当前位置:文档之家› 建筑结构减隔震及结构控制技术的现状和发展趋势

建筑结构减隔震及结构控制技术的现状和发展趋势

建筑结构减隔震及结构控制技术的现状和发展趋势
建筑结构减隔震及结构控制技术的现状和发展趋势

建筑结构减隔震及结构控制技术的现状和发展趋势

张建东

上传时间:2006-06-26

nantong

一、传统的抗震方法

地震是由于地面的运动,使地面上原来处于静止的建筑物受到动力作用而产生强迫振动,因而在结构中产生内力、变形和位移。经过简化后模型的动力学分析,即一次次的震害分析进行修正、补充,得到一些建筑物在地震作用下的反应机理及破坏形式,提出了一些建筑物抗争的计算方法及设计的基本原则。这些在实际应用中得到了很不错的效果。

1、概念设计的一些原则

1)总体屈服机制。例如强柱弱梁。

2)刚度与延性均衡。砌体结构中为提高延性设构造柱与圈梁,形成一个较弱的框架。

3)强度均匀。结构在平面和立面上的承载力均匀。

4)多道抗震防线。

5)强节点设计。

6)避开场地卓越周期区。

2、在此基础上作结构地震反应分析,其分析方法主要有:

①地震荷载法;

②振型分解法;

③动力时程分析法。现在还发展了push-over法、能力谱等方法。抗震设防目标也从单一的、基于生命安全的性态标准发展到基于各种性态,强调“个性”设计的设计理念。

3、传统抗震方法的缺点与不足

传统抗震结构主要利用主体结构构件屈服后的塑性变形能和滞回耗能来耗散地震能量,这使得这些区域的耗能性能变得特别重要,而一旦由于某些因素导致这些区域产生问题,将严重影响到结构的抗震性能,产生严重破坏,由于破坏部位位于主要结构构件,其修复是很难进行的。

由于传统抗震结构是以防止结构倒塌为目标,其抗震性能在很大程度上依赖于结构(构件)的延性,以往的许多研究也注重于提高结构(构件)的延性方面,却忽略了对结构损伤程度的控制。

4、传统的抗震方法在提高结构性能方面有较多困难。

传统抗震结构的耗能能力主要依赖于主体结构的延性。既要求主体结构强度高,又要求延性好,很难实现。

1)框架结构

许多研究者推荐强柱弱梁体系作为最合适的抗震框架体系。该体系可将地震输入能量分散在结构的许多部位耗散掉,甚至可以控制塑性铰出现的顺序与部位,延性对于使建筑物在罕遇地震中保存下来固然很重要,但这些预期的塑性铰区在中等程度的地震中也会产生,延性也同时应被看作是一种“破坏”。后期修复费用也很高。

2)剪力墙结构

剪力墙结构体系具有抗侧刚度大,在水平地震作用下的侧移小,其总的水平地震作用也大等特点,常见的震害一般来说为墙面的斜向裂缝或是底部楼层的水平施工缝发生水平错动,当底部屈服后,剪力墙的抗侧作用就很小,且剪力墙的耗能也基本集中与底部塑性铰区域,上部墙体对抵御强震无显著作用。而且剪力墙要承担一定的竖向荷载,因此底部的破坏也十分难修复。

3)框架-剪力墙结构

从抗震概念设计来说,框架-剪力墙结构具有了多道抗震防线。有框架和墙体组成的抗震结构中,框架的刚度小,承担的地震作用力小,而弹性极限变形值和延性却较小。整个结构在地震作用下,墙体很快超过自身的较小弹性极限变形,出现裂缝,水平承载力下降,此时框架尚未充分发挥自身的水平抗力;墙体开裂后,框架承担的地震力增大,同时由于结构刚度的变化,地震作用效应也发生了变化。但无论是剪力墙还是框架,都是主体结构的一部分,损伤坏后的修复工作都是比较困难的,而且花费也不小。

二、减振、隔震和振动控制的现状

鉴于上述传统抗震方法的缺点与不足,并在全部了解地震引起结构震动的全过程。由震源产生地震动,通过传播途径传递到结构上,从而引起结构的震动反应。通过在不同阶段采取震动方法控制措施,就成为不同的积极抗震方法。大致包括以下四点:

①震源→消震

消震是通过减弱震源震动强度达到减小结构震动的方法,由于地震源难以确定,且其规模宏大,目前还没有有效可行的措施将震源强度减弱到预定的水平。

②传播途径→隔震

隔震是通过某种装置将地震与结构隔开,其作用是减弱和改变地震动时结构作用的强度和方式,以此达到减少结构震动的目的。隔震方法主要有基底隔震和悬挂隔震两种。

③结构→被动减震

被动减震是通过采取一定的措施或附加子结构吸收和消耗地震传递给主结构的能量,达到减小结构震动的目的。被动减震方法有耗能减震,冲击减震和吸震减震。

④反应→主动减震

主动减震是根据结构的地震反应,通过地震系统地执行机,主动给结构施加控制力,达到减小结构震动的目的。

结构隔震、减震方法的研究和应用开始于60年代,70年代以来发展速度很快。这种积极的结构抗震方法与传统的消极抗震方法相比,有以下优点:

①能大大减小结构所收得的地震作用,从而可减低结构造价,提高结构抗争的可靠度。此外,隔震方法能够较准确地控制传到结构上的最大地震力,从而克服了设计结构构件时难以准确确定载荷的困难。

②能大大减小结构在地震作用下的变形,保证非结构构件不受地震破坏,从而减少震后维修费用,对于典型的现代化建筑,非结构构件(如玻璃幕墙,饰面,公用设施等)的造价甚至占整个房屋总造价的80%以上。

③隔震、减震装置即使震后产生较大的永久变形或损坏,其复位、更换、维修结构构件方便、经济。

④用于高技术精密加工设备、核工业设备等的结构物,只能用隔震、减震的方法满足严格的抗震要求。

(一)、隔震

1、基地隔震

1)夹层橡胶垫隔震装置

用于隔震装置的橡胶垫块,可用天然橡胶,也可用人工合成橡胶(氯丁胶)。为提高垫块的垂直承载力和竖向刚度,橡胶垫块一般由橡胶片与薄铜板叠合而成。

2)铅芯橡胶支座

这样就使支座具有足够的初始刚度,在风荷来和制动力等常见载荷作用下保持具有足够的刚度,以满足正常使用要求,但强地震发生时,装置柔性滑动,体系进入消能状态。

3)滚珠(或滚轴)隔震

有自复位能力的;有加铜拉杆风稳定装置;横向油压千斤顶位的。另外,还有加消能装置的,消能装置有软消能杆剪,铅挤压消能器,油阻尼器,光阻尼器等。

4)悬挂基础隔震

5)摇摆支座隔震

同原理还有踏步式隔震制作,用于细高的结构物,如烟囟、桥墩、柜体筒体建筑物等。

6)滑动支座隔震

上部结构与基础之间设置相互滑动的滑板。风载、制动力或小震时,静摩擦力使结构固结于基础上;大震时;结构水平滑动,减小地震作用,并以其摩擦阻尼消耗地震能源。

为控制滑板间的摩擦力,使之满足隔震要求;在滑板间可以加设滑层。目前常用的滑层有:涂层滑层(聚氯乙烯)、粉粒滑层(铅粒、沙粒、滑石、石墨等)。

2、悬挂隔震

悬挂隔震使将结构的全部或大部分质量悬挂起来,是地震动传递不到主体质量上,产生较小的惯性力,从而起到隔震作用。悬挂结构在桥梁、火电厂锅炉架等方面有大量应用。著名的43层香港汇丰银行新大楼采用的就是悬挂结构。

悬挂结构悬杆受力较大,须采用高强钢,而高强钢忍性差,在竖向地震作用时易拉断。为减小竖向地震作用,可在吊点设减震弹簧,并配合使用阻尼器。

3、隔震应用的注意事项:

1)隔震实际上会使原有结构的固有周期演唱,在下列情况下不宜采用隔震设计:

①基础土层不稳定;

②下部结构变性大,原有结构的固有周期比较长;

③位于软弱场地,延长周期可能引起共振;

④制作中出现负反力;

2)隔震装置必须具有足够的初始刚度,这样能满足正常使用要求。当强震发生时,装置柔性消震,体系进入消能状态。

3)隔震装置能使结构在基础面上柔性滑动,在地震来时这样必然会产生很大的位移。为减低结构的位移反应,隔震装置应提供较大的阻尼,具有较大的消能能力。

4、隔震体系的优点:

1)明显有效地减轻结构的地震反应。从振动台地震模拟试验结果及美国,日本建造的隔整结构在地震中的强震记录得知,隔振体系的结构加速度反应只相当于传统结构(基础固定)加速度反应的1/3——1/10。这种减震效果是一般传统抗震结构所望尘莫及的。从而能非常有效地保护结构物或内部设备在强地震冲击下免遭任何毁坏。

2)确保安全。在地面剧烈震动时,上部结构仍能处于正常的弹性工作状态。这既适用于一般民用建筑结构,确保居民在强地震中的绝对安全,也适用于某些重要结构物和重要设备。

3)减低房屋造价。从汕头,广州,西昌等地建造隔震房屋得知,多层隔震房屋比传统多层隔震房屋节省房屋土建造价:7度区节省3——6%,8度区节省8——14%,9度区节省15——20%。并且安全度大大提高。

4)抗震措施简单明了。抗震涉及的对象从考虑整个结构物的复杂的不明确的抗震措施转变为只考虑隔震装置,简单明了。结构物本身与一般非地震区的做法无疑,设计施工大大简化。

5)震后修复方便:地震后,只对隔震装置进行必要的检查更换。而无需考虑建筑结构物本身的修复,地震后可很快恢复正产生活或生产,这带来极明显的社会效益和经济效益。

(二)被动减震

1、耗能减震

1)结构消能减震体系的特点:

