当前位置:文档之家› 最短路径问题同步练习题一

最短路径问题同步练习题一

最短路径问题同步练习题一
最短路径问题同步练习题一

知识点:

1.最短路径问题

(1)求直线异侧的两点与直线上一点所连线段的和最小的问题,只要连接这两点,与直线的交点即为所求.

(2)求直线同侧的两点与直线上一点所连线段的和最小的问题,只要找到其中一个点关于这条直线的对称点,连接对称点与另一个点,则与该直线的交点即为所求.

2.运用轴对称解决距离最短问题

运用轴对称及两点之间线段最短的性质,将所求线段之和转化为一条线段的长,是解决距离之和最小问题的基本思路,不论题目如何变化,运用时要抓住直线同旁有两点,这两点到直线上某点的距离和最小这个核心,所有作法都相同.3.利用平移确定最短路径选址

解决连接河两岸的两个点的最短路径问题时,可以通过平移河岸的方法使河的宽度变为零,转化为求直线异侧的两点到直线上一点所连线段的和最小的问题.

同步练习:

1.如图所示,点A,B分别是直线l异侧的两个点,在l上找一个点C,使CA +CB最短,这时点C是直线l与AB的交点.

2.如图所示,点A ,B 分别是直线l 同侧的两个点,在l 上找一个点C ,使CA +CB 最短,

3..在图中直线l 上找到一点M ,使它到A ,B 两点的距离和最小.

4. 如图,小河边有两个村庄A ,B ,要在河边建一自来水厂向A 村与B 村供水.

(1)若要使厂部到A ,B 村的距离相等,则应选择在哪建厂?

(2)若要使厂部到A ,B 两村的水管最短,应建在什么地方?

5. 如图,从A 地到B 地经过一条小河(河岸平行),今欲在河上建一座与两岸垂直的桥,应如何选择桥的位置才能使从A 地到B 地的路程最短?

6.(实际应用题)茅坪民族中学八(2)班举行文艺晚会,桌子摆成如图a 所示两直排(图中的AO ,BO ),AO 桌面上摆满了橘子,OB 桌面上摆满了糖果,站在C 处的学

生小明先拿橘子再拿糖果,然后到D

处座位上,请你帮助他设计一条行走路线,使其所走的总路程最短? 7.如图所示,A ,B 两点在直线l 的两侧,在l 上找一点C ,使点C 到点A 、B 的距离之差最大.

参考答案:

1.

A B

l

2.这时先作点B关于直线l的对称点B′,则点C是直线l与AB′的交点.

为了证明点C的位置即为所求,我们不妨在直线上另外任取一点C′,连接AC′,BC′,B′C′,证明AC+CB<AC′+C′B.如下:

证明:由作图可知,点B和B′关于直线l对称,

所以直线l是线段BB′的垂直平分线.

因为点C与C′在直线l上,

所以BC=B′C,BC′=B′C′.

在△AB′C′中,AB′<AC′+B′C′,

所以AC+B′C<AC′+B′C′,

所以AC+BC<AC′+C′B.

3. 解:如图所示:(1)作点B关于直线l的对称点B′;

(2)连接AB′交直线l于点M.

(3)则点M即为所求的点.

4.解:(1)如图1,取线段AB的中点G,过中点G画AB的垂线,交EF于P,则

P到A,B的距离相等.也可分别以A、B为圆心,以大于1

2

AB为半径画弧,两弧交于

两点,过这两点作直线,与EF的交点P即为所求.

(2)如图2,画出点A关于河岸EF的对称点A′,连接A′B交EF于P,则P到A,B的距离和最短.

5.解:(1)如图2,过点A作AC垂直于河岸,且使AC等于河宽.

(2)连接BC与河岸的一边交于点N.

(3)过点N作河岸的垂线交另一条河岸于点M.

则MN为所建的桥的位置.

6.解:如图b.

(1)作C点关于OA的对称点C1,作D点关于OB的对称点D1,(2)连接C1D1,分别交OA,OB于P,Q,那么小明沿C→P→Q→D的路线行走,所走的总路程最短.

7.解:如图所示,以直线l为对称轴,作点A关于直线l的对称点A′,A′B 的连线交l于点C,则点C即为所求.理由:在直线l上任找一点C′(异于点C),连接CA,C′A,C′A′,C′B.因为点A,A′关于直线l对称,所以l为线段AA′的垂直平分线,则有CA=CA′,所以CA-CB=CA′-CB=A′B.又因为点C′在l 上,所以C′A=C′A′.在△A′BC′中,C′A-C′B=C′A′-C′B<A′B,所以C′A′-C′B<CA-CB.

点拨:根据轴对称的性质、利用三角形的三边关系,通过比较来说明最值问题

是常用的一种方法.

(完整版)八年级最短路径问题归纳小结

八年级数学最短路径问题 【问题概述】最短路径问题是图论研究中的一个经典算法问题,旨在寻找图(由结点和路径组成的)中两结点之间的最短路径.算法具体的形式包括: ①确定起点的最短路径问题 - 即已知起始结点,求最短路径的问题. ②确定终点的最短路径问题 - 与确定起点的问题相反,该问题是已知终结结点,求最短路径的问题. ③确定起点终点的最短路径问题 - 即已知起点和终点,求两结点之间的最短路径. ④全局最短路径问题 - 求图中所有的最短路径. 【问题原型】“将军饮马”,“造桥选址”,“费马点”. 【涉及知识】“两点之间线段最短”,“垂线段最短”,“三角形三边关系”,“轴对称”,“平移”. 【出题背景】角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等. 【解题思路】找对称点实现“折”转“直”,近两年出现“三折线”转“直”等变式问题考查.

