当前位置:文档之家› 二次蒸汽

二次蒸汽

二次蒸汽

当液体在有限的密闭空间中蒸发时,液体分子通过液面进入上面空间,成为蒸汽分子。由于蒸汽分子处于紊乱的热运动之中,它们相互碰撞,并和容器壁以及液面发生碰撞,在和液面碰撞时,有的分子则被液体分子所吸引,而重新返回液体中成为液体分子。开始蒸发时,进入空间的分子数目多于返回液体中分子的数目,随着蒸发的继续进行,空间蒸汽分子的密度不断增大,因而返回液体中的分子数目也增多。当单位时间内进入空间的分子数目与返回液体中的分子数目相等时,则蒸发与凝结处于动平衡状态,这时虽然蒸发和凝结仍在进行,但空间中蒸汽分子的密度不再增大,此时的状态称为饱和状态。在饱和状态下的液体称为饱和液体,其对应的蒸汽是饱和蒸汽,但最初只是湿饱和蒸汽,待蒸汽中的水分完全蒸发后才是干饱和蒸汽。蒸汽从不饱和到湿饱和再到干饱和的过程温度是不增加的,干饱和之后继续加热则温度会上升,成为过热蒸汽。

饱和蒸汽实际上是水分子由液态转变为气态的临界值,饱和蒸汽由于温度或压力的改变,部分气态水分子转变为液态,即蒸汽中携带了部分的水时就称其为“湿蒸汽”。完全气态水分子称为“干蒸汽”。

在水达到饱和温度后,如定压加热,则饱和水开始汽化,在水没有完全汽化之前,含有饱和水的蒸汽叫湿饱和蒸汽。湿饱和蒸汽继续在定压条件下加热,水完全汽化成蒸汽时的状态叫干饱和蒸汽。干饱和蒸汽继续定压加热,蒸汽温度上升而超过饱和温度时,就变成过热蒸汽。xc

实用闪蒸汽计算方法

闪蒸蒸汽(二次蒸汽) 什么是闪蒸蒸汽?当一定压力下的热凝结水或锅炉水被降压,部分水分会二次蒸发,所得到的蒸汽即为闪蒸蒸汽。 为什么闪蒸蒸汽很重要?因为它包含可以使工厂经济运行的热量,不利用它,能源就会被白白浪费。 闪蒸蒸汽是怎样形成的?当水在大气压力下被加热时,100℃是该压力下液体水所能允许的最高温度。再加热也不能提高水的温度,而只能将水转化成蒸汽。 水在升温至沸点前的过程中吸收的热叫“显热”,或者叫饱和水显热。在同样大气压力下将饱和水转化成蒸汽所需要的热叫“潜热”。在一般场合下,热的单位用千焦表示,它是指将1 kg 水在1个大气压力下升高0.24℃所需要的热量。 然而,如果在一定压力下加热水,那么水的沸点就要比100℃高,所以就要求有更多的显热。压力越高,水的沸点就高,热含量亦越高。压力降低,部分显热释放出来,这部分超量热就会以潜热的形式被吸收,引起部分水被“闪蒸”成蒸汽。 曲线图CG-3. 饱和凝结水减压时形成的闪蒸蒸汽百分比 如0.689 MPa的蒸汽压力温度下的凝结水的热含量是718.89 kJ/kg(参见蒸汽特性数据表第4栏)。如果这时将该凝结水排放到大气压力下(0 MPa),它的热则马上降到419.20 kJ/kg。剩下的299.69 kJ/kg热量则将部分凝结水二次蒸发或闪蒸。使用下列公式可以计算出闪蒸蒸汽的百分比 %闪蒸蒸汽= H SL SH- ×100% SH = 排放前高压下凝结水中的显热。 SL= 排放时低压下凝结水中的显热。 H = 低压下蒸汽中的潜热。 %闪蒸蒸汽= 2258.9 4 720 . 19 89 . 18- ×100%=13.3% 为方便起见,曲线图CG-3给出了不同压力下排放凝结水时所形成的二次闪蒸蒸汽的分比。其它实用图表见CG-53。 曲线图CG-4. 每m3凝结水在大气压下排放时形成的闪蒸蒸汽量