结构消能减震体系是把结构的某些非承重构件(如支撑剪力墙等)设计成消能杆剪,或在结构物的某些部位(节点或连接)装设阻尼器,在风荷载轻微地震时,这些消能杆件或阻尼器仍处于刚弹性状态,结构物仍具有足够的侧向刚度以满足正常使用要求,在强地震发生时,随着结构受力和变形的增大,这些消能杆件和阻尼器,率先进入非弹性变形状态,产生较大阻尼,大连消耗输入结构的地震能量,从而使主体结构避免进入明显的非弹性状态并迅速衰减结构的地震反应,从而保护主体结构在强地震中免遭损失。与传统的结构抗震体系相比较,它有如下的优越性:

①传统的结构抗震体系是把结构的主要承重构件(梁、柱、节点)作为消能构件,地震中受损坏的是这些承重构件,甚至导致房屋倒塌。而消能减震体系则是以非承重构件作为消能构件或另设阻尼器,他们的损坏过程是保护主体结构的过程,所以是安全可靠的。

②震后易于修复或更换,是建筑结构物迅速恢复使用。

③可利用结构的抗侧力构件(支撑、剪力墙等)作为消能杆件,无需专设。

④有效地衰减结构的地震反应。

由于上述的优越性,消能减震体系被广泛用于高层建筑的抗震,高耸构筑物(塔、架等)的抗震或抗风,单层工业厂房排架纵向抗震,管线系统减震保护等。

2)结构消能减震体系的设计和工程应用:消能减震体系按其消能装置的不同,可分为二类:

①消能构件减震体系:

利用结构的非承重构件作为消能装置的结构减震体系。常用的消能构件有:

消能支撑:耗能交叉支撑,摩擦耗能支撑,耗能偏心支撑,耗能隔撑。一般支撑杆件大都用软钢制作,取材容易,屈服点适当,延性好,故有较高的消能减震性能。构件大都采用非弹性“弯曲”变形的消能减震性能,具有较高抵抗周疲劳破坏的能力。

消能剪力墙:竖缝消能剪力强、横缝消能剪力墙、周边缝消能剪力墙等。其混凝土的接缝面可以填充粘性材料能或用钢筋联接。强地震时,出现非弹性的缝面错动,产生阻尼,消耗地震能量。

②阻尼器消能减震体系:在结构的某些部位(支撑杆件、剪力墙与边框联结处、梁柱节点处等)装设阻尼器(软钢阻尼器、挤压铅阻尼器、摩擦阻尼器、粘弹性阻尼器等)。在强地震时,结构物这些部位发生较大变形,从而使装设在该部位的阻尼器有效的发挥消能作用。

2.冲击减震

冲击减震是依靠附加活动质量与结构之间的非完全弹性碰撞达到交换动量和耗散动能进而实现减小结构地震反应的技术。

实际应用时,一般在结构的某部位(常在顶部)悬挂摆锤。结构震动时,摆锤撞击结构使结构震动衰减。另外,摆锤还兼有吸振器的功能。

3.吸振减震

吸震减震是通过附加子结构,使结构的震动发生位移,即使结构的振动能量在原结构与子结构之间重新分配,从而达到减小结构震动的目的。

目前,工程结构应用的吸震减震装置主要有:调谐质量阻尼器(简称TMD),调液(柱)阻尼器(简称TLD或TLCD)悬吊质量摆阻尼器(简称SMPD)和质量放大器。

(三)主动控制减震

主动控制减震体系是利用外部能源,在结构受地震激励震动过程中,瞬时改变结构动力特性和施加控制力,以衰减结构地震反应的自动控制体系。

主动控制体系中的控制器有三部分组成。

①传感器。安装在结构上,测量结构所受外部激励或结构反应或两者,将测量的信息传递给控制器的处理器。

②处理器。处理测得的信息,根据给定的控制算法,计算所需的控制力,并将控制信息传递给控制器中的致动器。

③致动器。根据控制信息,有外部供给能源产生所需的控制力,从而减小结构振动反映。

根据控制器的工作方式,主动控制体系分三种类型:

①开环控制。根据外部激励信息调整控制力。

②闭环控制。根据结构反应信息调整控制力。

③开笔环控制。根据外部激励和结构反应的综合信息调整控制力。

主动控制是振动控制的现代方法,他已广泛用于电子工程,机械工程,航空航天工程等领域,但在土木工程中应用该方法进行结构主动控制尚是一个新兴研究方向。

结构震动主动控制装置

①主动拉索。主动拉索控制系统由连接在结构上的预应力钢拉索构成,在拉索上安装一套液压伺服机系统。

②主动调频质量阻尼器。是在TMD的基础上增加主动控制力而构成的减震器。

③气体脉冲发生器。这是一种通过喷管释放高压气体产生脉冲动力,以减弱结构振动反应的装置。

(四)半主动控制和混合控制

1、半主动控制

半主动控制兼有被动控制和主动控制的优点。它具备主动控制的效果又只需很小的电能通过调节和改变结构的性能减小地震反应,因此比较适合于改善工程结构的抗震设防。

1)变阻尼半主动控制

对变阻尼半主动控制的研究一度非常活跃,其目的在于寻找比定阻尼系统更好的减震效果,但事实上人们早已知道,阻尼的减振效果是有条件的。但单自由度体系基座受到简谐运动激励时,阻尼愈大,结构和相对运动(位移、速度和加速度)不断减少;对绝对运动则不然,当干扰频率与自振频率的比值时,增大阻尼反而会使绝对位移、速度和加速度反应增大。在地震作用下也可能出现类似的情况。

这说明对中、短周期的结构,当设计地震动的主要周期较短时,不必要采用半主动变阻尼系统。但是对于长周期结构,采用半主动变阻尼控制方法与采用上限阻尼时相比可以明显地减小绝对加速度反应,对相对反应也无不利影响。看来只有当需要同时减小长周期结构的相对位移反应和绝对加速度反应时才有必要采用变阻尼半主动控制。

常见的变阻尼半主动控制有变孔径油阻尼器、电流变阻尼器、磁流变阻尼器、变摩擦可控阻尼器、调谐质量可控阻尼器。

2) 变刚度半主动控制系统(AVS)

日本鹿岛公司在他们的大型振动台控制楼上采用了AVS系统以减小中震和大震中的反应。在此系统中,应用液压元件改变刚性支撑和大梁的连接条件,随时调节层间刚度,避免共振。

变刚度和变阻尼系统应属于变结构控制的范畴,其理论基础在自动控制领域中已有深入地研究。在变刚度半制动控制系统中结构的层间水平刚度可以在其最大值和最小值之间跳跃

或随意调节。当强震地面运动的主要频率不在被控结构自振频率的可能的变化范围以内时,对系统将产生什么样的影响则是值得研究的问题。

2、混合控制

将主动控制与被动控制结合起来应用或采用其它复合控制方式通常称为混合控制,其最常用的形式是用作动器拖动调谐质量阻尼器(HMS)。

主动控制、半主动控制和混合控制由于都需要实时观测结构反应并进行实时分析和反馈控制,系统极为复杂,在推广应用方面受制于经济和技术条件。相比之下以增加结构阻尼、避免共振的被动控制技术则更适合在众多的实际工程中应用。

三、今后的发展趋势

传统的依赖结构延性的抗震措施是以一定的损伤为代价减小地震反应,应用见证效能技术则可以减小结构本身的损伤,对各类结构基本上能使用,其减震效果对地面运动特性依赖性较小,耗资也不是很大,因此是可以广泛使用的方法。值得注意的是增大阻尼在减小结构相对位移反应和变形的过程中有时会使结构的绝对速度和加速度增大,从而对内部设备和人员带来某些不利影响。

基础隔震对在短周期内地面运动影响下的中短周期结构而言,其减震效果比消能技术更好,但对地面运动输入特性比较敏感,不能完全消除共振的危险性。半主动控制和混合控制方法可以满足不同的设防要求,对地面运动和结构本身不确定性的地适应能力更强,可以提高结构在地震作用下的安全性,引入智能元件以后,效果会更好,因此是值得重视的新领域。此外尚应在不同学科和专业之间开展合作和交叉研究,开发使用的装置、机构和配套技术,尽快形成新的产业,以支持新技术的推广应用。结构振动控制的研究和应用需要讲传统的建造技术与高新技术相结合,使结构的安全保障系统成为智能结构的重要组成部分,为人类营造一个更加安全舒适的工作和生活环境。

一个实用的减隔震设计

龚一琼胡勃袁万城胡世德

上传时间:2006-06-26

nantong

https://www.doczj.com/doc/211409139.html,/Detail/200606261969125275/

?简介:连续梁桥具有结构刚度大、变形小的特点,在我国有着广泛的应用。对连续梁桥的空间地震反应分析表明[1],由于连续梁桥一般只设置一个固定墩,在地震荷载作用下,纵桥向的地震荷载的绝大部分均由设置在固定墩上的固定支座来承受,

因此,固定墩处于十分不利的受力状态。如果一味要求固定墩满足强度要求、在弹

性范围内工作,不仅是不经济的,而且也没有必要。本文探讨了一种新颖的作法,

即利用减隔震的基本原理,在不改变原桥梁主体结构的情况下,仅对固定支座进行

适当的减隔震设计,以满足"小震不坏、中震可修、大震不倒"的设计要求。

?关键字:连续梁桥,减隔震,固定支座,相对固定

一、减隔震原理

延长结构的自振周期可以有效地减小结构的地震加速度反应,从而减小结构由于地震所遭受到的地震荷载。对于桥梁结构,采用橡胶支座、聚四氟乙烯支座以及其他滑动支座即瓦达到增加结构柔性、延长结构自振周期的目的。但是,随着结构自振周期的延长,梁体与墩台之间的相对位移也同时增加。为了减小由于结构自振周期延长而增加的梁墩相对位移,可以采用增加结构阻尼的方法。加大结构的阻尼,地震引起的位移反应能得到明显的抑制[1]。