在直线l 上求一点P ,使PB PA -的值最大. 作直线AB ,与直线l 的交 点即为P . 三角形任意两边之差小于 第三边.PB PA -≤AB . PB PA -的最大值=AB . 【问题11】 作法 图形 原理 在直线l 上求一点P ,使PB PA -的值最大. 作B 关于l 的对称点B '作直线A B ',与l 交点即 为P . 三角形任意两边之差小于 第三边.PB PA -≤AB '. PB PA -最大值=AB '. 【问题12】“费马点” 作法 图形 原理 △ABC 中每一内角都小于120°,在△ABC 内求一点P ,使P A +PB +PC 值最小. 所求点为“费马点”,即满足∠APB =∠BPC =∠ APC =120°.以AB 、AC 为边向外作等边△ABD 、△ACE ,连CD 、BE 相交于P ,点P 即为所求. 两点之间线段最短. P A +PB +PC 最小值=CD . 【精品练习】 1.如图所示,正方形ABCD 的面积为12,△ABE 是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有 一点P ,使PD +PE 的和最小,则这个最小值为( ) A .3 B .26 C .3 D 6 2.如图,在边长为2的菱形ABCD 中,∠ABC =60°,若将△ACD 绕点A 旋转,当AC ′、AD ′分别与BC 、CD 交于点E 、F ,则△CEF 的周长的最小值为( ) A .2 B .32 C .32+ D .4 l B A l P A B l A B l B P A B' A B C P E D C B A A D E P B C

二次函数压轴题最短路径问题

最短路径问题——和最小 【方法说明】 “和最小”问题常见的问法是,在一条直线上面找一点,使得这个点与两个定点距离的和最小(将军饮马问题).如图所示,在直线l 上找一点P 使得PA +PB 最小.当点P 为直线AB ′与直线l 的交点时,PA +PB 最小. 【方法归纳】 ①如图所示,在直线l 上找一点B 使得线段AB 最小.过点A 作AB ⊥l ,垂足为B ,则线段AB 即为所求. ②如图所示,在直线l 上找一点P 使得PA +PB 最小.过点B 作关于直线l 的对称点B ′,BB ′与直线l 交于点P ,此时PA +PB 最小,则点P 即为所求. ③如图所示,在∠AOB 的边AO ,BO 上分别找一点C ,D 使得PC +CD +PD 最小.过点P 分别作关于AO ,BO 的对称点E ,F ,连接EF ,并与AO ,BO 分别交于点C ,D ,此时PC +CD +PD 最小,则点C ,D 即为所求. ` ④如图所示,在∠AOB 的边AO ,BO 上分别找一点E ,F 使得DE +EF +CF 最小.分别过点C ,D 作关于AO , BO 的对称点D ′,C ′,连接D ′C ′,并与AO ,BO 分别交于点E ,F ,此时DE +EF +CF 最小,则点E ,F 即 为所求. l B A l A l l A l O B O B B O B O

⑤如图所示,长度不变的线段CD 在直线l 上运动,在直线l 上找到使得AC +BD 最小的CD 的位置.分别过点A ,D 作AA ′∥CD ,DA ′∥AC ,AA ′与DA ′交于点A ′,再作点B 关于直线l 的对称点B ′,连接A ′B ′与直线l 交于点D ′,此时点D ′即为所求. ⑥如图所示,在平面直角坐标系中,点P 为抛物线(y =14x 2 )上的一点,点A (0,1)在y 轴正半轴.点P 在什么位置时PA +PB 最小过点B 作直线l :y =-1的垂线段BH ′,BH ′与抛物线交于点P ′,此时PA + PB 最小,则点P 即为所求. 1.(13广东)已知二次函数y =x 2 -2mx +m 2 -1. (1)当二次函数的图象经过坐标原点O (0,0)时,求二次函数的解析式; (2)如图,当m =2时,该抛物线与y 轴交于点C ,顶点为D ,求C 、D 两点的坐标; (3)在(2)的条件下,x 轴上是否存在一点 P ,使得PC +PD 最短若P 点存在,求出P 点的坐标;若P 点不存在,请说明理由. $ l l

初二数学 最短路径问题

最短路径问题 一、 学习目标 ①能利用轴对称解决简单的最短路径问题. ②体会图形的变化在解决最值问题中的作用; ③能通过逻辑推理证明所求距离最短,感悟转化思想 二、预习内容 自学课本85页,完成下列问题: 追问1:观察思考,抽象为数学问题 这是一个实际问题,你打算首先做什么? 活动1:思考画图、得出数学问题 将A ,B 两地抽象为两个点,将河l 抽象为一条直 线. 追问2 你能用自己的语言说明这个问题的意思, 并把它抽象为数学问题吗? 师生活动:学生尝试回答, 并互相补充,最后达成共识:(1)从A 地出发,到河边l 饮马,然后到B 地; (2)在河边饮马的地点有无穷多处,把这些地点与A ,B 连接起来的两条线段的长度之和,就是从A 地 到饮马地点,再回到B 地的路程之和;(3)现在的问题是怎样找出使两条线段长度之和为最短的直线l 上的点.设C 为直线上的一个动点,上面的问题就转化为:当点C 在l 的什么位置时,AC 与CB 的和最小(如图). 三、探究学习 1、活动2:尝试解决数学问题 B 。 。A l B A l C

问题2 : 如图,点A ,B 在直线l 的同侧,点C 是直线上的一个动点,当点C 在l 的什么位置时,AC 与CB 的和最小? 追问1 你能利用轴对称的有关知识,找到上问中符合条件的点B ′吗? 师生活动:学生独立思考,画图分析,并尝试回答,互相补充 (2)连接AB ′,与直线l 相交于点C ,则点C 即为所求 四、巩固测评 (1)求直线异侧的两点与直线上一点所连线段的和 最小的问题,只要连接这两点,与直线的交点即为所求.如图所示,点A ,B 分别是直线l 异侧的两个点,在l 上找一个点C ,使CA +CB 最短,这时点C 是直线l 与AB 的交点. (2)求直线同侧的两点与直线上一点所连线段的和最小的问题,只要找到其中一个点关 于这条直线的对称点,连接对称点与另一个点,则与该直线的交点即为所求. 如图所示,点A ,B 分别是直线l 同侧的两个点,在l 上找一个点C ,使CA +CB 最短,这时先作点B 关于直线l 的对称点B ′,则点C 是直线l 与AB ′的交点. 如果学生有困难,教师可作如下提示 作法: (1)作点B 关于直线l 的对称点B ′; (一)基础训练:1、最短路径问题 l B ′ C A B