二次蒸汽利用

二次蒸汽潜能(102-104℃)的回收利用 资源节约2009-02-17 16:20:16 阅读90 评论0 字号:大中小订阅 啤酒生产中有50-60%的蒸汽回收机蒸汽热能消耗在糖化车间,其中,麦汁煮沸的热能消耗40%以上。因此,首先节约和回收麦汁煮沸热量,吨酒耗能将会降低,进而降低生产成本。同时,还能排放DMS 及其他异味气体,保证麦汁质量以及环保要求。 回收利用麦汁煮沸二次蒸汽潜能(102-104℃)的方法,目前国际上有五种类型:①热能贮存系统法;②二次蒸汽机械压缩系统法;③二次蒸汽热力压缩系统法;④真空蒸发系统法;⑤麦汁蒸留系统法。国内流行采用第一种系统法。多是新建厂或中大型啤酒企业糖化车间设备改造上,已明显见效。 “热能贮存系统法”中主要设备是二次蒸汽冷凝器和麦汁预热器及热能贮存罐(热水罐)。冷凝器为列管式。管内走水(t1=78℃→t2=98℃),管外空间二次蒸汽冷凝(T=102-104℃,放出冷凝潜能R=2247.2 )。间接换热后,热水(98℃)泵入热水罐贮存,作为下一批麦汁预热用。麦汁预热器为薄板式换热器,置于煮沸锅近旁,相当于麦汁外加热器。其内薄板的一侧面走由热水罐泵来的热水(98℃)温水(78℃);另一侧面走由过滤槽(或压沪机)泵来的麦汁(74℃-16℃)93℃-95℃热麦汁。此等利用煮沸逸出的二次蒸汽潜能,仅仅用于预热麦汁的回收技术称为一级热能回收系统。如将蒸汽冷凝水(102℃以上),继续通过冷却器。将冷水(15℃-20℃)加热到30-45℃作为低温水用,再送入热水罐(二级贮存),另作贮存待用。又可再提高热能回收利用率。应当指出,上述一级热能回收技术,国内已普遍推广应用,可节约麦汁煮沸加热蒸汽量60%左右。笔者曾在沈阳华润雪花啤酒有限公司,对年产10万吨啤酒厂糖化车间热量平衡问题进行研究并测定:该公司糖化车间一级热能回收系统,可节约麦汁煮沸蒸汽加热量58.5%。参见《啤酒科技》1999年第3期论文。后在哈尔滨啤酒公司糖化车间热量运行实况的分析调研也得到证实。 国内多数啤酒企在上世纪90年代初期,为节能降耗,降低生产成本,去除传统的常压煮沸,逐渐引进国外低压煮沸系统及二次蒸汽回收装置,但前者未能普遍使用。主要原因是煮沸强度大幅度降低能否保证麦汁质量及啤酒非生物稳定性等问题,持怀疑态度。结果仍是常压煮沸,回收热能只能达30%的效果,其余的二次蒸汽照旧直放大气,造成能源浪费和二次污染。进入21世期以来,由于原辅料及能源价格波动上涨,如何降低煮沸强度和节约煮沸加热蒸汽量,成为啤酒企业持续发展的瓶颈问题。一项糖化车间节能降耗技术工作,引起啤酒业界的高度重视。出现如下多种煮沸工艺及热量回收系统:①低压煮沸工艺(蒸发量由10%降低到5-6%),其煮沸蒸汽耗量可减少40%; ②常压强制循环煮沸工艺(蒸发量8-10%降到8%以下);③分段煮

关于蒸汽冷凝水品质的说明

关于蒸汽冷凝水品质的说明: 锅水被加热后,一部分锅水形成与锅水同温度的蒸汽,是水的相变过裎,通过锅炉内置的汽水分离器,输送出去供用热设备使用,释放热量后,形成与蒸汽同等温度的冷凝水。 在锅炉不满水运行和汽水分离器完好的情况下,蒸汽一般不带出锅水,即使不小心带出了,在分汽缸中也会通过疏水阀排掉。因此蒸汽是纯洁的,在用热设备内形成的冷凝水也是纯洁的,冷凝水不含碱度和硬度,故冷凝水没有缓冲能力。在这种情况下,只要有一点二氧化碳进入,即可导致ph值大为降低,会导致回收管道的腐蚀,产生铁离子。如再有氧气进入,由于协同效应,更会促进回收管道的腐蚀。解决的办法是向其中加入凝结水系统保护剂,有的干脆用不锈钢做凝结水回收管。实际上在开放状态下,如果用热设备内的冷凝水不能排尽,又长期停用,用热设备也会造成同样的腐蚀。 随着回收技术的发展,解决了冷凝水无泵长距离输送(以前一般采用斯派莎克蒸汽做动力的回收泵,现采用二次蒸汽或蒸汽做动力的提升器)和高温水泵汽蚀问题。因此有了闭式冷凝水回收系统,它阻止了冷凝水与二氧化碳或氧气接触的机会,因此冷凝水管道不再腐蚀,水中的铁离子不再超标,闭式回收是带压回收,没有二次蒸汽排放,水温大大提高,节能更佳。由于用热设备泄漏,被加热物料会进入冷凝水中,造成冷凝水品质达不到锅炉给水标准,这种情况不是冷凝水自身造成的,而是用热设备泄漏造成的,如果被加热物料成酸性,ph值会超标;如果被加热物料是自来水,硬度会超标。解决的方法是阻止用热设备泄漏。往冷凝水中加入碱或除垢剂的方法也行,但对于水质要求高的锅炉不太合适,因为它实际上与锅内加药水处理一样。总没有钠离子交换的好。 综上所述,只要用热设备自身不漏,又采用闭式回收,冷凝水品质完全会优于锅炉给水标准,我公司做的冷凝水回收系统,对冷凝水检测 结果是ph=7,碱度,硬度是零。 蒸汽冷凝水回收方式介绍 蒸汽冷凝水回收方式有下列三种(各有特点,不同要求的场合,可以采用不同的选用) 1、开式回收方式 2、无泵回收方式 3、闭式回收方式 一、开式回收方式:没有技术含量,回收利用率最低,造价也最低,水质不能保证。 二、无泵回收方式:有下列四种,有一定的技术含量(1、自动泵回收,2、无需用电的冷凝水回收,3、提升器回收,4、背压式回收)。都需要用蒸汽做动力或利用冷凝水自身的背压,能把冷凝水送往软水箱或热力除氧器,但不能直接送往锅炉,特点是投资少,不能彻底回收。有二次蒸汽排放,冷凝水在系统外停留待用时间长,但优于开式回收。在电厂供汽的场合可以采用,资金少的单位也可以采用。四种方式相比,提升器回收最科学,它在背压不足以把冷凝水送往目的地的前提下,才用蒸汽做动力,加入的蒸汽量,是根据输送扬程决定的,如果背压足够,则不加蒸汽,如果背压不足,才加蒸汽,蒸汽耗量可以自动控制,蒸汽用量最少。冷凝水的水质,在进入软水箱或热力除氧器前能保证,进入后不能保证。三、闭式回收:闭式回收有下列三种形式(1、热泵回收。2、压缩机回收。3、高温闭式回收)。 热泵回收、压缩机回收是在水泵没有解决汽蚀问题前出现的产品,热泵回收可以实现二次蒸汽的回收利用,在用热设备有不同的压力,温度参数要求的场合有市场,如造纸(有温度曲线要求);化工(有不同加热温度要求)等。压缩机回收是用机械的技术,解决流体的问题,应用场合受影响,主要用于用热设备是单一参数的场合,如纸板线等。 高温闭式回收,可以应用不同的场合,适应性最强,稳定性最佳,回收率最高。它是由回收主机,回收附件组成。