综上所述,减隔震的基本原理为:

(1)采用柔性支承,以延长结构的自振周期,从而减小结构由于地震引起的内力反应;

(2采用阻尼器或耗能装置,以控制由于周期延长而导致的过大的相对位移;

(3)具有足够的刚度和强度,以支承正常使用极限状态下的水平力(如风荷载、汽车制动力等)。

二、工程背景

本文以某五跨连续梁桥为工程背景,该桥跨径组合为49.90+3X80.00+49.90(m)。桥址的土质(在地表以下20.0m范围内)为淤泥、淤泥质亚粘土、粘土和细砂,地基容许承载力[σ0]<130kPa。根据《公路工程抗震设计规范》(JTJ004-89)第4.2.2条规定,确定该桥场地类别为Ⅳ类场地上。

该连续梁桥的上部结构为两个分离的单箱单室变截面箱梁,主域处梁高4.5m,边墩及跨中的梁高均为2.0m;主墩为变截面空心柱体,边域为排架式撤柱,纵桥向两排,每排3个实心嫩柱、主梁和桥墩之间采用盆式橡胶支座连接。

1.分析模型

该桥的抗震计算采用同济大学土木工程防灾国家重点实验室桥梁抗震学科组编制的程序NSRAP进行。

考虑到桥墩基础为钻孔灌注桩,墩底位移相对较小,将桥墩固结在墩底会增大结构内力反应,故而适当放大结构周期,将墩延长约3倍桩径固结【3】。桥墩依线弹性梁单元来处理。计算中对活动支座考虑其非线性效应,用非线性支座单元处理。采用Ⅳ类场地人工波作为输入地震波,依Eurocode8对地震波进行三个方向组合,以纵桥向为验算主方向【4】。设计基本烈度为7度。

2.验算结果

对结构进行非线性时程反应分析。计算结果均以一幅计。

3.结果分析

(1)固定支座

设计单位设计的盆式支座布置情况为(以一幅计):两边墩分别设置两个TPZ3000-ZX 型盆式橡胶支座,固定墩设置两个TPZ 15000-GDZ型盆式橡胶支座,余主墩上皆各设两个T PZ15000-ZX型盆式橡胶支座。

TPZ 15000一GDZ型盆式橡胶支座为抗震型支座,其竖向承载力为15000kN,可承受的最大水平力为15000 X 20%= 3000kN,故固定墩墩顶所能承受的最大水平力为 6000kN。

6度地震荷载作用下,固定墩墩顶所承受的水平力为6455kN,大于其上固定支座所能承受的最大水平力,固定支座被剪坏。

(2)固定墩

对固定墩的钢筋混凝土截面进行弯短一曲率关系分析,得到其纵向反应及屈服弯矩。

7度和8度地震荷载作用下,截面的能力/需求比大于1,表明固定墩墩底截面发生塑性变形,即,在承受一定的轴力作用时,截面所承受的弯矩超过截面屈服弯矩,进入了非线性工作阶段。

(3)解决方案

由验算可知,该桥在6度地震荷载作用下,固定支座已被剪坏,不能满足桥现关于"小震不坏"的设计要求。而且,固定墩在7度地震荷载作用下的"截面能力/需求比"高达180. 4%,这说明设计基本烈度地震荷载作用下,固定墩的强度已不能满足。因此,"中震可修"的要求也难以保证。

通常遇到这种情况,常采用以下解决方法:

(1)将原有支座改为符合承载力要求的抗震型橡胶支座;

(2)对桥墩进行延性设计,将桥墩设计得具有足够的延性,在控制变形的前提下,利用塑性镇来耗能;同时由于塑性铰的出现而使结构的基本自振周期延长,从而减小了地震所产生的惯性力。

本文在进行抗震验算时,该桥主体方案已经确定,并已经开始施工。在这种情况下,在不增加工程造价的前提下,采用了第一种方案,即对原有的固定支座进行了再设计,引入减隔震概念,以使其满足设计要求。

三、减隔震设计

1.设计思路

以往在进行抗震设计时,设计师总是过多地强调强度要求,希望采用的支座可以满足最大的地震荷载。可是,地震荷载具有很大的偶然性和随机性,正常使用极限状态下桥墩所承受的荷载与设计地震荷载时桥墩的受力相比是很小的,以本桥为例仅占 3.23%。由此可见,若以设计地震荷载来控制桥墩及支座的设计,在经济上要增加很高的投入,同时桥墩也处于十分不利的受力状态。

为此,我们将固定支座设计为相对固定,即在正常使用极限状态和6度地震荷载作用下,固定墩保持正常工作,承担汽车制动力和一定的地震荷载;而在超过6度地震荷载作用下,释放固定墩的顺桥向约束,使整个上部结构能够沿纵桥向滑动,从而延长了结构的自振周期,以达到减震耗能的效果。

2.设计方案

用改造过的 TPZ 15000- ZX盆式橡胶支座来替找原来的 TPZ 15000- GDZ盆式橡胶支座。TPZ 15000-ZX盆式橡胶支座为纵向滑动支座。

在TPZ 15000-双盆式橡胶支座的纵桥向加限定钢挡板,用承压型高强螺栓使之与支座顶板连接,并提供约束反力。这样,在正常使用极限状态和矿地震荷载作用下,支座不滑动,承受汽车制动力和~定的地震荷载。当地震水平力逐渐增加,大于螺栓设计荷载时,支座螺栓被剪断,滑动面开始相对滑移。在支座上 100mm处设置抗震挡块,以限制支座顶板与底盆的相对位移。

(1)钢挡板设计

在TPZ 15000-ZX盆式橡胶支座的上顶板和下底盆之间加设两块钢挡板。钢挡板上部与顶板之间以高强螺栓连接,下部与底盆之间以三面围焊焊缝相连。钢挡板的圆弧面与支座钢

盆紧贴,外测±100mm设抗震挡块。纵桥向的约束力由钢挡板和高强螺栓共同提供,螺栓被剪断以后,由抗震挡块来控制顶板和底盆之间的相对位移。

(2)高强螺栓设计

根据前述减隔震设计思路和支座所需承受的顺桥向水平荷载,对高强螺栓进行设计。

为保证固定墩免于屈服,以固定墩屈服弯矩对应的水平剪力为设计控制值。固定墩在设计轴向荷载作用下,其屈服弯矩为125800kN·m,对应水平剪力为6524kN,每个支座需提供 3262kN。采用M24,8.8级高强螺栓。

考虑到桥墩在正常使用极限状态下的安全性,采用18个螺栓。螺栓的实际极限承载能力为 168.82 X 18= 3038.76kN,小于设计控制值 6.84%。

3.方案验算

在全桥变为纵桥向滑动时,将连续梁简化为只有7个自由度的平面结构。

利用自编程序对该桥进行分析,6度地震荷载作用下,固定墩墩底截面的内力。

8度地震荷载作用下,固定墩的剪力及弯矩均有大幅度的下降,其中剪力仅为改造前的95.42%,弯矩为改造前的93.56%,这使得桥墩的安全系数大大提高。同时,主梁的纵向位移及梁。墩的相对位移有所增大,梁体的最大正向位移为 81.4mm,最大负向位移为13.2 mm,但位移幅度仍在支座的允许滑动范围(±100mm)以内。

四、结论

本文根据减隔振原理对连续梁桥的固定支座进行了减隔震设计,结果表明:

(1)在正常使用极限状态和地震荷载作用下,固定墩仍处于弹性受力状态,受力性能得到明显改善;

(2)梁体的纵向位移及梁、墩的相对位移虽然有所增大,但位移幅度仍在支座的允许范围内;

(3)工程的总体造价并没有显著提高。

采取减隔震措施后,在遭遇到地震时,桥梁的主体结构并没有破坏,只需在震后对支座的高强螺栓和锚固钢挡板进行更换,从而既满足了桥梁"小震不坏、中震可修、大震不?quo t;的设计要求,又为实际工程人员所接受,不失为一种切实可行的办法。

彩虹岭公路隧道的机械化施工

肖海苑,黄经纬,曾新乐

上传时间:2007-07-21

tipiwolf

1 工程概况

彩虹岭隧道全长5.06km隧道净高5.0m,行车道宽2×3.75m,余宽2×0.25m,路缘带宽2×0.5m,检修道宽2×0.75m。彩虹岭隧道围岩分类为Ⅱ(80m)、Ⅲ(323m)、Ⅳ(1 145m)、Ⅴ(1 220m)。因隧道较长,隧道右侧设置了疏散通道(疏散通道施工时作为平行导洞),同时设计了车行横洞、人行横洞及紧急停车带各6处。车行横洞净宽4m,间距约5 00m;人行横洞净宽2m,净高2.2m,间距约500m;隧道内间隔500m左右设一紧急停车带,设在双洞单向行车方向右侧。广东省长大公路工程有限公司负责Ⅰ标段施工。Ⅰ标段(进口工区)K14+210—K17+350,隧道施工长2 768m,平导施工长2 791m。