二次函数典型例题——最短路径

二次函数典型例题——最短路径 1、已知抛物线2:(1)1C y x m x =-++的顶点在坐标轴... 上. (1)求m 的值; (2)0>m 时,抛物线C 向下平移n (n > 0)个单位后与抛物线C 1:c bx ax y ++=2关于y 轴对称,且1C 过点(n ,3),求C 1的函数关系式; (3)03<<-m 时,抛物线C 的顶点为M ,且过点P (1,y 0)问在直线1-=x 上是否存在一点Q 使得△QPM 的周长最小,如果存在,求出点Q 的坐标, 如果不存在,请说明理由. (1)m 的值=1,-1,-3; (2)C 1的函数关系式:22y x x =+; (3)Q 的坐标4 (1,)3-. 2、在平面直角坐标系xOy 中,抛物线211 24 y x =+ 的顶点为M ,直线2y x =,点()0P n , 为x 轴上的一个动点,过点P 作x 轴的垂线分别交抛物线211 24 y x =+和直线2y x =于点 A ,点 B . ⑴直接写出A ,B 两点的坐标(用含n 的代数式表示); ⑵设线段AB 的长为d ,求d 关于n 的函数关系式及d 的最小值,并直接写出此时线段OB 与线段PM 的位置关系和数量关系; (3)已知二次函数2y ax bx c =++(a ,b ,c 为整数且0a ≠),对一切实数x 恒有x ≤y ≤21 24 x + ,求a ,b ,c 的值. 解:(1)21 (2)4 A n n +,,() B n n , . (2) d =AB =A B y y -=21 24 n n -+. ∴ d =2112()48n -+=211 2()48 n -+ ∴ 当14n =时,d 取得最小值1 8 . 当d 取最小值时,线段OB 与线段PM 的位置 关系和数量关系是OB ⊥PM 且OB =PM . (如图10) (3) ∵ 对一切实数x 恒有 x ≤y ≤21 24 x + , ∴ 对一切实数x ,x ≤2ax bx c ++≤21 24 x + 都成立. (0a ≠) ① 图10 x y 111 A P B M O

初二最短路径问题归纳

初二最短路径问题归纳 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

最短路径问题专题学习【基本问题】 m n

在直线l 上求一点P ,使PB PA -的值最小. 【问题10】 作法 图形 原理 在直线l 上求一点P ,使PB PA -的值最大. 作B 关于l 的对称点B '作直线A B ',与l 交点即为 P . 三角形任意两边之 差小于第三边.PB PA -≤ AB '. PB PA -最大值= AB '. 【精品练习】 1.如图所示,正方形ABCD 的面积为12,△ABE 是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,使PD +PE 的和最小,则这个最小值为( ) A .23.6 C .3 D 6 2.如图,在边长为2的菱形ABCD 中,∠ABC =60°,若将△ACD 绕点A 旋转,当 AC ′、AD ′分别与BC 、CD 交于点E 、F ,则△CEF 的周长的最小值为( ) A .2 B .32 C .32+ D .4 3.四边形ABCD 中,∠B =∠D =90°,∠C =70°,在BC 、CD 上分别找一点M 、N ,使△AMN 的周长最小 时,∠AMN +∠ANM 的度数为( ) l A B D E A B C A D E P B C D A M A B M N 第2题 第3题 第4

A .120 ° B .130° C .110° D .140° 4.如图,在锐角△ABC 中,AB =4 2 ,∠BAC =45°,∠BAC 的平分线交BC 于点D , M 、N 分别是AD 和AB 上的动点,则BM +MN 的最小值是 . 5.如图,Rt △ABC 中,∠C =90°,∠B =30°,AB =6,点E 在AB 边上,点D 在BC 边上(不与点B 、C 重 合),且ED =AE ,则线段AE 的取值范围是 . 6.如图,∠AOB =30°,点M 、N 分别在边OA 、OB 上,且OM =1,ON =3,点P 、Q 分 别在边OB 、OA 上,则MP +PQ +QN 的最小值是_________. 7.如图,三角形△ABC 中,∠OAB =∠AOB =15°,点B 在x 轴的正半轴,坐标为 B (36,0). OC 平分∠AOB ,点M 在OC 的延长线上,点N 为边OA 上的点,则MA +MN 的最小值 是______. 8.已知A (2,4)、B (4,2).C 在y 轴上,D 在x 轴上,则四边形ABCD 的周长最 小值为 , 此时 C 、D 两点的坐标分别为 . 9.已知A (1,1)、B (4,2). y x B O A y x B A O 第6题 第

二次函数压轴题最短路径问题

最短路径问题——和最小 【方法说明】 “和最小”问题常见的问法是,在一条直线上面找一点,使得这个点与两个定点距离的和最小(将军饮马问题).如图所示,在直线l 上找一点P 使得PA +PB 最小.当点P 为直线AB ′与直线l 的交点时,PA +PB 最小. l B A l 【方法归纳】 ①如图所示,在直线l 上找一点B 使得线段AB 最小.过点A 作AB ⊥l ,垂足为B ,则线段AB 即为所求. l A l ②如图所示,在直线l 上找一点P 使得PA +PB 最小.过点B 作关于直线l 的对称点B ′,BB ′与直线l 交于点P ,此时PA +PB 最小,则点P 即为所求. l B A ③如图所示,在∠AOB 的边AO ,BO 上分别找一点C ,D 使得PC +CD +PD 最小.过点P 分别作关于AO ,BO 的对称点E ,F ,连接EF ,并与AO ,BO 分别交于点C ,D ,此时PC +CD +PD 最小,则点 C , D 即为所求. O B O B ④如图所示,在∠AOB 的边AO ,BO 上分别找一点E ,F 使得DE +EF +CF 最小.分别过点C ,D 作关于AO ,BO 的对称点D ′,C ′,连接D ′C ′,并与AO ,BO 分别交于点E ,F ,此时DE +EF +CF 最小,则点E ,F 即为所 求. B O B O ⑤如图所示,长度不变的线段CD 在直线l 上运动,在直线l 上找到使得AC +BD 最小的CD 的位置.分别过

