当前位置:文档之家› 2021-2022年高考题型专题冲刺精讲(数学)专题五:解析几何(学生版)

2021-2022年高考题型专题冲刺精讲(数学)专题五:解析几何(学生版)

2021-2022年高考题型专题冲刺精讲(数学)专题五:解析几何(学生版)
2021-2022年高考题型专题冲刺精讲(数学)专题五:解析几何(学生版)

2021年高考题型专题冲刺精讲(数学)专题五:解析几何(学生版)

【命题特点】

近三年高考解析几何每年出一道满分为12分的解析几何大题.究其原因,一是解析几何是中学数学的一个重要组成部分,二是同学们在未来学习、发展中的需要所致.细细品读这三年的解析几何大题,感觉如山间的涓涓清泉滋润心田,甘甜可口,不愿离去.为了找到清泉流向远方的目标,我从其志、探其源、求其真.经过探究,发现这几年的解析几何大题的命题特点可概括如下:依纲靠本,查基考能;朴实取材,独具匠心;不断创新,关注交汇;交切中点,核是线圆;长度面积,最值定值;平行垂直,向量驾驭;求轨探迹,运动探究;数形结合,各领风骚;灵气十足,回味无穷;文理有别,意境深远.

复习建议

1.加强直线和圆锥曲线的基础知识,初步掌握了解决直线与圆锥曲线有关问题的基本技能和基本方法。

2.由于直线与圆锥曲线是高考考查的重点内容,选择、填空题灵活多变,思维能力要求较高,解答题背景新颖、综合性强,代数推理能力要求高,因此有必要对直线与圆锥曲线的重点内容、高考的热点问题作深入的研究。

3.在第一轮复习的基础上,再通过纵向深入,横向联系,进一步掌握解决直线与圆锥曲线问题的思想和方法,提高我们分析问题和解决问题的能力。

4.在注重提高计算能力的同时,要加强心理辅导,帮助学生克服惧怕计算的心态。

【试题常见设计形式】

近四年新教材高考对解析几何内容的考查主要集中在如下几个类型:①求曲线方程(类型确定、类型未定);②直线与圆锥曲线的交点问题(含切线问题);③与曲线有关的最(极)值问题;④与曲线有关的几何证明(对称性或求对称曲线、平行、垂直);⑤探求曲线方程中几何量及参数间的数量特征;

解析几何虽然内容庞杂,但基本问题却只有几个.如①求直线与圆锥曲线的方程;②求动点的轨迹或轨迹方程;③求特定对象的值;④求变量的取值范围或最值;⑤不等关系的判定与证明;⑥圆锥曲线有关性质的探求与证明等.对各类问题,学生应从理论上掌握几种基本方法,使之在实际应用中有法可依,克服解题的盲目性.如“求变量的取值范围”,可指导学生掌握三种方法:几何法(数形结合),函数法和不等式法. 从宏观上把握解决直线与圆锥曲线问题的解题要点,能帮助学生易于找到解题切入点,优化解题过程,常用的解题策略有:①建立适当的平面直角坐标系;②设而不求,变式消元;③利用韦达定理沟通坐标与参数的关系;④发掘平面几何性质,简化代数运算;⑤用函数与方程思想沟通等与不等的关系;⑥注意对特殊情形的检验和补充;⑦充分利用向量的工具作用;⑧注意运算的可行性分析,等等。运算是解析几何的瓶颈,它严重制约考生得分的高低,甚至形成心理障碍.教学中要指导学生注重算理、算法,细化运算过程,转化相关条件,回避非必求量,注意整体代换等运算技能,从能力的角度提高对运算的认识,反思运算失误的经验教训,不断提高运算水平.

【突破方法技巧】

1.突出解析几何的基本思想:解析几何的实质是用代数方法研究几何问题,通过曲线的方程研究曲线的性质,因此要掌握求曲线方程的思路和方法,它是解析几何的核心之一.求曲线的方程的常用方法有两类:

一类是曲线形状明确,方程形式已知(如直线、圆、圆锥曲线的标准方程等),常用待定系数法求方程.

另一类是曲线形状不明确或不便于用标准形式表示,一般采用以下方法:

(1)直译法:将原题中由文字语言明确给出动点所满足的等量关系直接翻译成由动点坐标表示的等量关系式.

(2)代入法:所求动点与已知动点有着相互关系,可用所求动点坐标(x,y)表示出已知动点的坐标,然后代入已知的曲线方程.

(3)参数法:通过一个(或多个)中间变量的引入,使所求点的坐标之间的关系更容易确立,消去参数得坐标的直接关系便是普通方程.

(4)交轨法:动点是两条动曲线的交点构成的,由x,y满足的两个动曲线方程中消去参数,可得所求方程.故交轨法也属参数法.

2.熟练掌握直线、圆及圆锥曲线的基本知识

(1)直线和圆

①直线的倾斜角及其斜率确定了直线的方向.需要注意的是:(ⅰ)倾斜角α的范围是:0≤α<π;(ⅱ)所有的直线必有倾斜角,但未必有斜率.

②直线方程的四种特殊形式,每一种形式都有各自成立的条件,应在不同的题设条件下灵活使用.如截距式不能表示平行于x轴,y轴以及过原点的直线,在求直线方程时尤其是要注意斜率不存在的情况.

③讨论点与圆、直线与圆、圆与圆的位置关系时,一般可从代数特征(方程组解的个数)或几何特征(点或直线到圆心的距离与两圆的圆心距与半径的关系)去考虑,其中几何特征较为简捷、实用.

(2)椭圆

①完整地理解椭圆的定义并重视定义在解题中的应用.椭圆是平面内到两定点F1,F2的距离之和等于常数2a(2a>|F1F2|)的动点的轨迹.还有另一种定义(圆锥曲线的统一定义):平面内到定点的距离和到定直线的距离之比为常数e(0<e<1)的动点轨迹为椭圆,(顺便指出:e>1,e=1时的轨迹分别为双曲

线和抛物线).

②椭圆的标准方程有两种形式,决定于焦点所在的坐标轴.焦点

是F(±c,0)时,标准方程为=1(a>b>0);焦点是F(0,±c)时,标准方程为=1(a>b>0).这里隐含,此关系体现在△OFB(B为短轴端点)中.

③深刻理解a,b,c,e,的本质含义及相互关系,实际上就掌握了几何性质.

(3)双曲线

①类比椭圆,双曲线也有两种定义,两种标准方程形式.同样要重视定义在解题中的运用,要深刻理解几何量a,b,c,e,的本质含义及其相互间的关系.

②双曲线的渐近线是区别于椭圆的一道“风景线”,其实它是矩形的两条对角线所在的直线(参照课本).

③双曲线=±1(a>0,b>0)隐含了一个附加公式此关系体现在△OAB(A,B分别为实轴,虚轴的一个端点)中;特别地,当a=b时的双曲线称为等轴(边)双曲线,其离心率为 .

(4)抛物线

①抛物线的定义:平面内到一个定点F和一条定直线l的距离相等的点的轨迹(F l).定义指明了抛物线上的点到焦点与准线的距离相等,并在解题中有突出的运用.

②抛物线方程(标准)有四种形式:和(p>0),选择时必须判定开口与对称轴.

③掌握几何性质,注意分清2p , p ,的几何意义.

3.掌握直线与圆锥曲线的位置关系的研究方法

(1)判断直线l与圆锥曲线C的位置关系,可将直线l的方程代入曲线C的方程,消去y(也可以消去x)得到一个关于变量x的一元方程ax2+bx+c=0,然后利用“Δ”法.

(2)有关弦长问题,应用弦长公式及韦达定理,设而不求;有关焦点弦长问题,要重视圆锥曲线的定义的运用,以简化运算.

(3)有关弦的中点问题,除了利用韦达定理外,要注意灵活运用“点差法”,设而不求,简化运算.

(4)有关垂直关系问题,应注意运用斜率关系(或向量方法)及韦达定理,设而不求,整体处理.

(5)有关圆锥曲线关于直线l的对称问题中,若A,A′是对称点,则应抓住AA′的中点在l上及kAA′·kl=-1这两个关键条件解决问题.