2 开挖方法

建筑隔震技术特点

一、隔震装置 隔震技术是通过在上部结构与下部结构之间设置隔震层,以避开地震对建筑物的能量输入。近年来发明了种类繁多的隔震装置,按其原理不同可分为弹性支承与滑动支承两大类。弹性支承类隔震装置主要有铅芯橡胶隔震支座,夹层橡胶隔震支座和高阻尼橡胶隔震支座等,一般采用橡胶为柔性材料,地震时柔性材料发生较大水平变形,阻止了携带主要能量的高频地震波向上部结构传递,上部结构所受地震作用显著减小。而滑动支承类隔震装置内部有一滑动界面,当地震引起的惯性力大于最大静摩擦力时,上部结构即可在隔震装置的滑动界面上产生滑动,这样可以避免剧烈的地表运动传至上部结构,常见的有水平摩擦滑动隔震支座、滚动隔震装置和摩擦摆隔震支座。 橡胶隔震支座(普通橡胶隔震支座、铅芯橡胶隔震支座和高阻尼橡胶隔震支座等)既具有较高的竖向承载能力、大水平位移能力和复位功能,同时普通橡胶支座与阻尼器、铅芯橡胶支座或高阻尼橡胶支座配合使用时可提供较大阻尼,由橡胶隔震支座组成的隔震体系理论、试验研究及工程应用已较为成熟,隔震效果显著,是目前建筑隔震的主流产品,国内外已经建成的隔震建筑90%以上采用橡胶隔震支座,我国建筑隔震采用橡胶支座的比例更大。建筑橡胶隔震支座在我国的应用较为成熟,标准较为完善。目前已颁布的相关标准有:《建筑抗震设计规范》(GB50011-2010)、《叠层橡胶支座隔震技术规程》(CECS 126:2001)、《建筑隔震橡胶支座》(JG119-2000)、《橡胶支座第1部分:隔震橡胶支座试验方法》(GB20688.1-2006)、《橡胶支座第

2部分桥梁隔震橡胶支座》(GB20688.2-2006)、《橡胶支座第3部分:建筑隔震橡胶支座》(GB20688.3-2006)、《橡胶支座第4部分普通橡胶支座》(GB20688.4-2006)。正在编写的标准有《建筑隔震施工与验收规范》、《建筑隔震设计规范》等。 任何一项与建筑结构安全相关的新技术的推广,通常都将经历研究、试验、试点再到广泛应用的较长过程。抗震新技术尤其要经过发生概率较低的大地震的实际检验方可推广应用。橡胶隔震支座经历了近50年的研究发展,目前橡胶隔震支座结构简单、造价合理、理论和试验研究成果比较丰富和完善,且经历多次地震检验效果明显,标准相对健全,技术较成熟,已进入推广应用期。在今后较长时期橡胶隔震支座将成为建筑隔震依托的主要产品。目前,我国建筑上使用最多的是普通橡胶支座和铅芯橡胶支座。普通橡胶支座阻尼较小,地震作用下的水平位移较大,但变形后的恢复性能好。铅芯橡胶支座在罕遇地震作用下水平位移较小,但是对于高频波的隔震效果相对较差,且上部结构高振型影响较大,针对两种橡胶支座的性能特点,通常采用两种橡胶支座合理组合的建筑隔震体系可以达到较好的隔震效果,同时隔震层罕遇地震下的变形也能得到较好的控制。由于铅芯橡胶支座在生产和使用过程中存在环境污染风险,所以国际上开始探索使用高阻尼橡胶支座作为升级替代产品,高阻尼橡胶支座阻尼和水平刚度依赖于应变频率和幅值,对高频波的隔震效果较好。高阻尼橡胶支座对橡胶材料性能要求较高,影响支座性能的因素较多,在试验研究及结构设计上尚有许多难点需要突破。另外,由于市场工艺水平的限制,

建筑结构设计

65 建筑结构设计分析 张亚超 魏强 西安骊山建筑规划设计院 摘 要:本文主要介绍建筑结构的基本内容,然后针对目前建筑结构设计当中墨守成规的现象,提倡采用概念设 计思想来促进结构工程师的创造性,推动结构设计的发展,对建筑结构设计常见问题做了分析,为以后的设计提供参考。 关键词:建筑;结构设计;方法;概念设计 而建筑结构设计优化方法的应用则既能满足建筑美观、造型优美的要求,又能使房屋结构安全、经济、合理,成为实质意义上的“经济适用”房。 1 结构设计的基本内容 1.1 屋顶(面)结构图 当建筑是坡屋面时,结构的处理方式有两种:梁板式及折板式。梁板式适用于建筑平面不规整,板跨度较大,屋面坡度及屋脊线转折复杂的坡屋面。反之,则适用折板式。两种形式的板均为偏心受拉构件。板配筋时应有部分或全部的板负筋拉通以抵抗拉力。板厚基于构造需要一般不宜小于 120 厚。此外梁板的折角处钢筋的布置应有大样示意图。至于坡屋面板的平面画法, 建议采用剖面示意图加大样详图的表示方法(实践证明此方法便于施工人员正确理解图纸)。1.2 结构平面图 在绘制结构平面布置图前有个问题需要说明一下, 就是要不要输入结构软件进行建模的问题。当建筑地处抗震设防烈度为 6 度区时,根据建筑抗震设计规范,是可以不用进行截面抗震验算的但应符合有关的抗震措施要求。那么对于砌体结构来讲如果时间不是很充足的话应该可以不用在软件中建模的,直接设计即可,但要注意受压和局部受压的问题。必要时进行人工复核。对于局部受压的防御措施是要按规定对梁下设梁垫以及设置构造柱等措施。如果时间不是很紧张的话建议还是输入建模较好, 有一个便利就是可以利用软件来进行荷载导算。另外,当建筑地处抗震设防烈度为 7 度及以上时我的观点是必须要输入软件建模计算的, 绘制结构平面图时如果没有建模的话就可以直接在建筑的条件图上来绘制结构图了, 这一步必不可少的是删除建筑图中对结构来讲没有用的部分,简单快捷的方法是利用软件的图层功能,直接冻结相关的层。然后再建立新的结构图层:圈梁层、构造柱层、梁层、文字层、板钢筋层等等。这样做的目的是提高绘图效率, 方便在不同结构平面图间的拷贝移动和删除。1.3 楼梯 楼梯梯板要注意挠度的控制, 梯梁要注意的是梁下净高要满足建筑的要求, 梯梁的位置尽量使上下楼层的位置统一。局部不合适处可以采用折板楼梯。折板楼梯钢筋在内折角处要断开分别锚固防止局部的应力集中。阁楼层处的楼梯由于有 分户墙的存在要设置抬墙梁。注意梁下的净空要求, 并要注意梯板宽度的问题。首段梯板的基础应注意基础的沉降问题, 必要时应设梯梁。1.4 基础 基础要注意混凝土的标号选择应符合结构耐久性的要求。基础的配筋应满足最小配筋率的要求(施工图审查中心重点审查部位)。条基交接部位的钢筋设置应有详图或选用标准图。条基交叉处的基底面积不可重复利用,应注意调整基础宽度。局部墙体中有局部的较大荷载时也要调整基础的宽度(因软件计算的是墙下的平均轴力)。基础图中的构造柱,当定位不明确时应给予准确定位。 2 概念设计 所谓的概念设计一般指不经数值计算, 尤其在一些难以做出精确理性分析或在规范中难以规定的问题中, 依据整体结构体系与分体系之间的力学关系、结构破坏机理、震害、试验现象和工程经验所获得的基本设计原则和设计思想, 从整体的角度来确定建筑结构的总体布置和抗震细部措施的宏观控制。运用概念性近似估算方法, 可以在建筑设计的方案阶段迅速、有效地对结构体系进行构思、比较与选择,易于手算。所得方案往往概念清晰、定性正确,避免后期设计阶段一些不必要的繁琐运算,具有较好的经济可靠性能,同时,也是判断计算机内力分析输出数据可靠与否的主要依据。 概念设计的重要性:概念设计是展现先进设计思想的关键,一个结构工程师的主要任务就是在特定的建筑空间中用整体的概念来完成结构总体方案的设计,并能有意识地处理构件与结构、结构与结构的关系。一般认为,概念设计做得好的结构工程师,随着他的不懈追求,其结构概念将随他的年龄与实践的增长而越来越丰富,设计成果也越来越创新、完善。遗憾的是,随着社会分工的细化,大部分结构工程师只会依赖规范、设计手册、计算机程序做习惯性传统设计,缺乏创新,更不愿(不敢)创新,有的甚至拒绝对新技术、新工艺的采纳(害怕承担创新的责任)。大部分工程师在一体化计算机结构程序设计全面应用的今天,对计算机结果的明显不合理、甚至错误不能及时发现。 3 建筑结构设计常见问题 (下转第67页)