多效蒸发器二次蒸汽折流板除沫器设计缺失实例分析

关于企业多效蒸发器二次蒸汽折流板除沫器设计缺失实例分析 诺卫能源技术(北京)有限公司 客户告知我方说其近年来承接了几个多效蒸发器MVR二次蒸汽折流板除沫器设计的私活。其中例举一个他们完成并提供给企业业主的折流板除沫器动力学设计计算数据实例,供大家讨论其设计过程存在的主要问题,以便大家在类似项目中找准技术要害进行把握。 这是一件铵盐MVR多效蒸发浓缩结晶器二次蒸汽除沫分离器设计。业主提供的数据如下: 1、二次蒸汽流量,4t/h,物质为水蒸气; 2、二次蒸汽液滴液沫夹带量为总量1%~2%,液滴密度为985kg/方; 3、工况压力为50kPaA; 4、工况温度为85℃; 5、操作弹性70%-135%; 6、提示:二次蒸汽携带的液沫含铵盐,易于结晶析出,要求液沫分离效率达到95%以上。处理后的二次蒸汽直接进入压缩机。 下面附图是其提供给业主的工艺分离计算书: 从业主提供的基础工艺数据信息看,二次蒸汽工艺数据及体系物性数据不够完整,比如气相在真实工况下的压缩因子、工况下气相密度、气相粘度、液相粘度、表面张力等,业主无法测得真实数据。业主解释说,要求客户在专业设计计算平台

上结合从事过的类似铵盐蒸发除沫器成功业绩经验数据,予以补充。也可以检验考查技术方的业绩经验和真实设计计算能力水平。 大家现在以专业动力学分离技术角度来看看该高校的分离工艺计算书数据: 1、关于气相密度,高校提供的计算数据为0.40178kg/m^3。而应业主要求,诺卫能源技术公司作为专业动力学分离技术公司通过其动力学分离国际精准设计 计算系统平台得到的工况下的气相真实密度为0.019Ib/ft^3, 即0.3046kg/m^3。两者密度差距这么大,气相体积流速差距必然大。必须找到原因。 接到反馈,从事国际工程任务设计的该动力学分离技术公司反复检查自己的国际权威认证的精准设计系统平台并调取以往为国外计算的同类项目数据对比后,确认没有问题。 继而反推该高校密度数据,得到100%工况气相体积流速2.76547m^3/s,即9955.7m^3/h。这个数据对吗? 由于工况压力为50kpaG,绝压50kpa,属于真空度近50%的真空工况,气体稀薄,分子间范德华力小,可以用理想气体状态方程来近似衡量孰优孰劣。 气体状态方程反算得到的气流体积流速V=13222m^3/h。高校的数据为9955.7 m^3/h,专业动力学分离技术公司提供的体积流量13132 m^3/h。两相比较,高校得出的50kpaG真空工况下的体积流量仅有9955.7m^3/h,差距竟然达到近25%,显然存在问题。请大家根据自己的计算方法判断谁有问题? 2、发现高校的计算书漏掉了重要的液相粘度数据,竟然算出气液除沫分离效率。产生疑问。 3、液沫表面张力,高校提供的数据为65dyc/cm整数值, 而通过动力学分离技术公司得到的该工况下的液沫表面张力为35.64dyne/cm。诺卫能源技术公司从同

