当前位置:文档之家› (完整)动量定理模块知识点总结,推荐文档

(完整)动量定理模块知识点总结,推荐文档

(完整)动量定理模块知识点总结,推荐文档
(完整)动量定理模块知识点总结,推荐文档

动量定理模块知识点总结

一、动量概念及其理解

(1)定义:物体的质量及其运动速度的乘积称为该物体的动量p=mv

(2)特征:①动量是状态量,它与某一时刻相关;

②动量是矢量,其方向与物体运动速度的方向相同。

(3)意义:速度从运动学角度量化了机械运动的状态,动量则从动力学角度量化了机械运动的状态。

二、冲量概念及其理解

(1)定义:某个力与其作用时间的乘积称为该力的冲量I=F△t

(2)特征:①冲量是过程量,它与某一段时间相关;

②冲量是矢量,对于恒力的冲量来说,其方向就是该力的方向。

(3)意义:冲量是力对时间的累积效应。对于质量确定的物体来说,合外力决定着其速度将变多快;合外力的冲量将决定着其速度将变多少。对于质量不确定的物体来说,合外力决定着其动量将变多快;合外力的冲量将决定着其动量将变多少。

三、动量定理:F ·t = m v2–m v1

F·t 是合外力的冲量,反映了合外力冲量是物体动量变化的原因.

(1)动量定理公式中的F·t 是合外力的冲量,是使研究对象动量发生变化的原因;

(2)在所研究的物理过程中,如作用在物体上的各个外力作用时间相同,求合外力的冲量可先求所有力的合外力,再乘以时间,也可求出各个力的冲量再按矢量运算法则求所有力的会冲量;

(3)如果作用在被研究对象上的各个外力的作用时间不同,就只能先求每个外力在相应时间内的冲量,然后再求所受外力冲量的矢量和.

(4)要注意区分“合外力的冲量”和“某个力的冲量”,根据动量定理,是“合外力的冲量”等于动量的变化量,而不是“某个力的冲量” 等于动量的变化量(注意)。

1. 质量为 m 的钢球自高处落下,以速率 v 1 碰地,竖直向上弹回,碰掸时间极短,离地的速率为 v 2。在碰撞过程中,地

面对钢球冲量的方向和大小为( D )

A 、向下,m(v 1-v 2)

B 、向下,m(v 1+v 2)

C 、向上,m(v 1-v 2)

D 、向上,m(v 1+v 2)

2. 一辆空车和一辆满载货物的同型号的汽车,在同一路面上以相同的速度向同一方向行驶.紧急刹车后(即车轮不滚动只滑动)那么 (C D )

A. 货车由于惯性大,滑行距离较大

B .货车由于受的摩擦力较大,滑行距离较小

C .两辆车滑行的距离相同

D .两辆车滑行的时间相同

3. 一个质量为 0.3kg 的小球,在光滑水平面上以 6m/s 的速度垂直撞到墙上,碰撞后小球沿相反方向运动,反弹后的

速度大小为 4m/s 。则碰撞前后墙对小球的冲量大小 I 及碰撞过程中墙对小球做的功 W 分别为( A )

A. I= 3kg ·m/s W = -3J

B .I= 0.6kg ·m/s W = -3J

C .I= 3kg ·m/s W = 7.8J

D .I= 0.6kg ·m/s W = 3J

4. 如图 1. 甲所示,一轻弹簧的两端分别与质量为 m 1 和 m 2 的两物块相连接,并且静止在光滑的水平面上.现使 m 1 瞬时获得水平向右的速度 3m/s ,以此刻为时间零点,两物块的速度随时间变化的规律如图乙所示,从图象信息可得 ( B C )

A. 在 t 1、t 3 时刻两物块达到共同速度 1m/s 且弹簧都是处于压缩状态

B. 从 t 3 到 t 4 时刻弹簧由伸长状态逐渐恢复原长

C. 两物体的质量之比为 m 1∶m 2 = 1∶2

D. 在 t 2 时刻两物体的动量之比为 P 1∶P 2 =1∶2

v

图 1

5. 一质量为 m 的小球,以初速度 v 0 沿水平方向射出,恰好垂直地射到一倾角为 30°的固定斜面上,并立即反方向弹 3

回。已知反弹速度的大小是入射速度大小的 ,求在碰撞中斜面对小球的冲量大小。

4

v 0

30

30° °

v

解.小球在碰撞斜面前做平抛运动.设刚要碰撞斜面时小球速度为 v 由题意,v 的方向与竖直线的夹角为 30°,且水平分量仍为v 0,如右图.由此得v =2 v 0

3

碰撞过程中,小球速度由v 变为反向的 v . 碰撞时间极短,

4

可不计重力的冲量,由动量定理,斜面对小球的冲量为

3

I = m ( v ) + mv ②

4 7

由①、②得 I = 2

mv 0 ③

v /ms -1 3 2 1

m 2

m 1

0 1 t 1

t 2 t 3

t 4

t /s

m 2

m 1

F

30°

6.如图所示,一个下面装有轮子的贮气瓶停放在光滑的水平地面上,顶端与竖直墙壁接触.现打开尾端阀门,气体往外喷出,设喷口面积为S,气体密度为,气体往外喷出的速度为v,则气体刚喷出时钢瓶顶端对竖直墙的作用力大小是(D )

A.S B.

v2

S

C.

1

v2S

2

D.2S

Ft= vts V

7.在倾角为300 的足够长的斜面上有一质量为m 的物体,它受到沿斜面方向的力F 的作用。力F 可按图(a)、(b)(c)、(d)所示的四种方式随时间变化(图中纵坐标是F 与mg 的比值,力沿斜面向上为正)。

已知此物体在t=0 时速度为零,若用v1、v2、v3、v4分别表示上述四种受力情况下物体在3 秒末的速率,则这四个速率中最大的是(C )

A、v1

B、v2

C、v3

D、v4

解析:选向下为正方向,由动量定理分别得到

对于A 图: m v1=0.5mg×2 -0.5mg ×1 +0.5mg ×3 = 2mg

对于 B 图: m v2=-0.5mg×1+0.5mg×1+0.5mg×3 = 1.5mg

对于C 图: m v3=0.5mg×2 +0.5mg ×3 = 2.5mg

对于D 图: m v4=0.5mg×2 -mg ×1 +0.5mg ×3 = 1.5mg

综合四个选项得到v3最大

8.一杂技演员从一高台上跳下,下落h=5.0m 后,双脚落在软垫上,同时他用双腿弯曲重心下降的方法缓冲,测得缓冲时间t=0.2s,则软垫对双脚的平均作用力估计为自身所受重力的()