浅谈建筑隔震橡胶支座的原理、制造及应用

浅谈建筑隔震橡胶支座的原理、制造及应用 庾光忠,冯正林,胡宇新,郭红峰,周函宇 (株洲时代新材料科技股份有限公司,412007) 摘要:介绍建筑隔震橡胶支座产品的设计理念、隔震原理、技术特性、性能参数;介绍建筑隔震橡胶支座产品一般的生产过程、检测过程和控制要点;说明建筑隔震橡胶支座这种新型隔震产品有着良好的应用前景、社会效应和经济效益。 关键词:地震;隔震;基础隔震技术;建筑隔震橡胶支座; 地震是一种危害性极大的随机性自然灾害,地震的发生带给人类的是巨大的灾难,人们在与其长期地抗争过程中,不断地总结经验,寻求更好的抗震防灾措施,使抗震理论日趋发展。 在“5.12”汶川地震发生后,某著名建筑设计大师曾指出:“我国现在的抗震技术已经达到世界水平,只要采用先进的抗震设计,像5.12汶川大地震所产生的后果是完全可以减轻的。”21世纪的中国已经拥有与美国、日本等先进国家同等级的抗震技术——基础隔震技术。 当前最先进的基础隔震技术是通过一种高新技术产品——建筑隔震橡胶支座,将上部建筑结构与下部地基结构隔离,由于建筑隔震橡胶支座中的隔震层水平刚度小,柔性强,当地震发生时隔震层将发挥“隔”震的作用,代替上部结构承受地震强烈的位移动力,以此来隔离或耗散地震的能量,避免或减少地震能量向上部结构传输;增设的隔震层可以延长结构的自振周期并给予结构较大的阻尼,使上部建筑结构的反应减小到相当于不隔震情况下的1/4~1/8,近似平动,从而起到“隔离”地震的作用。 一、建筑隔震橡胶支座的隔震基本原理 建筑隔震橡胶支座隔震的基本原理是通过增设橡胶隔震支座,使整个建筑的自振周期得以延长,以减轻上部结构的地震反应。一般做法是在建筑物底部设计一层隔震层,在隔震层设置橡胶隔震支座,利用橡胶隔震支座的水平柔性形成一道柔性隔震层,通过柔性隔震层吸收和耗散地震能量,阻止并减轻地震能量向上部结构的传递,最终达到减轻上部结构地震破坏的目的。这种隔震技术不仅可以保证结构的整体安全,并且能够防止非结构部件的破坏,避免建筑物内部装修、室内设备的损坏以及由此引起的次生灾害[1]。 隔震设计技术的基本原理可以通过如下图示来表示。假设一个结构悬浮于地面,如图 1-a 所示,则地震作用不会对结构产生影响,但由于结构还有自重,这样的情况几乎不可能发生。为了承担结构的自重,可以用摩擦力非常小的滚珠来代替示意,如图 1-b,滚珠在竖向支撑结构,而在水平方向与悬浮的情况近似,在水平地震作用下结构不会产生响应,但建筑物会滑移到其它位置而不能复位。因此,为了使结构复位,需要在结构中设置水平弹簧,如图 1-c 所示,但如果仅有弹簧,一旦产生振动后就很难停止,因此必须在结构中设置阻尼装置,以阻止振动的持续。任何一个隔震结构都可简化为图 1-b 或图 1-d 的情形,隔震结构就是在传统的抗震结构的基础与上部结构之间增加了一个可以隔离地震的装置。 从以上的分析可知,隔震装置主要由滚珠、弹簧和阻尼构成,滚珠的作用是在竖向支撑建筑物,而在水平向可以自由滑动,弹簧对结构进行复位,阻尼消减振动的幅度。其中,弹簧和阻尼的大小会影响减震的效果。 假设图 1-2d 中的阻尼很小,就相当于图1-c 的情形,建筑物会在弹簧恢复力的作用下一直振动下,这对上部结构非常不利。当阻尼增加非常大时,并非有利于减震的效果。 因此,对一个隔震结构而言,需要选择适当的弹簧和阻尼,才能达到理想的减震效果,具体

减隔震建筑结构设计指南与工程应用

《减隔震建筑结构设计指南与工程应用》教学大纲 总教学课时:60 一、教学目的 贯彻中央城市工作会议精神,落实住房和城乡建设部印发的《关于房屋建筑工程推广应用减隔震技术的若干意见(暂行)》(建质[2014]25号)的工作要求,帮助结构工程师更好地了解与掌握减隔震技术的概念与发展历程、设计标准与研究现状、减隔震结构设计方法、减隔震技术在建筑工程中的应用。 二、教学要点 与结构工程师设计工作相关的减隔震技术概念与工作原理,减隔震建筑结构设计参考依据与设计关键要点、减隔震技术工程应用方法等。 三、重点内容与课时分配 第一章减隔震技术概述(4学时): 减隔震技术的概念与原理(1学时)、减隔震技术发展历程(1学时)、减隔震技术设计标准(1学时)、减隔震技术研究现状(1学时)。 第二章减震结构设计指南(12学时): 减震结构概念设计(2学时)、减震结构性能设计的基本要求(2学时)、减震结构计算分析的基本要求(2学时)、

减震装置的基本要求(2学时)、减震结构的抗震构造措施要点(2学时)、减震装置的施工、验收和维护(2学时)。 第三章隔震结构设计指南(12学时) 隔震结构概念设计(2学时)、隔震结构性能设计的基本要求(2学时)、隔震结构计算分析的基本要求(2学时)、隔震装置的基本要求(2学时)、隔震结构的抗震构造措施要点(2学时)、隔震装置的施工、验收和维护(2学时)。 第四章减震技术在建筑工程中的应用(16学时): 屈曲约束支撑应用案例(2学时)、黏滞阻尼支撑应用案例(3学时)、黏滞阻尼伸臂应用案例(3学时)、黏滞阻尼墙应用案例(4学时)、日本典型减震案例(4学时)。 第五章隔震技术在建筑工程中的应用(16学时): 基础隔震案例(6学时)、层间隔震案例(4学时)、组合减隔震案例(2学时)、日本典型隔震案例(4学时)。 四、教学延伸阅读参考书目 1.周福霖. 工程结构减震控制[M].北京:地震出版社, 1997. 2.李爱群,瞿伟廉. 工程结构减振控制[M]. 北京:机械 工业出版社,2007. 3.丁洁民,吴宏磊. 黏滞阻尼技术工程设计与应用[M]. 北京: 中国建筑工业出版社,2017. 4.日本隔震构造协会. 隔震结构入门[M]. 东京:OHM出

建筑结构隔震技术

建筑结构隔震技术 福州市规划设计研究院教授级高工夏昌 0引言 2008年5月12日,我国四川省发生里氏8 0级特大地震,造成死亡、失踪 8 万余人,房屋倒塌数千万平米的重大损失。纵观世界范围, 20世纪由于地震而 死亡的人数,中国人占到60%,三十年前唐山大地震的惨烈景象历历在目,三 十年后悲剧 再度重演,如何做好防震减灾,如何保证房屋在地震中的使用功能, 保护人民生命财产的安全,成为我们要迫切解决的问题。 让我们首先探讨现行结构抗震设计存在的问题。 1结构传统抗震设计存在的问题 传统的结构抗震技术,自新中国成立以来,经过长期的研究,多版本抗震规范的 完善,在工程实践中已有显著成果,但是,传统抗震设计仍存在诸多问题: 1)抗震设防思想落后: 设计人员错误把“设防烈度”当作保证安全的准确指标, 而实际上,预防为主不 是预报为主,地震预报工作远未达到成熟的水平。 中长期预报很不准确,地震区 划方法、地震危险性分析方法有待提高。基于上述不准确的“中长期预报”只能 定出不准确的“设防烈度”, 突发强地震时,难于控制结构受损程度,难保证 不倒塌。 我国近年来发生的典型大地震烈度(设防烈度)如下: 因此,抗震设计既应满足“按烈度设防”,也要考虑防御高烈度的大地震。 2)适应性问题:现有抗震技术只要求保护结构在设防烈度内可修、不倒,未保 护非结构构件及装修,未保护内部设备、仪器。 3)采用抗震技术设计时,若建筑设计复杂结构更易破坏: 不规则平面扭转破坏,不规则立面层间剪切破坏。 结构传统抗震设计存在的上述问题,极大的制约了我们防震减灾目标的完美实 现。如何做到在突发强地震时房屋不坏、不倒,保护室内装修和内部设施,保护 人民生命财产安全,经过多年的探索,更为科学的结构减震控制技术已臻成熟。 2结构减震控制技术 在工程结构的特定部位,装设某种装置(如隔震垫),或某种机构(如消能支撑), 或某种子结构(如调频质量),或施加外力,以改变或调整结构的动力特性或动 力作用,这就是结构减震控制技术。结构抗震技术和减震技术机理对比如下表 1。 工程结构减震控制技术的方法主要有:隔震技术、 消能减震技术、调谐减震技 术、主动控制技术、半主动混合控制技术。 隔震(免震)技术是指:在建筑物的内部设置既能支撑建筑物本体重量,又具有 在水平方向自由变形能力的隔震层, 将地震时产生的水平变形集中于隔震层。 在 隔震层中,设置用于吸收和消耗地震输入能量的隔震器。 表1结构抗震减震技术机理对比 1966年,邢台大地震, 1975年,海城大地震, 1976年,唐山大地震, 2008年,汶川大地震, 10度(6度); 9、10 度(6 度); 11度(6度); 11度(7度)。

建筑结构减隔震及结构控制技术的现状和发展趋势

建筑结构减隔震及结构控制技术的现状和发展趋势 张建东 上传时间:2006-06-26 nantong 一、传统的抗震方法 地震是由于地面的运动,使地面上原来处于静止的建筑物受到动力作用而产生强迫振动,因而在结构中产生内力、变形和位移。经过简化后模型的动力学分析,即一次次的震害分析进行修正、补充,得到一些建筑物在地震作用下的反应机理及破坏形式,提出了一些建筑物抗争的计算方法及设计的基本原则。这些在实际应用中得到了很不错的效果。 1、概念设计的一些原则 1)总体屈服机制。例如强柱弱梁。 2)刚度与延性均衡。砌体结构中为提高延性设构造柱与圈梁,形成一个较弱的框架。 3)强度均匀。结构在平面和立面上的承载力均匀。 4)多道抗震防线。 5)强节点设计。 6)避开场地卓越周期区。 2、在此基础上作结构地震反应分析,其分析方法主要有: ①地震荷载法; ②振型分解法; ③动力时程分析法。现在还发展了push-over法、能力谱等方法。抗震设防目标也从单一的、基于生命安全的性态标准发展到基于各种性态,强调“个性”设计的设计理念。 3、传统抗震方法的缺点与不足