点A ,D 作AA ′∥CD ,DA ′∥AC ,AA ′与DA ′交于点A ′,再作点B 关于直线l 的对称点B ′,连接A ′B ′与直线l 交于点D ′,此时点D ′即为所求. l l ⑥如图所示,在平面直角坐标系中,点P 为抛物线(y =1 4x 2)上的一点,点A (0,1)在y 轴正半轴.点P 在什么位置时PA +PB 最小过点B 作直线l :y =-1的垂线段BH ′,BH ′与抛物线交于点P ′,此时PA +PB 最小,则点P 即为所求. 1.(13广东)已知二次函数y =x 2-2mx +m 2-1. (1)当二次函数的图象经过坐标原点O (0,0)时,求二次函数的解析式; (2)如图,当m =2时,该抛物线与y 轴交于点C ,顶点为D ,求C 、D 两点的坐标; ( 3)在(2)的条件下,x 轴上是否存在一点P ,使得PC +PD 最短若P 点存在,求出P 点的坐标;若P 点不存在,请说明理由. 【思路点拨】

二次函数速记口诀

二次函数速记口诀 二次方程零换y,二次函数便出现。 全体实数定义域,图像叫做抛物线。 抛物线有对称轴,两边单调正相反。 A定开口及大小,线轴交点叫顶点。 顶点非高即最低。上低下高很显眼。 如果要画抛物线,平移也可去描点, 提取配方定顶点,两条途径再挑选。 列表描点后连线,平移规律记心间。 左加右减括号,号外上加下要减。 二次方程零换y,就得到二次函数。 图像叫做抛物线,定义域全体实数。 A定开口及大小,开口向上是正数。 绝对值大开口小,开口向下A负数。 抛物线有对称轴,增减特性可看图。 线轴交点叫顶点,顶点纵标最值出。 如果要画抛物线,描点平移两条路。 提取配方定顶点,平移描点皆成图。 列表描点后连线,三点大致定全图。 若要平移也不难,先画基础抛物线, 顶点移到新位置,开口大小随基础。 二次函数与几何方法 分为:二次函数与线段及角、等腰三角形、直角三角形、相似三角形、平行四边形、

矩形、菱形、形、圆、面积等问题) 重要思想:①分类讨论→代表性题型:动态几何问题,存在性讨论问题; ②转化思想(待定系数) →代表性题型:面积问题,二函数图象与坐标轴的交点距离、二次函数与一次函数交点距离等; ③最短路径→代表性题型:利用二次函数的对称性求三角形的周长最小时点的坐标; ④尺规作图→代表性题型:二次函数中求出直角三角形与等腰三角形时点的坐标,采用直角三角板与圆规进行尺规作图分析; ⑤极端值思想→代表性题型:动态几何问题,动态函数问题; ⑥数形结合思想→代表性题型:函数与几何综合题。 二次函数的常见考法 (1)考查一些带约束条件的二次函数最值; (2)结合二次函数考查一些创新问题 二次函数的实际应用 在公路、桥梁、隧道、城市建设等很多方面都有抛物线型;生产和生活中,有很多“利润最大”、“用料最少”、“开支最节约”、“线路最短”、“面积最大”等问题,它们都有可能用到二次函数关系,用到二次函数的最值。 那么解决这类问题的一般步骤是: 第一步:设自变量; 第二步:建立函数解析式; 第三步:确定自变量取值围; 第四步:根据顶点坐标公式或配方法求出最值(在自变量的取值围)。

初二最短路径问题归纳

最短路径问题专题学习

【精品练习】 1.如图所示,正方形ABCD 的面积为12,△ABE 是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,使PD +PE 的和最小,则这个最小值为( ) A .23 B .26 C .3 D .6 2.如图,在边长为2的菱形ABCD 中,∠ABC =60°,若将△ACD 绕点A 旋转,当AC ′、AD ′分别与BC 、CD 交于点E 、F ,则△CEF 的周长的最小值为( ) A .2 B .32 C .32 D .4 3.四边形ABCD 中,∠B =∠D =90°,∠C =70°,在BC 、CD 上分别找一点M 、N ,使△AMN 的周长最小 时,∠AMN +∠ANM 的度数为( ) A .120° B .130° C .110° D .140° 4.如图,在锐角△ABC 中,AB =42,∠BAC =45°,∠BAC 的平分线交BC 于点D ,M 、N 分别是AD 和AB 上的动点,则BM +MN 的最小值是 . 5.如图,Rt △ABC 中,∠C =90°,∠B =30°,AB =6,点E 在AB 边上,点D 在BC 边上(不与点B 、C 重 合),且ED =AE ,则线段AE 的取值范围是 . 6.如图,∠AOB =30°,点M 、N 分别在边OA 、OB 上,且OM =1,ON =3,点P 、Q 分别在边OB 、OA 上,则MP +PQ +QN 的最小值是_________. D E A B C A D E P B C D A M A B M N 第2题 第3题 第4题 第5题

7.如图,三角形△ABC 中,∠OAB =∠AOB =15°,点B 在x 轴的正半轴,坐标为B (36,0). OC 平分∠AOB ,点M 在OC 的延长线上,点N 为边OA 上的点,则MA +MN 的最小值是______. 8.已知A (2,4)、B (4,2).C 在y 轴上,D 在x 轴上,则四边形ABCD 的周长最小值为 , 此时 C 、D 两点的坐标分别为 . 9.已知A (1,1)、B (4,2). (1)P 为x 轴上一动点,求P A +PB 的最小值和此时P 点的坐标; (2)P 为x 轴上一动点,求PB PA 的值最大时P 点的坐标; (3)CD 为x 轴上一条动线段,D 在C 点右边且CD =1,求当AC +CD +DB 的最小值和此时C 点的坐标; 10.点C 为∠AOB 内一点. (1)在OA 求作点D ,OB 上求作点E ,使△CDE 的周长最小,请画出图形; (2)在(1)的条件下,若∠AOB =30°,OC =10,求△CDE 周长的最小值和此时∠DCE 的度数. 第6题 第7题