主蒸汽温度控制系统

主蒸汽温度控制系统 本机组的锅炉为单汽包、单炉膛、再热式自然循环锅炉。由汽包分离分离出的蒸汽依次流过顶棚、热回收包覆面、初级过热器、屏式过热器和未级过热器,最后达到一定的温度离开锅炉。 两级喷水减温器分别布置于初过出口、屏过入口处和屏过出口、未级过热器入口处,如图1所示。主蒸汽温度控制系统,通过这两级喷水减温,将未级过热器出口主蒸汽温度控制在某个定值上,并且保护整个过热器管路乃至主蒸汽管道及汽机金属不被高温损坏。 该系统分两级喷水控制,每级喷水又分左右两侧控制,如图1所示,同一级的两侧减温控制设计思想是相同的。一、二级减温水控制系统是相互独立的,现分别予以剖析。 1.1一级减温水控制 一级减温水的作用,简单地说是将一级减温器出口温度即屏过入口温度控制在某个定值上。图2为原理性框图。 这个温度定值通常是锅炉负荷(用汽机第一级压力P1代表),主汽压力P,主汽压偏差△P的函数(P1、P、△P)。其中,定值与负荷的关系,如图2中的曲线所示,而与压力的关系待定。但在特殊工况下,这个定值还要受最小减温水量和最大减温水量的限制。 ①最小一级减温水量限制 限制最小减温水量的目的是为了防止屏式过热器被高温烧坏,因屏过接受炉内高温火焰辐射,防止屏过内蒸汽温度过高尤为重要,因此最小一级减温水量限制又可理解成屏过出口最高蒸汽温度限制。图2中,A1为屏过出口所允许的最高汽温值。当屏过出口汽温高于这个最高值后,PID1将逐渐减小输出,最后在小值选择器之后,将取代通常的定值(P1、P,

△P),即去降低一级减温器出口温度定值,PID0将去增加一级减温水量,从而降低整个屏过段的蒸汽温度。 ②最大一级减温水量限制 限制最大一级减温水量目的是为了防止屏过入口汽温过低以致低于此处当前压力下水蒸汽的饱和点,所以又可将最大一级减温水量限制理解成屏过入口最低温度限制。图2中,f(x)输出为相应压力下屏过入口蒸汽的饱和温度,在此基础上再加上A2(约11℃)的过热度,这个和值在大值选择器中与前级的小选输出进行比较,取大值输出。这样就可限制屏过入口蒸汽温度定值,使其不致低于饱和点,从而防止了屏过入口蒸汽带水。 如果不出现两种极端情况,即屏过出口汽温过高或屏过入口汽温过低,定值将是f(P1、P、△P)。 实际屏过入口温度与其定值求偏差后,经PID0调节器运算,其输出去调节一级减温水量最终使屏过入口实际汽温与其定值相等。 由此可见,一级减温水控制回路只是一个单回路调节系统,虽然虽然在框图中有两个PID调节器“串联”在一起,但并不是串级控制系统。

热电厂供热蒸汽凝结水回收的水处理方式

热电厂供热蒸汽凝结水回收的水处理方式 文章对热电厂的蒸汽凝结水水处理的必要性进行了阐述,对凝结水处理的工艺、设备及主要材料选型方法进行了论述。 标签:蒸汽;凝结水;热电厂;水处理 蒸汽广泛应用于电力、供热、石油、化工、制药、冶金、食品、纺织、印染、建材等国民经济行业,是现代人类生产生活中的一种主要二次能源。有数据表明,目前我国蒸汽供热系统的热能平均利用效率只有30%左右,节能潜力约为8000万吨标准煤。因此,节能降耗是我国实现可持续发展的必要手段。长期以来,人们比较注重锅炉的节能,而对同属蒸汽供热系统的凝结水系统却重视不够。蒸汽在用汽设备中放出汽化潜热后,变为饱和凝结水。该凝结水的热量与凝结水的压力和温度成正比,可占蒸汽总热量的20%、30%。所以凝结水的回收利用是蒸汽供热系统节能的一项主要措施。但是,对于负责提供区域工业蒸汽的热电厂,由于电站锅炉对给水的品质要求比较高,所以要想安全可靠的回收利用凝结水,必须有可靠的凝结水处理系统。因此,蒸汽凝结水处理系统是热电厂供热蒸汽凝结水回收的关键环节,必须予以高度地重视。 1 热电厂供热蒸汽凝结水的品质 蒸汽在换热设备中转换成凝结水,应该是品质良好的蒸馏水。这与实际热电厂回收的凝结水品质有很大出入,这是由以下原因造成的: 1.1 空气 蒸汽系统停运后,残存在系统中的蒸汽冷凝成凝结水,体积减小,在系统中造成负压或真空,所以大量的空气从漏气处进入系统。 1.2 二氧化碳 凝结水中的CO2主要是由于锅炉水中含有的碳酸盐或重碳酸鹽在炉内压力和温度的作用下分解产生的。其化学反应式如下: Na2CO3+H2O=NaOH+NaHCO3 NaHCO3=NaOH+CO2↑ 1.3 氧化铁、氢氧化铁及碳酸氢亚铁 从锅炉出来的蒸汽都携带有一定量的水滴,使蒸汽在凝结后呈碱性。因而,凝结水可以迅速溶解沿途管道和设备中的铁锈(氧化铁)。凝结水中的氧和二氧化碳也同时引起了管道和设备的腐蚀,同管道和设备中的铁反应,生成了氢氧化