传统抗震结构主要利用主体结构构件屈服后的塑性变形能和滞回耗能来耗散地震能量,这使得这些区域的耗能性能变得特别重要,而一旦由于某些因素导致这些区域产生问题,将严重影响到结构的抗震性能,产生严重破坏,由于破坏部位位于主要结构构件,其修复是很难进行的。 由于传统抗震结构是以防止结构倒塌为目标,其抗震性能在很大程度上依赖于结构(构件)的延性,以往的许多研究也注重于提高结构(构件)的延性方面,却忽略了对结构损伤程度的控制。 4、传统的抗震方法在提高结构性能方面有较多困难。 传统抗震结构的耗能能力主要依赖于主体结构的延性。既要求主体结构强度高,又要求延性好,很难实现。 1)框架结构 许多研究者推荐强柱弱梁体系作为最合适的抗震框架体系。该体系可将地震输入能量分散在结构的许多部位耗散掉,甚至可以控制塑性铰出现的顺序与部位,延性对于使建筑物在罕遇地震中保存下来固然很重要,但这些预期的塑性铰区在中等程度的地震中也会产生,延性也同时应被看作是一种“破坏”。后期修复费用也很高。 2)剪力墙结构 剪力墙结构体系具有抗侧刚度大,在水平地震作用下的侧移小,其总的水平地震作用也大等特点,常见的震害一般来说为墙面的斜向裂缝或是底部楼层的水平施工缝发生水平错动,当底部屈服后,剪力墙的抗侧作用就很小,且剪力墙的耗能也基本集中与底部塑性铰区域,上部墙体对抵御强震无显著作用。而且剪力墙要承担一定的竖向荷载,因此底部的破坏也十分难修复。 3)框架-剪力墙结构 从抗震概念设计来说,框架-剪力墙结构具有了多道抗震防线。有框架和墙体组成的抗震结构中,框架的刚度小,承担的地震作用力小,而弹性极限变形值和延性却较小。整个结构在地震作用下,墙体很快超过自身的较小弹性极限变形,出现裂缝,水平承载力下降,此时框架尚未充分发挥自身的水平抗力;墙体开裂后,框架承担的地震力增大,同时由于结构刚度的变化,地震作用效应也发生了变化。但无论是剪力墙还是框架,都是主体结构的一部分,损伤坏后的修复工作都是比较困难的,而且花费也不小。 二、减振、隔震和振动控制的现状

浅析减隔震技术在西藏地区的应用和发展

浅析减隔震技术在西藏地区的应用和发展 摘要:西藏地区是地处地震多发区,提高建筑结构的抗震防御能力至关重要。 本文通过对减隔震技术及产品、西藏地区地震区划及所发生主要地震、减震技术 在西藏地区的应用情况阐述,展示减隔震技术在西藏地区的应用状况。介绍减隔 震技术的概念、产品种类、相关政策法规,现已采用的减隔震技术的建筑、桥梁、公共基础设施等建设项目,将来减隔震技术可能的发展方向等诸多方面。表明了 减隔震技术的应用对于减小地震作用所带来的损失有重要意义。 关键词:减隔震技术;西藏地区;应用;发展; 引言 减隔震技术在国内外已广泛应用于工程建设项目中,在国内最早于上世纪90 年代开始,在2008年5.12汶川8.0级地震灾后重建中应用较多,之后在四川、 云南、新疆、甘肃等地区逐年增多。在国外如日本、美国、墨西哥等国家地区也 有着较多的应用。 从国家政策层面来看,住房和城乡建设部在2014年发布《住房城乡建设部 关于房屋建筑工程推广应用减隔震技术的若干意见(暂行)》建质[2014]25号[1] 以来,各省(市、区)相继转发了相关文件,部分省(市、区)如云南、新疆、 甘肃等出台了推广应用减隔震技术的地方法规和标准,进一步推动了减隔震技术 在工程建设中的应用。 减隔震技术相关技术、产品标准在不断的完善和更新,以更利于减隔震技术 的推广应用及提高产品的质量可靠性,保障建设工程的安全性。 减隔震技术可以有效的提高工程的抗震性能、改善建筑功能,降低综合造价 成本,有一定的经济效益和长期的社会效益。通过4.20芦山地震等多次强的检验,效果非常明显。 西藏地区属于我国地震高发地区,经济相对落后,老旧建筑较多,工程建设 抗震防御灾害的能力较弱。 1 减隔震技术简介 1.1减隔震技术 即建筑隔震技术和建筑减震(结构消能减震)技术的简称。 建筑隔震:即在房屋基础、底部或下部结构与上部结构之间设置由叠层橡胶 隔震支座组成具有整体复位功能的隔震层,以延长整个结构体系的自振周期,减 小输入上部结构的水平地震作用,达到预期防震要求。 建筑减震是在结构物某些部位(如支撑、剪力墙、连接缝或连接件)设置耗 能装置,通过该装置产生摩擦,弯曲(或剪切、扭转)、弹塑性(或黏弹性)滞 回变形来耗散或吸收地震输入结构的能量,以减小主体结构的地震反应,从而避 免结构产生破坏或倒塌,达到减震控制的目的。 1.2减隔震产品 隔震产品包括:天然橡胶支座、铅芯橡胶支座、高阻尼橡胶支座、弹性滑板 支座、摩擦摆隔震支座、滑轨支座等。 减震产品包括:屈曲约束支撑、金属阻尼器、摩擦阻尼器、粘滞阻尼器、粘 弹性阻尼器等。 1.3减隔震技术国内应用情况 截止目前有超万橦建筑采用减震隔震技术,居全世界首位。 国内减隔震技术应用最多的省份是云南、四川、新疆、甘肃等,较典型的减

隔震技术概述

《结构抗震工程概论》 姓名: 学号: 学院: 专业: 授课教师:

隔震概述 摘要:传统的抗震设计方法是考虑结构的延性来耗散地震能量。但问题在于它是用结构承重构件本身来抵御地震,为了经济起见往往使承重构件在塑性阶段工作。这样受到一次强烈地震时,结构构件在利用它的延性和自身变形能力耗散地震能量的同时,自身机构也受到了破坏。为解决这个问题,在结构上附加各种耗能阻尼器,以吸收地震能量,减小结构地震反应,从而促进了工程减震技术的迅速发展。现在,以改变结构频率为主的隔震技术是结构抗震控制技术中研究和应用最多、最成熟的技术。 关键词:抗震设计、隔震技术、耗能阻尼器 1 前言 隔震主要是指在建筑结构地面以下部分设置隔震装置(或机构),以减弱地震动输入给地面以上结构的能量,减小结构振动而采取的一种结构抗震技术措施。 隔震的概念由来已久,早在我国古代人们已经懂得用蒸熟的糯米和石灰混合,利用具有柔性和衰减性能的糯米层对地震能量的吸收能力,对一些重要的建筑物基础进行处理,从而起到了隔震效果。在日本,人们也早已懂得利用增加强度和阻尼控制结构反应对结构物进行减震隔震处理,譬如,在7世纪和8世纪建成的法隆寺五重塔,就是该塔上部吊有象电线竿那样的长木竿,竿的自重对五重塔起到了预压力作用,提高了塔的抗弯能力,竿的下部置于比竿直径还大的圆筒形洞内,地震时五重塔振动的一部分能量被竿的振动所转移,竿犹如振子振动碰撞洞壁,使能量耗散(这种方法与近代许多控制系统所采用的原理一致)。 2 隔震简介与技术发展 2.1 隔震的必要性 工程结构在地震作用下会产生振动,过大的结构振动现象不仅会影响到结构物的正常使用,还会造成主体结构的破坏、甚至倒塌。有的虽然主体结构未破坏,但由于建筑饰面、装修或非结构配件、室内昂贵仪器、设备的破坏而导致严重的损失。传统的抗震设计都是通过提高结构构件的强度和变形能力来保证结构抗震安全性的,结构的抗力与其强度和变形有关,而强度和变形的乘积是衡量结构耗能能力的标志,但是将地震作用看成能量输入时,它是一个较稳定的量,主要是与结构的总质量和基本自振周期有关,在传统设计方法中主要考虑的是安全性,而其它方面的性能却被忽略了。随着社会的发展、科技的进步,人们对结构的安全性和稳

隔震设计指导

目录 隔震结构设计要点及流程---西昌彩云府隔震项目总结 (2) 一、隔震目标: (2) 二、隔震建筑要求: (2) 三、嵌固端: (2) 四、隔震层设计: (2) 1、隔震层层高: (2) 2、隔震层位置: (2) 3、隔震层结构体系: (3) 3、隔震层结构抗震等级: (3) 4、隔震支座类型: (4) 5、隔震支座设计: (4) 6、竖向隔震缝设计: (4) 6、上支蹲和下支蹲设计: (5) 7、隔震层的抗风验算: (6) 8、其他隔震措施: (6) 五、隔震层以上结构设计: (6) 1、隔震后地震作用的确定: (6) 2、隔震后抗震等级的确定: (6) 3、竖向地震作用: (7) 4、剪重比: (8) 5、计算模型: (8) 六、隔震层以下结构设计: (9) 1、计算模型: (9) 2、隔震层以下地面以上的结构的层间位移角: (9) 七、基础设计: (9) 1、计算模型: (10) 八、抗风设计: (10) 九、采取的加强和改进措施: (10)

十、隔震后楼梯和电梯设计: (11) 十一、隔震层建筑、机电专业做法 (13) 隔震结构设计要点及流程---西昌彩云府隔 震项目总结 一、隔震目标: 仅隔离水平地震,不隔离竖向地震。 通常采用隔震设计后,水平地震作用可以降低半度、1度、1度半。 根据以往大量隔震工程项目经验,场地条件较好,属于ⅠⅡ类场地,上部结构比较规则、质量和刚度分布均匀。层数6层及以下时,多采用框架结构,可以初步确定隔震目标为降低一度半;6~12层,位于高烈度区,一般会采用框剪结构或者剪力墙结构,可以初步确定隔震目标降低一度或者一度半以上;对于12~22层的隔震建筑,可以确定隔震目标降低一度。 具体隔震目标需计算确定。详下述。 二、隔震建筑要求: 建筑高宽比<4;建筑场地宜为ⅠⅡⅢ类。 对于剪力墙结构,结构周边要尽量少布置剪力墙,尽量降剪力墙布置在结构内部。 三、嵌固端: 通常取隔震层下面一层顶板为嵌固端 四、隔震层设计: 1、隔震层层高: 一般隔震层梁底到地面的净高不应小于600,建议不小于800,因此层高至少为“梁高+800”。 2、隔震层位置: A:有地下室结构,通常设置在地下室顶部设置一个隔震层