A、2 倍

B、4 倍

C、6 倍

D、8 倍

A

2gh

2gh 1

2gh 2

B V

【解析】在下落 5.0m 的过程中,杂技演员在竖直方向的运动是自由落体运动,所以在接触软垫前的瞬时,其速度为

v=

=10m/s 。在缓冲过程中,杂技演员(重心)的下降运动,可视为匀减速运动。

解析:对缓冲过程,应用动量定理有:(N-mg )t=0-(-mv ), 代入数据可得 N=6mg ,所以 N/mg =6. 答案选 C

9. 蹦床是运动员在一张绷紧的弹性网上蹦跳、翻滚并做各种空中动作的运动项目,一个质量为 60kg 的运动员,从离水平网面 3.2m 高处自由下落,着网后沿竖直方向蹦回到离水平网面 5.0m 高处。已知运动员与网接触的时间为 1.2s , 若把在这段时间内网对运动员的作用力当作恒力处理,求此力的大小。(g=10m/s2)

【解析】将运动员看质量为 m 的质点,从 h1 高处下落,刚接触网时速度的大小

1

= (向下) .............................. ①

弹跳后到达的高度为 h2,刚离网时速度的大小 v 1 = (向上) ................ ②

速度的改变量

?= 1 + 2 (向上) ......................................................................... ③

以a 表示加速度,

?t 表示接触时间,则?= a ?t ............................................ ④

10. 如图所示,光滑水平的地面上静置一质量为 M 的又足够长的木板 A ,在木板的 A 的左端有一质量为 m 的小物体B ,它的初速度为 v0,与木板的动摩擦因素为 μ。求小物体 B 在木板 A 上相对滑动的时间 t 。

【解析】该题中的已知量和所求量只涉及到力、时间和位移,所以可以考虑应用动量定理求解。但研究的对象有 A 、B 两个物体,我们可以分别列出 A 、B 的动量定理的表达式:

设 A 、B 最终达到的共同速度为 v 。

对 A 物体有: μmgt=Mv 对 B 物体有: -μmgt=mv-m v0

t =

M 0 由上述两式联立可得:

g (M + m )

11. 如图所示,在光滑水平面上并排放着 A 、B 两木块,质量分别为 mA 和 mB 。一颗质量为 m 的子弹以水平速度 v0 先后击中木块 A 、B ,木块 A 、B 对子弹的阻力恒为 f 。子弹穿过木块 A 的时间为 t1,穿过木块 B 的时间为 t2。求: ① 子弹刚穿过木块 A 后,木块 A 的速度 vA 、和子弹的速度 v1 分别为多大? ② 子弹穿过木块 B 后,木块 B 的速度 vB 和子弹的速度 v2 又分别为多大?

v 0

【解析】①子弹刚进入 A 到刚穿出 A 的过程中:

对 A 、B :由于 A 、B 的运动情况完全相同,可以看作一个整体

B

A

f t 1

ft1=(mA+mB )VA 所以:VA= m A

+

m

B

f t 1

对子弹:-ft1=mV1+mv0 所以:V1=V0- m

②子弹刚进入 B 到刚穿出 B 的过程中:

t

1

+ t 2

对物体 B :ft2=mBVB-mBVA

所以:VB=f (

m A

+ m B

f (t 1 + t 2) 对子弹:-ft2=mV2-mV1

所以:V2=V0-

m m

B

12. 甲、乙两个物体动量随时间变化的图像如图所示,图像对应的物体的运动过程可能是( BD )

A 、甲物体可能做匀加速运动

B 、甲物体可能做竖直上抛运动

C 、乙物体可能做匀变速运动

D 、乙物体可能与墙壁发生弹性碰撞

知识点总结 ---牛顿第二定律和动量定理: 1. 牛顿第二定律可用动量来表示:

从牛顿第二定律出发可以导出动量定理,因此牛顿第二定律和动量定理都反映了外力作用与物体运动状态变化的因果关系。

由 F=ma 和 a=△υ/△t 得

F =

m ? ?v

?t F =

?p 即

?t ,作用力等于动量的变化率.

2. 牛顿第二定律与动量定理存在区别:

牛顿第二定律反映了力与加速度之间的瞬时对应关系,它反映某瞬时物体所受的合外力与加速度之间的关系,而

动量定理是研究物体在合外力持续作用下,在一段时间内的积累效应,在这段时间内物体的动量发生变化.因此,在考虑各物理量的瞬时对应关系时,用牛顿第二定律,而在考虑某一物理过程中物理量间的关系时,应优先考虑用动量定理.

3. 动量定理与牛顿第二定律相比较,有其独特的优点:不考虑中间过程。

4. 动量定理除用来解决在恒力持续作用下的问题外,尤其适合用来解决作用时间短、而力的变化又十分复杂的问题,如冲击、碰撞、反冲等。

5. 动量定理比牛顿第二定律在应用上有更大的灵活性和更广阔的应用范围. 牛顿第二定律只适用于宏观物体的低速运动情况,而动量定理则普遍适用。6、牛顿第二定律和动量定理都适用于地面参考系。

13.质量为10 kg 的物体在F=200 N 的水平推力作用下,从粗糙斜面的底端由静止开始沿斜面运动,斜面固定不动,与水平地面的夹角θ=37O.力F 作用2s 钟后撤去,物体在斜面上继续上滑了1.25s 钟后,速度减为零.求:物体与斜面间的动摩擦因数μ和物体的总位移S。

(已知sin37o=0.6,cos37O=0.8,g=10 m/s2)

【解析】对全过程应用动量定理有:

Fcosθt1=μ(mgcosθ+Fsinθ)t1+mgsinθ(t1+t2)+μmgcosθt2

代入数据解得μ=0.25。

又考虑第二个过程,则由牛顿定律有a2=gsinθ+μgcosθ=8m/s2

第二过程的初速度为v=a2t2=10m/s。

v

总位移为s=2(t1+t2)=16.25s。

14. 在相同条件下,玻璃杯掉在石板上易破碎,掉在棉被上不易破碎,这是因为〖BC 〗

A.前一种情况下冲量大

B.后一种情况下相互作用时间长,冲力小

C.前一种情况下动量的变化率大

D.后一种情况下动量的变化大

15. 杂技表演时,常可看见有人用铁锤猛击放在“大力士”身上的大石块,石裂而人不伤,这是什么道理?请加以分析.

【解析】大石块意味它的质量很大:“猛击”表示作用力很大,且作用时间极短;“人未受伤”说明大石块对人身体的压强不大.

