当前位置:文档之家› 第三章-监督学习神经网络

第三章-监督学习神经网络

第三章-监督学习神经网络
第三章-监督学习神经网络

神经网络控制

人工神经网络控制 摘要: 神经网络控制,即基于神经网络控制或简称神经控制,是指在控制系统中采用神经网络这一工具对难以精确描述的复杂的非线性对象进行建模,或充当控制器,或优化计算,或进行推理,或故障诊断等,亦即同时兼有上述某些功能的适应组合,将这样的系统统称为神经网络的控制系统。本文从人工神经网络,以及控制理论如何与神经网络相结合,详细的论述了神经网络控制的应用以及发展。 关键词: 神经网络控制;控制系统;人工神经网络 人工神经网络的发展过程 神经网络控制是20世纪80年代末期发展起来的自动控制领域的前沿学科之一。它是智能控制的一个新的分支,为解决复杂的非线性、不确定、不确知系统的控制问题开辟了新途径。是(人工)神经网络理论与控制理论相结合的产物,是发展中的学科。它汇集了包括数学、生物学、神经生理学、脑科学、遗传学、人工智能、计算机科学、自动控制等学科的理论、技术、方法及研究成果。 在控制领域,将具有学习能力的控制系统称为学习控制系统,属于智能控制系统。神经控制是有学习能力的,属于学习控制,是智能控制的一个分支。神经控制发展至今,虽仅有十余年的历史,已有了多种控制结构。如神经预测控制、神经逆系统控制等。 生物神经元模型 神经元是大脑处理信息的基本单元,人脑大约含1012个神经元,分成约1000种类型,每个神经元大约与102~104个其他神经元相连接,形成极为错综复杂而又灵活多变的神经网络。每个神经元虽然都十分简单,但是如此大量的神经元之间、如此复杂的连接却可以演化出丰富多彩的行为方式,同时,如此大量的神经元与外部感受器之间的多种多样的连接方式也蕴含了变化莫测的反应方式。 图1 生物神经元传递信息的过程为多输入、单输出,神经元各组成部分的功能来看,信息的处理与传递主要发生在突触附近,当神经元细胞体通过轴突传到突触前膜的脉冲幅度达到一定强度,即超过其阈值电位后,突触前膜将向突触间隙释放神经传递的化学物质,突触有两

前馈神经网络和反馈神经网络模型

前馈神经网络 前馈神经网络的结构一般包含输入层、输出层、及隐含层,隐含层可以是一层或多层。各神经元只接收前一层的输出作为自己的输入,并且将其输出给下一层,整个网络中没有反馈。每一个神经元都可以有任意多个输入,但只允许有一个输出。图1选择只含一个隐含层的前馈神经网络。其原理框图如图1所示。 图中,只有前向输出,各层神经元之间的连接用权值表示。设输入层有M 个输入信号,其中任一输入信号用i ()M i ,2,1 =表示;隐含层有N 个神经元,任一隐含层神经元用j ()N j ,2,1 =表示;输入层与隐含层间的连接权值为()n w ij , ()N j M i ,2,1;,2,1 ==;隐含层与输出层的连接权值为()n w j 。假定隐含层神 经元的输入为()n u j ,输出为()n v j ;输出层神经元的输入为()n o ,网络总输出为 ()n x ~。则此神经网络的状态方程可表示为: ()()()∑+-==M i ij j i n y n w n u 11 ()()[] ()()?? ? ???∑+-===M i ij j j i n y n w f n u f n v 11 ()()()∑==N j j j n v n w n o 1 ()()[]()()?? ????==∑=N j j j n v n w f n o f n x 1~ 图1 三层前馈神经网络结构图 输入层 隐含层 输出层 (y n (1y n -(1y n M -+

式中,()?f 表示隐含层、输出层的输入和输出之间的传递函数,也称为激励函数。 定义代价函数为瞬时均方误差: ()()()()[] ()()()2 12 2~?? ? ????? ????????-=-==∑=N j j j n v n w f n d n x n d n e n J 式中,()n d 为训练信号。 递归神经网络 对角递归神经网络 图2为典型的对角递归神经网络,它具有三层结构,分别为输入层,隐层和输出层,在隐层的权值叠加中,引入了输入的前一时刻的输出作为反馈控制信号。选用这种网络的优点是结构简单,易于实现,可以直观的体现反馈神经网络的结构模式和工作方式。 设输入层与隐层间的连接权值为()n w h ij ()k j m i ,2,1;,,1,0==,隐层与输 出层之间的权值为()n w o j ,递归层的权值为()n w d j 。设输入层的输入为()i n y -, 隐层的输入为()n u j ,输出为()n I j ,输出层的输入为()n v ,输出层的输出为()n x ~,则对角递归神经网络的状态方程为 ()()()()()10-+-=∑=n I n w i n y n w n u j d j m i h ij j 输入层 输出层 隐层 图2 对角递归神经网络的结构 ()y n ()1y n - ()1y n m -+ ()y n m - mj d