浅谈建筑隔震设计流程及要点

浅谈建筑隔震设计流程及要点 发表时间:2018-11-14T09:02:30.700Z 来源:《建筑学研究前沿》2018年第16期作者:陆亮[导读] 本文根据笔者工作经验,对建筑隔震设计的流程以及注意要点进行阐述。1同济大学结构工程与防灾研究所,上海 200092 2江苏正宏城建设计研究院有限公司,江苏宿迁 223800 摘要:建筑隔震设计是个系统的全面的工作,需要扎实的理论知识、灵活创新的思维和严肃认真负责的工作态度。作为设计人员,不仅要掌握隔震设计的流程及要点,保证结构设计的安全,还要善于总结工作中的经验。本文根据笔者工作经验,对建筑隔震设计的流程以及注意要点进行阐述。 关键词:隔震设计;流程;要点 一、建筑隔震设计流程 隔震技术已经系统化、实用化,包括摩擦滑移系统、叠层橡胶支座系统和摩擦摆系统,其中工程界最常用的是叠层橡胶支座隔震系统。目前常用的橡胶隔震支座主要有:普通叠层橡胶隔震支座、铅芯叠层橡胶隔震支座和高阻尼橡胶隔震支座。 隔震结构建筑的减震原理隔震,即隔离地震。隔震结构是指在建筑物上部结构与基础之间设置隔震层以隔离地震能量结构。在房屋底部设置由隔震支座和阻尼器等部件组成高度很低的柔性底层,称为隔震层,使基础和上部结构断开,以延长整个体系的自振周期、增大阻尼,减少输入上部结构的地震能量,达到预期防震要求。 建筑隔震设计的主要流程如下:1确定隔震层位置;2明确减震目标和设防标准;3基础隔震方案选择,上部结构布置及初步计算;4根据上部计算的支座反力进行隔震层结构布置;5上部结构带隔震层结构计算分析,并按照基本地震计算确定减震系数;6根据减震系数确定减震之后的地震影响系数最大值,然后进行减震结构上部设计;7隔震层及隔震支座验算(支座在重力荷载代表值下最大压应力,罕遇地震下支座拉应力,支座水平位移验算,偏心率验算,屈重比验算等)8下部承结构设计(下部支承结构按照中震进行正截面设计,按照罕遇地震进行斜截面设计);9基础设计及地基处理(基础按照正常结构进行设计);10明确隔震支座连接安装设计要求;11撰写基础隔震设计分析报告(供专项审查)。 二、建筑隔震设计要点 在隔震建筑设计时,主要需考虑预设地振动周期、烈度、最大位移量和建造物重量等参数.隔震器和阻尼器的合理利用,将降低1~2级地震烈度。与以往的建筑结构抗震设计,采用隔震技术的建筑物具有以下优点:提高地震时结构的安全性;设计自由度增大;防止内部物品的振动移动和翻到;防止非结构构件的破坏;抑制振动的不适感;可以保证机械器具的使用功能。为达到明显减震效果,通常设计的基础隔震系统需具备以下四种特性:(1)承载特性:具有足够的竖向强度和刚度以支撑上部结构的重量;(2)隔震特性:具有足够的水平初始刚度,在风载和小震作用下,体系能保持在弹性范围内,满足正常使用的要求,而中强地震时,其水平刚度较小,结构为柔性隔震结构体系;(3)复位特性:地震后,上部结构能回复到初始状态,满足正常的使用要求。(4)耗能特性:隔震系统本身具有较大的阻尼,地震时能耗散足够的能量,从而降低上部结构所吸收的地震能量。 我国目前使用最普遍的是铅芯叠层橡胶支座,普通叠层橡胶支座亦有少量应用。由于天然橡胶本身不具有耗能能力,天然橡胶支座阻尼比很小,使用时,常需与其他阻尼器结合使用。铅能与普通板式橡胶支座很好地结合,并且铅具有较低的屈服剪切强度(10MPa)和足够高的初始剪切强度(约130MPa),其恢复力特性接近刚塑性,因而在隔震支座中加入铅芯除了能起到阻尼作用以外,还可以防止建筑物在强风或微小地震作用时晃动。 隔震分析过程中要注意以下要点:(1)隔震结构方案的选择隔震主要用于高烈度地区或使用功能有特别要求的建筑以及符合以下各项要求的建筑:①不隔震时,结构基本周期小于1.0s的多层砌体房屋、钢筋混凝土框架房屋等。②体型基本规则,且抗震计算可采用底部剪力法的房屋。③建筑场地宜为Ⅰ、Ⅱ、Ⅲ类,并应选用稳定性较好的基础类型。④风荷载和其他地震作用的水平荷载不宜超过结构的总重力的10%。隔震建筑方案的采用,应根据建筑抗震设防类别、设防烈度、场地条件、建筑结构方案和建筑使用要求,进行技术、经济可行性综合比较分析后确定。 (2)隔震层的设置隔震层宜设置在结构第一层以下的部位。当隔震层位于第一层及以上时,结构体系的特点与普通隔震结构可能有较大差异,隔震层以下的结构设计计算也更复杂,需作专门研究。①隔震层可由隔震支座、阻尼装置和抗风装置组成。阻尼装置和抗风装置可与隔震支座合为一体,亦可单独设置。必要时可设置限位装置。 ②隔震层刚度中心宜与上部结构的质量中心重合。③隔震支座的平面布置宜与上部结构和下部结构的竖向受力构件的平面位置相对应。④同一房屋选用多种规格的隔震支座时,应注意充分发挥每个橡胶支座的承载力和水平变形能力。⑤同一支承处选用多个隔震支座时,隔震支座之间的净距应大于安装操作所需要的空间要求。⑥设置在隔震层的抗风装置宜对称,分散地布置在建筑物周边或周边附近。 (3)隔震结构的抗震计算目前的叠层橡胶隔震支座只具有隔离或耗散水平地震的功能,对竖向地震隔震效果不明显,为了反应隔震建筑隔震层以上结构水平地震反应减小这一情况,引入“水平向减震系数”。隔震结构的抗震计算要点如下: ①橡胶隔震支座平均压应力限值和拉应力规定:橡胶支座的压应力既是确保橡胶隔震支座在无地震时正常使用的重要指标,也是直接影响橡胶隔震支座在地震作用时其他各种力学性能的重要指标。它是设计或选用隔震支座的关键因素之一。在永久荷载和可变荷载作用下组合的竖向平均压应力设计值,不应超过建筑抗震设计规范(GB 50011-2010)的规定,在罕遇地震作用下,不宜出现拉应力。 ②隔震结构的抗震计算可采用底部剪力法和时程分析法。 采用底部剪力法时,隔震层以上结构的水平地震作用,沿高度可采用矩形分布,确定水平地震作用的水平向减震系数按建筑抗震设计规范规定确定。采用时程分析法计算隔震和非隔震结构时,计算简图可采用剪切型结构模型,当上部结构体型复杂时,应计入扭转变形的影响。

减隔震技术与传统技术对比

减隔震技术与传统技术对比 支架对于我们来说并不陌生,在生活的每个角落,只要你稍加注意,就会有支架的出现,下面南通正道就详细为你介绍一下减隔震技术和传统技术对比。 普通新建项目对比: 采用采用减隔震技术: (1)工作原理:增加结构耗能能力,吸收/隔离地震能量 (2)结构特点:基础抗震要求较低;梁,柱,墙尺寸较小;配筋量较小;增设阻尼器或隔振器 (3)使用特点:设计难度大,计算复杂;有效使用空间大; (4)工期与造价:可适当缩短工期,高烈度区可降低造价 采用传统抗震技术: (1)工作原理:提高自身刚度,抵抗地震量 (2)结构特点:基础抗震要求较高;梁,柱,墙尺寸较小;配筋量较大 (3)使用特点:设计方法普及;有效使用空间小; (4)工期与造价:常规工期,高烈度区造价较高 普通加固项目对比表: 采用采用减隔震技术: (1)加固原理:增加结构耗能,吸收/隔离地震能量 (2)主要工作量:基础无需加固;受损节点修复加固;增设阻尼器或隔振器(3)方案特点:设计难度大,计算复杂;等效解决抗震构造问题对使用空间影响小;拆除/恢复工作量小;施工技术要求高,需专业单位完成;业主使用不受大的影响

(4)施工工期:工期短,可展开立体施工,适合紧工期项目 (5)工程造价:提高节后设防烈度时,造价低于常规加固 采用传统抗震技术: (1)加固原理:提高自身刚度,抵抗地震能量 (2)主要工作量:基础开挖/加固;受损节点修复加固;每层大多数梁,柱加固;截面/配筋不够增设剪力墙 (3)方案特点:设计方法普及;无法解决抗震构造问题;对使用空间影响大;拆除/恢复工作量大;普通加固单位可完成;业主需搬离; (4)施工工期:工期较长,通常有基础开始,逐层向上施工 (5)提高结构设防烈度时抗震加固造价通常超过新建造价的70% 这些年来支架没有收到应有的重视,究其原因还是支架存在很多问题,我们需要对支架现阶段发现的各种由于各方面导致的不足,想办法来进行改进和优化,并且还要在本行业的基础上进行更新。本文章来自于南通正道,未经允许,请勿转载。

浅析建筑结构设计中减隔震技术的原理及设计应用

浅析建筑结构设计中减隔震技术的原理及设计应用 摘要:在众多自然灾害当中,地震对我国人们生命财产安全带来的威胁是最大的,为了有效降低地震对经济发展带来的损失,维护人民生命财产安全,建筑行业开始着手深入研究建筑结构的减隔震技术。本文以建筑结构设计中应用减隔震技术的意义为切入点,通过深入研究建筑结构中减隔震技术的基本原理,探寻在建筑结构设计中减隔震技术的具体应用,进而为相关从业工作者提供参考性建议,为提升我国建筑结构质量,保障人民生命财产安全奠定坚实的技术基础。 关键词:建筑结构设计减隔震技术具体应用 地震是自然界中常见的一种地质现象,是地壳板块运动和碰撞的过程中迅速释放能量所带来的振动,我们生存的地球每年会产生约500万次地震,这些地震中的个别地震会给人类的生命财产安全带来巨大的破坏,因此,近年来,建筑结构设计进行防震处理就成为了人类社会发展所广泛关注的课题。减隔震技术是目前建筑结构设计中应用较为广泛,作用较为显著的抗震技术,通过对减隔震技术原理的不断分析以及进行深入推广应用是建筑结构设计未来的主要发展方向。 一、建筑结构中应用减隔震技术的重要意义。 在现代城市发展建设当中,特别是内陆城市,地震对城市居民能够造成了巨大安全威胁,地震对城市建筑物的破坏