用铁锤猛击放在“大力上”身上的大石块,大石块受到很大的打击力而破裂,但是,根据动量定理F·t=mυ1-

v t mυ0 得-v0=

F ?t

m ,对大石块来说,虽然受到的作用力 F 很大,但力作用时间极短,而大石块的质量又很大,因

而引起的速度变化υt-υ0就很小,即大石块几乎没有向下运动,而且石块与人的身体接触面积又较大,据 P=F/S,

所以人身体受的压强并不很大,故此人不会受伤

16. 在行车过程中,如果车距不够,刹车不及时,汽车将发生碰撞,车里的人可能受到伤害,为了尽可能地减轻碰撞引起的伤害,人们设计了安全带。假定乘客质量为70 kg,汽车车速为108 km/h(即30 m/s),从踩下刹车到车完全停止需要的时间为5 s,安全带对乘客的作用力大小约为( A )

A.0N B.600N

C.800N D.1000N

17. 运输家用电器、易碎器件等物品时,经常用泡沫塑料作填充物,这是为了在运输过程中(CD )

A.减小物品受到的冲量

B.使物体的动量变化量减小

C.延长了物品受撞击的相互作用时间

D.较尖锐的物体不是直接撞击物品表面,而是撞击泡沫塑料,减小撞击时的压强

18. 如图所示,水平面上叠放着a、b 两木块,用手轻推木块b,a 会跟着一起运动;若用锤子水平猛击一下b,a 就不会跟着b 运动,这说明(BD )

A.轻推 b 时,b 给a 的作用力大

B.轻推 b 时,b 给a 的作用时间长

C.猛击 b 时,b 给a 的冲量大

D.猛击 b 时,b 给a 的冲量小

19. 一粒钢珠从静止状态开始自由下落,然后陷人泥潭中。若把在空中下落的过程称为过程Ⅰ,进人泥潭直到停止的过程称为过程Ⅱ,则(AC )

A.过程 I 中钢珠的动量的改变量等于重力的冲量

B.过程Ⅱ中阻力的冲量的大小等于过程 I 中重力的冲量的大小

C.I、Ⅱ两个过程中合外力的总冲量等于零

D.过程Ⅱ中钢珠的动量的改变量等于零

【解析】根据动量定理可知,在过程 I 中,钢珠从静止状态自由下落.不计空气阻力,小球所受的合外力即为重力,因此钢珠的动量的改变量等于重力的冲量,选项 A 正确;过程 I 中阻力的冲量的大小等于过程 I 中重力的冲量的大小与过程Ⅱ中重力的冲量的大小之和,显然 B 选项不对;在 I、Ⅱ两个过程中,钢珠动量的改变量各不为零.且它们大小相等、方向相反,但从整体看,钢珠动量的改变量为零,故合外力的总冲量等于零,故 C 选项正确,D 选项错误。因此,本题的正确选项为 A、C。

20. 一个物体同时受到两个力 F1、F2 的作用,F1、F2 与时间 t 的关系如图所示,如果该物体从静止开始运动,经过

t=10s 后 F1、F2 以及合力 F 的冲量各是多少?

【解析】经过t=10s 后,F1 的冲量I1=10×10/2=50N·S

F2 的冲量I2=-50N·S

合力 F 的冲量为 0。

“”

“”

At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!

二项式定理知识点总结

二项式定理 一、二项式定理: ()n n n k k n k n n n n n n b C b a C b a C a C b a +++++=+-- 110(*∈N n )等号右边的多项式叫做 ()n b a +的二项展开式,其中各项的系数k n C )3,2,1,0(n k ???=叫做二项式系数。 对二项式定理的理解: (1)二项展开式有1+n 项 (2)字母a 按降幂排列,从第一项开始,次数由n 逐项减1到0;字母b 按升幂排列,从第一项开始,次数由0逐项加1到n (3)二项式定理表示一个恒等式,对于任意的实数b a ,,等式都成立,通过对b a ,取不同的特殊值,可为某些问题的解决带来方便。在定理中假设x b a ==,1,则 ()n n n k n k n n n n n x C x C x C x C x +++++=+- 101(*∈N n ) (4)要注意二项式定理的双向功能:一方面可将二项式()n b a +展开,得到一个多项式; 另一方面,也可将展开式合并成二项式()n b a + 二、二项展开式的通项:k k n k n k b a C T -+=1 二项展开式的通项k k n k n k b a C T -+=1)3,2,1,0(n k ???=是二项展开式的第1+k 项,它体现了 二项展开式的项数、系数、次数的变化规律,是二项式定理的核心,它在求展开式的某些特定项(如含指定幂的项、常数项、中间项、有理项、系数最大的项等)及其系数等方面有广泛应用 对通项k k n k n k b a C T -+=1)3,2,1,0(n k ???=的理解: (1)字母b 的次数和组合数的上标相同 (2)a 与b 的次数之和为n (3)在通项公式中共含有1,,,,+k T k n b a 这5个元素,知道4个元素便可求第5个元素 例1.n n n n n n C C C C 13 21393-++++ 等于 ( ) A .n 4 B 。n 43? C 。134-n D.3 1 4-n 例2.(1)求7 (12)x +的展开式的第四项的系数; (2)求9 1()x x -的展开式中3 x 的系数及二项式系数

高中数学必修五 知识点总结【经典】

《必修五 知识点总结》 第一章:解三角形知识要点 一、正弦定理和余弦定理 1、正弦定理:在C ?AB 中,a 、b 、c 分别为角A 、B 、C 的对边,,则有 2sin sin sin a b c R C ===A B (R 为C ?AB 的外接圆的半径) 2、正弦定理的变形公式: ①2sin a R =A ,2sin b R =B ,2sin c R C =; ②sin 2a R A = ,sin 2b R B =,sin 2c C R =; ③::sin :sin :sin a b c C =A B ; 3、三角形面积公式:111 sin sin sin 222 C S bc ab C ac ?AB = A == B . 4、余弦定理:在 C ?AB 中,有2 2 2 2cos a b c bc =+-A ,推论:bc a c b A 2cos 2 22-+= B ac c a b cos 2222-+=,推论: C ab b a c cos 22 2 2 -+=,推论:ab c b a C 2cos 2 22-+= 二、解三角形 处理三角形问题,必须结合三角形全等的判定定理理解斜三角形的四类基本可解型,特别要多角度(几何作图,三角函数定义,正、余弦定理,勾股定理等角度)去理解“边边角”型问题可能有两解、一解、无解的三种情况,根据已知条件判断解的情况,并能正确求解 1、三角形中的边角关系 (1)三角形内角和等于180°; (2)三角形中任意两边之和大于第三边,任意两边之差小于第三边; ac b c a B 2cos 2 22-+=

