数)1ln()1()(x x e x f x x -+?-=+ [ )设,问在,上是否有界?f x e x f x x ()sin ()=+∞0 函数的图形是图中所示的折线,写出的表达式。y f x OBA y f x ==()() ???≤≤-<≤=????≤≤+<≤=., ; ,.,;, 设64240)(42220)(2 x x x x x x x x x x f [][].及求)()(x f x f ?? [][]设,; ,. ,求及.f x x x x x f x f x ()()()()=-≤>???=-101021??? ???>-≤=????>≤-=. ,; ,., ;,设000)(00)(2 x x x x x x x e x f x [].及的反函数求)()()(x f x g x f ? []设,,;,.求.f x x x x x x x x f x ()()()()=+=<≥???1 2002?? []设,; , .求.f x x x x f f x ()()=+<≥???2020 .求.,; ,.,;,设)()( 111)(000)(x x f x x x x x x x x x f ?+? ??≥<+=????≥<=

高数同济7版教案第一章函数与极限

广西民族师范学院 数计系《高等数学》课程教案 课程代码:061041210 总学时/周学时:_________ 51/3 开课时间:2015年9月16日第3周至第18周授课年级、专业、班级:制药本152班 使用教材:高等数学同济大学第7版 教研室:数学与应用数学教研室 授课教师: 、课程教学计划表 、教案正文 第一章函数与极限

(一)教学目的: 1. 理解映射与函数的概念,掌握函数的表示方法,并会建立简单应用问题中的函数关系式。 2?了解函数的奇偶性、单调性、周期性和有界性。 3?理解复合函数及分段函数的概念,了解反函数及隐函数的概念。 4?掌握基本初等函数的性质及其图形。 5?理解极限的概念,理解函数左极限与右极限的概念,以及极限存在与左、右极限之间的关系。 6?掌握极限的性质及四则运算法则。 7?了解极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法。 8?理解无穷小、无穷大的概念,掌握无穷小的比较方法,会用等价无穷小求极限。9?理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型 10.了解连续函数的性质和初等函数的连续性,了解闭区间上连续函数的性质 (有界性、最大值和最小值定理、介值定理) ,并会应用这些性质。 (二)重点、难点 1.重点函数与复合函数的概念,基本初等函数与初等函数,实际问题中的函数关系,极限概念与极限运算,无穷小,两个重要极限公式,函数连续的概念与初等函数的连续性。 2 .难点函数符号的运用,复合函数的复合过程,极限定义的理解,两个重要极限的灵活运用。 三)教学方法、手段: 教师讲授,提问式教学,多媒体教学 第一节映射与函数 一、映射 1. 映射概念 定义4.设X、Y是两个非空集合,如果存在一个法则f,使得对X中每个元素X,按法则f,在Y中有唯一确定的元素y与之对应,则称f为从X到Y的映射,记作 f : X Y.

高等数学函数与极限试的题目

高等数学第一章函数与极限试题 一. 选择题 1.设F(x)是连续函数f(x)的一个原函数,""N M ?表示“M 的充分必要条件是N ”,则必有 (A ) F(x)是偶函数?f(x)是奇函数. (B ) F(x)是奇函数?f(x)是偶函数. (C ) F(x)是周期函数?f(x)是周期函数. (D ) F(x)是单调函数?f(x)是单调函数 2.设函数,1 1)(1 -= -x x e x f 则 (A ) x=0,x=1都是f(x)的第一类间断点. (B ) x=0,x=1都是f(x)的第二类间断点 (C ) x=0是f(x)的第一类间断点,x=1是f(x)的第二类间断点. (D ) x=0是f(x)的第二类间断点,x=1是f(x)的第一类间断点. 3.设f (x)=x x 1 -,x ≠0,1,则f [)(1 x f ]= ( ) A ) 1-x B ) x -11 C ) X 1 D ) x 4.下列各式正确的是 ( ) A ) lim + →x )x 1 +1(x =1 B ) lim + →x )x 1 +1(x =e C ) lim ∞ →x )x 1 1-(x =-e D ) lim ∞ →x )x 1 +1(x -=e 5.已知9)( lim =-+∞→x x a x a x ,则=a ( )。 A.1; B.∞; C.3ln ; D.3ln 2。 6.极限:=+-∞→x x x x )1 1( lim ( ) A.1; B.∞; C.2 -e ; D.2 e 7.极限:∞ →x lim 3 32x x +=( ) A.1; B.∞; C.0; D.2. 8.极限:x x x 11lim 0-+→=( ) A.0; B.∞; C 2 1; D.2.