题型全。初中几何几何体上最短路径问题

确定几何体上的最短路径问题 例1.有一圆柱形油罐,如图所示,要行A点环绕油罐建梯子正好到A点的正上方B点,问梯子最短需要多长?(已知油罐的底面周长是12m,高AB是5m) 例2.如图所示是一个二级台阶,每一级台阶的长、宽、高分别为60㎝、30㎝、10㎝,A和B是这个台阶两个相对的端点。在A点有一只蚂蚁想到B点 去吃可口的食物,请你帮助蚂蚁计算一下,它沿着台阶面从A 点爬到B点的最短路程是多少? 例3.如图所示,长方体的底面相邻边长分别为1㎝和3㎝,高为6㎝.如果用一根细线从点A开始经过4个侧面缠绕一圈到达点B,那么所用细线 最短需要多长? 例4.如图所示,一个无盖的长方形盒子的长、宽、高分别为8㎝㎝,8㎝,12㎝,一只蚂蚁想从盒底的点A沿盒的表面爬到盒顶的点B,你能帮蚂蚁 设计一条最短的线路吗?蚂蚁要爬行的最短距离是多少?

例5.有一个长方体纸盒,如图所示,小明所在数学小组研究有长方体的地面点A到长方体中与点A相对的B点的最短距离, 若长方体的底面长为12,宽为,高 为5,请帮助该小组求出有A点到 B点的最短距离。(21.592≈466,18.442≈340) 变式训练 1.有一只蚂蚁要从一个圆柱形玻璃杯的点A爬到点B处,如图所示,已知杯子高8㎝,点B距杯口3㎝(杯口在上),杯子底面半径为4㎝,蚂蚁沿表面 从A点爬到B点的最短距离是多少?( 取3) 2.如图所示,MN表示一条铁路,A,B分别表示两个城市,它们到铁路所在直线MN的垂直距离分别为AA1=20km,BB1=40km,且A1B1=80km。现要在A1,B1之间设一个中转站P,使两个城市到中转站的距离的和最短。请你设计一个方案确定P点的位置,并求出这个最短距离。 3.如图1-6,圆柱形玻璃杯,高为12㎝,底面周长为18㎝,在杯内离杯底4㎝的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4㎝与 蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短距离为多少?

初中数学[最短路径问题]典型题型及解题技巧

初中数学[最短路径问题]典型题型及解题技巧 最短路径问题中,关键在于,我们善于作定点关于动点所在直线的对称点,或利用平移和展开图来处理。这对于我们解决此类问题有事半功倍的作用。理论依据:“两点之间线段最短”,“垂线段最短”,“点关于线对称”,“线段的平移”“立体图形展开图”。教材中的例题“饮马问题”,“造桥选址问题”“立体展开图”。考的较多的还是“饮马问题”。 知识点:“两点之间线段最短”,“垂线段最短”,“点关于线对称”,“线段的平移”。“饮马问题”,“造桥选址问题”。考的较多的还是“饮马问题”,出题背景变式有角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等。 解题总思路:找点关于线的对称点实现“折”转“直”,近两年出现“三折线”转“直”等变 式问题考查。 一、两点在一条直线异侧 例:已知:如图,A,B在直线L的两侧,在L上求一点P,使得PA+PB 最小。 解:连接AB,线段AB与直线L的交点P ,就是所求。(根据:两点之间线 段最短.) 二、两点在一条直线同侧 例:图所示,要在街道旁修建一个奶站,向居民区A、B提供牛奶,奶站应建在什么地方,才能使从A、B到它的距离之和最短. 解:只有A、C、B在一直线上时,才能使AC+BC最小.作点A关于直线“街 道”的对称点A′,然后连接A′B,交“街道”于点C,则点C就是所求的 点. 三、一点在两相交直线部 例:已知:如图A是锐角∠MON部任意一点,在∠MON的两边OM,ON 上各取一点B,C,组成三角形,使三角形周长最小. 解:分别作点A关于OM,ON的对称点A′,A″;连接A′,A″,分别交OM, ON于点B、点C,则点B、点C即为所求 分析:当AB、BC和AC三条边的长度恰好能够体现在一条直线上时,三角形的周 长最小

专题09 二次函数中动点引起的最短路径及图形存在性问题(解析版)

专题09 二次函数中动点引起的最短路径及图形存在性问题 ·最短路径思路点拨: 1. 两点之间,线段最短; (1)单动点模型 作图方法:作已知点关于动点所在直线的对称点,连接成线段与动点所在直线的交点即为所求点的位置. 如下图所示,P 是x 轴上一动点,求P A +PB 的最小值的作图. OA 、OB 上动点,求作△PMN 周长最小值. 作图方法:作已知点P 关于动点所在直线OA 、OB 的对称点P ’、P ’’,连接P ’P ’’ 与动点所在直线的交点M 、N 即为所求. 2. 垂线段最短; 3. 若A 、B 是平面直角坐标系内两定点,P 是某直线上一动点,当P 、A 、B 在一条直线上时,PA PB 最大,最大值为线段AB 的长(如下图所示); O

利用三角形面积计算方法(铅垂高水平宽法或底乘高法或割补法等)列出方程求解 . ·平行四边形存在性问题 题型一、单动点周长最短及面积存在性问题 (2019·四川凉山州中考)如图,抛物线y =ax 2+bx +c 的图象过点A (﹣1,0)、B (3,0)、C (0,3). (1)求抛物线的解析式; (2)在抛物线的对称轴上是否存在一点P ,使得△P AC 的周长最小,若存在,请求出点P 的坐标及△P AC 的周长;若不存在,请说明理由; (3)在(2)的条件下,在x 轴上方的抛物线上是否存在点M (不与C 点重合),使得S △P AM =S △P AC ?若存在,请求出点M 的坐标;若不存在,请说明理由.