神经网络及深度学习

可用于自动驾驶的神经网络及深度学习 高级辅助驾驶系统(ADAS)可提供解决方案,用以满足驾乘人员对道路安全及出行体验的更高要求。诸如车道偏离警告、自动刹车及泊车辅助等系统广泛应用于当前的车型,甚至是功能更为强大的车道保持、塞车辅助及自适应巡航控制等系统的配套使用也让未来的全自动驾驶车辆成为现实。 作者:来源:电子产品世界|2017-02-27 13:55 收藏 分享 高级辅助驾驶系统(ADAS)可提供解决方案,用以满足驾乘人员对道路安全及出行体验的更高要求。诸如车道偏离警告、自动刹车及泊车辅助等系统广泛应用于当前的车型,甚至是功能更为强大的车道保持、塞车辅助及自适应巡航控制等系统的配套使用也让未来的全自动驾驶车辆成为现实。 如今,车辆的很多系统使用的都是机器视觉。机器视觉采用传统信号处理技术来检测识别物体。对于正热衷于进一步提高拓展ADAS功能的汽车制造业而言,深度学习神经网络开辟了令人兴奋的研究途径。为了实现从诸如高速公路全程自动驾驶仪的短时辅助模式到专职无人驾驶旅行的自动驾驶,汽车制造业一直在寻求让响应速度更快、识别准确度更高的方法,而深度学习技术无疑为其指明了道路。 以知名品牌为首的汽车制造业正在深度学习神经网络技术上进行投资,并向先进的计算企业、硅谷等技术引擎及学术界看齐。在中国,百度一直在此技术上保持领先。百度计划在2019 年将全自动汽车投入商用,并加大全自动汽车的批量生产力度,使其在2021 年可广泛投入使用。汽车制造业及技术领军者之间的密切合作是嵌入式系统神经网络发展的催化剂。这类神经网络需要满足汽车应用环境对系统大小、成本及功耗的要求。 1轻型嵌入式神经网络 卷积式神经网络(CNN)的应用可分为三个阶段:训练、转化及CNN在生产就绪解决方案中的执行。要想获得一个高性价比、针对大规模车辆应用的高效结果,必须在每阶段使用最为有利的系统。 训练往往在线下通过基于CPU的系统、图形处理器(GPU)或现场可编程门阵列(FPGA)来完成。由于计算功能强大且设计人员对其很熟悉,这些是用于神经网络训练的最为理想的系统。 在训练阶段,开发商利用诸如Caffe(Convolution Architecture For Feature Extraction,卷积神经网络架构)等的框架对CNN 进行训练及优化。参考图像数据库用于确定网络中神经元的最佳权重参数。训练结束即可采用传统方法在CPU、GPU 或FPGA上生成网络及原型,尤其是执行浮点运算以确保最高的精确度。 作为一种车载使用解决方案,这种方法有一些明显的缺点。运算效率低及成本高使其无法在大批量量产系统中使用。 CEVA已经推出了另一种解决方案。这种解决方案可降低浮点运算的工作负荷,并在汽车应用可接受的功耗水平上获得实时的处理性能表现。随着全自动驾驶所需的计算技术的进一步发展,对关键功能进行加速的策略才能保证这些系统得到广泛应用。 利用被称为CDNN的框架对网络生成策略进行改进。经过改进的策略采用在高功耗浮点计算平台上(利用诸如Caffe的传统网络生成器)开发的受训网络结构和权重,并将其转化为基于定点运算,结构紧凑的轻型的定制网络模型。接下来,此模型会在一个基于专门优化的成像和视觉DSP芯片的低功耗嵌入式平台上运行。图1显示了轻型嵌入式神经网络的生成

神经网络模型预测控制器

神经网络模型预测控制器 摘要:本文将神经网络控制器应用于受限非线性系统的优化模型预测控制中,控制规则用一个神经网络函数逼近器来表示,该网络是通过最小化一个与控制相关的代价函数来训练的。本文提出的方法可以用于构造任意结构的控制器,如减速优化控制器和分散控制器。 关键字:模型预测控制、神经网络、非线性控制 1.介绍 由于非线性控制问题的复杂性,通常用逼近方法来获得近似解。在本文中,提出了一种广泛应用的方法即模型预测控制(MPC),这可用于解决在线优化问题,另一种方法是函数逼近器,如人工神经网络,这可用于离线的优化控制规则。 在模型预测控制中,控制信号取决于在每个采样时刻时的想要在线最小化的代价函数,它已经广泛地应用于受限的多变量系统和非线性过程等工业控制中[3,11,22]。MPC方法一个潜在的弱点是优化问题必须能严格地按要求推算,尤其是在非线性系统中。模型预测控制已经广泛地应用于线性MPC问题中[5],但为了减小在线计算时的计算量,该部分的计算为离线。一个非常强大的函数逼近器为神经网络,它能很好地用于表示非线性模型或控制器,如文献[4,13,14]。基于模型跟踪控制的方法已经普遍地应用在神经网络控制,这种方法的一个局限性是它不适合于不稳定地逆系统,基此本文研究了基于优化控制技术的方法。 许多基于神经网络的方法已经提出了应用在优化控制问题方面,该优化控制的目标是最小化一个与控制相关的代价函数。一个方法是用一个神经网络来逼近与优化控制问题相关联的动态程式方程的解[6]。一个更直接地方法是模仿MPC方法,用通过最小化预测代价函数来训练神经网络控制器。为了达到精确的MPC技术,用神经网络来逼近模型预测控制策略,且通过离线计算[1,7.9,19]。用一个交替且更直接的方法即直接最小化代价函数训练网络控制器代替通过训练一个神经网络来逼近一个优化模型预测控制策略。这种方法目前已有许多版本,Parisini[20]和Zoppoli[24]等人研究了随机优化控制问题,其中控制器作为神经网络逼近器的输入输出的一个函数。Seong和Widrow[23]研究了一个初始状态为随机分配的优化控制问题,控制器为反馈状态,用一个神经网络来表示。在以上的研究中,应用了一个随机逼近器算法来训练网络。Al-dajani[2]和Nayeri等人[15]提出了一种相似的方法,即用最速下降法来训练神经网络控制器。 在许多应用中,设计一个控制器都涉及到一个特殊的结构。对于复杂的系统如减速控制器或分散控制系统,都需要许多输入与输出。在模型预测控制中,模型是用于预测系统未来的运动轨迹,优化控制信号是系统模型的系统的函数。因此,模型预测控制不能用于定结构控制问题。不同的是,基于神经网络函数逼近器的控制器可以应用于优化定结构控制问题。 在本文中,主要研究的是应用于非线性优化控制问题的结构受限的MPC类型[20,2,24,23,15]。控制规则用神经网络逼近器表示,最小化一个与控制相关的代价函数来离线训练神经网络。通过将神经网络控制的输入适当特殊化来完成优化低阶控制器的设计,分散和其它定结构神经网络控制器是通过对网络结构加入合适的限制构成的。通过一个数据例子来评价神经网络控制器的性能并与优化模型预测控制器进行比较。 2.问题表述 考虑一个离散非线性控制系统: 其中为控制器的输出,为输入,为状态矢量。控制