(6)有关直线与圆锥曲线的位置关系中的存在性问题,一般采用“假设反证法”或“假设验证法”来解决.

【典型例题分析】

考点一、曲线(轨迹)方程的求法

常见的求轨迹方程的方法:

(1)单动点的轨迹问题——直接法(五步曲)+ 待定系数法(定义法);

(2)双动点的轨迹问题——代入法;

(3)多动点的轨迹问题——参数法 + 交轨法。

【例1】xx宁夏、设分别是椭圆的左、右焦点,过斜率为1的直线与相交于两点,且成等差数列。(1)求的离心率;(2)设点满足,求的方程

【例2】xx北京、在平面直角坐标系xOy中,点B与点A(-1,1)关于原点O对称,P是动点,且直线AP 与BP的斜率之积等于.(Ⅰ)求动点P的轨迹方程;(Ⅱ)设直线AP和BP分别与直线x=3交于点M,N,问:

是否存在点P 使得△PAB 与△PMN 的面积相等?若存在,求出点P 的坐标;若不存在,说明理由。

【例3】xx 辽宁、设椭圆C :的左焦点为F ,过点F 的直线与椭圆C 相交于A ,B 两点,直线l 的倾斜角为60o ,. (I )求椭圆C 的离心率;(II )如果|AB|=,求椭圆C 的方程.

【例4】xx 广东、一条双曲线的左、右顶点分别为A 1,A 2,点,是双曲线上不同的两个动点。 (1)求直线A 1P 与A 2Q 交点的轨迹E 的方程式;(2)若过点H(0, h)(h>1)的两条直线l 1和l 2与轨迹E 都只有一个交点,且 ,求h 的值。

考点二、圆锥曲线的几何性质

圆锥曲线中的基本元素:长短轴,焦距,渐近线,离心率等,在自身多处综合就会演变成中档题,要求熟练掌握其关系,灵活运用图形帮助分析。圆锥曲线第一定义中的限制条件、圆锥曲线第二定义的统一性,都是考试的重点内容,要能够熟练运用;常用的解题技巧要熟记于心.

【例5】如图(21)图,M (-2,0)和N (2,0)是平面上的两点,动点P 满足:

(Ⅰ)求点P 的轨迹方程;(Ⅱ)若2·1cos PM PN MPN

-∠=,求点P 的坐标.

【例6】xx 江西设椭圆:,抛物线:. (1) 若经过的两个焦点,求的离心率;(2)

设,又为与不在轴上的两个交点,若的垂心为,且的重心在上,求椭圆和抛

物线的方程.

考点三、 有关圆锥曲线的定义的问题

利用圆锥曲线的第一、第二定义求解.

【例7】如图,F 为双曲线C :的右焦点 P 为双曲线C 右支上一点,且位于轴上方,M 为左准线上一点,为坐标原点 已知四边形为平行四边形,

(Ⅰ)写出双曲线C 的离心率与的关系式;(Ⅱ)当时,经过焦点F 且品行于OP

的直线交双曲线于A 、B 点,若,求此时的双曲线方程

【例8】设分别为椭圆的左、右顶点,椭圆长半轴的长等于焦距,且为它的右准线 (Ⅰ)求椭圆的方程;(Ⅱ)设为右准线上不同于点(4,0)的任意一点, 若直线分别与椭圆相交于异于的点,证明:点在以为直径的圆内

考点四、 直线与圆锥曲线位置关系问题 (1)求解直线与圆锥曲线的位置关系的基本方法是解方程组,

进而转化为一元二次方程后利用判别式,应特别注意数形结合的

办法。 (2)注意韦达定理的应用。 弦长公式:斜率为k 的直线被

圆锥曲线截得弦AB ,若A 、B 两点的坐标分别是A(x 1,y 1),B(x 2,y 2)则

]4))[(1(212212x x x x k -++=

A B (4,0)M N

P o y x N x Q M O y

(3)注意斜率不存在的情况的讨论和焦半径公式的使用。

(4)有关中点弦问题 <1>已知直线与圆锥曲线方程,求弦的中点及与中点有关的问题,常用韦达定理。

<2>有关弦的中点轨迹,中点弦所在直线方程,中点坐标问题,有时采用“差分法”可简化运算。

【例9】已知双曲线

22

22

:1(0,0)

x y

C a b

a b

-->>的两个焦点为:(2,0),:(2,0),7)

F F P

-点在曲线C

上. (Ⅰ)求双曲线C的方程;(Ⅱ)记O为坐标原点,过点Q (0,2)的直线l与双曲线C相交于不同的两点E、F,若△OEF的面积为求直线l的方程

【例10】设点在直线上,过点作双曲线的两条切线,切点为,

定点(,0).(1)过点作直线的垂线,垂足为,试求△的重

心所在的曲线方程;

(2)求证:三点共线.

考点五、圆锥曲线综合应用

平面解析几何与平面向量都具有数与形结合的特征,所以

这两者多有结合,在它们的知识点交汇处命题,也是高考命题

的一大亮点.直线与圆锥曲线的位置关系问题是常考常新、经久

不衰的一个考查重点,另外,圆锥曲线中参数的取值范围问题、

最值问题、定值问题、对称问题等综合性问题也是高考的常考

题型.解析几何题一般来说计算量较大且有一定的技巧性,需要“精打细算”,近几年解析几何问题的难度有所降低,但仍是一个综合性较强的问题,对考生的意志品质和数学机智都是一种考验,是高考试题中区分度较大的一个题目,有可能作为今年高考的一个压轴题出现.

圆锥曲线的有关最值问题:圆锥曲线中的有关最值问题,常用代数法和几何法解决。(1)若命题的条件和结论具有明显的几何意义,一般可用图形性质来解决。利用圆锥曲线的定义,把到焦点的距离转化为到准线的距离;(2)若命题的条件和结论体现明确的函数关系式,则可建立目标函数(通常利用二次函数,三角函数,均值不等式)求最值。

圆锥曲线的有关范围问题:设法得到不等式,通过解不等式求出范围,即:“求范围,找不等式”。或者表示为另一个变量的函数,利用求函数的值域求出范围;

圆锥曲线中的存在性问题:存在性问题,其一般解法是先假设命题存在,用待定系数法设出所求的曲线方程或点的坐标,再根据合理的推理,若能推出题设中的系数,则存在性成立,否则,不成立.

【例11】xx大纲全国I、已知抛物线的焦点为F,过点的直线与相交于、两点,点A关于轴的对称点为D (Ⅰ)证明:点F在直线BD上;(Ⅱ)设,求的内切圆M的方程 .

.

【例12】xx山东、如图,已知椭圆的离心率为,以该椭圆上的点和椭圆的左、右焦点为顶点的三角形的周长为.一等轴双曲线的顶点是该椭圆的焦点,设为该双曲线上异于顶点的任一点,直线和与椭圆的交点分别为和.

(Ⅰ)求椭圆和双曲线的标准方程;(Ⅱ)设直线、的斜率分别为、,

证明;(Ⅲ)是否存在常数,使得恒成立?若存在,求的值;若不存

在,请说明理由.

【例13】xx湖南、为了考察冰川的融化状况,一支科考队在某冰川

上相距8km 的A ,B 两点各建一个考察基地.视冰川面为平面形,以过A ,B 两点的直线为x 轴,线段AB 的垂直平分线为y 轴建立平面直角坐标系(图6).在直线的右侧,考察范围为到点B 的距离不超过km 的区域;在直线的左侧,考察范围为到A ,B 两点的距离之和不超过km 的区域.(Ⅰ)求考察区域边界曲线的方程;

(Ⅱ)如图6所示,设线段,是冰川的部分边界线(不考虑其他边界),当冰川融化时,边界线沿与其垂直的方向朝考察区域平行移动,第一年移动0.2km ,以后每年移动的距离为前一年的2倍,求冰川边界线移动到考察区域所需的最短时间.