(3)三角形中大边对大角,小边对小角; (4)正弦定理中,a =2R ·sin A , b =2R ·sin B , c =2R ·sin C ,其中R 是△ABC 外接圆半径. (5)在余弦定理中:2bc cos A =222a c b -+. (6)三角形的面积公式有:S = 21ah , S =21ab sin C=21bc sin A=2 1 ac sinB , S =))(()(c P b P a P P --?-其中,h 是BC 边上高,P 是半周长. 2、利用正、余弦定理及三角形面积公式等解任意三角形 (1)已知两角及一边,求其它边角,常选用正弦定理. (2)已知两边及其中一边的对角,求另一边的对角,常选用正弦定理. (3)已知三边,求三个角,常选用余弦定理. (4)已知两边和它们的夹角,求第三边和其他两个角,常选用余弦定理. (5)已知两边和其中一边的对角,求第三边和其他两个角,常选用正弦定理. 3、利用正、余弦定理判断三角形的形状 常用方法是:①化边为角;②化角为边. 4、三角形中的三角变换 (1)角的变换 因为在△ABC 中,A+B+C=π,所以sin(A+B)=sinC ;cos(A+B)=-cosC ;tan(A+B)=-tanC 。 2 sin 2cos ,2cos 2sin C B A C B A =+=+; (2)三角形边、角关系定理及面积公式,正弦定理,余弦定理。 r 为三角形内切圆半径,p 为周长之半 (3)在△ABC 中,熟记并会证明:∠A ,∠B ,∠C 成等差数列的充分必要条件是∠B=60°;△ABC 是正三角形的充分必要条件是∠A ,∠B ,∠C 成等差数列且a ,b ,c 成等比数列.

二项式定理11种题型解题技巧

二项式定理知识点及11种答题技巧 1.二项式定理: 011()()n n n r n r r n n n n n n a b C a C a b C a b C b n N --*+=+++++∈L L , 2.基本概念: ①二项式展开式:右边的多项式叫做()n a b +的二项展开式。 ②二项式系数:展开式中各项的系数r n C (0,1,2,,)r n =???. ③项数:共(1)r +项,是关于a 与b 的齐次多项式 ④通项:展开式中的第1r +项r n r r n C a b -叫做二项式展开式的通项。用1r n r r r n T C a b -+=表示。 3.注意关键点: ①项数:展开式中总共有(1)n +项。 ②顺序:注意正确选择a ,b ,其顺序不能更改。()n a b +与()n b a +是不同的。 ③指数:a 的指数从n 逐项减到0,是降幂排列。b 的指数从0逐项减到n ,是升幂排列。各项的 次数和等于n . ④系数:注意正确区分二项式系数与项的系数,二项式系数依次是012,,,,,,.r n n n n n n C C C C C ??????项的系 数是a 与b 的系数(包括二项式系数)。 4.常用的结论: 令1,,a b x == 0122(1)()n r r n n n n n n n x C C x C x C x C x n N *+=++++++∈L L 令1,,a b x ==- 0122(1)(1)()n r r n n n n n n n n x C C x C x C x C x n N * -=-+-+++-∈L L 5.性质: ①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即0n n n C C =, (1) k k n n C C -= ②二项式系数和:令1a b ==,则二项式系数的和为0122r n n n n n n n C C C C C ++++++=L L , 变形式1221r n n n n n n C C C C +++++=-L L 。 ③奇数项的二项式系数和=偶数项的二项式系数和: 在二项式定理中,令1,1a b ==-,则0123(1)(11)0n n n n n n n n C C C C C -+-++-=-=L , 从而得到:02421321 11222 r r n n n n n n n n n C C C C C C C +-++???++???=++++???= ?=L ④奇数项的系数和与偶数项的系数和:

高中数学《二项式定理》公开课优秀教学设计二

二项式定理(第1课时) 一、内容和内容解析 内容:二项式定理的发现与证明. 内容解析:本节是高中数学人教A版选修2-3第一章第3节的内容.二项式定理是多项式乘法的特例,是初中所学多项式乘法的延伸,此内容安排在组合计数模型之后,随机变量及其分布之前,既是组合计数模型的一个应用,也是为学习二项分布作准备.由于二项式定理的发现,可以通过从特殊到一般进行归纳概括,在归纳概括过程中还可以用到组合计数模型,因此,这部分内容对于培养学生数学抽象与数学建模素养有着不可忽略的价值.教学中应当引起充分重视. 二、目标和目标解析 目标: (1)能通过多项式乘法,归纳概括出二项式定理内容,并会用组合计数模型证明二项式定理. (2)能从数列的角度认识二项式的展开式及其通项的规律,并能通过特例体会二项式定理的简单应用. (3)通过二项式定理的发现过程培养学生的数学抽象素养,以及用二项式定理这个模型培养学生数学建模素养. 目标解析: (1)二项式展开式是依多项式乘法获得的特殊形式,因此从多项式乘法出发去发现二项式定理符合学生的认知规律.但归纳概括的结论,如果不加以严格的证明不符合数学的基本要求.因此,在归纳概括的过程中,用好组合模型不仅可以更自然地得到结论,还能为证明二项式定理提供方法. (2)由于二项展开式是一个复杂的多项式.如果不把其看成一个数列的和,引进数列的通项帮助理解与应用,学生很难短期内对定理有深入的认识.因此,通过一些特例,建立二项式展开式与数列及数列和的联系,是达成教学目标的一个重要途径.(3)数学核心素养是数学教学的重要目标,但数学核心素养需要在每一堂课中寻找机会去落实.在二项式定理的教学中,从特殊的二项式展开式的特征归纳概括一般二项式展开式的规律是进行数学抽象教学的很好机会;同时利用组合计数模型证明二项式定理,以及利

高中数学完整讲义——二项式定理6.二项式定理的应用3近似计算或估计

高中数学讲义 1 思维的发掘 能力的飞跃 1.二项式定理 ⑴二项式定理 () ()011222...n n n n n n n n n n a b C a C a b C a b C b n --*+=++++∈N 这个公式表示的定理叫做二项式定理. ⑵二项式系数、二项式的通项 011222...n n n n n n n n n C a C a b C a b C b --++++叫做()n a b +的二项展开式,其中的系数()0,1,2,...,r n C r n =叫 做二项式系数,式中的r n r r n C a b -叫做二项展开式的通项,用1r T +表示,即通项为展开式的第1r +项:1r n r r r n T C a b -+=. ⑶二项式展开式的各项幂指数 二项式()n a b +的展开式项数为1n +项,各项的幂指数状况是 ①各项的次数都等于二项式的幂指数n . ②字母a 的按降幂排列,从第一项开始,次数由n 逐项减1直到零,字母b 按升幂排列,从第一项起,次数由零逐项增1直到n . ⑷几点注意 ①通项1r n r r r n T C a b -+=是()n a b +的展开式的第1r +项,这里0,1,2,...,r n =. ②二项式()n a b +的1r +项和()n b a +的展开式的第1r +项r n r r n C b a -是有区别的,应用二项式定理时, 其中的a 和b 是不能随便交换的. ③注意二项式系数(r n C )与展开式中对应项的系数不一定相等,二项式系数一定为正,而项的系 数有时可为负. ④通项公式是()n a b +这个标准形式下而言的,如()n a b -的二项展开式的通项公式是 ()11r r n r r r n T C a b -+=-(只须把b -看成b 代入二项式定理)这与1r n r r r n T C a b -+=是不同的,在这里对应项的二项式系数是相等的都是r n C ,但项的系数一个是()1r r n C -,一个是r n C ,可看出,二项式系数与项的系 知识内容 近似计算或者估计