高数数学极限总结

函数极限总结 一.极限的产生 极限理论是研究关于极限的严格定义、基本性质和判别准则等问题的基础理论。 极限思想的萌芽可以追溯到古希腊时期和中国战国时期,但极限概念真正意义上的首次出现于沃利斯的《无穷算数》中,牛顿在其《自然哲学的数学原理》一书中明确使用了极限这个词并作了阐述。但迟至18世纪下半叶,达朗贝尔等人才认识到,把微积分建立在极限概念的基础之上,微积分才是完善的,柯西最先给出了极限的描述性定义,之后,魏尔斯特拉斯给出了极限的严格定义(ε-δ和ε-N 定义)。 从此,各种极限问题才有了切实可行的判别准则,使极限理论成为了微积分的工具和基础。[1] 二.极限知识点总结 1. 极限定义 函数极限:设函数f(x)在点的x 0某一去心邻域内有定义,如果存在常数A ,对于任意给定的正数ε(无论它多么小),总存在正数 ,使得当x 满足不等式 时,对应的函数值 都满足不等式: 那么常数A 就叫做函数f(x)?当x →x 0时的极限,记作。[2] 单侧极限:?.左极限:或 ?.右极限:或 定理: 函数当时极限存在的充分必要条件是左、右极限各自存在且相 δ<<|x -x |00ε <-|)(|A x f A x f x x =→)(lim 0 A x f x x =- →)(lim )()(左→→x A x f A x f x x =+ →)(lim )()(右→→x A x f A x f x f A x f x x ==? =+-→)()()(lim 0 )(x f 0x x →

等 即。 2. 极限概念 函数极限可以分成以的极限为例,f(x) 在点x 0以A 为极限的定义是:对于任意给定的正数ε(无论它多么小),总存在正数δ,使得当x 满足不等式 时,对应的函数值f(x)都满足不 等式:|f(x)-A|<ε,那么常数A 就叫做函数f(x)当 x →x 。时的极限。 函数极限具有唯一性、局部有限性、局部保号性[2] 3. 存在准则 有些函数的极限很难或难以直接运用极限运算法则求得,需要先判定。下面介绍几个常用的判定数列极限的定理。 准则Ⅰ.如果数列,及满足以下条件: (1)从某项起,即,当时,有; (2);, 那么数列的极限存在,且 准则Ⅰ'如果(1)当(或)时, (2) ,, 那么存在,且等于。 夹逼定理:(1)当时,有??成立 (2) ?,那么,极限存在,且等于A 【准则Ⅰ,准则Ⅰ′合称夹逼定理】 )()()(lim 0 00x f x f x f x x →+-==0,,,x x x x x →-∞→+∞→∞→0x x →{}n x {}n y {}n z +∈?N n 00n n >n n n z x y ≤≤a y n x =∞→lim a z n x =∞ →lim {}n x a x n x =∞ →lim ),(0r x U x ο ∈M x >||)()()(x h x f x g ≤≤A x g x x x =∞→→)(lim ) (0 A x h x x x o =∞→→)(lim ) ()(lim ) (0 x f x x x ∞→→A ),(x 0r x U ο ?()0x f

大学高等数学函数极限和连续

第一章 函数、极限和连续 §1.1 函数 一、 主要内容 ㈠ 函数的概念 1. 函数的定义: y=f(x), x ∈D 定义域: D(f), 值域: Z(f). 2.分段函数: ?? ?∈∈=21)()(D x x g D x x f y 3.隐函数: F(x,y)= 0 4.反函数: y=f(x) → x=φ(y)=f -1(y) y=f -1 (x) 定理:如果函数: y=f(x), D(f)=X, Z(f)=Y 是严格单调增加(或减少)的; 则它必定存在反函数: y=f -1(x), D(f -1)=Y, Z(f -1)=X 且也是严格单调增加(或减少)的。 ㈡ 函数的几何特性 1.函数的单调性: y=f(x),x ∈D,x 1、x 2∈D 当x 1<x 2时,若f(x 1)≤f(x 2), 则称f(x)在D 内单调增加( ); 若f(x 1)≥f(x 2), 则称f(x)在D 内单调减少( ); 若f(x 1)<f(x 2),