【例14】xx 福建、已知中心在坐标原点O 的椭圆C 经过点A (2,3),且点F (2,0)为其右焦点。(1)求椭圆C 的方程;(2)是否存在平行于OA 的直线,使得直线与椭圆C 有公共点,且直线OA 与的距离等于4?若存在,求出直线的方程;若不存在,请说明理由。

【命题意图】本小题主要考查直线、椭圆等基础知识,考查运算求解能力、推理论证能力,考查函数与方程思想、数形结合思想、化归与转化思想。 【例15】xx 浙江、已知m >1,直线,

椭圆,分别为椭圆的左、右焦点.

(Ⅰ)当直线过右焦点时,求直线的方程;

(Ⅱ)设直线与椭圆交于两点,, 的重心分别为.若原点在以线

段为直径的圆内,求实数的取值范围.

【突破训练】

1、如图所示,已知圆M A y x C ),0,1(,8)1(:2

2定点=++为圆上一动点,

点P 在AM 上,点N 在CM 上,且满足N AM NP AP AM 点,0,2=?=的轨迹为曲线E.(I )求曲线E 的方程;(II )过点A 且倾斜角是45°

的直线l 交曲线E 于两点H 、Q ,求|HQ|.

2、已知两点,,动点P 在y 轴上的射影为Q ,,(1)求动点P 的轨迹E 的. .

. .

x y 已 融 化 区 域 冰 川 图6

. x =2

A y x O

B G F

F 1 图4 Q

y

方程; (2)设直线m 过点A ,斜率为k ,当时,曲线E 的上支上有且仅有一点C 到直线m 的距离为,试求k 的值及此时点C 的坐标.

3、在直角坐标系中,已知一个圆心在坐标原点,半径为2的圆,从这个圆上任意一点P 向y 轴作垂线段PP ′,P ′为垂足.(1)求线段PP ′中点M 的轨迹C 的方程;(2)过点Q(-2,0)作直线l 与曲线C 交于A 、B 两点,设N 是过点,且以 为方向向量的直线上一动点,满足(O 为坐标原点),问是否存在这样的直线l ,使得四边形OANB 为矩形?若存在,求出直线l 的方程;若不存在,说明文由.

4、设,椭圆方程为,抛物线方程为.如图4所示,过点作轴的平行线,与抛物线在第一象限的交点为,已知抛物线在点的切线经过椭圆的右焦点.(1)求满足条件的椭圆方程和抛物线方程;(2)设分别是

椭圆长轴的左、右端点,试探究在抛物线上是否存在点,使得为直角三角形?

若存在,请指出共有几个这样的点?并说明理由(不必具体求出这些点的坐标).

5、设椭圆其相应于焦点的准线方程为.(Ⅰ)求椭圆的方程; (Ⅱ)已知过点倾斜角为的直线交椭圆于两点,求证: ;

(Ⅲ)过点作两条互相垂直的直线分别交椭圆于和,求 的最小值 6、已知抛物线,点M (m ,0)在x 轴的正半轴上,过M 的直线l 与C

相交于A 、B 两点,O 为坐标原点.(Ⅰ)若m =1,l 的斜率为1,

求以AB 为直径的圆的方程;(Ⅱ)若存在直线l 使得成等比数列,

求实数m 的取值范围.

7、xx 天津、已知椭圆(>>0)的离心率,连接椭圆的四个顶点得

到的菱形的面积为4。(Ⅰ)求椭圆的方程:(Ⅱ)设直线与椭圆相交

于不同的两点。已知点的坐标为(-,0),点(0,)在线段的垂直平分线上,且=4。求的值。

8、已知椭圆两焦点分别为F 1、F 2,P 是椭圆在第一象限弧上一点,并满足,过P 作倾斜角互补的两条直线PA 、PB 分别交椭圆于A 、B 两点. (1)求P 点坐标;(2)求证直线AB 的斜率为定值;(3)求△PAB 面积的最大值。

9、湖北、已知一条曲线C 在y 轴右边,C 上没一点到点F(1,0)的距离减去它到y 轴距离的差是1.(Ⅰ)求曲线C 的方程;(Ⅱ)是否存在正数m ,对于过点M(m,0)且与曲线C 有连个交点A,B 的任一直线,都有? 若存在,求出m 的取值范围;若不存在,请说明理由.

10、四川省文已知定点A (-1,0),F (2,0),定直线l :x =,不在x 轴上的动点P 与点F 的距离是它到直线l 的距离的2倍.设点P 的轨迹为E ,过点F 的直线交E 于B 、C 两点,直线AB 、AC 分别交l 于点M 、N (Ⅰ)求E 的方程;(Ⅱ)试判断以线段MN 为直径的圆是否过点F ,并说明理由.

11、北京文、已知椭圆C 的左、右焦点坐标分别是,,离心率是,直线y=t 椭圆C 交与不同的两点M ,N ,以线段MN 为直径作圆P,圆心为P 。(Ⅰ)求椭圆C 的方程;(Ⅱ)若圆P 与x 轴相切,求圆心P 的坐标;(Ⅲ)设Q (x ,y )是圆P 上的动点,当t 变化时,求y 的最大值

12、已知的面积为S ,且,建立如图所示坐标系,

(1)若,,求直线FQ的方程;

(2)设,,若以O为中心,F为焦点的椭圆过点Q,

求当取得最小值时的椭圆方程.

13.如图,,是双曲线C的两焦点,直线是双曲线C的右准线,是双曲线C的两个顶点,点P是双曲线C 右支上异于的一动点,直线、交双曲线C的右准线分别于M,N两点,

(1)求双曲线C的方程;

(2)求证:是定值. Array

14、已知点,点P在y轴上,点Q在x

(1)当点P在y轴上移动时,求点M的轨迹C;(

轨迹C交于A、B两点,若在x

15.xx重庆、已知以原点为中心,为右焦点

的双曲线的离心率.

(Ⅰ)求双曲线的标准方程及其渐近线方程;

(Ⅱ)如题(20)图,已知过点的

直线与过点(其中)的直线的交点

(完整word版)高中数学解析几何大题精选

解析几何大量精选 1.在直角坐标系xOy 中,点M 到点()1,0F ,) 2 ,0F 的距离之和是4,点M 的轨迹 是C 与x 轴的负半轴交于点A ,不过点A 的直线:l y kx b =+与轨迹C 交于不同的两点P 和Q . ⑴求轨迹C 的方程; ⑴当0AP AQ ?=u u u r u u u r 时,求k 与b 的关系,并证明直线l 过定点. 【解析】 ⑴ 2 214 x y +=. ⑴将y kx b =+代入曲线C 的方程, 整理得2 2 2 (14)8440k x kbx b +++-=, 因为直线l 与曲线C 交于不同的两点P 和Q , 所以222222644(14)(44)16(41)0k b k b k b ?=-+-=-+> ① 设()11,P x y ,()22,Q x y ,则122 814kb x x k +=-+,21224414b x x k -= + ② 且2222 121212122 4()()()14b k y y kx b kx b k x x kb x x b k -?=++=+++=+, 显然,曲线C 与x 轴的负半轴交于点()2,0A -, 所以()112,AP x y =+u u u r ,()222,AQ x y =+u u u r . 由0AP AQ ?=u u u r u u u r ,得1212(2)(2)0x x y y +++=. 将②、③代入上式,整理得22121650k kb b -+=. 所以(2)(65)0k b k b -?-=,即2b k =或6 5 b k =.经检验,都符合条件① 当2b k =时,直线l 的方程为2y kx k =+.显然,此时直线l 经过定点()2,0-点. 即直线l 经过点A ,与题意不符. 当65b k =时,直线l 的方程为6655y kx k k x ? ?=+=+ ?? ?. 显然,此时直线l 经过定点6,05?? - ??? 点,满足题意. 综上,k 与b 的关系是65b k =,且直线l 经过定点6,05?? - ??? 2. 已知椭圆2222:1x y C a b +=(0)a b >>的离心率为1 2 ,以原点为圆心,椭圆的短半轴为半径的 圆与直线0x y -=相切. ⑴ 求椭圆C 的方程; ⑴ 设(4,0)P ,A ,B 是椭圆C 上关于x 轴对称的任意两个不同的点,连结PB 交椭圆C 于另一点E ,证明直线AE 与x 轴相交于定点Q ; ⑴ 在⑴的条件下,过点Q 的直线与椭圆C 交于M ,N 两点,求OM ON ?u u u u r u u u r 的取值范围. 【解析】 ⑴22 143 x y +=. ⑴ 由题意知直线PB 的斜率存在,设直线PB 的方程为(4)y k x =-.

