当前位置:文档之家› 《理论力学》--第十三章 达朗贝尔原理(动静法)

《理论力学》--第十三章 达朗贝尔原理(动静法)

《理论力学》--第十三章 达朗贝尔原理(动静法)
《理论力学》--第十三章 达朗贝尔原理(动静法)

14达朗贝尔原理(动静法)

第14章 达朗贝尔原理(动静法) 14-1 图示由相互铰接的水平臂连成的传送带,将圆柱形零件从一高度传送到另一个高度。设零件与臂之间的摩擦系数f s = 0.2。求:(1)降落加速度a 为多大时,零件不致在水平臂上滑动;(2)比值h / d 等于多少时,零件在滑动之前先倾倒。 解:取圆柱形零件为研究对象,作受力分析,并虚加上零件的惯性力F I 。 (1)零件不滑动时,受力如图(a ),它满足以下条件: 摩擦定律 N s F f F s ≤ (1) 达朗伯原理 0=∑x F 030sin I s =?-F F (2) 0=∑y F 030cos I N =-?+mg F F (3) 把F I = ma 代入式(1)、(2)、(3),解得2m/s 92.2≤a 2)零件不滑动而倾倒时,约束反力F N 已集中到左侧A 点 如图(b ),零件在惯性力作用下将向左倾倒。 倾倒条件是 0≥∑A M 即 02 30sin )30cos (2I I ≥?+?+-h F F mg d (4) 以F I = ma 代入式(4),解得 a a g d h 32-≥ 此时零件仍满足式(1),(2),(3),将其结果2m/s 92.2≤a 代入上式 得 5≥d h 加速度为 t l r t r x a B x ωωωω2222 cos cos --==&& 取重物为研究对象,并虚加惯性力F I ,受力如图(b )。 )2cos cos (2 22I t l r t r m ma F x x ωωωω+=-= 按达朗伯原理有 0 ,0I T =++-=∑F mg F F x 故金属杆受之拉力 )2cos (cos 2T t l r t r m mg F ωωω++= 14-3 图示矩形块质量m 1 = 100 kg ,置于平台车上。车质量为m 2 = 50 kg ,此车沿光滑的水平面运动。车和矩形块在一起由质量为m 3的物体牵引,使之作加速运动。设物块与车之间的摩擦力足够阻止相互滑动,求能够使车加速运动而m 1块不倒的质量为m 3的最大值,以及此时车的加速度大小。 解:取车与矩形块为研究对象如图(a )。 惯性力 F I = (m 1 + m 2 ) a = 150 a 。 由动静法 a F F F F x 150 , 0,0T I T ==-=∑ 取矩形块为研究对象,欲求使车与矩形块一起 加速运动而m 1块不倒的m 3最大值,应考虑在此时 矩形块受车的约束反力F N 已集中到左侧A 点,如图 (b ),且矩形块惯性力F I1 = m 1a 。 由动静法,不翻倒的条件为:

数项级数的敛散性判别法

第六讲 数项级数的敛散性判别法 §1 柯西判别法及其推广 比较原理适用于正项级数,高等数学中讲过正项级数的比较原理: 比较原理I :设 1 n n u ∞=∑,1 n n v ∞ =∑都是正项级数,存在0c >,使 (1,2,3,...)n n u cv n ≤= (i ) 若 1 n n v ∞ =∑收敛,则 1 n n u ∞ =∑也收敛;(ii ) 若 1 n n u ∞ =∑发散,则 1 n n v ∞ =∑也发散. 比较原理II (极限形式)设 1 n n u ∞ =∑,1 n n v ∞ =∑均为正项级数,若 lim (0,)n n n u l v →∞=∈+∞ 则 1 n n u ∞=∑、1 n n v ∞ =∑同敛散. 根据比较原理,可以利用已知其敛散性的级数作为比较对象来判别其它 级数的敛散性.柯西判别法和达朗贝尔判别法是以几何级数作为比较对象而 得到的审敛法.下面用比较判别法推出更宽泛的柯西判别法. 定理1(柯西判别法1)设 1 n n u ∞ =∑为正项级数, (i )若从某一项起(即存在N ,当n N > 1q ≤<(q 为常数), 则 1 n n u ∞ =∑收敛; (ii 1≥,则1 n n u ∞ =∑发散. 证(i )若当n N > 1q ≤<,即n n u q ≤,而级数 1 n n q ∞ =∑收敛, 根据比较原理I 知级数 1 n n u ∞ =∑也收敛. (ii ) 1≥,则1n u ≥,故l i m 0n n u →∞ ≠,由级数收敛的必要条件知 1 n n u ∞ =∑