蒸汽和凝结水管道设计

蒸汽和凝结水管道设计 国外石油工厂蒸汽系统的压力大致分为10Mpa、6.0MPa、4.0 MPa、2.0 MPa、1.0 MPa、0.6 MPa、和0.35 MPa,凝结水系统压力大致分为0.35~0.07 MPa. 国内石油化工厂蒸汽系统的压力大致分为10Mpa、4.0MPa、1 MPa、0.3 MPa, 凝结水系统压力大致分为0.3 MPa. 表1是国内常用的蒸汽和凝结水系统压力 用、稀释用、事故用。 (一)蒸汽管道 1.蒸汽管道的布置 一般装置的蒸汽管道,大多是架空铺设,很少有管沟铺设,不埋地铺设。其主要原因是不易解决保温层的防潮和吸收管道热胀变形。 由工厂系统进入装置的主蒸汽管道,一般布置在管廊的上层。 (1)各种用途的蒸汽支管均应自蒸汽主管的顶部接出,支管上的切断阀应安装在靠近主管的水平管线上,以避免存液。 (2)在动力、加热及工艺等重要用途的蒸汽支管上,不得再引出灭火/消防,吹扫等其他用途的蒸汽支管。 (3)一般从蒸汽主管上引出的蒸汽支管均应采用二阀组。而从蒸汽主管或支管引出接至工艺设备或工艺管道的蒸汽管上,必须设三阀组,即两切断阀之间设一常开的DN20检查阀,以便随时发现泄漏。 (4)凡饱和蒸汽主管进入装置,在装置侧的边界附近应设蒸汽疏水器,在分水器下部设经常疏水措施。过热蒸汽主管进入装置,一般可不设分水器。 (5)成组布置的蒸汽拌热管,应由蒸汽分管道(或称集合管Manifold)接出,分管道是由拌热蒸汽供汽管供汽,拌热蒸汽供汽管是由装置内的蒸汽主管上部引出或从各设备区专用拌热蒸汽支管上部引出。当蒸汽分管道的位置比蒸汽主管高时,可按图1上部的图形设计。当蒸汽分管道的位置比蒸汽主管低时,可按图1下部的图形设计。 (6)在蒸汽管道的U形补偿器上,不得引出支管。在靠近U形补偿器两侧的直管上引出支管时,支管不应妨碍主管的变形或位移。因主管热胀而产生的支管引出点的位移,不应使支管承受过大的应力或过多的位移。 (7)直接排至大气的蒸汽放空管,应在该管下端的弯头附近开一个φ6mm的排液孔,并接DN15的管子引至边沟、漏斗等合适的地方,如图2(a)所示。如果放空管上装有消声器,则消声器底部应设DN15的排液管与放空管相接,如图2(b)所示。放空管应设导向和承重支架。 (8)连续排放或经常排放的乏汽管道,应引至非主要操作区和操作人员不多的地方。

二次蒸汽冷凝水操作规程(标准版)

The prerequisite for vigorously developing our productivity is that we must be responsible for the safety of our company and our own lives. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 二次蒸汽冷凝水操作规程(标准 版)

二次蒸汽冷凝水操作规程(标准版)导语:建立和健全我们的现代企业制度,是指引我们生产劳动的方向。而大力发展我们生产力的前提,是我们必须对我们企业和我们自己的生命安全负责。可用于实体印刷或电子存档(使用前请详细阅读条款)。 1、启动前的检查 1、停车时间超过8小时,联系电工测绝缘。 2、各部件,轴承是否完好。 3、各润滑点润滑油是否符合要求。 4、泵进口管是否畅通,法兰是否密封,阀门是否好用,开关位置是否正确。 5、所有仪表是否齐全好用。 6、泵的填料密封是否正常,冷却水位是否合格,流程是否畅通。 7、泵轴攀车无问题。 8、电源电压是否正常。 2、启动前的准备。(接主控室通知后)。 1、关闭泵的放水阀。 2、关闭泵的出口手动阀。 3、关闭泵的出口手动阀。

4、联系热水站准备接受热水。 5、打开泵填料密封冷却水。 6、联系主控室打开泵出口气动调节阀。 7、改通各级加热段排冷凝水到相应冷凝水罐的流程,并根据情况适当打开旁路阀。 8、改通冷凝水罐前一级进后一级的冷凝水流程,并适当打开旁路阀。 3、启动和运行中检查。 1、当NP101冷凝水罐内有液位或主控室通知后启动泵。 2、逐个打开泵去热水站出口手动阀。 3、向主控室汇报启动情况,由主控室将泵的出口调节阀转向联锁控制。 4、运行中的检查:包括泵的噪音、振动,轴承润滑、温升,填料密封性、上水情况、电流电压。NP101的水位。联锁是否正常。 4、停泵 1、当主控室通知NP101无来水时,逐渐关闭泵的出口阀,当冬季系统停车时不应全关闭,保证出口管路水放尽。 2、停泵后切断泵电机电源。