【答案】见解析. 【解析】解:(1)∵抛物线y=ax2+bx+c的图象过点A(﹣1,0)、B(3,0)、C(0,3), ∴ 3 930 a b c c a b c -+= ? ? = ? ?++= ? ,解得: 1 2 3 a b c =- ? ? = ? ?= ? ∴抛物线解析式为y=﹣x2+2x+3. (2)如图,连接PB、BC ∵点P在抛物线对称轴直线x=1上,点A、B关于对称轴对称,P A=PB,∴C△P AC=AC+PC+P A=AC+PC+PB ∴当C、P、B在同一直线上时,PC+PB=CB最小, 由勾股定理得:AC BC =, ∴C△P AC 设直线BC解析式为y=kx+3 把点B代入得:3k+3=0,解得:k=﹣1∴直线BC的解析式为:y=﹣x+3, ∴y P=﹣1+3=2 ∴点P(1,2)使△P AC (3)存在满足条件的点M,使得S△P AM=S△P AC.∵S△P AM=S△P AC ∴点C和点M到直线P A距离相等 ∴CM∥P A, ∵A(﹣1,0),P(1,2), 可得直线AP的解析式为:y=x+1,

(完整版)初中数学[最短路径问题]典型题型及解题技巧

初中数学[最短路径问题]典型题型及解题技巧 最短路径问题中, 关键在于,我们善于作定点关于动点所在直线的对称点,或利用平移和展开图来处理。这对于我们解决此类问题有事半功倍的作用。理论依据:“两点之间线段最短” ,“垂线段最短”,“点关于线对称”,“线段的平移”“立体图形展开图”。教材中的例题“饮马问题”,“造桥选址问题”“立体展开图”。考的较多的还是“饮马问题” 。 知识点:“两点之间线段最短”,“垂线段最短”,“点关于线对称”,“线段的平移”。“饮马问题”,“造桥选址问题”。考的较多的还是“饮马问题” ,出题背景变式有角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等。解题总思路:找点关于线的对称点实现“折”转“直” ,近两年出现“三折线”转“直”等变式问题考查。 一、两点在一条直线异侧例:已知:如图,A,B在直线L的两侧,在L上求一点P,使得PA+PB 最小。 解:连接AB,线段AB 与直线L 的交点P ,就是所求。(根据:两点之间线段最短.) 二、两点在一条直线同侧 例:图所示,要在街道旁修建一个奶站,向居民区A 、B 提供牛奶,奶站应建在什么地方,才能使从A、B 到它的距离之和最短. 解:只有A、C 、B在一直线上时,才能使AC +BC最小.作点A 关于 直线“街道”的对称点A′,然后连接A ′B,交“街道”于点C,则 点C 就是所求的点. 、一点在两相交直线内部 例:已知:如图A 是锐角∠ MON 内部任意一点,在∠ MON 的两边 OM ,ON 上各取一点B,C ,组成三角形,使三角形周长最小.

解:分别作点A 关于OM ,ON 的对称点A ′,A OM ,ON 于点B、点C ,则点B、点C 即为所求分析:当AB 、BC 和AC 三条边的长度恰好能够体现在一条直线上时,三角形的周长 最小 例:如图,A.B 两地在一条河的两岸,现要在河 上建一座桥MN ,桥造在何处才能使从A 到B 的路径AMNB 最短?(假设河的两岸是平行的直线,桥要与河垂直) 解:1.将点B 沿垂直与河岸的方向平移一个河宽到E, 2.连接AE 交河对岸与点M, 则点M 为建桥的位置,MN 为所建的桥证明:由平移的性质,得 BN∥EM 且BN=EM, MN=CD, BD ∥CE, BD=CE, 所以A.B 两地的距:AM+MN+BN=AM+MN+EM=AE+MN, 若桥的位置建在CD 处,连接AC.CD.DB.CE, 则AB 两地的距离为: AC+CD+DB=AC+CD+CE=AC+CE+MN, 在△ACE 中,∵ AC+CE >AE, ∴AC+CE+MN >AE+MN, 即AC+CD+DB >AM+MN+BN 所以桥的位置建在CD 处,AB 两地的路程最短。 例:如图,A、B 是两个蓄水池,都在河流a 的同侧,为了方便灌溉作物,?要在河边建一个抽水站,将河水送到A、B 两地,问该站建在 连接A ′,A ″,分 别交 B

动点问题中的最值、最短路径问题(解析版)

专题01 动点问题中的最值、最短路径问题 动点问题是初中数学阶段的难点,它贯穿于整个初中数学,自数轴起始,至几何图形的存在性、几何图形的长度及面积的最值,函数的综合类题目,无不包含其中. 其中尤以几何图形的长度及面积的最值、最短路径问题的求解最为繁琐且灵活多变,而其中又有一些技巧性很强的数学思想(转化思想),本专题以几个基本的知识点为经,以历年来中考真题为纬,由浅入深探讨此类题目的求解技巧及方法. 一、基础知识点综述 1. 两点之间,线段最短; 2. 垂线段最短; 3. 若A、B是平面直角坐标系内两定点,P是某直线上一动点,当P、A、B在一条直线上时,PA PB 最大,最大值为线段AB的长(如下图所示); (1)单动点模型 ~ 作图方法:作已知点关于动点所在直线的对称点,连接成线段与动点所在直线的交点即为所求点的位置. 如下图所示,P是x轴上一动点,求PA+PB的最小值的作图.

P是∠AOB内一点,M、N分别是边OA、OB上动点,求作△PMN周长最小值. 作图方法:作已知点P关于动点所在直线OA、OB的对称点P’、P’’,连接P’P’’与动点所在直线的交点M、N即为所求. O 5. 二次函数的最大(小)值 ()2 y a x h k =-+,当a>0时,y有最小值k;当a<0时,y有最大值k. 二、主要思想方法 利用勾股定理、三角函数、相似性质等转化为以上基本图形解答. (详见精品例题解析) ~ 三、精品例题解析 例1. (2019·凉山州)如图,正方形ABCD中,AB=12,AE=3,点P在BC上运动(不与B、C重合),过点P作PQ⊥EP,交CD于点Q,则CQ的最大值为