关于学习神经网络监督(学习)控制的一点心得

关于学习神经网络监督(学习)控制的一点心得 神经网络控制是一种基本上不依赖于精确数学模型的先进控制方法,比较适用于那些具有不确定性或高度非线性的控制对象,并具有较强的适应和学习能力。[1] 人工神经元网络是在生物神经元模型基础上发展而来的。生物神经元模型的基本组成单元是单个的神经元,它有着接受、传导信息的功能。其中最重要的一点是生物神经元能接受多个神经元传递的信息,并能将其往下传递给多个神经元。根据其特点抽象出的最典型的人工神经元模型如下图所示: 从图中易知其数学模型为: ∑∑===-=n i i ji j n i i ji j x w f x w f y 01)()(θ ,( 100-==j j w x ,θ) 式中,j θ是阈值, ji w 是连接权系数;f (·)为输出变换函数。 人工神经网络是由多个人工神经元组成,每个神经元有多个输入连接通路,但只有一个单一的输出,但是它可以连接到很多其他的神经元。经过多个神经元的串、并连接,就可以构成神经网络。依据神经元的图形模型和数学模型可以知道神经网络具有如下性质: 1) 对于每个节点有一个状态变量j x ; 2) 节点i 到节点 j 有一个连接权系数ji w ; 3) 对于每一个节点有一个阈值j θ; 4) 对于每个节点定义一个变换函数f j [x i ,w ji ,j θ( i ≠j )]。[1] 单个神经元的输出乘以连接权系数即是下一个神经元的输入。对于一个神经网络,当确定了各节点的输出变换函数后,连接权值将作为变量,神经网络的学习功能旨在通过调整连接权值以达到给定输入下得到目标输出的目的,但实际情况只能是接近目标输出。 神经网络的学习基本方式如下:通过给定的输入得到实际输出值,然后记录到目标输出与实际输出的差值,想减小综合差值的方向调整连接权值,这样依次进行下去,最后得到一组最优的连接权集合。当神经网络的节点越多,其能识别的模式也越多,但训练的运算量也相应的增加,这就对训练样本的选择提出更高的要求。 神经元网络监督控制系统的基本系统框图如下:

机器人神经网络控制

第一部分 机器人手臂的自适应神经网络控制 机器人是一具有高度非线性和不确定性的复杂系统,近年来各研究单位对机器人智能控制的研究非常热门,并已取得相当丰富的成果。 机器人轨迹跟踪控制系统的主要目的是通过给定各关节的驱动力矩,使得机器人的位置、速度等状态变量跟踪给定的理想轨迹。与一般的机械系统一样,当机器人的结构及其机械参数确定后,其动态特性将由动力学方程即数学模型来描述。因此,可采用经典控制理论的设计方法——基于数学模型的方法设计机器人控制器。但是在实际工程中,由于机器人模型的不确定性,使得研究工作者很难得到机器人精确的数学模型。 采用自适应神经网络,可实现对机器人动力学方程中未知部分的精确逼近,从而实现无需建模的控制。下面将讨论如何利用自适应神经网络和李雅普诺夫(Lyapunov )方法设计机器人手臂跟踪控制的问题。 1、控制对象描述: 选二关节机器人力臂系统(图1),其动力学模型为: 图1 二关节机器人力臂系统物理模型 ()()()()d ++++=M q q V q,q q G q F q ττ (1) 其中 1232 232232 22cos cos ()cos p p p q p p q p p q p +++??=? ?+??M q ,322 3122312 sin ()sin (,)sin 0p q q p q q q p q q --+?? =???? V q q