正弦定理知识点总结与复习

在△ABC ,已知A =60°,B =45°,c =2,解三角形 [解题过程] 在△ABC 中,C =180°-(A +B ) =180°-(60°+45°)=75°. sin 75°=sin(45°+30°) =sin 45°cos 30°+cos 45°sin 30° =22×32+22×12 =2(3+1)4=6+24 根据正弦定理: a =c sin A sin C =2sin 60°sin 75°=2×3 2 2(3+1)4=6(3-1)=32- 6, b = c sin B sin C =2sin 45° sin 75°=2× 222(3+1) 4 =2(3-1). [题后感悟] 已知两角和一边(如A ,B ,c ),求其他角与边的步骤是: (1)C =180°-(A +B ); (2)用正弦定理,a =c sin A sin C ; (3)用正弦定理,b =c sin B sin C . ,

思路点拨: 已知两边及一边对角,先判断三角形解的情况, ∵a>b ,∴A>B ,B 为锐角,故有一解,先由正弦定理求角B , 然后由内角和定理求C ,然后再由正弦定理求边 c. 1.(1)已知A =45°,B =30°,c =10.求b . (2)在△ABC 中,若A =105°,B =45°,b =22,求c . 解析: (1)∵A +B +C =180,∴C =105°. 又∵sin 105°=sin(45°+60°) =sin 45°·cos 60°+cos 45°·sin 60° =2+64, ∴b =c sin B sin C =10×sin 30° sin 105°=10× 122+64 =5(6-2). (2)∵A +B +C =180°,∴C =30°. 又∵b sin B =c sin C , ∴c =b sin C sin B =22×sin 30°sin 45°= 22×12 2 2 =2. 在△ABC 中,A =60°,a =43,b =42,解三角形.

二项式定理知识点总结复习过程

二项式定理知识点总 结

二项式定理 一、二项式定理: ()n n n k k n k n n n n n n b C b a C b a C a C b a +++++=+--ΛΛ110(*∈N n )等号右边的多项式 叫做()n b a +的二项展开式,其中各项的系数k n C )3,2,1,0(n k ???=叫做二项式系数。 对二项式定理的理解: (1)二项展开式有1+n 项 (2)字母a 按降幂排列,从第一项开始,次数由n 逐项减1到0;字母b 按升幂排列,从第一项开始,次数由0逐项加1到n (3)二项式定理表示一个恒等式,对于任意的实数b a ,,等式都成立,通过对b a ,取不同的特殊值,可为某些问题的解决带来方便。在定理中假设 x b a ==,1,则()n n n k n k n n n n n x C x C x C x C x +++++=+-ΛΛ101(*∈N n ) (4)要注意二项式定理的双向功能:一方面可将二项式()n b a +展开,得到一个多项式;另一方面,也可将展开式合并成二项式()n b a + 二、二项展开式的通项:k k n k n k b a C T -+=1 二项展开式的通项k k n k n k b a C T -+=1)3,2,1,0(n k ???=是二项展开式的第1+k 项,它体现了二项展开式的项数、系数、次数的变化规律,是二项式定理的核心,它在求展开式的某些特定项(如含指定幂的项、常数项、中间项、有理项、系数最大的项等)及其系数等方面有广泛应用 对通项k k n k n k b a C T -+=1)3,2,1,0(n k ???=的理解: (1)字母b 的次数和组合数的上标相同 (2)a 与b 的次数之和为n (3)在通项公式中共含有1,,,,+k T k n b a 这5个元素,知道4个元素便可求第5个元素 例1.n n n n n n C C C C 13 21393-++++Λ等于 ( ) A .n 4 B 。n 43? C 。134-n D.314-n 例2.(1)求7(12)x +的展开式的第四项的系数;

二项式定理专题复习教学内容

二项式定理知识点、题型与方法归纳 一.知识梳理 1.二项式定理:)()(*110N n b C b a C b a C a C b a n n n r r n r n n n n n n ∈+++++=+--ΛΛ.其中) ,,2,1,0(n r C r n Λ=叫二项式系数.式中的r r n r n b a C -叫二项展开式的通项,用1+r T 表示,即通项r r n r n r b a C T -+=1. 2.二项展开式形式上的特点: (1)项数为n +1; (2)各项的次数都等于二项式的幂指数n ,即a 与b 的指数的和为n . (3)字母a 按降幂排列,从第一项开始,次数由n 逐项减1直到零;字母b 按升幂排列,从第一项起,次数由零逐项增1直到n . (4)二项式的系数从C 0n ,C 1 n ,一直到C n - 1n ,C n n . 3.二项式系数的性质: (1)对称性:与首末两端“等距离”的两个二项式系数相等.即r n r n n C C -= (2)增减性与最大值:二项式系数C k n ,当k <n +1 2时,二项式系数逐渐增大.由对称性知它的后半部分是逐渐减小的;当n 是偶数时,中间一项2n n C 取得最大值;当n 是奇数时,中间两项1122n n n n C C -+=取得最大值. (3)各二项式系数和:C 0n +C 1n +C 2n +…+C r n +…+C n n =2n ; C 0n +C 2n +C 4n +…=C 1n +C 3n +C 5 n +…=2 n - 1. 一个防范 运用二项式定理一定要牢记通项T r +1=C r n a n -r b r ,注意(a +b )n 与(b +a )n 虽然相同,但具体到它们展开式的某一项时是不同的,一定要注意顺序问题,另外二项展开式的二项式系数与该项的(字母)系数是两个不同的概念,前者只指C r n ,而后者是字母外的部分.前者只与n 和r 有关,恒为正,后者还与a ,b 有关,可正可负. 两种应用 (1)通项的应用:利用二项展开式的通项可求指定的项或指定项的系数等. (2)展开式的应用:利用展开式①可证明与二项式系数有关的等式;②可证明不等式;③可证明整除问题;④可做近似计算等. 三条性质 (1)对称性;(2)增减性;(3)各项二项式系数的和; 二.题型示例 【题型一】求()n x y +展开特定项 例1:(1+3x )n (其中n ∈N *且n ≥6)的展开式中x 5与x 6的系数相等,则n =( ) B A.6 B.7 C.8 D.9