主蒸汽温度调节

主蒸汽温度调节 过热器系统按蒸汽流向可分为四级:顶棚及包墙过热器、分隔屏过热器、后屏过热器及末级过热器,其中主受热面为分隔屏过热器、后屏过热器、末级过热器。分隔屏和后屏过热器布置在炉膛的上部,主要吸收炉膛内的辐射热量;末级过热器布置在水平烟道、炉膛后墙水冷壁垂帘管之后,受热面呈逆流布置,靠对流传热吸收热量。过热器系统的汽温调节,采用水煤比粗调,两级四点喷水减温细调,并将后屏出口集箱的两根引出管进行左右交叉后连接到末过进口集箱上,以减少左右侧汽温偏差。 由于影响汽温的因素多,影响过程复杂多变,调节过程惯性也大,这就要求汽温调节应勤分析、多观察,树立起超前调节的思想。在机组负荷发生变化时,应加强对汽温的监视与调整,分析其影响因素与变化的关系,摸索出汽温调节的一些经验,来指导我们的调整操作。 主汽温度的调节分为烟气侧的调节和蒸汽侧的调节。烟气侧的调节主要通过控制烟气温度和流量的方法来对汽温进行调节,对以对流换热为主的末级过热器影响较大,但烟气侧的调节惯性大、延迟大;蒸汽侧的调节主要是通过改变水煤比、减温水量来调节,对主蒸汽温度的调节相对比较灵敏。 下面是对一些典型工况进行分析: 一、正常运行中的汽温调节 正常运行时,主要是通过两级减温器来调节主蒸汽温度。第一级喷水减温器设在分隔屏出口,用以保护后屏不超温,作为过热器温的粗调;第二级喷水减温器设在后屏出口,作为细调,一级和二级喷

水减温控制系统均系串级控制系统。一级喷水减温控制系统调节的主参数为后屏出口温度,副参数为一级减温器出口温度(作为前馈信号)。二级喷水减温控制系统的被控对象为末过出口温度,副参数为二级减温器出口温度(作为前馈信号)。由于两级减温器调门的开度与正参数不是成比例关系,因此正常运行时应保持减温器具有一定的开度。对

蒸汽凝结水开式回收系统技术和管理要求地方标准

蒸汽凝结水开式回收系统技术和管理要求地方标准

. DB3309 蒸汽凝结水开式回收系统 技术和管理要求 The requirements for technique and management of open recovery system of steam condensate

前言 本标准由舟山市富丹旅游食品有限责任公司、中国水产舟山海洋渔业公司提出。 本标准由舟山市质量技术监督局归口。 本标准起草单位:舟山市富丹旅游食品有限责任公司、中国水产舟山海洋渔业公司。 本标准主要起草人:潘渊、戎素红、陈汉伟、吕津、陈云云。 本标准为首次发布。

蒸汽凝结水开式回收系统 技术和管理要求 1 范围 本标准规定了蒸汽供热系统中凝结水回收的原则,凝结水开式回收系统的确定和水质、设备、运行管理等有关技术要求。 本标准适用于公称压力P≤2.5MPa,介质温度t≤250℃的蒸汽供热系统中凝结水开式回收系统的设计、改造、安装和管理。 2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB 1576-2001 工业锅炉水质 GB 4272 设备及管道保温技术通则 GB/T 12721-1991 蒸汽供热系统凝结水回收及蒸汽疏水阀技术管理要求 GB 17167-2006 用能单位能源计量器具配备和管理通则 GJBT-565 矩形给水箱(图集号:02S101) JJG 686-2006 热水表 3定义 本标准采用下列定义。 3.1 开式回收系统 集水箱与大气直接相接触的凝结水回收系统。3.2 单元疏水方式

蒸汽和冷凝水估算量

一、饱和蒸汽流量估算 1.ΔP=0.4MPa,蒸汽密度ρ= 2.669kg/m3,设定管道内流速υ=20m/s DN=40(mm)时,G=241.6(kg/h) DN=50(mm)时,G=377.2(kg/h) DN=65(mm)时,G=611.7(kg/h) DN=80(mm)时,G=966.6(kg/h) 2.ΔP=0.5MPa,蒸汽密度ρ= 3.169kg/m3,设定管道内流速υ=22m/s DN=40(mm)时,G=315.5(kg/h) DN=50(mm)时,G=492.7(kg/h) DN=65(mm)时,G=798.9(kg/h) DN=80(mm)时,G=1262.4(kg/h) 3.ΔP=0.6MPa,蒸汽密度ρ=3.666kg/m3,设定管道内流速υ=24m/s DN=40(mm)时,G=398.1(kg/h) DN=50(mm)时,G=621.8(kg/h) DN=65(mm)时,G=1008.2(kg/h) DN=80(mm)时,G=1593.2(kg/h) 4.ΔP=0.7MPa,蒸汽密度ρ=4.161kg/m3,设定管道内流速υ=25m/s DN=40(mm)时,G=470.7(kg/h) DN=50(mm)时,G=735.1(kg/h) DN=65(mm)时,G=1192(kg/h) DN=80(mm)时,G=1883.7(kg/h)