41512512cos cos()()cos()p g q p g q q p g q q ++??=??+?? G q ,()()0.02sgn =F q q ,()()0.2sin 0.2sin T d t t =????τ。 其中,q 为关节转动角度向量,()M q 为2乘2维正定惯性矩阵,(),V q q 为2乘2维向心哥氏力矩,()G q 为2维惯性矩阵,()F q 为2维摩擦力矩阵,d τ为 未知有界的外加干扰,τ为各个关节运动的转矩向量,即控制输入。 已知机器人动力学系统具有如下动力学特性: 特性1:惯量矩阵M(q)是对称正定阵且有界; 特性2:矩阵 () ,V q q 有界; 特性3:()()2,-M q C q q 是一个斜对称矩阵,即对任意向量ξ,有 ()()()2,0T -=ξ M q C q q ξ (2) 特性4:未知外加干扰d τ 满足 d d b ≤τ, d b 为正常数。 我们取[][]2 12345,,,, 2.9,0.76,0.87,3.04,0.87p p p p p kgm ==p ,两个关节的位置 指令分别为()10.1sin d q t =,()20.1cos d q t =,即设计控制器驱动两关节电 机使对应的手臂段角度分别跟踪这两个位置指令。 2、传统控制器的设计及分析: 定义跟踪误差为: ()()()d t t t =-e q q (3) 定义误差函数为: =+∧r e e (4) 其中0>∧=∧T 。 则 d =-++∧q r q e

基于多编码器多解码器的大规模维汉神经网络机器翻译模型

第32卷第9期2018年9月 中文信息学报 JOU RNAL OF CHINESE INFORM A TION PROCESSING Vol.32,No.9 Sept.,2018 文章编号:1003-0077(2018)09-0020-08 基于多编码器多解码器的大规模维汉神经网络机器翻译模型 张金超1,2,3,艾山·吾买尔4,买合木提·买买提4,刘群1,5 (1.中国科学院计算技术研究所智能信息处理重点实验室,北京100190; 2.中国科学院大学,北京100049; 3.腾讯科技(北京)有限公司,北京100080; 4.新疆大学信息科学与工程学院,乌鲁木齐新疆830046; 5.都柏林城市大学,都柏林爱尔兰) 摘要:为提升维汉机器翻译模型的翻译能力,该文提出使用多编码器多解码器的结构,搭建大规模的维汉神经网络机器翻译模型。相比于单编码器单解码器的浅层的小模型,多编码器多解码器模型具有多个编码器,可以对源语言进行多层次、多视角的压缩表示;同时具有多个解码器,可以增强目标语言的生成能力。实验证明,在大规模的训练数据上,使用该方法搭建的大规模维汉神经网络机器翻译模型,译文质量可以大幅度地超过基于短语的统计机器翻译模型和基本的神经网络翻译模型。该文还针对维汉翻译源端语言和目标端语言的翻译单元粒度进行了实验,发现维吾尔语端使用字节对编码单元、汉语端使用字单元,可以消除对汉语分词器的依赖,做到和双端都使用字节对编码单元可比的效果。 关键词:维汉机器翻译;神经网络;多编码器多解码器 中图分类号:T P391文献标识码:A A Large-scale Uyghur-Chinese Neural Machine Translation Model Based on Multiple Encoders and Decoders ZHANG Jinchao1,2,3,Aishan Wumaier4,Maihemuti M aimaiti4,LIU Qun1,5 (1.Key Lboratory of Intelligent Information Processing,Institute of Computing Technology,Chinese Academy of Sciences,Beijing100190,China; 2.University of Chinese Academy of Sciences,Beijing100049,China; 3.Tencent Technology(Beijing)CO.,Ltd.,Beijing100080,China; 4.School of Information Science and Engineering,Xinjiang University,U rumqi,Xinjiang830046,China; 5.Dublin City University,Dublin,Ireland) Abstract:To enhance the translation ability of Uyghur-Chinese translation model,the paper proposes a large-scale Neural Machine T ranslation system based on multiple encoders and https://www.doczj.com/doc/215493399.html,pared with the encoder-decoder based shallow model,the proposed model consists of multiple encoders to represent the source sentence in multiple p erspectives and has multiple decoders to extend the generation ability of the target sentence.The experiments on the big training corpus show that the translation quality of the proposed model surpasses phrase-based Statistical Machine T ranslation model and the basic Neural Machine T ranslation model.The paper also investigates the granu-larity of the translation unit and reveal that it is effective to employ the Byte Pair Encoding unit for Uyghur and char-acter unit for Chinese to avoid the Chinese word segmentor and achieve comparable performance with BPE-BPE sys-tems. Key words:Uyghur-Chinese machine translation;neural network;multiple encoders and decoders 收稿日期:2017-11-23定稿日期:2018-03-07 基金项目:国家自然科学基金(61331911,61262060);新疆多语种信息技术实验室开放课题(2016D03023);自治区青年科技创新人才培养工程青年博士项目(QN2015BS004) 万方数据