发散.定理证毕. 定理2(柯西判别法2) 设 1 n n u ∞ =∑ 为正项级数,n r =, 则:(i )当1r <时,1 n n u ∞ =∑收敛;(ii ) 当1r >(或r =+∞)时,1 n n u ∞ =∑发散;(iii )当1r =时,法则失效. 例1 判别下列正项级数的敛散性 23123(1)()()()357 21 n n n +++ +++;n n n e ∞ -∑n=1 (2) n n x α∞ ∑n=1 (3) (α为任何实数,0x >). 解 (1) 因为11 2 n r ==<,所以原级数收敛. (2) 因为lim n n n r e →∞===∞,所以原级数发散. (3) 对任意α,n r x ==.当01x <<时收敛;当1x >时发散;当1x =时, 此时级数是p -级数,要对p α=-进行讨论,当1α->,即1α<-时收敛;当1 α- ≤时,即1α ≥-时发散. 例2 判别级数11[(1)]3 n n n n ∞ =+-∑的敛散性. 解 由于 (1)lim 3 n n n n →∞-== 不存在,故应用定理2 无法判别级数的敛散性.又因为 (1)1133 n q -==≤=< 由定理1(柯西判别法1)知原级数收敛. 例3(98考研)设正项数列{}n a 单调减少,且1(1)n n n a ∞ =-∑发散,试问级数111n n n a ∞ =?? ?+?? ∑是否收敛?并说明理由.

06第六讲 正项级数的比式判别法

数学分析第十二章数项级数正项级数的比式判别法 第六讲

数学分析第十二章数项级数比式判别法和根式判别法 本段所介绍的两个方法是以等比级数作为比较对象而得到的,特征就能作出判断,不需要与已知级数进行比较.但在使用时只要根据级数一般项本身的

数学分析第十二章数项级数 定理12.7(达朗贝尔判别法,或比式判别法) 则级数n u ∑收敛; >0(ii),n N 若对一切成立不等式 11,(6) n n u u +≥. n u ∑则级数发散1,(5)n n u q u +≤>0(i),n N 若对一切成立不等式0n u N ∑设为正项级数,且存在某正整数及常数01. q q <<()

数学分析第十二章数项级数把前n -1个不等式按项相乘后,得到 --???≤132121 ,n n n u u u q u u u 或者由于当0 < q < 1时,-∑1,n q 等比级数收敛根据比较 原则及上述不等式可得. n u ∑级数收敛证+≤≥1(i)1n n u q n u 不妨设不等式对一切成立,于是有21,u q u ≤32u q u ≤,, 1,.n n u q u -≤ 11. n n u u q -≤

数学分析第十二章数项级数 0n N ≥因为当时,(ii )1n n u u +≥1n u -≥00, N u ≥≥> 从而 因此所以级数发散.00lim ,n N n u u →∞ ≥>

数学分析第十二章数项级数 推论1(比式判别法的极限形式) 若n u ∑为正项级数,且1lim ,(7) n n n u q u +→∞=则(i)1,; n q u <∑当时级数收敛(ii)1,. n q q u >=+∞∑当或时级数发散证由(7)式, 对任意取定的正数<-(1),q ε存在正数当n > N 时, 有+-<<+1.n n u q q u εεN ,

理论力学课后习题答案第11章达朗贝尔原理及其应用

(a ) 第11章 达朗贝尔原理及其应用 11-1 均质圆盘作定轴转动,其中图(a ),图(c )的转动角速度为常数,而图(b ),图(d )的角速度不为常量。试对图示四种情形进行惯性力的简化。 r , 0 ,α I ( d ) I =F , αα2 I 2 1mr J M O O = = 11-2矩形均质平板尺寸如图,质量27kg ,由两个销子 A 、 B 悬挂。若突然撤去销子B ,求在撤 去的瞬时平板的角加 速度和销子A 的约束力。 解:如图(a ):设平板的质量为m ,长和宽分别为a 、b 。 αα375.3I =?=AC m F ααα5625.0])(12 1 [222I =?++==AC m b a m J M A A ∑=0)(F A M ;01.0I =-mg M A ;2rad/s 04.47=α ∑=0x F ;0sin I =-Ax F F θ;其中:6.05 3sin ==θ N 26.956.004.47375.3=??=Ax F ∑=0y F ;0cos I =-+mg F F Ay θ;8.05 4sin ==θ N 6.1378.004.47375.38.927=??-?=Ay F 11-3在均质直角构件ABC 中,AB 、BC 两部分的质量各为3.0kg ,用连杆AD 、DE 以及绳子AE 保持在图示位置。若突然剪断绳子,求此瞬时连杆AD 、BE 所受的力。连杆的质量忽略不计,已知l = 1.0m ,φ = 30o。 解:如图(a ):设AB 、BC 两部分的质量各为m 直角构件ABC 作平移,其加速度为a = a A ,质心在O 处。 ma F 2I = ∑=0)(F O M ; 04 sin )(43 cos 4cos =+--l F F l F l F B A A B ??? (1) ∑=0AD F ; 0cos 2=-+?mg F F B A (2) 联立式(1)和式(2),得:A B F mg F 3+= 习 题 ( (