高三数学解析几何专题

专题四 解析几何专题 【命题趋向】解析几何是高中数学的一个重要内容,其核心内容是直线和圆以及圆锥曲线.由于平面向量可以用坐标表示,因此以坐标为桥梁,可以使向量的有关运算与解析几何中的坐标运算产生联系,平面向量的引入为高考中解析几何试题的命制开拓了新的思路,为实现在知识网络交汇处设计试题提供了良好的素材.解析几何问题着重考查解析几何的基本思想,利用代数的方法研究几何问题的基本特点和性质.解析几何试题对运算求解能力有较高的要求.解析几何试题的基本特点是淡化对图形性质的技巧性处理,关注解题方向的选择及计算方法的合理性,适当关注与向量、解三角形、函数等知识的交汇,关注对数形结合、函数与方程、化归与转化、特殊与一般思想的考查,关注对整体处理问题的策略以及待定系数法、换元法等的考查.在高考试卷中该部分一般有1至2道小题有针对性地考查直线与圆、圆锥曲线中的重要知识和方法;一道综合解答题,以圆或圆锥曲线为依托,综合平面向量、解三角形、函数等综合考查解析几何的基础知识、基本方法和基本的数学思想方法在解题中的应用,这道解答题往往是试卷的把关题之一. 【考点透析】解析几何的主要考点是:(1)直线与方程,重点是直线的斜率、直线方程的各种形式、两直线的交点坐标、两点间的距离公式、点到直线的距离公式等;(2)圆与方程,重点是确定圆的几何要素、圆的标准方程与一般方程、直线与圆和圆与圆的位置关系,以及坐标法思想的初步应用;(3)圆锥曲线与方程,重点是椭圆、双曲线、抛物线的定义、标准方程和简单几何性质,圆锥曲线的简单应用,曲线与方程的关系,以及数形结合的思想方法等. 【例题解析】 题型1 直线与方程 例1 (2008高考安徽理8)若过点(4,0)A 的直线l 与曲线22(2)1x y -+=有公共点,则直线l 的斜率的取值范围为( ) A .[ B .( C .[33 D .(33 - 分析:利用圆心到直线的距离不大于其半径布列关于直线的斜率k 的不等式,通过解不等式解决. 解析:C 设直线方程为(4)y k x =-,即40kx y k --=,直线l 与曲线22(2)1 x y -+= 有公共点,圆心到直线的距离小于等于半径 1d =≤,得222141,3 k k k ≤+≤,选择C 点评:本题利用直线和圆的位置关系考查运算能力和数形结合的思想意识.高考试卷中一般不单独考查直线与方程,而是把直线与方程与圆、圆锥曲线或其他知识交汇考查. 例2.(2009江苏泰州期末第10题)已知04,k <<直线1:2280l kx y k --+=和直线

高三数学解析几何训练试题(含答案)

高三数学解析几何训练试题(含答案) 2013届高三数学章末综合测试题(15)平面解析几何(1)一、选 择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.已知圆x2+y2+Dx+Ey =0的圆心在直线x+y=1上,则D与E的关系是( ) A.D+E=2 B.D+E=1 C.D+E=-1 D.D+E=-2[来X k b 1 . c o m 解析 D 依题意得,圆心-D2,-E2在直线x+y=1上,因此有-D2-E2=1,即D+E=-2. 2.以线段AB:x+y-2=0(0≤x≤2)为直径的圆的方程为( ) A.(x+1)2+(y+1)2=2 B.(x-1)2+(y-1)2=2 C.(x+1)2+(y+1)2=8 D.(x-1)2+(y-1)2=8 解析 B 直径的两端点为(0,2),(2,0),∴圆心为(1,1),半径为2,圆的方程为(x-1)2+(y-1)2=2. 3.已知F1、F2是椭圆x24+y2 =1的两个焦点,P为椭圆上一动点,则使|PF1|?|PF2|取最大值的点P为( ) A.(-2,0) B.(0,1) C.(2,0) D.(0,1)和(0,-1) 解析 D 由椭圆定义,|PF1|+|PF2|=2a=4,∴|PF1|?|PF2|≤|PF1|+|PF2|22=4,当且仅当|PF1|=|PF2|,即P(0,-1)或(0,1)时,取“=”. 4.已知椭圆x216 +y225=1的焦点分别是F1、F2,P 是椭圆上一点,若连接F1、F2、P三点恰好能构成直角三角形,则点P到y轴的距离是( ) A.165 B.3 C.163 D.253 解析 A 椭 圆x216+y225=1的焦点分别为F1(0,-3)、F2(0,3),易得 ∠F1PF2<π2,∴∠PF1F2=π2或∠PF2F1=π2,点P到y轴的距离d= |xp|,又|yp|=3,x2p16+y2p25=1,解得|xP|=165,故选A. 5.若曲线y=x2的一条切线l与直线x+4y-8=0垂直,则l的方程为( ) A.4x+y+4=0 B.x-4y-4=0 C.4x-y-12=0 D.4x -y-4=0 解析 D 设切点为(x0,y0),则y′|x=x0=2x0, ∴2x0=4,即x0=2,∴切点为(2,4),方程为y-4=4(x-2),即4x-y-4=0. 6.“m>n>0”是“方程mx2+ny2=1表示焦点在y轴上的椭圆”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件解析 C 方程可化为x21m+ y21n=1,若焦点在y轴上,则1n>1m>0,即m>n>0. 7.设双曲线x2a2-y2b2=1的一条渐近线与抛物线y=x2+1只有一个公共点,则双

高考数学解析几何专题练习及答案解析版

高考数学解析几何专题练习解析版82页 1.一个顶点的坐标()2,0 ,焦距的一半为3的椭圆的标准方程是( ) A. 19422=+y x B. 14922=+y x C. 113422=+y x D. 14132 2=+y x 2.已知双曲线的方程为22 221(0,0)x y a b a b -=>>,过左焦点F 1的直线交 双曲线的右支于点P ,且y 轴平分线段F 1P ,则双曲线的离心率是( ) A . 3 B .32+ C . 31+ D . 32 3.已知过抛物线y 2 =2px (p>0)的焦点F 的直线x -my+m=0与抛物线交于A ,B 两点, 且△OAB (O 为坐标原点)的面积为,则m 6+ m 4的值为( ) A .1 B . 2 C .3 D .4 4.若直线经过(0,1),(3,4)A B 两点,则直线AB 的倾斜角为 A .30o B . 45o C .60o D .120o 5.已知曲线C 的极坐标方程ρ=2θ2cos ,给定两点P(0,π/2),Q (-2,π),则有 ( ) (A)P 在曲线C 上,Q 不在曲线C 上 (B)P 、Q 都不在曲线C 上 (C)P 不在曲线C 上,Q 在曲线C 上 (D)P 、Q 都在曲线C 上 6.点M 的直角坐标为)1,3(--化为极坐标为( ) A .)65, 2(π B .)6 ,2(π C .)611,2(π D .)67,2(π 7.曲线的参数方程为???-=+=1 232 2t y t x (t 是参数),则曲线是( ) A 、线段 B 、直线 C 、圆 D 、射线 8.点(2,1)到直线3x-4y+2=0的距离是( ) A . 54 B .4 5 C . 254 D .4 25 9. 圆0642 2 =+-+y x y x 的圆心坐标和半径分别为( ) A.)3,2(-、13 B.)3,2(-、13 C.)3,2(--、13 D.)3,2(-、13 10.椭圆 122 2 2=+b y x 的焦点为21,F F ,两条准线与x 轴的交点分别为M 、N ,若212F F MN ≤,则该椭圆离心率取得最小值时的椭圆方程为 ( )