机器学习的定义

机器学习的定义 从广义上来说,机器学习是一种能够赋予机器学习的能力以此让它完成直接编程无法完成的功能的方法。但从实践的意义上来说,机器学习是一种通过利用数据,训练出模型,然后使用模型预测的一种方法。 机器学习的范围 其实,机器学习跟模式识别,统计学习,数据挖掘,计算机视觉,语音识别,自然语言处理等领域有着很深的联系。 从范围上来说,机器学习跟模式识别,统计学习,数据挖掘是类似的,同时,机器学习与其他领域的处理技术的结合,形成了计算机视觉、语音识别、自然语言处理等交叉学科。因此,一般说数据挖掘时,可以等同于说机器学习。同时,我们平常所说的机器学习应用,应该是通用的,不仅仅模式识别 模式识别=机器学习。两者的主要区别在于前者是从工业界发展起来的概念,后者则主要源自计算机学科。在著名的《Pattern Recognition And Machine Learning》这本书中,Christopher M. Bishop在开头是这样说的“模式识别源自工业界,而机器学习来自于计算机学科。不过,它们中的活动可以被视为同一个领域的两个方面,同时在过去的10年间,它们都有了长足的发展”。 数据挖掘 数据挖掘=机器学习+数据库。这几年数据挖掘的概念实在是太耳熟能详。几乎等同于炒作。但凡说数据挖掘都会吹嘘数据挖掘如何如何,例如从数据中挖出金子,以及将废弃的数据转化为价值等等。但是,我尽管可能会挖出金子,但我也可能挖的是“石头”啊。这个说法的意思是,数据挖掘仅仅是一种思考方式,告诉我们应该尝试从数据中挖掘出知识,但不是每个数据都能挖掘出金子的,所以不要神话它。一个系统绝对不会因为上了一个数据挖掘模块就变得无所不能(这是IBM最喜欢吹嘘的),恰恰相反,一个拥有数据挖掘思维的人员才是关键,而且他还必须对数据有深刻的认识,这样才可能从数据中导出模式指引业务的改善。大部分数据挖掘中的算法是机器学习的算法在数据库中的优化。 统计学习 统计学习近似等于机器学习。统计学习是个与机器学习高度重叠的学科。因为机器学习中的大多数方法来自统计学,甚至可以认为,统计学的发展促进机器学习的繁荣昌盛。例如著名的支持向量机算法,就是源自统计学科。但是在某种程度上两者是有分别的,这个分别在于:统计学习者重点关注的是统计模型的发展与优化,偏数学,而机器学习者更关注的是能够解决问题,偏实践,因此机器学习研究者会重点研究学习算法在计算机上执行的效率与准确性的提升。 计算机视觉 计算机视觉=图像处理+机器学习。图像处理技术用于将图像处理为适合进入机器学习模型中的输入,机器学习则负责从图像中识别出相关的模式。计算机视觉相关的应用非常的多,例如百度识图、手写字符识别、车牌识别等等应用。这个领域是应用前景非常火热的,同时也是研究的热门方向。随着机器学习的新领域深

基于神经网络输出反馈的动态矩阵控制研究

clear all; close all; xite=0.50; alfa=0.05; w2=rand(6,1); w2_1=w2;w2_2=w2; w1=rand(2,6); w1_1=w1;w1_2=w1; dw1=0*w1; x=[0,0]'; u_1=0; y_1=0; I=[0,0,0,0,0,0]'; Iout=[0,0,0,0,0,0]'; FI=[0,0,0,0,0,0]'; ts=0.001; for k=1:1:1000 time(k)=k*ts; u(k)=0.50*sin(3*2*pi*k*ts); a(k)=1.2*(1-0.8*exp(-0.1*k)); y(k)=a(k)*y_1/(1+y_1^2)+u_1; for j=1:1:6 I(j)=x'*w1(:,j); Iout(j)=1/(1+exp(-I(j))); end yn(k)=w2'*Iout; e(k)=y(k)-yn(k); w2=w2_1+(xite*e(k))*Iout+alfa*(w2_1-w2_2); for j=1:1:6 FI(j)=exp(-I(j))/(1+exp(-I(j)))^2; end

for i=1:1:2 for j=1:1:6 dw1(i,j)=e(k)*xite*FI(j)*w2(j)*x(i); end end w1=w1_1+dw1+alfa*(w1_1-w1_2); x(1)=u(k); x(2)=y(k); w1_2=w1_1;w1_1=w1; w2_2=w2_1;w2_1=w2; u_1=u(k); y_1=y(k); end figure(1); plot(time,y,'r',time,yn,'b'); xlabel('times');ylabel('y and yn'); grid on ts=0.1; for k=1:1:200 time(k)=k*ts; u(k)=1; a(k)=1.2*(1-0.8*exp(-0.1*k)); y(k)=a(k)*y_1/(1+y_1^2)+u_1; for j=1:1:6 I(j)=x'*w1(:,j); Iout(j)=1/(1+exp(-I(j))); end yn(k)=w2'*Iout; e(k)=y(k)-yn(k); w2=w2_1+(xite*e(k))*Iout+alfa*(w2_1-w2_2); for j=1:1:6 FI(j)=exp(-I(j))/(1+exp(-I(j)))^2; end for i=1:1:2