人教版初二数学上册《最短路径问题》教案

13.4 课题学习 最短路径问题 1.能利用轴对称解决简单的最短路径问题,体会图形的变化在解决最值问题中的作用,感悟转化思想.(重点) 2.利用轴对称将最短路径问题转化为“两点之间,线段最短”问题.(难点) 一、情境导入 相传,古希腊有一位久负盛名的学者,名叫海伦.有一天,一位将军专程拜访海伦,求教一个百思不得其解的问题:从图中的A 地出发,到一条笔直的河边l 饮马,然后到B 地.到河边什么地方饮马可使他所走的路线全程最短? 二、合作探究 探究点:最短路径问题 【类型一】 两点的所有连线中,线段 最短 如图所示,在河a 两岸有A 、B 两个村庄,现在要在河上修建一座大桥,为方便交通,要使桥到这两村庄的距离之和最短,应在河上哪一点修建才能满足要求? (画出图形,做出说明) 解析:利用两点之间线段最短得出答案. 解:如图所示,连接AB 交直线a 于点P ,此时桥到这两村庄的距离之和最短.理由: 两点之间线段最短. 方法总结:求直线异侧的两点与直线上一点所连线段的和最小的问题,只要连接这 两点,与直线的交点即为所求. 【类型二】 运用轴对称解决距离最短 问题 在图中直线l 上找到一点M ,使它 到A ,B 两点的距离和最小. 解析:先确定其中一个点关于直线l 的对称点,然后连接对称点和另一个点,与直 线l 的交点M 即为所求的点. 解:如图所示:(1)作点B 关于直线l 的对称点B ′;(2)连接AB ′交直线l 于点M ;(3)点M 即为所求的点. 方法总结:利用轴对称解决最值问题应注意题目要求,根据轴对称的性质、利用三角形的三边关系求解. 【类型三】 最短路径选址问题 如图,小河边有两个村庄A ,B , 要在河边建一自来水厂向A 村与B 村供水. (1)若要使厂址到A ,B 两村的距离相等,则应选择在哪建厂(要求:保留作图痕迹,写出必要的文字说明)? (2)若要使厂址到A ,B 两村的水管最短,应建在什么地方? 解析:(1)欲求到A 、B 两村的距离相等,即作出AB 的垂直平分线与EF 的交点即可,

二次函数压轴题专题一 最短路径问题 (1)

二次函数压轴题专题一 最短路径问题——和最小 知识梳理 最短路径就是无论在立体图形还是平面图形中,两点间的最短距离,常涉及以下 两个方面: 1、两点之间,线段最短; 2、垂线段最短。 常用思考的方式: 1、把立体转化为平面; 2、通过轴对称寻找对称点。 解题总思路:找点关于线的对称点实现“折”转“直”,近两年出现“三折线”转“直”等 变式问题考查。 例题导航 例1:如图A是锐角∠MON内部任意一点,在∠MON的两边OM,ON上各取一点B,C,组成三 角形,使三角形周长最小. 例:如图,A.B两地在一条河的两岸,现要在河上建一座桥MN,桥造在何处才能使从A到B 的路径AMNB最短?(假设河的两岸是平行的直线,桥要与河垂直) 解:1.将点B沿垂直与河岸的方向平移一个河宽到E, 2.连接AE交河对岸与点M, 则点M为建桥的位置,MN为所建的桥。 证明:由平移的性质,得 BN∥EM 且BN=EM, MN=CD, BD∥CE, BD=CE, 所以A.B两地的距:AM+MN+BN=AM+MN+EM=AE+MN, 若桥的位置建在CD处,连接AC.CD.DB.CE, 则AB两地的距离为: AC+CD+DB=AC+CD+CE=AC+CE+MN, 在△ACE中,∵AC+CE>AE, ∴AC+CE+MN>AE+MN,即AC+CD+DB >AM+MN+BN 所以桥的位置建在CD处,AB两地的路程最短。 例:如图,A、B是两个蓄水池,都在河流a的同侧,为了方便灌溉作物,?要 A B a ··

在河边建一个抽水站,将河水送到A 、B 两地,问该站建在河边什么地方,?可使所修的渠道最短,试在图中确定该点。 作法:作点B 关于直线 a 的对称点点C,连接AC 交直线a 于点D ,则点D 为建抽水站的位置。 证明:在直线 a 上另外任取一点E ,连接AE.CE.BE.BD, ∵点B.C 关于直线 a 对称,点D.E 在直线 a 上,∴DB=DC,EB=EC, ∴AD+DB=AD+DC=AC, AE+EB=AE+EC 在△ACE 中,AE+EC >AC, 即 AE+EC >AD+DB 所以抽水站应建在河边的点D 处, 常见问题归纳 “和最小”问题常见的问法是,在一条直线上面找一点,使得这个点与两个定点距离的和最小(将军饮马问题).如图所示,在直线l 上找一点P 使得PA +PB 最小.当点P 为直线AB ′与直线l 的交点时,PA +PB 最小. 【方法归纳】 ①如图所示,在直线l 上找一点B 使得线段AB 最小.过点A 作AB ⊥l ,垂足为B ,则线段AB 即为所求. ②如图所示,在直线l 上找一点P 使得PA +PB 最小.过点B 作关于直线l 的对称点B ′,BB ′与直线l 交于点P ,此时PA +PB 最小,则点P 即为所求. ③如图所示,在∠AOB 的边AO ,BO 上分别找一点C ,D 使得PC +CD +PD 最小.过点P 分别作关于AO ,BO 的对称点E ,F ,连接EF ,并与AO ,BO 分别交于点C ,D ,此时PC +CD +PD 最小,则点C ,D 即为所求. l B A l l A l l B A l

人教版八年级数学讲义最短路径问题(含解析)(2020年最新)

第6讲最短路径问题 知识定位 讲解用时:5分钟 A、适用范围:人教版初二,基础较好; B、知识点概述:本讲义主要用于人教版初二新课,本节课我们要学习最短路径 问题,现实生活中经常涉及到选择最短路径问题,最值问题不仅使学生难以理解,也是中考中的一个高频考点。本节将利用轴对称知识探究数学史上著名的“将军饮马问题”。 知识梳理 讲解用时:20分钟 两点之间线段最短 C D A B E A地到B地有3条路线A-C-D-B,A-B,A-E-B,那么选哪条路线最近呢? 选A-B,因为两点之间,直线最短 垂线段最短 如图,点P是直线L外一点,点P与直线上各 点的所有连线中,哪条最短? PC最短,因为垂线段最短