2020高考数学专题复习-解析几何专题

《曲线的方程和性质》专题 一、《考试大纲》要求 ⒈直线和圆的方程 (1)理解直线的倾斜角和斜率的概念,掌握过两点的直线的斜率公式.掌握直线方 程的点斜式、两点式、一般式,并能根据条件熟练地求出直线方程. (2)掌握两条直线平行与垂直的条件,两条直线所成的角和点到直线的距离公式.能够根据直线的方程判断两条直线的位置关系. (3)了解二元一次不等式表示平面区域. (4)了解线性规划的意义,并会简单的应用. (5)了解解析几何的基本思想,了解坐标法. (6)掌握圆的标准方程和一般方程,了解参数方程的概念,理解圆的参数方程. ⒉圆锥曲线方程 (1)掌握椭圆的定义、标准方程和椭圆的简单几何性质,理解椭圆的参数方程. (2)掌握双曲线的定义、标准方程和双曲线的简单几何性质. (3)掌握抛物线的定义、标准方程和抛物线的简单几何性质. (4)了解圆锥曲线的初步应用. 二、高考试题回放 1.(福建)已知F 1、F 2是椭圆的两个焦点,过F 1且与椭圆长轴垂直 的直线交椭圆于A 、B 两点,若△ABF 2是正三角形,则这个椭圆的离心率是 ( ) A . 33 B .32 C .2 2 D .23

2.(福建)直线x +2y=0被曲线x 2+y 2-6x -2y -15=0所截得的弦长等于 . 3.(福建)如图,P 是抛物线C :y=2 1x 2上一点,直线l 过点P 且与抛物线C 交于另一点Q.(Ⅰ)若直线l 与过点P 的切线垂直,求线段PQ 中点M 的轨迹方程; (Ⅱ)若直线l 不过原点且与x 轴交于点S ,与y 轴交于点T ,试求 | || |||||SQ ST SP ST +的取值范围. 4.(湖北)已知点M (6,2)和M 2(1,7).直线y=mx —7与线段M 1M 2的交点M 分有向线段M 1M 2的比为3:2,则m 的值为 ( ) A .2 3 - B .3 2- C .4 1 D .4 5.(湖北)两个圆0124:0222:222221=+--+=-+++y x y x C y x y x C 与的 公切线有且仅有 ( ) A .1条 B .2条 C .3条 D .4条 6.(湖北)直线12:1:22=-+=y x C kx y l 与双曲线的右支交于不同的两 点A 、B. (Ⅰ)求实数k 的取值范围; (Ⅱ)是否存在实数k ,使得以线段AB 为直径的圆经过双曲线C 的右焦点F ?若存在,求出k 的值;若不存在,说明理由. 7.(湖南)如果双曲线112 132 2 =-y x 上一点P 到右焦点的距离为13, 那么 点 P 到右准线 的 距 离 是 ( )

高考中解析几何的常考题型分析总结

高考中解析几何的常考题型分析 一、高考定位 回顾2008,2012年的江苏高考题,解析几何是重要内容之一,所占分值在25 分左右,在高考中一般有2,3条填空题,一条解答题.填空题有针对性地考查椭圆、双曲线、抛物线的定义、标准方程和简单几何性质及其应用,主要针对圆锥曲线本身,综合性较小,试题的难度一般不大;解答题主要是以圆或椭圆为基本依托,考查椭圆方程的求解、考查直线与曲线的位置关系,除了本身知识的综合,还会与其它知识如向量、函数、不等式等知识构成综合题,多年高考压轴题是解析几何题. 二、应对策略 复习中,一要熟练掌握椭圆、双曲线、抛物线的基础知识、基本方法,在抓住通性通法的同时,要训练利用代数方法解决几何问题的运算技巧. 二要熟悉圆锥曲线的几何性质,重点掌握直线与圆锥曲线相关问题的基本求解方法与策略,提高运用函数与方程思想、向量与导数的方法来解决问题的能力. 三在第二轮复习中要熟练掌握圆锥曲线的通性通法和基本知识. 预测在2013年的高考题中: 1.填空题依然是直线和圆的方程问题以及考查圆锥曲线的几何性质为主,三种圆锥曲线都有可能涉及. 2.在解答题中可能会出现圆、直线、椭圆的综合问题,难度较高,还 有可能涉及简单的轨迹方程和解析几何中的开放题、探索题、证明题,重点关注定值问题. 三、常见题型

1.直线与圆的位置关系问题 直线与圆的位置关系是高考考查的热点,常常将直线与圆和函数、三角、向量、数列、圆锥曲线等相互交汇,求解参数、函数最值、圆的方程等,主要考查直线与圆的相交、相切、相离的判定与应用,以及弦长、面积的求法等,并常与圆的几何性质交汇,要求学生有较强的运算求解能力. 求解策略:首先,要注意理解直线和圆等基础知识及它们之间的深入联系;其次,要对问题的条件进行全方位的审视,特别是题中各个条件之间的相互关系及隐含条件的挖掘;再次,要掌握解决问题常常使用的思想方法,如数形结合、化归转化、待定系数、分类讨论等思想方法;最后,要对求解问题的过程清晰书写,准确到位. 点评:(1)直线和圆的位置关系常用几何法,即利用圆的半径r,圆心到直线的距离d及半弦长l2构成直角三角形关系来处理. (2)要注意分类讨论,即对直线l分为斜率存在和斜率不存在两种情况分别研究,以防漏解或推理不严谨. 2.圆锥曲线中的证明问题 圆锥曲线中的证明问题,主要有两类:一类是证明点、直线、曲线等几何元素中的位置关系,如:某点在某直线上、某直线经过某个点、某两条直线平行或垂直等;另一类是证明直线与圆锥曲线中的一些数量关系(相等或不等). 求解策略:主要根据直线、圆锥曲线的性质、直线与圆锥曲线的位置关系等,通过相关的性质应用、代数式的恒等变形以及必要的数值计算等进行证明. 常用的一些证明方法: 点评:本题主要考查双曲线的概念、标准方程、几何性质及其直线与双曲线的关系.特别要注意直线与双曲线的关系问题,在双曲线当中,最特殊的为等轴双曲

全国高考数学试题汇编——解析几何

7. 2004年全国高考数学试题汇编一一解析几何(一) 1. [2004年全国高考(山东山西河南河北江西安徽) ?理科数学第7题,文科数学第7题] 2 椭圆—? y 2 =1的两个焦点为F i 、F 2,过F i 作垂直于x 轴的直线与椭圆相交,一个交 4 点为P ,则| PF 2 | = ,3 A . 2 2. [2004年全国高考(山东山西河南河北江西安徽) I 的斜率的取值范围是 的轨迹方程为 [2004年全国高考(四川云南吉林黑龙江)? 已知点A (1, 2)、B( 3, 1),则线段AB 的垂直平分线的方程是 A . 4x 2y=5 B . 4x-2y=5 C . x 2y=5 别是O '和A ',则O A "=囂£,其中?= B . .3 ?理科数学第8题,文科数学第8题] 设抛物线y 2=8x 的准线与x 轴交于点Q ,若过点 Q 的直线I 与抛物线有公共点,则直线 3. 1 1 A . [ — 2, 2] B . [—2, 2] C . [-1, 1] D . [ — 4, 4] [2004年全国高考(山东山西河南河北江西安徽) ?理科数学第14题,文科数学第15题] 由动点P 向圆x 2+y 2=1引两条切线PA 、PB , 切点分别为A 、 B ,Z APB=60 ° , 则动点 4. [2004年全国高考(四川云南吉林黑龙江)? 理科数学第4题, 文科数学第 已知圆C 与圆(x -1)2 y 2 =1关于直线 y = -x 对称,则圆 C 的方程为 A . (x 1)2 y 2 =1 B . x 2 - y 2 =1 2 2 C . x (y 1) =1 2亠/ 八2 D . x (y -1) =1 5. 文科数学第8题] 6. [2004年全国高考(四川云南吉林黑龙江)?理科数学第8题] 在坐标平面内,与点A (1,2)距离为1 ,且与点B (3, 1)距离为2 A . 1条 [2004年全国高考 的直线共有 ( D . 4条 已知平面上直线 B . 2条 C . 3条 (四川云南吉林黑龙江)?理科数学第9题] 4 3 l 的方向向量e =(,—),点0(0, 0)和A (1, — 2)在I 上的射影分 5 5