BP神经网络实验——【机器学习与算法分析 精品资源池】

实验算法BP神经网络实验 【实验名称】 BP神经网络实验 【实验要求】 掌握BP神经网络模型应用过程,根据模型要求进行数据预处理,建模,评价与应用; 【背景描述】 神经网络:是一种应用类似于大脑神经突触联接的结构进行信息处理的数学模型。BP神经网络是一种按照误差逆向传播算法训练的多层前馈神经网络,是目前应用最广泛的神经网络。其基本组成单元是感知器神经元。 【知识准备】 了解BP神经网络模型的使用场景,数据标准。掌握Python/TensorFlow数据处理一般方法。了解keras神经网络模型搭建,训练以及应用方法 【实验设备】 Windows或Linux操作系统的计算机。部署TensorFlow,Python。本实验提供centos6.8环境。 【实验说明】 采用UCI机器学习库中的wine数据集作为算法数据,把数据集随机划分为训练集和测试集,分别对模型进行训练和测试。 【实验环境】 Pyrhon3.X,实验在命令行python中进行,或者把代码写在py脚本,由于本次为实验,以学习模型为主,所以在命令行中逐步执行代码,以便更加清晰地了解整个建模流程。 【实验步骤】 第一步:启动python: 1

命令行中键入python。 第二步:导入用到的包,并读取数据: (1).导入所需第三方包 import pandas as pd import numpy as np from keras.models import Sequential from https://www.doczj.com/doc/215493399.html,yers import Dense import keras (2).导入数据源,数据源地址:/opt/algorithm/BPNet/wine.txt df_wine = pd.read_csv("/opt/algorithm/BPNet/wine.txt", header=None).sample(frac=1) (3).查看数据 df_wine.head() 1

面向神经机器翻译的集成学习方法分析

第33卷第3期2019年3月 Vol.33,No.3 Mar.,2019 中文信息学报 JOURNAL OF CHINESE INFORMATION PROCESSING 文章编号:1003-0077(2019)03-0042-10 面向神经机器翻译的集成学习方法分析 李北I,王强-肖桐I,姜雨帆J张哲场I,刘继强】,张俐I,于清2 (1.东北大学自然语言处理实验室,辽宁沈阳110819; 2.新疆大学信息科学与工程学院,新疆乌鲁木齐830046) 摘要:集成学习是一种联合多个学习器进行协同决策的机器学习方法,应用在机器翻译任务的推斷过程中可以有效整合多个模型预测的概率分布,达到提升翻译系统准确性的目的。虽然该方法的有效性已在机器翻译评测中得到了广泛验证,但关于子模型的选择与融合的策略仍鲜有研究。该文主要针对机器翻译任务中的参数平均与模型融合两种集成学习方法进行大量的实验,分别从模型与数据层面、多样性与模型数量层面对集成学习的策略进行了深入探索。实验结果表明在WMT中英新闻任务上,所提模型相比Transformer单模型有3.19个BLEU值的提升。 关键词:集成学习;参数平均;模型融合;多样性 中图分类号:TP391文献标识码:A On Ensemble Learning of Neural Machine Translation LI Bei1,WANG Qiang1,XIAO Tong1,JIANG Yufan1,ZHANG Zheyang1, LIU Jiqiang1,ZHANG Li1,YU Qing2 (1.NLP Laboratory,Northeastern University,Shenyang,Liaoning110819,China; 2.College of Information Science and Engineering,Xinjiang University,Urumqi,Xinjiang830046,China) Abstract:Ensemble learning has been extensively proved valid in machine translation evaluation campaigns,but the sub-model selection and integration strategies are not well addressed.This paper examines the two kinds of ensemble learning methods:parameter averaging and model fusion in machine translation tasks,and investigates the impact of diversity and model quantity on system performance from the perspectives of data and model.Experimental results show that the best result yields improvements of3.19BLEU points over the strong Transformer baseline on WMT Chinese-English MT tasks. Keywords:ensemble learning;parameter averaging;model fusion;diversity 0引言 集成学习(ensemble learning)是一种联合多个学习器进行协同决策的机器学习方法⑴。集成学习方法通过整合多个学习器的决策结果可以有效减小预测结果的方差与偏置,显著提升模型的泛化能力,达到比单学习器更好的效果。因此,集成学习方法得到了研究人员的广泛认可,被应用于各种实际任务,如规则提取灼、手写识别⑷等分类回归任务中。 近年来集成学习方法在机器翻译领域也取得了杰出的效果⑺。常见的手段包括平均单模型在训练过程中不同时刻保存的模型参数;在预测过程中整合不同模型的预测结果等。通过在大规模数据的机器翻译评测比赛中进行实验,使用集成学习的手段能大幅度提升翻译的性能,在CWMT、wmt〔u等评测比赛中得到了广泛的验证。影响集成学习效果的主要因素是模型之间的多样性,因此如何增大模型之间的多样性是提升翻译性能 收稿日期:2018-06-10定稿日期:2018-07-15 基金项目:国家自然科学基金(61876035,61732005,61562082);中央高校基本科研业务费;辽宁省高等学校创新人才支持计划