二、蒸汽凝结水流量估算 1.ΔP=0.4MPa,ρ=958.38kg/m3,取υ=1m/s DN=40(mm)时,G=4.335(t/h) DN=50(mm)时,G=6.744(t/h) DN=65(mm)时,G=11.45(t/h) DN=80(mm)时,G=17.34(t/h) 2.ΔP=0.5MPa,ρ=958.38kg/m3,取υ=1.2m/s DN=40(mm)时,G=5.2(t/h) DN=50(mm)时,G=8.13(t/h) DN=65(mm)时,G=13.74(t/h) DN=80(mm)时,G=20.81(t/h) 3.ΔP=0.5MPa,ρ=958.38kg/m3,取υ=1.5m/s DN=40(mm)时,G=6.5(t/h) DN=50(mm)时,G=10.16(t/h) DN=65(mm)时,G=17.17(t/h) DN=80(mm)时,G=26(t/h) 4.ΔP=0.7MPa,ρ=958.38kg/m3,取υ=2.0m/s DN=40(mm)时,G=8.671(t/h) DN=50(mm)时,G=13.55(t/h) DN=65(mm)时,G=22.9(t/h) DN=80(mm)时,G=34.69(t/h)

二次蒸汽回收方案8.9

关于精制工段二次蒸汽回收的方案 一、现状 8.5米流化床干燥器5台,耗汽量1.9-3.7 t/h;0米翅片换热器3组,耗汽量1.3 -2.6 t/h,中间一组耗气量0.39-0.86 t/h;8.5米窗户旁现有翅片换热器5组10片,冬天使用,耗汽量约1t/h。 一次蒸汽共用量:夏天:1.9+1.3+0=3.2t/h 冬天:3.7+2.6+1=7.3 t/h。 产生二次汽量:夏天:3.2*12%=0.39t/h 冬天:7.3*12%=0.88 t/h (蒸汽闪蒸率按12%计算) 根据二次蒸汽的产生量,计划把产生的二次蒸汽给0米气流干燥翅片换热器的第二组使用,基本能保证其蒸汽用量(详见工艺流程图)。 大量的二次闪蒸汽由冷凝水罐排汽口排出,造成大量的水和热能浪费以及环境的污染问题,特别是由于在冬季排放乏汽冷凝成水在地面结冰,影响了操作工人的行走,存在一定的安全隐患。 二、技改内容: 1、将二次蒸汽完全闭式回收利用;现场杜绝冒汽现象,消除热浪费和热污染,节约能源并实现清洁生产;回收装置全自动化运行,无需专人看管。 2、在精制D区0米原罐位置改建为10m3的密闭压力冷凝水罐; 8.5米翅片换热器、流化床与0米翅片换热器所产生二次蒸汽进入此罐; 0米翅片换热器中间一组改为低压汽(0.2MPa左右)供汽;一次蒸汽管路与二次蒸汽管路间连接减压阀,当二次蒸汽量不够时,补充一次蒸汽供汽。

D区0米冷凝水罐出来的冷凝水经泵打向8.5米为一片换热面积 102m2的翅片换热器换热,然后回到C区脱色工序0米一次冷凝水罐进行回收,如果冬季寒冷时热量不够,关闭水阀,直接通向精制0米 冷凝水罐,恢复一次蒸汽换热。 正常情况下,可回收100%的二次汽及凝结水,实现对二次汽中热能的完全回收。 三、排汽热能回收工艺流程(见下页) 四、经济效益分析 回收蒸汽经济效益: 二次蒸汽回收量按夏0.35T/H,冬0.79T/H计算,蒸汽价格约60元/吨,凝结水价格约7元/吨。 综合效益为: 夏:0.39*(60+7)=26元/小时 冬:0.88(60+7)=59元/小时 按年运行8000小时计,年创效益为: 夏4000×26=10.4万元; 冬4000×59=23.6万元 10.4+23.6=34万元 投资回收周期:14.5/34=5个月 五、设备投资: 设备清单附表1(厂家提供):