最新名校2020高考解析几何大题二(定值定点)(4.2日)

解析几何大题二 1.椭圆M 的中心在坐标原点O ,左、右焦点F 1,F 2在x 轴上,抛物线N 的顶点也在原点O ,焦点为F 2,椭圆M 与抛物线N 的一个交点为A (3,2). (Ⅰ)求椭圆M 与抛物线N 的方程; (Ⅱ)在抛物线M 位于椭圆内(不含边界)的一段曲线上,是否存在点B ,使得△AF 1B 的外接圆圆心在x 轴上?若存在,求出B 点坐标;若不存在,请说明理由. 2.已知椭圆22 22:1(0)x y C a b a b +=>>的右焦点F 到直线30x y -+=的距离为22,231,P ?? ? ? ?? 在椭圆C 上. (1)求椭圆C 的方程; (2)若过F 作两条互相垂直的直线12,l l ,,A B 是1l 与椭圆C 的两个交点,,C D 是2l 与椭圆C 的两个交点,,M N 分别是线段,AB CD 的中点试,判断直线MN 是否过定点?若过定点求出该定点的坐标;若不过定点,请说明理由. 3.已知抛物线C:y 2 =2px(p>0)的焦点F 和椭圆22 143 x y +=的右焦点重合,直线过点F 交抛物线于A 、 B 两点. (1)求抛物线C 的方程; (2)若直线交y 轴于点M,且,MA mAF MB nBF ==u u u r u u u r u u u r u u u r ,m 、n 是实数,对于直线,m+n 是否为定值? 若是,求出m+n 的值;否则,说明理由. 4.已知椭圆22 22:1(0)x y E a b a b +=>>的上顶点为B ,点(0,2)D b -,P 是E 上且不在y 轴上的点, 直线DP 与E 交于另一点Q .若E 的离心率为2 2,PBD ?的最大面积等于 322 . (1)求E 的方程; (2)若直线,BP BQ 分别与x 轴交于点,M N ,判断OM ON ?是否为定值.

高中数学解析几何常考题型整理归纳

高中数学解析几何常考题型整理归纳 题型一 :圆锥曲线的标准方程与几何性质 圆锥曲线的标准方程是高考的必考题型,圆锥曲线的几何性质是高考考查的重点,求离心率、准线、 双曲线的渐近线是常考题型 . 22 【例 1】(1)已知双曲线 a x 2- y b 2=1(a >0,b >0)的一个焦点为 F (2, 0),且双曲线的渐近线与圆 (x - 2)2 +y 2=3 相切,则双曲线的方程为 ( 22 A.x2-y2=1 A. 9 -13= 2 C.x 3-y 2=1 22 (2)若点 M (2,1),点 C 是椭圆 1x 6+y 7 22 (3)已知椭圆 x 2+y 2=1(a >b >0)与抛物线 y 2=2px (p >0)有相同的焦点 F ,P ,Q 是椭圆与抛物线的交点, ab 22 若直线 PQ 经过焦点 F ,则椭圆 a x 2+ y b 2=1(a >b >0)的离心率为 ___ . 答案 (1)D (2)8- 26 (3) 2- 1 22 解析 (1)双曲线 x a 2-y b 2=1 的一个焦点为 F (2,0), 则 a 2+ b 2= 4,① 双曲线的渐近线方程为 y =±b a x , a 由题意得 22b 2= 3,② a 2+b 2 联立①② 解得 b = 3,a =1, 2 所求双曲线的方程为 x 2-y 3 =1,选 D. (2)设点 B 为椭圆的左焦点,点 M (2,1)在椭圆内,那么 |BM|+|AM|+|AC|≥|AB|+|AC|=2a ,所以 |AM| +|AC|≥2a -|BM|,而 a =4,|BM|= (2+3)2+1= 26,所以 (|AM|+ |AC|)最小=8- 26. ) 22 B.x - y =1 B.13- 9 =1 2 D.x 2 -y 3=1 1 的右焦点,点 A 是椭圆的动点,则 |AM|+ |AC|的最小值为

人教版高考数学专题复习:解析几何专题

高考数学专题复习:解析几何专题 【命题趋向】 1.注意考查直线的基本概念,求在不同条件下的直线方程,直线的位置关系,此类题大多都属中、低档题,以选择、填空题的形式出现,每年必考 2.考查直线与二次曲线的普通方程,属低档题,对称问题常以选择题、填空题出现 3.考查圆锥曲线的基础知识和基本方法的题多以选择题和填空题的形式出现,与求轨迹有关、与向量结合、与求最值结合的往往是一个灵活性、综合性较强的大题,属中、高档题, 4.解析几何的才查,分值一般在17---22分之间,题型一般为1个选择题,1个填空题,1个解答题. 【考题解析与考点分析】 考点1.求参数的值 求参数的值是高考题中的常见题型之一,其解法为从曲线的性质入手,构造方程解之. 例1.若抛物线22y px =的焦点与椭圆22162 x y +=的右焦点重合,则p 的值为( ) A .2- B .2 C .4- D .4 考查意图: 本题主要考查抛物线、椭圆的标准方程和抛物线、椭圆的基本几何性质. 解答过程:椭圆22162 x y +=的右焦点为(2,0),所以抛物线22y px =的焦点为(2,0),则4p =,故选D. 考点2. 求线段的长 求线段的长也是高考题中的常见题型之一,其解法为从曲线的性质入手,找出点的坐标,利用距离公式解之. 例2.已知抛物线y-x 2+3上存在关于直线x+y=0对称的相异两点A 、B ,则|AB|等于 A.3 B.4 C.32 D.42 考查意图: 本题主要考查直线与圆锥曲线的位置关系和距离公式的应用. 解:设直线AB 的方程为y x b =+,由22123301y x x x b x x y x b ?=-+?++-=?+=-?=+?,进而可求出AB 的中点1 1(,)22M b --+,又由11(,)22 M b --+在直线0x y +=上可求出1b =, ∴220x x +-=,由弦长公式可求出AB ==. 故选C 例3.如图,把椭圆2212516x y +=的长轴 AB 分成8等份,过每个分点作x 轴的垂线交椭圆的上半部 分于1234567 ,,,,,,P P P P P P P 七个点,F 是椭圆的一个焦点, 则1234567PF P F P F P F P F P F P F ++++++= ____________. 考查意图: 本题主要考查椭圆的性质和距离公式的灵活应用.

2019高考大题之解析几何

高考大题之解析几何 1.如图,椭圆C :22221x y a b +=(a >b >0)的离心率e =3 5 ,左焦点为F ,A ,B ,C 为其三个顶 点,直线CF 与AB 交于点D ,若△ADC 的面积为15. (Ⅰ)求椭圆C 的方程; (Ⅱ)是否存在分别以AD ,AC 为弦的两个相外切的等圆? 若存在,求出这两个圆的圆心坐标;若不存在,请说明理由. 解:(Ⅰ)设左焦点F 的坐标为(-c ,0),其中c =22a b -, ∵e = 35c a =,∴a =5 3 c ,b =43c . ∴A (0,43c ),B (-5 3c ,0),C (0,-43c ), ∴AB :33154x y c c -+=,CF :314x y c c --=, 联立解得D 点的坐标为(-54c ,1 3c ). ∵△ADC 的面积为15,∴12|x D |·|AC |=15,即12·54c ·2·4 3 c =15, 解得c =3,∴a =5,b =4,∴椭圆C 的方程为22 12516 x y +=. (Ⅱ)由(Ⅰ)知,A 点的坐标为(0,4),D 点的坐标为(-15 4 ,1). 假设存在这样的两个圆M 与圆N ,其中AD 是圆M 的弦,AC 是圆N 的弦, 则点M 在线段AD 的垂直平分线上,点N 在线段AC 的垂直平分线y =0上. 当圆M 和圆N 是两个相外切的等圆时,一定有A ,M ,N 在一条直线上,且AM =AN . ∴M 、N 关于点A 对称,设M (x 1,y 1),则N (-x 1,8-y 1), 根据点N 在直线y =0上,∴y 1=8.∴M (x 1,8),N (-x 1,0), 而点M 在线段AD 的垂直平分线y -52=-54(x +158)上,可求得x 1=-251 40 . 故存在这样的两个圆,且这两个圆的圆心坐标分别为 M (-25140,8),N (25140 ,0). 2.如图,椭圆22 221(0)x y a b a b +=>>的左焦点为F ,过点F 的直线交椭圆于B A ,两点, AF 的最大值为M ,BF 的最小值为m ,满足2 34 M m a ?= 。 (Ⅰ)若线段AB 垂直于x 轴时,3 2 AB = ,求椭圆的方程; (Ⅱ) 设线段AB 的中点为G ,AB 的垂直平分线与x 轴和y 轴分别交于E D ,两