正弦定理和余弦定理知识点总结附答案

高频考点一 利用正弦定理、余弦定理解三角形 例1、(1)在△ABC 中,已知a =2,b =6,A =45°,则满足条件的三角形有( ) A .1个 B .2个 C .0个 D .无法确定 (2)在△ABC 中,已知sin A ∶sin B =2∶1,c 2 =b 2 +2bc ,则三内角A ,B ,C 的度数依次是________. (3)(2015·广东)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =3,sin B =1 2 , C =π6 ,则b =________. 答案 (1)B (2)45°,30°,105° (3)1 解析 (1)∵b sin A =6× 2 2 =3,∴b sin A

【变式探究】(1)已知在△ABC 中,a =x ,b =2,B =45°,若三角形有两解,则x 的取值范围是( ) A .x >2 B .x <2 C .2<x <2 2 D .2<x <23 (2)在△ABC 中,A =60°,AC =2,BC =3,则AB =________. 答案 (1)C (2)1 解析 (1)若三角形有两解,则必有a >b ,∴x >2, 又由sin A =a b sin B =x 2×2 2 <1, 可得x <22, ∴x 的取值范围是2<x <2 2. (2)∵A =60°,AC =2,BC =3, 设AB =x ,由余弦定理,得 BC 2=AC 2+AB 2-2AC ·AB cos A , 化简得x 2 -2x +1=0, ∴x =1,即AB =1. 高频考点二 和三角形面积有关的问题 例2、(2015·浙江)在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c ,已知A =π 4 , b 2-a 2=12 c 2. (1)求tan C 的值; (2)若△ABC 的面积为3,求b 的值. 解 (1)由b 2-a 2 =12 c 2及正弦定理得

二项式定理考点大全(详解)

二项式定理高考知识点总结 1.求103 )1 (x x -展开式中的常数项 2.已知9)2(x x a -的展开式中3x 的系数为4 9,求常数a 的值 3.求84)21(x x +展开式中系数最大的项; 4.若n x x )21 (-+的展开式的常数项为-20.求n .

5求当25 (32)x x ++的展开式中x 的一次项的系数? 6.已知n x x )21(4?+ 的展开式前三项中的x 的系数成等差数列. (1)求展开式中所有的x 的有理项; (2)求展开式中系数最大的项. 7. 已知二项式n x x )2(2 -,(n ∈N *)的展开式中第5项的系数与第3项的系数的比是10:1, (1)求展开式中各项的系数和 (2)求展开式中系数最大的项以及二项式系数最大的项 8.求6 998.0的近似值,使误差小于001.0;

9.求证:15151 -能被7整除。 10.求证:32n + 2-8n-9能被64整除. 11 求9192除以100的余数. 12 求证:C n 0+21C n 1+31C n 2+…+11+n C n n =1 1+n (2n+1-1). 13 计算c C C C n n n n n n n 3)1( (279313) 2 1 -++-+-; 14.求值:

15、已知数列{a n }(n 为正整数)是首项为a 1,公比为q 的等比数列。 (1)求和:;,3 342331320312231220 2 1C a C a C a C a C a C a C a -+-+- (2)由(1)的结果归纳概括出关于正整数n 的一个结论,并加以证明; (3)设q ≠1,S n 是等比数列{an }的前n项和,求: . )1(134231201n n n n n n n n C S C S C S C S C S +-++-+- 16.规定! )1()1(m m x x x C m x +--= ,其中x ∈R ,m 是正整数,且10=x C ,这是组合数m n C (n 、 m 是正整数,且m ≤n )的一种推广. (1) 求3 15-C 的值; (2) 设x >0,当x 为何值时,213)(x x C C 取得最小值? (3) 组合数的两个性质; ①m n n m n C C -=. ②m n m n m n C C C 11+-=+. ?是否都能推广到m x C (x∈R,m 是正整数)的情形?若能推广,则写出推广的形式并给出证明;若不能,则说明理由.

排列组合与二项式定理知识点

排列组合与二项式定理知识点

第一、第二……第n 位上选取元素的方法都是m 个,所以从m 个不同元素中,每次取出n 个元素可重复排列数m·m·… m = m n .. 例如:n 件物品放入m 个抽屉中,不限放法,共有多少种不同放法? (解:n m 种) 二、排列. 1. ⑴对排列定义的理解. 定义:从n 个不同的元素中任取m(m ≤n )个元素,按照一定顺序...... 排成一列,叫做从n 个不同元素中取出m 个元素的一个排列. ⑵相同排列. 如果;两个排列相同,不仅这两个排列的元素必须完全相同,而且排列的顺序也必须完全相同. ⑶排列数. 从n 个不同元素中取出m (m≤n )个元素排成一列,称为从n 个不同元素中取出m 个元素的一个排列. 从n 个不同元素中取出m 个元素的一个排列数,用符号m n A 表示. ⑷排列数公式: ) ,,()! (! )1()1(N m n n m m n n m n n n A m ∈≤-= +--=Λ 注意:!)!1(!n n n n -+=? 规定0! = 1 111--++=?+=m n m n m n m m m n m n mA A C A A A 1 1 --=m n m n nA A 规定10 ==n n n C C

2. 含有可重元素...... 的排列问题. 对含有相同元素求排列个数的方法是:设重集S 有k 个不同元素a 1,a 2,…...a n 其中限重复数为n 1、n 2……n k ,且n = n 1+n 2+……n k , 则S 的排 列个数等于! !...!!2 1 k n n n n n =. 例如:已知数字3、2、2,求其排列个数3 ! 2!1)!21(=+=n 又例如:数字5、5、5、求其排列个数?其排列 个数1!3!3==n . 三、组合. 1. ⑴组合:从n 个不同的元素中任取m (m≤n )个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合. ⑵组合数公式: )!(!!!)1()1(m n m n C m m n n n A A C m n m m m n m n -= +--==Λ ⑶两个公式:①;m n n m n C C -= ②m n m n m n C C C 11+-=+ ①从n 个不同元素中取出m 个元素后就剩下n-m 个元素,因此从n 个不同元素中取出 n-m 个元素的方法是一一对应的,因此是一样多的就是说从n 个不同元素中取出n-m 个元素的唯一的一个组合. (或者从n+1个编号不同的小球中,n 个白球一