是惊人的,给人们的生命财产造成巨大的破坏,为了提升城市建筑结构的抗震能力,确保人民的生命财产安全,我国建筑领域进行了深入的研究以及全面的探索。 通过大量的实验数据证明,应用了减隔震技术的城市建筑,其建筑结构的抗震能力远大于未应用减隔震技术的建筑物,建筑在应用减隔震技术后,遇到非大型破坏地震的情况下可以有效降低建筑结构损坏程度。减隔震技术进行抗震应用的原理在于它能够有效缓解地震带来的地表剧烈振动波,将削减近乎60%的地震反应速度,极大的保护了城市建筑结够的主体,对室内人员的生命财产安全带来的巨大的保障。因此,应用减隔震技术对保护我国人民群众生命财产安全,实现高质量民生工作开展具有十分积极的意义。 二、建筑结构设计中应用减隔震技术的基本原理。 2.1减隔震技术应用的基本概念。 减隔震技术应用的基本内容就是最大限度的降低地震产生的能量对建筑结构的伤害,以此保护建筑的主体结构。在传统的建筑结构抗震设计当中,往往通过增强结构件自身变形力的方式来抵御地震反应力,但是这种方式无法降低或者规避损失。减隔震技术就是通过一种装置将地震发生所产生的地震地面运动或支座运动与建筑物中的结构件隔离开来,避免地震产生的巨大破坏的能量传递至结构件当中。减隔震技术具有极高的抗震能力,同时还能够大幅降低建筑结

浅谈建筑结构的隔震减震技术

高层建筑结构隔震减震技术研究 焦涛 南京理工大学理学院土木工程系 摘要近年来高层建筑隔震减震技术理论和应用进展,主要包括隔震技术措施与减震技术措施,并分析了在隔震减震技术研究与应用中所存在的问题。 关键词高层建筑结构;隔震;减震;耗能装置 1 引言 地震是一种多发自然灾害。据统计,世界上平均每年发生造成严重破坏的地震约18次,每年平均有10000人死于地震中。我国是世界上地震多发的国家之一,发生过破坏性地震的城市占全国城市总数的10%以上,给人民的生命财产和国民经济造成了巨大的损失。地震引起地面剧烈的颠簸和摇晃对房屋建筑特别是高层建筑会产生毁灭性的破坏。目前,城市建筑都朝着中高层建筑发展。因此,如何减少地震对高层建筑的影响是目前房建设计与施工所面临的一个重要问题。为防止地震对建筑的危害,传统的方法是采用抗震结构体系,依靠结构的承载力和变形能力,来耗散地震能量,使结构免于倒塌。但由于它是一种“被动防震”法,不免存在很多不足之处: 1. 由于地震的不确定性,实际地震力有时超出设计地震力较多,从而使地震设计失效; 2.地震力不是常值,它是随结构承载力和刚度的增大而加大,在高烈度区,单靠结构的承载力和刚度来抵御地震是不经济的; 3.结构破坏后,不但造成重大经济损失,而且修复工作十分困难; 4.随着生产、办公、生活的日益现代化,楼内的仪器设备的价值有时远远大于建筑物本身的造价,良好的抗震设计即使保住了建筑物本身,但剧烈的震动使仪器设备中断工作,甚至遭到破坏[1]。 建筑隔震减震技术作为一种新型的抗震防灾技术能大大提高高层建筑的抗震能力,已经在1994年美国圣费南尔多地震、1995年日本阪神地震中得到验证,并且表现出了良好的效

减隔震技术对各专业的影响以及优缺点含钢量对比

减隔震技术的相关资料 结构专业: 张欢

目录 目录 (1) 1.减隔震原理的介绍 (2) 1.1.隔震设计 (2) 1.2减震设计 (2) 2.减隔震的优缺点 (3) 2.1隔震设计的优缺点 (3) 2.2减震设计的优缺点 (4) 3.施工的难易与周期长短 (4) 3.1隔震技术 (4) 3.2减震技术 (4) 4.减隔震对各个专业的影响 (5) 4.1隔震的影响 (5) 4.2减震的影响 (5)

1.减隔震原理的介绍 1.1.隔震设计 1.1.1 原理:指在房屋基础、底部或下部结构与上部结构之间设置由橡胶隔震支座和阻尼装置等部件组成具有整体复位功能的隔震层,以延长整个结构体系的自振周期,减少输入上部结构的水平地震作用,达到预期的防震要求。 隔震技术又称阻尼隔震技术。国内外所有使用“叠层橡胶支座隔震房屋,经过多次强烈地震的考验。隔震效果良好,抗震性能显著。 1.1.2 实例:1994年洛杉矶6.7级地震,31座医院严重破坏,9座医院局部破坏而疏散,USC University医院为地下1层,地上7层的隔震结构,地震中丝毫未损,没有一个花瓶摔下,医院周围建筑物普遍严重破坏,医院屋内人员竟然未意识到发生了强烈地震,各种设备未损坏,医院功能得到维持,成为救灾中心,对震后紧急救援起到了十分重要的作用。而距离1公里外的洛杉矶中心医院造成损失达3.89亿美元。 1.2减震设计 1.2.1 原理:指在房屋结构中设置消能器,通过效能器的相对变形和相对速度提供附加阻尼,以消耗输入结构的地震能量,达到预期减震的要求。 减震附加的消能器即阻尼器,以增加结构的阻尼来降低结构承担的地震作用,进而保障结构的安全。

抗震设计中——隔震技术系统介绍

隔震技术介绍 本文源于上海大学隔震网,基于让广大读者更好了解隔震技术,将之copy至此。切勿乱传。谢谢配合。 前言: 我国地处全球两大地震带之间,是一个多地震国家,地震带主要分布在:东南-台湾和福建沿海一带,华北-太行山沿线和京津唐渤地区,西南-青藏高原、云南和四川西部,西北-新疆和陕甘宁部分地区。回顾过去的历史,地震给人类带来了巨大的灾难和损失。本网站希望能为人们提供一个了解隔震结构的平台,提供隔震理论与技术,以及实际工程应用等相关资料,并时刻关注隔震结构前沿发展,期望使人们对隔震建筑有全面的了解,以推动我国隔震建筑全面、快速、健康发展。 隔震结构与普通结构建造成本比较: 相比于普通建筑结构,采用隔震设计的建筑物,尽管增加了隔震部分的成本,但可以使上部建筑的设防烈度降低了一度,从而减少了相关的成本。 隔震理论: 隔震结构基本信息 在人类漫长的发展历史过程中,经历了无数次强烈地震,仅上个世纪的百年中,由地震引起的伤亡人数超过 5 万人的强震就多达近20次。1976年7月28日凌晨3时28分,在我国河北省北部工业重镇唐山市发生了里氏7.8级强地震,中心区烈度达到11度。地震引起的死亡人数为242769,受伤人数达到164851,倒塌房屋总数近322万间。日本在经历了 1923 年的关东大地震(1923年l月17日,死亡100000人)仁后,对建筑物的抗震及防灾给予了足够的重视。然而在1995年1月17日凌晨5时46分,兵库县南部发生了强烈地震(死亡5500人,受伤人数约为35000人,全部损坏或部分损坏的房屋达 180000 户,1995年2 月16日读卖新闻消息),造成巨大的人员和经济财产损失,对稳步发展的现代抗震结构提出了新的疑问。 传统抗震结构地震反应的计算分析理论在经历了20世纪 20-30年代的静力计算理论, 40-50年代的反应谱计算理论后,于60年代又逐步过渡到动力分析理论方面。无可置疑的是经过数十年的研究和工程实践,人类在抵抗地震这种突发自然灾害、保障人类生命安全方面确实取得了显著的进步。但在减少地震带来的经济损失方面可以认为是没有明显的进展,这一观点可能出乎很多人意料,事实上现代社会遭受地震灾害的损失远远大于1个世纪前。1995年日本神户大地震造成的经济损失高达 2000 亿美元,地震持续20秒,每秒的损失达 100 亿美元。这样巨大的经济损失严重影响一个国家、一个地区和城市的发展和建设。 基于传统建筑结构提出的抗震设计思想以“小震不坏、设防烈度可修、大震不倒”三水准为设防目标,建筑结构依靠结构的变形来吸收并消耗地震能量。在结构遭遇到中、小型地震时,依靠结构吸收并消耗地震能量是可行的。然而,当建筑结构遭遇到大地震或特大罕遇地震时,完全依靠结构难以吸收并消耗巨大的地震能量。因此,虽然采用了严格的设计,在遇到超过规范设计要求的大地震或特大地震时仍无法确保结构安全,寻求有别于传统抗震体系的新体系成了众多学者的研究目标。 基础隔震结构体系通过设置隔震层,将结构分为上部结构、隔震层和下部结构三部分,地震能量经由下部结构传到隔震层,由隔震层的隔震装置吸收并消耗主要地震能量后,仅有少部分能量传到上部结构。隔震层的设置改变了上部结构的周期,降低了结构的地震反应,确保上部结构在大地震时仍可处于弹性状态,或保持在弹塑形变形状态的初期状态。 美国Northridge大地震(1994年)和日本神户大地震(1995年)中地震区隔震建筑记录到的最大加速度反应表明:隔震结构顶层加速度反应峰值仅为非隔震结构的20%(隔震结构198Gal,非隔震结构965Gal)。

相关主题
文本预览
相关文档 最新文档