两点在一条直线异侧 A P L B 如图,已知A点、B点在直线L异侧,在L上选一点P,使PA+PB最短. 连接AB交直线L于点P,则PA+PB 最短. 依据:两点之间:线段最短 两点在一条直线同侧 相传,古希腊亚历山大里亚城里有一位 久负盛名的学者,名叫海伦.有一天,一位将军专程拜访海伦,求教一个百思不 得其解的问题: 从图中的A地出发,到一条笔直的河边 l饮马,然后到B地.到河边什么地方饮马可使他所走的路线全程最短? 作法: 1、作B点关于直线L的对称点B’; 2、连接AB’交直线L于点C; 3、点C即为所求. 证明:在直线L上任意选一点C’(点C’不与C重合),连接AC’、BC’、B’C’. 在△AB’C’中, AC’+B’C’>AB’ ∴AC’+BC’>AC+BC 所以AC+BC最短.

课堂精讲精练 【例题1】 已知点A,点B都在直线l的上方,试用尺规作图在直线l上求作一点P,使得PA+PB的值最小,则下列作法正确的是() A.B. C.D. 【答案】D 【解析】根据作图的方法即可得到结论. 解:作B关于直线l的对称点,连接这个对称点和A交直线l于P,则PA+PB的值最小, ∴D的作法正确, 故选:D. 讲解用时:3分钟 解题思路:本题考查了轴对称﹣最短距离问题,熟练掌握轴对称的性质是解题的关键. 教学建议:学会处理两点在直线同侧的最短距离问题. 难度: 3 适应场景:当堂例题例题来源:无年份:2018 【练习1.1】 如图,直线L是一条河,P,Q是两个村庄.欲在L上的某处修建一个水泵站,向P,Q两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则所需

初二数学最短路径问题知识归纳+练习

初二数学最短路径问题 【问题概述】最短路径问题是图论研究中的一个经典算法问题,旨在寻找图(由结点和路径组成的)中两结点之间的最短路径.算法具体的形式包括: -①确定起点的最短路径问题即已知起始结点,求最短路径的问题.-②确定终点的最短路径问题与确定起点的问题相反,该问题是已知终结结点,求最短路径的问题. -③确定起点终点的最短路径问题即已知起点和终点,求两结点之间的最短路径. ④全局最短路径问题-求图中所有的最短路径. 【问题原型】.“将军饮马”,“造桥选址”,“费马点”【涉及知识】“两点之间线段最短”,“垂线段最短”,“三角形三边关系”,“轴对称”,“平移”.【出题背景】角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等. 【解题思路】找对称点实现“折”转“直”,近两年出现“三折线”转“直”等变式问题考查.】【十二个基本问题

】1作法图形【问题原理 A A 两点之间线段最短.P l.交点即为P连AB,与l l PA+PB 最小值为AB.B B,使上求一点P在直线l 值最小.PA+PB 【问题2】“将军饮马”作法图形原理 A A B'B关于作B l 的对称点两点之间线段最短.B

l l PA+PB 最小值为 A B P.'.连A B ',与l 交点即为 P,使P在直线l 上求一点B' PA+PB 值最小. 3】作法图形原理【问题 P'l 1l 1 分别作点P 关于两直线的两点之间线段最短.M P PM +MN +PN 的最小值为对称点P'和P',连P'P',P l l l 、上2.M,P'''的长.N与两直线交点即为线段P 分别求点在直线l212N M 、N,使△PMN的周长P'' 最小. 4】作法【问题图形原理 l 1l1Q' Q关于直线分别作点Q 、P Q两点之间线段最短.MP l 、l P'Q'和的对称点21P周长的最小四边形PQMN l2',与两直线交点即Q连'P值为线段P'P''的长.l 2、l l 上分别求点在直线.,N为M21N ,使四边形N 、M PQMN P' 的周长最小. 【问题5】“造桥选址”作法图形原理范文

最短路径模型

最短路径模型——旋转最值类 【典例1】如图,在矩形ABCD中,AB=4,AD=6,E是AB边的中点,F是线段BC边上的动点,将△EBF沿EF所在直线折叠得到△EB′F,连结B′D,则B′D的最小值是(). A.B.6 C.D.4 【典例2】如图,E、F是正方形ABCD的边AD上两个动点,满足AE=DF,连接CF 交BD于点G,连结BE交AG于点H,若正方形的边长是2,则线段DH长度的最小值 是 . H G A

【针对训练 】 1. 如图,在△ABC 中,∠ACB =90°,AC =2,BC =1,点A ,C 分别在x 轴,y 轴上,当点A 在x 轴正半轴上运动时,点C 随之在y 轴上运动,在运动过程中,点B 到原点O 的最大距离为( ). A B C .1+ D .3 2.如图,在矩形ABCD 中,AB =4,BC =6,E 是矩形内部的一个动点,且AE ⊥BE ,则线段CE 的最小值为( ). A .32 B . C . D .4 3. 如图,在△ABC 中,AB =10,AC =8,BC =6,以边AB 的中点O 为圆心,作半圆与AC 相切,点P 、Q 分别是边BC 和半圆上的运点,连接PQ ,则PQ 长的最大值与最小值的和是( ). A .6 B .1 C .9 D .322 4.如图,AC =3,BC =5,且∠BAC =90°,D 为AC 上一动点,以AD 为直径作圆,连接BD 交圆于E 点,连CE ,则CE 的最小值为( ). A .213- B .213+ C .5 D .9 16 5.如图,已知正方形ABCD 的边长为2,E 是BC 边上的动点,BF ⊥AE 交CD 于点F ,垂足为G ,连结CG ,则CG 的最小值为( ). A 1 B 1 C 1 D 1 6.如图,△ABC 、△EFG 是边长为2的等边三角形,点D 是边BC 、EF 的中点,直线AG 、FG 相交于点M ,当△EFG 绕点D 旋转时,线段BM 长的最小值是 A .2 B 1 C D 1

相关主题
文本预览
相关文档 最新文档