二项式定理知识点总结

二项式定理知识点总结 1.二项式定理公式: 011()()n n n r n r r n n n n n n a b C a C a b C a b C b n N --*+=+++++∈L L , 2.基本概念: ①二项式展开式:右边的多项式叫做()n a b +的二项展开式。 ②二项式系数:展开式中各项的系数r n C (0,1,2,,)r n =???. ③项数:共(1)r +项,是关于a 与b 的齐次多项式 ④通项:展开式中的第1r +项r n r r n C a b -叫做二项式展开式的通项。用1r n r r r n T C a b -+=表示。 3.注意关键点: ①项数:展开式中总共有(1)n +项。 ②顺序:注意正确选择a ,b ,其顺序不能更改。()n a b +与()n b a +是不同的。 ③指数:a 的指数从n 逐项减到0,是降幂排列。b 的指数从0逐项减到n ,是升幂排列。 各项的次数和等于n . ④系数:注意正确区分二项式系数与项的系数,二项式系数依次是0 1 2 ,,,,,,. r n n n n n n C C C C C ??????项的系数是a 与b 的系数(包括二项式系数)。 4.常用的结论: 令1,,a b x == 0122(1)()n r r n n n n n n n x C C x C x C x C x n N * +=++++++∈L L

令1,,a b x ==- 0122(1)(1)()n r r n n n n n n n n x C C x C x C x C x n N *-=-+-+++-∈L L 5.性质: ①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即 0,n n n C C =·1 k k n n C C -= ②二项式系数和:令1a b ==,则二项式系数的和为0122r n n n n n n n C C C C C ++++++=L L , 变形式1221r n n n n n n C C C C +++++=-L L 。 ③奇数项的二项式系数和=偶数项的二项式系数和: 在二项式定理中,令1,1a b ==-,则0123(1)(11)0n n n n n n n n C C C C C -+-++-=-=L , 从而得到:0242132111222 r r n n n n n n n n n C C C C C C C +-++???++???=++++???= ?=L ④奇数项的系数和与偶数项的系数和: 00112220120120011222021210 01230123()()1, (1)1,(1)n n n n n n n n n n n n n n n n n n n n n n n n n n n n a x C a x C a x C a x C a x a a x a x a x x a C a x C ax C a x C a x a x a x a x a x a a a a a a x a a a a a a ----+=++++=+++++=++++=++++=++++=+---------=--+-++=-----L L L L n n L n n n L 024135(1)(1),() 2 (1)(1),() 2 n n n n n n a a a a a a a a a a a a ----++-++++=+---+++=n n n n L n n n n n n n n n n L n n n n n n n ⑤二项式系数的最大项: 如果二项式的幂指数n 是偶数时,则中间一项的二项式系数21 2n n n C T +=取得最大值。

正弦定理和余弦定理知识点与题型归纳

正弦定理和余弦定理知识点与题型归纳 Pleasure Group Office【T985AB-B866SYT-

●高考明方向 掌握正弦定理、余弦定理, 并能解决一些简单的三角形度量问题. ★备考知考情 1.利用正、余弦定理求三角形中的边、角问题是高考 考查的热点. 2.常与三角恒等变换、平面向量相结合出现在解答题 中,综合考查三角形中的边角关系、三角形形状的 判断等问题. 3.三种题型都有可能出现,属中低档题. 一、知识梳理《名师一号》P62 知识点一 正弦定理 (其中R 为△ABC 外接圆的半径) 变形1:2sin ,2sin ,2sin ,===a R A b R B c R C 变形2:sin ,sin ,sin ,222= ==a b c A B C R R R 变形3:∶∶∶∶sinA sinB sinC=a b c 注意:(补充) 关于边的齐次式或关于角的正弦的齐次式 均可利用正弦定理进行边角互化。 知识点二 余弦定理

222 222222222222222cos ,22cos ,2cos ,cos ,22cos .cos .2?+-=??=+-?+-??=+-?=??=+-???+-?=?? b c a A bc a b c bc A a c b b a c ac B B ac c a b ab C a b c C ab 注意:(补充) (1)关于边的二次式或关于角的余弦 均可考虑利用余弦定理进行边角互化。 (2)勾股定理是余弦定理的特例 (3)在?ABC 中,222090?? <+?<

(完整版)二项式定理学生讲义

二项式定理 【2013年高考会这样考】 1.二项式定理是高考重点考查内容之一.分值一般为5~9分.考查比较稳定,试题难度起伏不大;题目一般为选择、填空题. 2.高考主要考查二项展开式和通项的应用,具体会涉及到求特定的项或系数,以及二项式系数等问题,是高考的必考点之一。 【复习指导】 二项式定理的核心是其展开式的通项公式,复习时要熟练掌握这个公式,注意二项式定理在解决有关组合数问题中的应用. 基础梳理 1.二项式定理 (a +b )n =C 0 n a n +C 1 n a n -1 b +…+C r n a n -r b r +…+C n n b n (n ∈N * )这个公式所表示的定理叫二项式定理,右边的多项式叫(a +b )n 的 .其中的系数C r n (r =0,1,…,n )叫 系数. 式中的C r n a n -r b r 叫二项展开式的 ,用T r +1表示,即通项T r +1=C r n a n -r b r . 2.二项展开式形式上的特点 (1)项数为 . (2)各项的次数都等于二项式的幂指数n ,即a 与b 的指数的和为 _______ (3)字母a 按 排列,从第一项开始,次数由n 逐项减1直到零;字母b 按 排列,从第一项起,次数由零逐项增1直到n . (4)二项式的系数从C 0 n ,C 1 n ,一直到C n -1n ,C n n . 3.二项式系数的性质 (1)对称性:与首末两端“等距离”的两个二项式系数 .即C r n =C n -r n . (2)增减性与最大值:二项式系数C k n ,当k < n +1 2 时,二项式系数逐渐 .由对称性知它的后 半部分是逐渐减小的;当n 是偶数时,中间一项T 12 +n 二项式系数取得最大值;当n 是奇数时, 中间两项1 2 1 2 1n ,+++n T T 的二项式系数相等且最大。 (3)各二项式系数和:C 0 n +C 1 n +C 2 n +…+C r n +…+C n n =_____; C 0 n +C 2 n +C 4 n +…=C 1 n +C 3 n +C 5 n +…=________.