机器学习算法汇总:人工神经网络、深度学习及其它

学习方式 根据数据类型的不同,对一个问题的建模有不同的方式。在机器学习或者人工智能领域,人们首先会考虑算法的学习方式。在机器学习领域,有几种主要的学习方式。将算法按照学习方式分类是一个不错的想法,这样可以让人们在建模和算法选择的时候考虑能根据输入数据来选择最合适的算法来获得最好的结果。 监督式学习: 在监督式学习下,输入数据被称为“训练数据”,每组训练数据有一个明确的标识或结果,如对防垃圾邮件系统中“垃圾邮件”“非垃圾邮件”,对手写数字识别中的“1“,”2“,”3“,”4“等。在建立预测模型的时候,监督式学习建立一个学习过程,将预测结果与“训练数据”的实际结果进行比较,不断的调整预测模型,直到模型的预测结果达到一个预期的准确率。监督式学习的常见应用场景如分类问题和回归问题。常见算法有逻辑回归(Logistic Regression)和反向传递神经网络(Back Propagation Neural Network) 非监督式学习:

在非监督式学习中,数据并不被特别标识,学习模型是为了推断出数据的一些内在结构。常见的应用场景包括关联规则的学习以及聚类等。常见算法包括Apriori算法以及k-Means算法。 半监督式学习: 在此学习方式下,输入数据部分被标识,部分没有被标识,这种学习模型可以用来进行预测,但是模型首先需要学习数据的内在结构以便合理的组织数据来进行预测。应用场景包括分类和回归,算法包括一些对常用监督式学习算法的延伸,这些算法首先试图对未标识数据进行建模,在此基础上再对标识的数据进行预测。如图论推理算法(Graph Inference)或者拉普拉斯支持向量机(Laplacian SVM.)等。 强化学习:

神经网络控制完整版

神经网络控制 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

人工神经网络控制 摘要: 神经网络控制,即基于神经网络控制或简称神经控制,是指在控制系统中采用神经网络这一工具对难以精确描述的复杂的非线性对象进行建模,或充当控制器,或优化计算,或进行推理,或故障诊断等,亦即同时兼有上述某些功能的适应组合,将这样的系统统称为神经网络的控制系统。本文从人工神经网络,以及控制理论如何与神经网络相结合,详细的论述了神经网络控制的应用以及发展。 关键词: 神经网络控制;控制系统;人工神经网络 人工神经网络的发展过程 神经网络控制是20世纪80年代末期发展起来的自动控制领域的前沿学科之一。它是智能控制的一个新的分支,为解决复杂的非线性、不确定、不确知系统的控制问题开辟了新途径。是(人工)神经网络理论与控制理论相结合的产物,是发展中的学科。它汇集了包括数学、生物学、神经生理学、脑科学、遗传学、人工智能、计算机科学、自动控制等学科的理论、技术、方法及研究成果。 在控制领域,将具有学习能力的控制系统称为学习控制系统,属于智能控制系统。神经控制是有学习能力的,属于学习控制,是智能控制的一个分支。神经控制发展至今,虽仅有十余年的历史,已有了多种控制结构。如神经预测控制、神经逆系统控制等。 生物神经元模型 神经元是大脑处理信息的基本单元,人脑大约含1012个神经元,分成约1000种类型,每个神经元大约与 102~104个其他神经元相连接,形成极为错综复杂而又灵活多变的神经网络。每个神经元虽然都十分简单,但是如此大量的神经元之间、如此复杂的连接却可以演化出丰富多彩的行为方式,同时,如此大量的神经元与外部感受器之间的多种多样的连接方式也蕴含了变化莫测的反应方式。 图1 生物神经元传递信息的过程为多输入、单输出,神经元各组成部分的功能来看,信息的处理与传递主要发生在突触附近,当神经元细胞体通过轴突传到突触前膜的脉

利用深层神经网络人工智能(AI)训练技术翻译文本

利用深层神经网络人工智能(AI)训练技术翻译文本 微软研究人员在3月14日发表博客文章称,在利用深层神经网络人工智能(AI)训练技术翻译文本方面取得了进展。他们发明了第一台机器翻译系统,可以将中文新闻的句子翻译成英文,准确率与人类不相上下。系统在一套常用的新闻报道测试集上实现了达到了人类水平,测试集名为newstest2017。 在前几期的文章里,我们介绍了神经网络和深度学习的相关内容,微软的这套翻译系统就是使用深层神经网络,帮助生成更真实、更准确的翻译。它还采用了多种不同的人工智能训练方法,包括双重学习、商议网络和联合训练,试图模仿人类的学习方式。 机器翻译 机器翻译系统是支持翻译大量文本的应用程序或在线服务,将文本从“源”语言译成另一种"目标"语言的过程。 自从2010年代早期,新的人工智能技术- 深度神经网络(又称深度学习),已经达到较高的精准度,微软翻译团队将语音识别结合其核心文本翻译技术,推出新的语音翻译技术。虽然机器翻译技术和接口技术的概念相对简单,但它背后的科技集成却是极其复杂的,集成了多项尖端技术,特别是深度学习(人工智能)、大数据、语言学、云计算和web API。 从历史上看,曾经主流的机器学习技术在行业中应用是统计机器翻译(SMT)。SMT 使用先进的统计分析,从一句话中上下文的几个词中来估计最佳可能的翻译。SMT自20 世纪中期以来的为所有主要翻译服务提供商所使用,其中包括微软。 基于深度神经网络(NN) 的翻译技术的出现,带动了机器翻译技术的突变,显著提高了翻译质量。这种新的翻译技术在2016年的下半年开始大规模部署使用。 这两种技术共同之处有两个方面︰ 两者都需要大量的人工翻译的数据(高达数百万的人工翻译过的句子)用于培训翻译系统。既不作为双语词典,也不是基于翻译列表,是根据词在句子中使用的上下文来翻译。