理论力学期末试题及答案

一、填空题(共15分,共 5 题,每题3 分) A 处的约束反力为: M A = ;F Ax = ;F Ay = 。 2. 已知正方形板ABCD 作定轴转动,转轴垂直于板面,A 点的速度v A =10cm/s ,加速度a A =cm/s 2,方向如图所示。则正方形板的角加速度的大小为 。 题1图 题2图 3. 图示滚压机构中,曲柄OA = r ,以匀角速度绕垂直于图面的O 轴转动,半径为R 的轮子沿水平面作纯滚动,轮子中心B 与O 轴位于同一水平线上。则有ωAB = ,ωB = 。 4. 如图所示,已知圆环的半径为R ,弹簧的刚度系数为k ,弹簧的原长为R 。弹簧的一端与圆环上的O 点铰接,当弹簧从A 端移动到B 端时弹簧所做的功为 ;当弹簧从A 端移动到C 端时弹簧所做的功为 。 题3图 题4图 5. 质点的达朗贝尔原理是指:作用在质点上的 、 和 在形式上组成平衡力系。 二、选择题(共20分,共 5 题,每题4 分) AB 的质量为m ,且O 1A =O 2B =r ,O 1O 2=AB =l ,O 1O =OO 2=l /2,若曲柄转动的角速度为ω,则杆对O 轴的动量矩L O 的大小为( )。 A. L O = mr 2ω B. L O = 2mr 2ω C. L O = 12mr 2ω D. L O = 0 2. 质点系动量守恒的条件是:( ) A. 作用于质点系上外力冲量和恒为零 B. 作用于质点系的内力矢量和为零 C. 作用于质点系上外力的矢量和为零 D. 作用于质点系内力冲量和为零 3. 将质量为m 的质点,以速度 v 铅直上抛,试计算质点从开始上抛至再回到原处的过程中质点动量的改变量:( ) A. 质点动量没有改变 B. 质点动量的改变量大小为 2m v ,方向铅垂向上 B

理论力学(机械工业出版社)第十三章达朗伯原理习题解答

习 题 13-1 如图13-16所示,一飞机以匀加速度a 沿与水平线成仰角b 的方向作直线运动。已知装在飞机上的单摆的悬线与铅垂线所成的偏角为f ,摆锤的质量为m 。试求此时飞机的加速度a 和悬线中的张力F T 。 图13-16 ma F =I 0cos sin 0 I T =-=∑β?F F F x ? βsin cos I T F F = 0sin cos 0 I T =--=∑mg F F F y β? 0sin cos sin cos I I =--mg F F β?? β 0sin ) cos(I =-+mg F ?β? mg ma =+? β?sin ) cos( ) cos(sin β?? += g a mg ma F F ) cos(cos sin cos sin cos I T β?β ?β? β+= == 13-2 球磨机的简图如图13-17所示,滚筒作匀速转动,内装钢

球及被粉碎的原料,当钢球随滚筒转到某一角度f 时,将脱离筒壁作抛射运动,由于钢球的撞击,从而破碎与研磨原料。已知钢球脱离筒壁的最佳位置'4054?=?,滚筒半径R =0.6m 。试求使钢球在'4054?=?处脱离滚筒的滚筒转速。 图13-17 2n I ωmR ma F == 0cos 0 I N n =-+=∑F mg F F ? )cos (cos cos 22I N ?ω?ω?g R m mg mR mg F F -=-=-= 令0N =F 0cos 2=-?ωg R R g ?ωcos = min r/35.296 .00454cos 8.9π30cos π30π30='??=== R g n ?ω 13-3 一质量为m 的物块A 放在匀速转动的水平转台上,如图13-18所示。已知物块的重心距转轴的距离为r ,物块与台面之间的静摩擦因数为s μ。试求物块不致因转台旋转而滑出时水平转台的最大转速。 图13-18 2n I ωmr ma F == 00 N =-=∑mg F F y