则称f(x)在D 内严格单调增加( ); 若f(x 1)>f(x 2), 则称f(x)在D 内严格单调减少( )。 2.函数的奇偶性:D(f)关于原点对称 偶函数:f(-x)=f(x) 奇函数:f(-x)=-f(x) 3.函数的周期性: 周期函数:f(x+T)=f(x), x ∈(-∞,+∞) 周期:T ——最小的正数 4.函数的有界性: |f(x)|≤M , x ∈(a,b) ㈢ 基本初等函数 1.常数函数: y=c , (c 为常数) 2.幂函数: y=x n , (n 为实数) 3.指数函数: y=a x , (a >0、a ≠1) 4.对数函数: y=log a x ,(a >0、a ≠1) 5.三角函数: y=sin x , y=con x y=tan x , y=cot x y=sec x , y=csc x 6.反三角函数:y=arcsin x, y=arccon x y=arctan x, y=arccot x ㈣ 复合函数和初等函数 1.复合函数: y=f(u) , u=φ(x) y=f[φ(x)] , x ∈X 2.初等函数:

高等数学第一章函数极限与连续教案

教学内§1.1 函数 教学目的】 理解并掌握函数的概念与性质 教学重点】 函数的概念与性质 教学难点】 函数概念的理解 教学时数】 4 学时 一、组织教学,引入新课 极限是微积分学中最基本、最重要的概念之一,极限的思想与理论,是整个高等数 学的基础,连续、微分、积分等重要概念都归结于极限 . 因此掌握极限的思想与方法是 学好高等数学的前提条件 . 本章将在初等数学的基础上,介绍极限与连续的概念 、讲授新课 (一)、实数概述 1、实数与数轴 1)实数系表 2)实数与数轴关系 x,x 0 1)绝对值的定义: x x,x 0 x,x 0 2)绝对值的几何意义 3)绝对值的性质 练习:解下列绝对值不等式:① x 5 3 ,② x 1 2 3、区间 (1)区间的定义:区间是实数集的子集 (2)区间的分类:有限区间、无限区间 ① 有限区间:长度有限的区间 设 a 与 b 均为实数,且 a b ,则 (3)实数的性质: 封闭性 有序性 稠密性 连续性

数集{ x a x b }为以 a 、 b 为端点的半开半闭区间,记作 [a ,b ) 数集{ x a x b }为以a 、 b 为端点的半开半闭区间,记作( a ,b ] 区间长度: b a ② 无限区间 数集{ xa x }记作[a , ), 数集{xa x }记作( a , ) 数集{ x x a }记作( ,a], 数集{ x x a }记作( ,a ) 实数集 R 记作( , ) 3)邻域 ① 邻域:设 a 与 均为实数,且 0 ,则开区间( a , a )为点 a 的 邻域 记作U(a, ) ,其中点 a 为邻域的中心, 为邻域的半径 ② 去心邻域:在的 邻域中去掉点 a 后,称为点 a 的去心邻域,记作 U (a, ) (二) 、函数的概念 1、函数的定义 : 设有一非空实数集 D ,如果存在一个对应法则 f ,使得对于每一个 x D ,都有一个 惟一的实数 y 与之对应,则称对应法则 f 是定义在 D 上的一个函数. 记作 y f(x), 其中 x 为自变量, y 为因变量,习惯上 y 称是的函数。 定义域: 使函数 y f ( x )有意义的自变量的全体,即自变量 x 的取值范围 D 函数值:当自变量 x 取定义域 D 内的某一定值 x 0时,按对应法则 f 所得的对应 值 y 0 称 为函数 y f(x)在 x x 0时的函数值,记作 y 0 f(x 0)。 值 域:当自变量 x 取遍 D 中的一切数时,所对应的函数值 y 构成的集合,记 数集{ x a x b }为以 a 、 b 为端点的闭区间,记作 [a ,b ] 数集{ x a x b }为以 a 、 b 为端点的开区间,记作 ( a ,b )