机器学习之人工神经网络算法

机器学习中有一个重要的算法,那就是人工神经网络算法,听到这个名称相信大家能够想到 人体中的神经。其实这种算法和人工神经有一点点相似。当然,这种算法能够解决很多的问题,因此在机器学习中有着很高的地位。下面我们就给大家介绍一下关于人工神经网络算法 的知识。 1.神经网络的来源 我们听到神经网络的时候也时候近一段时间,其实神经网络出现有了一段时间了。神经网络 的诞生起源于对大脑工作机理的研究。早期生物界学者们使用神经网络来模拟大脑。机器学 习的学者们使用神经网络进行机器学习的实验,发现在视觉与语音的识别上效果都相当好。 在BP算法诞生以后,神经网络的发展进入了一个热潮。 2.神经网络的原理 那么神经网络的学习机理是什么?简单来说,就是分解与整合。一个复杂的图像变成了大量 的细节进入神经元,神经元处理以后再进行整合,最后得出了看到的是正确的结论。这就是 大脑视觉识别的机理,也是神经网络工作的机理。所以可以看出神经网络有很明显的优点。 3.神经网络的逻辑架构 让我们看一个简单的神经网络的逻辑架构。在这个网络中,分成输入层,隐藏层,和输出层。输入层负责接收信号,隐藏层负责对数据的分解与处理,最后的结果被整合到输出层。每层

中的一个圆代表一个处理单元,可以认为是模拟了一个神经元,若干个处理单元组成了一个层,若干个层再组成了一个网络,也就是”神经网络”。在神经网络中,每个处理单元事实上 就是一个逻辑回归模型,逻辑回归模型接收上层的输入,把模型的预测结果作为输出传输到 下一个层次。通过这样的过程,神经网络可以完成非常复杂的非线性分类。 4.神经网络的应用。 图像识别领域是神经网络中的一个著名应用,这个程序是一个基于多个隐层构建的神经网络。通过这个程序可以识别多种手写数字,并且达到很高的识别精度与拥有较好的鲁棒性。可以 看出,随着层次的不断深入,越深的层次处理的细节越低。但是进入90年代,神经网络的发展进入了一个瓶颈期。其主要原因是尽管有BP算法的加速,神经网络的训练过程仍然很困难。因此90年代后期支持向量机算法取代了神经网络的地位。 在这篇文章中我们大家介绍了关于神经网络的相关知识,具体的内容就是神经网络的起源、 神经网络的原理、神经网络的逻辑架构和神经网络的应用,相信大家看到这里对神经网络知 识有了一定的了解,希望这篇文章能够帮助到大家。

浅谈人工智能中语言和机器翻译的重要性

浅谈人工智能中语言和机器翻译的重要性 人工智能长久以来的目标就是让机器完成那些以前只能靠人类自身才能完成的任务,所以在人工智能的具体应用,除了成为人工智能中枢以外,如何让机器帮助人类进行语言翻译也显得尤为重要。现在让我们一起来看看人工智能狂热背后,机器翻译是怎么革新的吧!机器翻译取得突破进展的原因 第一是深度学习(模拟神经网络)技术的出现,基于深度学习的翻译系统的核心是一个拥有无数结点(神经元)的深度神经网络。一种语言的句子被向量化之后,在网络中层层传递,转化为计算机可以理解的表示形式,再经过多层复杂的传导运算,生成另一种语言的译文。 科技巨头在机器翻译方面取得的成绩和他们在自然语言处理、深度学习等领域的布局和积累是分不开的。第二是海量数据的积累,倪光南院士把大数据比作第四种科学范式,称其为一个强大的工具。而数据的积累是搜索巨头得天独厚的优势,也成为了能够在机器翻译方面取得进展的必备条件。 机器翻译应用的重要意义 对于人工智能,我们现在最为关心的是该项技术的应用场景,能够在哪些方面解决我们的切实需求。对于机器翻译来说,不管是它应用范围的广度,还是其发挥作用的重要性,都具有不可估量的想象空间。值得庆幸的是,我们已经可以从这些科技公司发布的产品看到机器翻译在未来的广泛应用。 不同语言造成信息交流的障碍。互联网的出现使世界变平,这更有利于信息的流动和共享,但再进一步来说,我们不只要获得信息,还要读懂这些信息,这就对不同语言间的信息交流产生了影响,提高了信息交流成本。而机器翻译的出现就帮我们所有人解决了这个难题,除了书面信息以外,机器翻译和语音识别技术的结合可以为我们在语音通话时提供实时便捷的翻译。 对于每个用户来说,我们在出国旅游时,借助一个APP就能与当地人进行实时的无障碍沟通,通过拍照识别路牌和菜单;浏览国外网站也可以及时翻译成本国语言。从行业来讲,

相关主题
文本预览
相关文档 最新文档