理论力学(13.8)--达朗贝尔原理

第13章作业 1、已知:图示由相互铰接的水平臂连成的传送带,将圆柱形零件从一高度传送到另一个高度。设零件与臂之间的摩擦系数 f s =0.2 。试求 :(1)降落加速度 为多大时,零件不致在水平臂上滑动;(2)比值h / d 等于多少时,零件在滑动之前先倾倒。 2、已知:图示均质矩形块质量m1 =100kg ,置于平台车上。车质量为 m2 =50kg ,此车沿光滑的水平面运动。车和矩形块在一起由质量为 m3 的物体牵引,使之作加速运动。设物块与车之间的摩擦力足够阻止相互滑动。 试求:能够便车加速运动的质量 m3 的最大值,以及此时车的加速度大小。 3、已知: 图示长方形均质平板,质量为 27kg ,由两个销 A 和 B 悬挂。如果突然撤去销 B 。 试求:在撤去销 B 的瞬时平板的角加速度和销 A 的约束力。

4、已知:转速表的简化模型如图示。杆 CD 的两端各有质量为 m 的 C 球和 D 球 ,杆 CD 与转轴 AB 铰接于各自的中点,质量不计。当转轴 AB 转动且外载荷变化时,杆 CD 的转角 j 就发生变化。设 ω=0 时, φ=,且盘簧中无力。盘簧 产生的力矩 M 与转角 j 的关系为M=k(φ-),式中 k 为盘簧刚度系数。 试求: (1)角速度 ω与角 j 之间的关系;(2)当系统处于图示平面时,轴承 A , B 的约束力。 5、已知:当发射卫星实现星箭分离时,打开卫星整流罩的一种方案如图所示。先由释放机构将整流罩缓慢送到图示位置,然后令火箭加速,加速度为 a ,从而使整流罩向外转。当其质心 C 转到位置 C ′ 时, O 处铰链自动脱开,使整流罩离开火箭。设整流罩质量为 m ,对轴 O 的回转半径为 r ,质心到轴 O 的距离 OC = r 。试求:整流罩脱落时,角速度为多大 ?

《理论力学》第十三章-达朗贝尔原理

a I F F C N m 4.0m 4.0m 8.0A 第十三章 达朗贝尔原理 [习题13-1] 一卡车运载质量为1000kg 的货物以速度h km v /54=行驶。设刹车时货车作匀减速运动,货物与板间的摩擦因数3.0=s f 。试求使货物既不倾拿倒又不滑动的刹车时间。 解: 以货物为研究对象,其受力如图所示。图中, )/(1536001000540s m s m v v =? == 0=t v t t v v a o t 15 -=-= t m ma F I 15= = G f N f F s s == 虚加惯性力之后,重物在形式上“平衡”。 货物不滑动的条件是: 0=∑x F 0=-F F I 015 ≤-N f t m s N f t m s ≤15 )(1.58 .910003.01000 1515s N f m t s =???=≥

N 即货物不滑动的条件是:) (1.5s t≥ (1) 货物不倾倒(不向前倾倒)的条件是: ) (≥ ∑i A F M 8.0 4.0≥ ? - ? I F N 8.0 15 4.0≥ ? - ? t m mg 30 ≥ - t g t g 30 ≥ ) ( 06 .3 8.9 30 30 s g t= = ≥ (2) (1)(2)的通解是) (1.5s t≥。即,使货物既不倾拿倒又不滑动的刹车时间是) (1.5s t≥。[习题13-2] 放在光滑斜面上的物体A,质量kg m A 40 =,置于A上的物体B,质量kg m B 15 =;力kN F500 =,其作用线平行于斜面。为使A、B两物体不发生相对滑动, 试求它们之间的静摩擦因素 s f的最小值。 解:以A、B构成的质点和系为研究对象,其受力如图所示。在质心加上惯性力后,在形式上构成平面一般“平衡”力系。 = ∑x F 30 sin ) (0= + - -g m m F F B A I