高考数学分类汇编 解析几何

2011高考数学分类汇编-解析几何 1、(湖北文)将两个顶点在抛物线()022>=p px y 上,另一个顶点是此抛物线焦点的正三角形的个数记为n ,则( ) A. 0=n B. 1=n C. 2=n D. 3≥n 2、(江西理) 若曲线1C :0222=-+x y x 与曲线2C :0)(=--m mx y y 有4个不同的交点,则实数m 的取值范围是( ) A. )3 3 ,33(- B. )33,0()0,33(Y - C. ]33,33[- D. ),3 3()33,(+∞--∞Y 3、(江西理)若椭圆12222=+b y a x 的焦点在x 轴上,过点)21 ,1(作圆122=+y x 的 切线,切点分别为A ,B ,直线AB 恰好经过椭圆的右焦点和上顶点,则椭 圆方程是 . 4、(湖南文)在直角坐标系xOy 中,曲线1C 的参数方程为 2cos (x y α αα =??? =??为参数).在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,曲线2C 的方程为 (cos sin )10,ρθθ-+=则1C 与2C 的交点个数为 . 5、(湖南理)在直角坐标系xoy 中,曲线C 1的参数方程为cos ,1sin x y αα=??=+?(α为参 数)在极坐标系(与直角坐标系xoy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,曲线2C 的方程为()cos sin 10ρθθ-+=,则1C 与2C 的交点个数为 。 6、(湖南文)已知圆22:12,C x y +=直线:4325.l x y += (1)圆C 的圆心到直线l 的距离为 . (2) 圆C 上任意一点A 到直线l 的距离小于2的概率为 . 7、(江苏)设集合},,)2(2 |),{(222R y x m y x m y x A ∈≤+-≤=, },,122|),{(R y x m y x m y x B ∈+≤+≤=, 若,φ≠?B A 则实数m 的取值范围___.

最新高中数学解析几何大题精选

解析几何大量精选 1 2 1.在直角坐标系xOy 中,点M 到点()1,0F ,)2,0F 的距离之和是4,点M 3 的轨迹是C 与x 轴的负半轴交于点A ,不过点A 的直线:l y kx b =+与轨迹C 交于4 不同的两点P 和Q . 5 ⑴求轨迹C 的方程; 6 ⑵当0AP AQ ?=时,求k 与b 的关系,并证明直线l 过定点. 7 【解析】 ⑴ 2214 x y +=. 8 ⑵将y kx b =+代入曲线C 的方程, 9 整理得222(14)8440k x kbx b +++-=, 10 因为直线l 与曲线C 交于不同的两点P 和Q , 11 所以222222644(14)(44)16(41)0k b k b k b ?=-+-=-+> ① 12 设()11,P x y ,()22,Q x y ,则122814kb x x k +=-+,21224414b x x k -=+ ② 13 且22 2 2 121212122 4()()()14b k y y kx b kx b k x x kb x x b k -?=++=+++=+, 14 显然,曲线C 与x 轴的负半轴交于点()2,0A -, 15 所以()112,AP x y =+,()222,AQ x y =+. 16 由0AP AQ ?=,得1212(2)(2)0x x y y +++=. 17

将②、③代入上式,整理得22121650k kb b -+=. 18 所以(2)(65)0k b k b -?-=,即2b k =或65 b k =.经检验,都符合条件① 19 当2b k =时,直线l 的方程为2y kx k =+.显然,此时直线l 经过定点()2,0-20 点. 21 即直线l 经过点A ,与题意不符. 22 当6 5b k =时,直线l 的方程为665 5y kx k k x ??=+=+ ?? ? . 23 显然,此时直线l 经过定点6 ,05 ??- ?? ? 点,满足题意. 24 综上,k 与b 的关系是65 b k =,且直线l 经过定点6 ,05?? - ??? 25 26 2. 已知椭圆2222:1x y C a b +=(0)a b >>的离心率为1 2 ,以原点为圆心,椭圆的短半 27 轴为半径的圆与直线0x y -+相切. 28 ⑴ 求椭圆C 的方程; 29 ⑵ 设(4,0)P ,A ,B 是椭圆C 上关于x 轴对称的任意两个不同的点,连结PB 30 交椭圆C 于另一点E ,证明直线AE 与x 轴相交于定点Q ; 31 ⑶ 在⑵的条件下,过点Q 的直线与椭圆C 交于M ,N 两点,求OM ON ?的取32 值范围. 33 【解析】 ⑴22 143 x y +=. 34

2020高考数学(理)专项复习《解析几何》含答案解析

解析几何 平面解析几何主要介绍用代数知识研究平面几何的方法.为此,我们要关注:将几何问题代数化,用代数语言描述几何要素及其关系,将几何问题转化为代数问题,处理代数问题,分析代数结果的几何含义,最终解决几何问题. 在此之中,要不断地体会数形结合、函数与方程及分类讨论等数学思想与方法.要善于应用初中平面几何、高中三角函数和平面向量等知识来解决直线、圆和圆锥曲线的综合问题. §8-1 直角坐标系 【知识要点】 1.数轴上的基本公式 设数轴的原点为O ,A ,B 为数轴上任意两点,OB =x 2,OA =x 1,称x 2-x 1叫做向量AB 的坐标或数量,即数量AB =x 2-x 1;数轴上两点A ,B 的距离公式是 d (A ,B )=|AB |=|x 2-x 1|. 2.平面直角坐标系中的基本公式 设A ,B 为直角坐标平面上任意两点,A (x 1,y 1),B (x 2,y 2),则A ,B 两点之间的距离公式是.)()(||),.(212212y y x x AB B A d -+-== A , B 两点的中点M (x ,y )的坐标公式是?+=+=2 ,22121y y y x x x 3.空间直角坐标系 在空间直角坐标系O -xyz 中,若A (x 1,y 1,z 1),B (x 2,y 2,z 2),A ,B 两点之间的距离公式是 .)()()(||),(212212212z z y y x x AB B A d -+-+-== 【复习要求】 1.掌握两点间的距离公式,中点坐标公式;会建立平面直角坐标系,用坐标法(也称为解析法)解决简单的几何问题. 2.了解空间直角坐标系,会用空间直角坐标系刻画点的位置,并掌握两点间的距离公式. 【例题分析】 例1 解下列方程或不等式: (1)|x -3|=1;(2)|x -3|≤4;(3)1<|x -3|≤4. 略解:(1)设直线坐标系上点A ,B 的坐标分别为x ,3, 则|x -3|=1表示点A 到点B 的距离等于1,如图8-1-1所示, 图8-1-1 所以,原方程的解为x =4或x =2. (2)与(1)类似,如图8-1-2,