同济大学(高等数学)_第一章_函数极限

第一篇 函数、极限与连续 第一章 函数、极限与连续 高等数学的主要内容是微积分,微积分是以变量为研究对象,以极限方法为基本研究手段的数学学科.本章首先复习函数相关内容,继而介绍极限的概念、性质、运算等知识,最后通过函数的极限引入函数的连续性概念,这些内容是学习高等数学课程极其重要的基础知识. 第1节 集合与函数 1.1 集合 1.1.1 集合 讨论函数离不开集合的概念.一般地,我们把具有某种特定性质的事物或对象的总体称为集合,组成集合的事物或对象称为该集合的元素. 通常用大写字母A 、B 、C 、 表示集合,用小写字母a 、b 、c 、 表示集合的元素. 如果a 是集合A 的元素,则表示为A a ∈,读作“a 属于A ”;如果a 不是集合A 的元素,则表示为A a ?,读作“a 不属于A ”. 一个集合,如果它含有有限个元素,则称为有限集;如果它含有无限个元素,则称为无限集;如果它不含任何元素,则称为空集,记作Φ. 集合的表示方法通常有两种:一种是列举法,即把集合的元素一一列举出来,并用“{}”括起来表示集合.例如,有1,2,3,4,5组成的集合A ,可表示成 A ={1,2,3,4,5}; 第二种是描述法,即设集合M 所有元素x 的共同特征为P ,则集合M 可表示为 {}P x x M 具有性质|=. 例如,集合A 是不等式022<--x x 的解集,就可以表示为 {} 02|2<--=x x x A . 由实数组成的集合,称为数集,初等数学中常见的数集有: (1)全体非负整数组成的集合称为非负整数集(或自然数集),记作N ,即 {} ,,,3,2,1,0n N =; (2)所有正整数组成的集合称为正整数集,记作+ N ,即 {} ,,,3,2,1n N =+; (3)全体整数组成的集合称为整数集,记作Z ,即 {} ,,,3,2,1,0,1,2,3,,,n n Z ----=;

高等数学(函数与极限)完全归纳笔记

目录: 函数与极限 (1) 1、集合的概念 (1) 2、常量与变量 (2) 2、函数 (3) 3、函数的简单性态 (4) 4、反函数 (4) 5、复合函数 (5) 6、初等函数 (6) 7、双曲函数及反双曲函数 (7) 8、数列的极限 (8) 9、函数的极限 (9) 10、函数极限的运算规则 (11) 一、函数与极限 1、集合的概念 一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。集合具有确定性(给定集合的元素必须是确定的)和互异性(给定集合中的元素是互不相同的)。比如“身材较高的人”不能构成集合,因为它的元素不是确定的。 我们通常用大字拉丁字母A、B、C、……表示集合,用小写拉丁字母a、b、c……表示集合中的元素。如果a是集合A中的元素,就说a属于A,记作:a∈A,否则就说a不属于A,记作:a A。 ⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。记作N ⑵、所有正整数组成的集合叫做正整数集。记作N+或N+。 ⑶、全体整数组成的集合叫做整数集。记作Z。 ⑷、全体有理数组成的集合叫做有理数集。记作Q。 ⑸、全体实数组成的集合叫做实数集。记作R。 集合的表示方法 ⑴、列举法:把集合的元素一一列举出来,并用“{}”括起来表示集合 ⑵、描述法:用集合所有元素的共同特征来表示集合。 集合间的基本关系 ⑴、子集:一般地,对于两个集合A、B,如果集合A中的任意一个元素都是集合B的元素,我们就说A、B有包含关系,称集合A为集合B的子集,记作A B(或B A)。。 ⑵相等:如何集合A是集合B的子集,且集合B是集合A的子集,此时集合A中的元素与集合B中的元素完全一样,因此集合A与集合B相等,记作A=B。 ⑶、真子集:如何集合A是集合B的子集,但存在一个元素属于B但不属于A,我们称集合A是集合B的真子集。

相关主题
文本预览
相关文档 最新文档