大学理论力学十达朗贝尔原理答案

第十六章达朗伯原理 16.1已知物块与水平臂之间的摩擦系数/s = 0.2,水平臂下降加速度 为。; 求l)a为多大,物块不滑? 2)务为多大,物块在滑动之前先倾倒?解1)物块受力如图(“, 图中惯性力耳=77W,由达朗伯原理,当 物块不滑时,有主X = 0, F —Fg:5irt3O = 0 SV = 0> Fv " mg + F M COS30 = 0 F

h、1 孑鼻 泾 E6.2已知曲柄OC = rM匀角速度如转动;连杆召C = I端连有质量为櫛的物A ; 求杆AB所受的力。

解设杆长AB =趴则物 A 的运动方程为 j : = b + r cos 爷 + I cos? cos? 1 — -y ^2 sin 2 卩 j- = 6 + r cos 护 + I 1 r 2 . 2 -2 7 s,n 由达朗伯原理 SX = 0, mg - F - F* = 0 得 AH 杆的力 F = 7ti[g + nw 2( cc^

(完整版)理论力学课后习题答案第11章达朗贝尔原理及其应用

(a ) 习题11-1图 第11章 达朗贝尔原理及其应用 11-1 均质圆盘作定轴转动,其中图(a ),图(c )的转动角速度为常数,而图(b ),图(d )的角速度不为常量。试对图示四种情形进行惯性力的简化。 解:设圆盘的质量为m ,半径为r ,则如习题11-1解图: (a )2 I ωmr F =,0I =O M (b )2n I ωmr F =,αmr F =t I ,αα2I 2 3mr J M O O == (c )0I =F ,0I =O M (d )0I =F ,αα2 I 2 1mr J M O O = = 11-2矩形均质平板尺寸如图,质量27kg ,由两个销子 A 、B 悬挂。若突然撤去销子B ,求在撤去的瞬时平板的角加 速度和销子A 的约束力。 解:如图(a ):设平板的质量为m ,长和宽分别为a 、b 。 αα375.3I =?=AC m F ααα5625.0])(12 1 [222I =?++==AC m b a m J M A A ∑=0)(F A M ;01.0I =-mg M A ;2 rad/s 04.47=α ∑ =0x F ;0sin I =-Ax F F θ;其中:6.05 3sin ==θ N 26.956.004.47375.3=??=Ax F ∑=0y F ;0cos I =-+mg F F Ay θ;8.05 4sin ==θ 习题11-2图 习题11-1解图 (a ) (a )

N 6.1378.004.47375.38.927=??-?=Ay F 11-3在均质直角构件ABC 中,AB 、BC 两部分的质量各为3.0kg ,用连杆AD 、DE 以及绳子AE 保持在图示位置。若突然剪断绳子,求此瞬时连杆AD 、BE 所受的力。连杆的质量忽略不计,已知l = 1.0m ,φ = 30o。 解:如图(a ):设AB 、BC 两部分的质量各为m = 3.0kg 。 直角构件ABC 作平移,其加速度为a = a A ,质心在O 处。 ma F 2I = ∑=0)(F O M ; 04 sin )(43cos 4cos =+--l F F l F l F B A A B ??? (1) ∑=0AD F ; 0cos 2=-+?mg F F B A (2) 联立式(1)和式(2),得:A B F mg F 3+= N 38.5)13(4 1 =-=mg F A ; N 5.4538.53=?+=mg F B 11-4 两种情形的定滑轮质量均为m ,半径均为 r 。图a 中的绳所受拉力为W ;图b 中块重力为W 。 试分析两种情形下定滑轮的角加速度、绳中拉力和定滑轮轴承处的约束反力是否相同。 解:1、图(a ): ① Wr J O =a α Wr mr =a 22 1 α mr W 2a =α (1) ②绳中拉力为W (2) ③∑=0x F ,0=Ox F (3) ∑=0y F ,W F Oy = (4) 2、图(b ): ① b 2I 2 1αmr M O = (5) b I αr g W a g W F == (6) ∑=0O M ,0I I =-+W r r F M O (5)、(6)代入,得 ) 2(2b W mg r Wg +=α (7) ②绳中拉力(图c ): ∑=0y F ,W F T =+I b W W mg mg a g W W T 2b +=- = (8) ③轴承反力: ∑=0x F ,0=Ox F (9) ∑=0y F ,0I =-+W F F Oy W mg mgW F Oy 2+= (10) A B C D E l l φ φ 习题11-3图 (a ) F I F A F B a A 2m g A B C 3l /4 3l/4 φ φ O a b T I F W (a) 习题11-4图 αa F Oy F Ox F Oy F Ox αb M I O F I W a

相关主题
文本预览
相关文档 最新文档