排列组合 二项式定理知识点

排列组合二项定理考试内容: 分类计数原理与分步计数原理. 排列.排列数公式. 组合.组合数公式.组合数的两个性质. 二项式定理.二项展开式的性质. 考试要求: (1)掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题. (2)理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题. (3)理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题. (4)掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题. 排列组合二项定理知识要点 一、两个原理. 1. 乘法原理、加法原理. 2. 可.以有 ..重复 ..的排列. ..元素 从m个不同元素中,每次取出n个元素,元素可以重复出现,按照一定的顺序排成一排,那么第一、第二……第n位上选取元素的方法都是m个,所以从m个不同元素中,每次取出n个元素可重复排列数m·m·… m = m n.. 例

如:n 件物品放入m 个抽屉中,不限放法,共有多少种不同放法? (解: n m 种) 二、排列. 1. ⑴对排列定义的理解. 定义:从n 个不同的元素中任取m(m ≤n )个元素,按照一定顺序......排成一列,叫做从n 个不同元素中取出m 个元素的一个排列. ⑵相同排列. 如果;两个排列相同,不仅这两个排列的元素必须完全相同,而且排列的顺序也必须完全相同. ⑶排列数. 从n 个不同元素中取出m (m≤n )个元素排成一列,称为从n 个不同元素中取出m 个元素的一个排列. 从n 个不同元素中取出m 个元素的一个排列数,用符号m n A 表示. ⑷排列数公式: 注意:!)!1(!n n n n -+=? 规定0! = 1 111--++=?+=m n m n m n m m m n m n mA A C A A A 11--=m n m n nA A 规定10 ==n n n C C 2. 含有可重元素...... 的排列问题. 对含有相同元素求排列个数的方法是:设重集S 有k 个不同元素a 1,a 2,…...a n 其中限重复数为n 1、n 2……n k ,且n = n 1+n 2+……n k , 则S 的排列个数等于! !...!! 21k n n n n n = . 例如:已知数字3、2、2,求其排列个数3! 2!1)!21(=+=n 又例如:数字5、5、5、求其排列个数?其排列个数1! 3!3==n .

高中数学二项式定理全章复习

第十一讲 二项式定理 课程类型:□复习 □预习 □习题 针对学员基础:□基础 □中等 □优秀 1.二项式定理的定义; 2.二项式定理的通项公式; 3.二项式定理的应用. 1.能用计数原理证明二项式定理(重点); 2.能记住二项式定理和二项展开式的通项公式(重点); 3.能解决与二项式定理有关的简单问题(重点、难点). 【知识与方法】 一.二项式定理的定义 在44443 444421个 n n b a b a b a b a )())(()(+???++=+中,每个括号都能拿出a 或b ,所以每个括号有2种选择,n 个括号 就是n 2种情况.22-n b a 这一项,表达的意思是_________________________;所以,22-n b a 共有________个.

(a +b )n 的二项展开式本来共有_______项,合并之后共有_______项,其中各项的系数______________叫做二项式系数. 二.二项展开式的通项 (a +b )n 的二项展开式的通项公式为__________.. 注意:1.r n r C T 与1+的关系,例如第5项,应该是4n C ; 2.二项式的展开式是按照前项降幂排列,例如10)1(+x 与10)1(x +中的第4项是不同的; 3.a 的指数从n 逐项减到0,是降幂排列。b 的指数从0逐项减到n ,是升幂排列。各项的次数和等 于n ; 4.注意正确区分二项式系数与项的系数. 三.二项式系数的基本性质 四.展开式的二项式系数和 1.(a +b )n 展开式的各二项式系数和:C 0n +C 1n +C 2n +…+C n n =_______. 2.偶数项的二项式系数的和等于奇数项的二项式系数的和,即C 0 n +C 2 n +C 4 n +…=C 1 n +C 3 n +C 5 n +…=_______. 五.展开式的系数和 若f (x )=a 0+a 1x +a 2x 2 +…+a n x n ,则 f (x )展开式中各项系数之和为_______,奇数项系数之和为a 0+ a 2+a 4+…= 2 ) 1()1(-+f f ,偶数项系数之和为a 1+a 3+a 5+…=________________. 【例题与变式】 题型一 通项公式及其应用 类型一 二项式定理的原理应用 【例1】(2015·全国卷Ⅰ)(x 2 +x +y )5 的展开式中,x 5y 2 的系数为( ) A .10 B .20 C .30 D .60 【例2】(2018?滨州二模)52)32(--x x 的展开式中,x 的系数为________. 【变式1】(2018?濮阳一模)82017 )11(++ x x 的展开式中,x 3 的系数为________. 【变式2】(2018?龙岩模拟)已知二项式4)21 1(x x -+ ,则展开式的常数项为( ) A .-1 B .1 C .-47 D .49 类型二 单括号型 【例4】(2018?内江三模)4)2 (x x -展开式中的常数项为( )

经典正弦定理、余弦定理知识点总结及证明

正弦定理、余弦定理知识点总结及证明方法 ——王彦文青铜峡一中 1.掌握正弦定理、余弦定理,并能解决一 些简单的三角形度量问题. 2.能够运用正弦定理、余弦定理等知识和 方法解决一些与测量和几何计算有关的实际问 题. 主要考查有关定理的应用、三角恒等变换 的能力、运算能力及转化的数学思想.解三角 形常常作为解题工具用于立体几何中的计算或 证明,或与三角函数联系在一起求距离、高度 以及角度等问题,且多以应用题的形式出现. 1.正弦定理 (1)正弦定理:在一个三角形中,各边和它 所对角的正弦的比相等,即.其 中R是三角形外接圆的半径. (2)正弦定理的其他形式: ①a =2R sin A,b=,c =; ②sin A=a 2R ,sin B=, sin C=; ③a∶b∶c=______________________. 2.余弦定理 (1)余弦定理:三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍.即 a2=,b2=, c2= . 若令C=90°,则c2=,即为勾股定理. (2)余弦定理的变形:cos A =,cos B=,cos C= . 若C为锐角,则cos C>0,即a2+b2______c2;若C为钝角,则cos C<0,即a2+b2______c2.故由a2+b2与c2值的大小比较,可以判断C为锐角、钝角或直角. (3)正、余弦定理的一个重要作用是实现边角____________,余弦定理亦可以写成sin2A =sin2B+sin2C-2sin B sin C cos A,类似地,sin2B=____________;sin2C=__________________.注意式中隐含条件A+B +C=π. 3.解斜三角形的类型 (1)已知三角形的任意两个角与一边,用____________定理.只有一解. (2)已知三角形的任意两边与其中一边的对角,用____________定理,可能有___________________.如在△ABC中,已知a, A为锐角 A为钝角 或直角图 形 关 系 式 a= b sin A b sin Ab 解 的 个 数 ①②③④ 解时,只有一解. (4)已知两边及夹角,用____________定理,必有一解. 4.三角形中的常用公式或变式 (1)三角形面积公式S△===____________=____________=____________.其中R,r分别为三角形外接圆、内切圆半径. (2)A+B+C=π,则A=__________, A 2 =__________,从而sin A=____________, cos A=____________,tan A=____________;

相关主题
文本预览
相关文档 最新文档