高中数学解析几何大题专项练习

解析几何解答题 1、椭圆G :)0(122 22>>=+b a b y a x 的两个焦点为F 1、F 2,短轴两端点B 1、B 2,已知 F 1、F 2、B 1、B 2四点共圆,且点N (0,3)到椭圆上的点最远距离为.25 (1)求此时椭圆G 的方程; (2)设斜率为k (k ≠0)的直线m 与椭圆G 相交于不同的两点E 、F ,Q 为EF 的中点,问E 、F 两点能否关于 过点P (0, 3 3)、Q 的直线对称若能,求出k 的取值范围;若不能,请说明理由. ; 2、已知双曲线221x y -=的左、右顶点分别为12A A 、,动直线:l y kx m =+与圆22 1x y +=相切,且与双曲线左、右两支的交点分别为111222(,),(,)P x y P x y . (Ⅰ)求k 的取值范围,并求21x x -的最小值; (Ⅱ)记直线11P A 的斜率为1k ,直线22P A 的斜率为2k ,那么,12k k ?是定值吗证明你的结论. @ [

3、已知抛物线2 :C y ax =的焦点为F ,点(1,0)K -为直线l 与抛物线C 准线的交点,直线l 与抛物线C 相交于A 、 B 两点,点A 关于x 轴的对称点为D . (1)求抛物线 C 的方程。 ~ (2)证明:点F 在直线BD 上; (3)设8 9 FA FB ?=,求BDK ?的面积。. { — 4、已知椭圆的中心在坐标原点O ,焦点在x 轴上,离心率为1 2 ,点P (2,3)、A B 、在该椭圆上,线段AB 的中点T 在直线OP 上,且A O B 、、三点不共线. (I)求椭圆的方程及直线AB 的斜率; (Ⅱ)求PAB ?面积的最大值. - 、

高考数学专题训练解析几何

解析几何(4) 23.(本大题满分18分,第1小题满分4分,第二小题满分6分,第3小题满分8分) 已知平面上的线段l 及点P ,任取l 上一点Q ,线段PQ 长度的最小值称为点P 到线段 l 的距离,记作(,)d P l (1)求点(1,1)P 到线段:30(35)l x y x --=≤≤的距离(,)d P l ; (2)设l 是长为2的线段,求点的集合{(,)1}D P d P l =≤所表示的图形面积; (3)写出到两条线段12,l l 距离相等的点的集合12{(,)(,)}P d P l d P l Ω==,其中 12,l AB l CD ==,,,,A B C D 是下列三组点中的一组. 对于下列三种情形,只需选做一种,满分分别是①2分,②6分,③8分;若选择了多于一种情形,则按照序号较小的解答计分. ①(1,3),(1,0),(1,3),(1,0)A B C D --. ②(1,3),(1,0),(1,3),(1,2)A B C D ---. ③(0,1),(0,0),(0,0),(2,0)A B C D . 23、解:⑴ 设(,3)Q x x -是线段:30(35)l x y x --=≤≤上一点,则 ||5) PQ x ==≤≤,当 3 x =时 , min (,)||d P l PQ == ⑵ 设线段l 的端点分别为,A B ,以直线AB 为x 轴,AB 的中点为原点建立直角坐标系, 则(1,0),(1,0)A B -,点集D 由如下曲线围成 12:1(||1),:1(||1) l y x l y x =≤=-≤, 222212:(1)1(1),:(1)1(1)C x y x C x y x ++=≤--+=≥ 其面积为4S π=+。 ⑶① 选择(1,3),(1,0),(1,3),(1,0)A B C D --,{(,)|0}x y x Ω== ② 选择(1,3),(1,0),(1,3),(1,2)A B C D ---。 2{(,)|0,0}{(,)|4,20}{(,)|10,1}x y x y x y y x y x y x y x Ω==≥=-≤<++=> ③ 选择(0,1),(0,0),(0,0),(2,0)A B C D 。

解析几何-2020年高考数学十年真题精解(全国Ⅰ卷)抛物线(含解析)

专题09 解析几何 第二十四讲 抛物线 2019年 1.(2019全国II 文9)若抛物线y 2 =2px (p >0)的焦点是椭圆 22 13x y p p +=的一个焦点,则p = A .2 B .3 C .4 D .8 2.(2019浙江21)如图,已知点(10)F ,为抛物线2 2(0)y px p =>的焦点,过点F 的直线交抛物线于A 、B 两点,点C 在抛物线上,使得ABC △的重心G 在x 轴上,直线AC 交x 轴于点Q ,且Q 在点F 右侧.记,AFG CQG △△的面积为12,S S . (1)求p 的值及抛物线的准线方程; (2)求 1 2 S S 的最小值及此时点G 的坐标. 3.(2019全国III 文21)已知曲线C :y =2 2 x ,D 为直线y =12-上的动点,过D 作C 的两条 切线,切点分别为A ,B . (1)证明:直线AB 过定点: (2)若以E (0,5 2 )为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求该圆的方程. 2015-2018年 一、选择题 1.(2017新课标Ⅱ)过抛物线C :2 4y x =的焦点F ,3的直线交C 于点M (M

在x 轴上方),l 为C 的准线,点N 在l 上且MN ⊥l ,则M 到直线NF 的距离为 A B . C . D .2.(2016年全国II 卷)设F 为抛物线C :y 2=4x 的焦点,曲线y = k x (k >0)与C 交于点P ,PF ⊥x 轴,则k = A . 12 B .1 C .3 2 D .2 3.(2015陕西)已知抛物线2 2y px =(0p >)的准线经过点(1,1)-,则该抛物线的焦点坐 标为 A .(-1,0) B .(1,0) C .(0,-1) D .(0,1) 4.(2015四川)设直线l 与抛物线2 4y x =相交于,A B 两点,与圆2 2 2 (5)(0)x y r r -+=>相切于点M ,且M 为线段AB 的中点.若这样的直线l 恰有4条,则r 的取值范围是 A .()13, B .()14, C .()23, D .()24, 二、填空题 5.(2018北京)已知直线l 过点(1,0)且垂直于x 轴,若l 被抛物线2 4y ax =截得的线段长为 4,则抛物线的焦点坐标为_________. 6.(2015陕西)若抛物线2 2(0)y px p =>的准线经过双曲线2 2 1x y -=的一个焦点,则p = 三、解答题 7.(2018全国卷Ⅱ)设抛物线2 4=:C y x 的焦点为F ,过F 且斜率为(0)>k k 的直线l 与 C 交于A ,B 两点,||8=AB . (1)求l 的方程; (2)求过点A ,B 且与C 的准线相切的圆的方程. 8.(2018浙江)如图,已知点P 是y 轴左侧(不含y 轴)一点,抛物线C :2 4y x =上存在 不同的两点A ,B 满足PA ,PB 的中点均在C 上.

2020年高考数学(理)大题分解专题05--解析几何(含答案)

(2019年全国卷I )已知抛物线C :x y 32=的焦点为F ,斜率为 32 的直线l 与 C 的交点为A ,B ,与x 轴的交点为P . (1)若4||||=+BF AF ,求l 的方程; (2)若3AP PB =,求||AB . 【肢解1】若4||||=+BF AF ,求l 的方程; 【肢解2】若3AP PB =,求||AB . 【肢解1】若4||||=+BF AF ,求l 的方程; 【解析】设直线l 方程为 m x y += 23 ,()11,A x y ,()22,B x y , 由抛物线焦半径公式可知 12342AF BF x x +=++ =,所以125 2 x x +=, 大题肢解一 直线与抛物线

联立2323y x m y x ? =+???=?得0 4)12(12922=+-+m x m x , 由0144)1212(22>--=?m m 得1 2 m <, 所以12121259 2 m x x -+=-=,解得78 m =-, 所以直线l 的方程为372 8 y x =-,即12870x y --=. 【肢解2】若3AP PB =,求||AB . 【解析】设直线l 方程为23 x y t =+, 联立2233x y t y x ? =+???=? 得0322=--t y y ,由4120t ?=+>得31->t , 由韦达定理知221=+y y , 因为PB AP 3=,所以213y y -=,所以12-=y ,31=y ,所以1=t ,321-=y y . 则=-+?+=212214)(9 4 1||y y y y AB = -?-?+)3(429 4123 13 4. 设抛物线)0(22>=p px y 的焦点为F ,过点F 的而直线交抛物线于A (x 1,y 1), B (x 2,y 2),则|AB |=x 1+x 2+p.

相关主题
文本预览
相关文档 最新文档