主蒸汽汽温汽压的影响

汽温、汽压异常对设备的危害 在汽轮机运行中,初终汽压、汽温、主蒸汽流量等参数都等于设计参数时,这种运行工况称为设计工况,此时的效率最高,所以又称为经济工况。运行中如果各种参数都等于额定值,则这种工况称为额定工况。目前大型汽轮机组的热力计算工况多数都取额定工况,为此机组的设计工况和额定工况成为同一个工况。在实际运行中,很难使参数严格地保持设计值,这种与设计工况不符合的运行工况,称为汽轮机的变工况。这时进入汽轮机的蒸汽参数、流量和凝结器真空的变化,将引起各级的压力、温度、焓降、效率、反动度及轴向推力等发生变化。这不仅影响汽轮机运行的经济性,还将影响汽轮机的安全性。所以在日常运行中,应该认真监督汽轮机初、终参数的变化。 1、主蒸汽压力升高 当主蒸汽温度和凝结器真空不变,而主蒸汽压力升高时,蒸汽在汽轮机内的焓降增大,末级排汽湿度增加。 主蒸汽压力升高时,即使机组调速汽阀的总开度不变,主蒸汽流量也将增加,机组负荷则增大,这对运行的经济性有利。但如果主蒸汽压力升高超出规定范围时,将会直接威胁机组的安全运行。因此在机组运行规程中有明确规定,不允许在主蒸汽压力超过极限数值时运行。 主蒸汽压力过高有如下危害: (1)主蒸汽压力升高时,要维持负荷不变,需减小调速汽阀的总开度,但这只能通过关小全开的调速汽阀来实现。在关小到第一调速汽阀全开,而第二调速汽阀将要开启时,蒸汽在调节级的焓降最大,会引起调节级动叶片过负荷,甚至可能被损伤。 (2)末级叶片可能过负荷。主蒸汽压力升高后,由于蒸汽比容减小,即使调速汽阀开度不变,主蒸汽流量也要增加,再加上蒸汽的总焓降增大,将使末级叶片过负荷,所以,这时要注意控制机组负荷。 (3)主蒸汽温度不变,只是主蒸汽压力升高,将使末几级的蒸汽湿度变大,机组末几级的动叶片被水滴冲刷加重。 (4)承压部件和紧固部件的内应力会加大。主蒸汽压力升高后,主蒸汽管道、自动主汽阀及调速汽阀室、汽缸、法兰、螺栓等部件的内应力都将增加,这会缩短其使用寿命,甚至造成这些部件受到损伤。 由于主蒸汽压力升高时会带来许多危害,所以当主蒸汽压力超过允许的变化范围时,不允许在此压力下继续运行。若主蒸汽压力超过规定值,应及时联系锅炉值班员,使它尽快恢复到正常范围;当锅炉调整无效时,应利用电动主闸阀节流降压。如果采用上述降压措施后仍无效,主蒸汽压力仍继续升高,应立即打闸停机。 2、主蒸汽压力下降 当主蒸汽温度和凝结器真空不变,主蒸汽压力降低时,蒸汽在汽轮机内的焓降要减少,蒸汽比容将增大。此时,即使调速汽阀总开度不变,主蒸汽流量也要减少,机组负荷降低;若汽压降低过多时,机组带不到满负荷,运行经济性降低;这时调节级焓降仍接近于设计值,而其它各级焓降均低于设计值,所以对机组运行的安全性没有不利影响。如果主蒸汽压力降低后,机组仍要维持额定负荷不变,就要开大调速汽阀增加主蒸汽流量,这将会使汽轮机末几级特别是最末级叶片过负荷,影响机组安全运行。当主蒸汽压力下低超过允许值时,应尽快联系锅炉值班员恢复汽压;当汽压降低至最低限度时,应采用降低负荷和减少进汽量的方法来

冷凝水回收的好处

蒸汽系统凝结水回收的好处 杭州瓦特节能工程有限公司技术部李少鹏 冷凝水回收的益处: 1,回收高温凝结水的显热以节省燃料,占蒸汽总热量的20%的能量。 2,提高锅炉出率,可将锅炉产生蒸汽的能力保持在最大程度. 3,冷凝水不含盐分,使用冷凝水可减少锅炉排污的次数,因而减少成本. 4,回收凝结水可减少除氧器补给水的供应,从而节省水费和水处理费。5,增加锅炉工作稳定性,从而提高蒸汽的质量,降低能耗. 6,通过提高给水之温度,最大程度地减少氧含量,因此可以减小系统腐蚀。7,降低燃料气体的排放,减少高温水向环境的排放,从而保护环境.

凝结水回收: 简介 B8) 凝结水是高温蒸馏水,所以是珍贵的,回收与重新利用凝结水不仅从技术上带来好处,而且它也可以节省支出. 不回收凝结水所带来的问题 B9) 凝结水是一种高温水.当蒸汽释放其潜热转变为凝结水状态,大约还有25%总量保留在凝结水中.如果把凝结水排放掉,所失去的热必须通过燃烧更多的燃料来加热低温的补充水来弥补.通常,每升高6℃水温锅炉燃料可节省约1%. B10)凝结水是理想的锅炉补充用水,因为它是已经被处理过的,TDS 的含量很低, 通常是不超过20ppm,锅炉排污的目的是产生出品质好的蒸汽并用来保护锅炉.用来维持好的TDS水平所需的排污之数量是依赖于补充水的TDS含量,TDS含量越高排污次数越多.回收凝结水可以大幅度地减少锅炉的排污次数..从而可以节省燃料,节省化学处理,以及水的用量.例如:当给水的 TDS从500ppm降低到250ppm,锅炉水的TDS保持在3500ppm,排放污水次数可减少54 %.

B11) 锅炉额定蒸汽量通常是指给水温度在100℃,不用锅炉蒸汽时的产量,低的给水温度将减少蒸汽的产生量.因为给水温度要升高到100℃.给水温差所造成的锅炉理论上与实际上产量差别被称为”蒸汽系数”.例如:当没有凝结水回收时,给水温度是30℃,那么,锅炉在7bar工作压力下的蒸汽量(理论上)将降低14%. B12) 水中溶解的空气量取决于水的温度.温度越高,空气含量越低,一些没有安装昂贵的除氧器的工厂,将依靠给水的温度来减少空气含量.对于这些工厂如果不回收凝结水,那么给水的温度将会比较低.当给水在锅炉 中加热时,不溶解的空气将从给水中跑出来.这些空气将与蒸汽一起被输送进管道,并占具蒸汽的空间.空气是一种差的传热体,它会延长升温时间,降低工作效率1mm厚的空气膜的热阻与1720mm厚 的铁板的热阻相同.空气中含有的氧气和二氧化碳会造 成管道的腐蚀.

蒸汽冷凝水回收方案

蒸汽冷凝水回收方案 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

设备房蒸汽凝结水回收再利用方案 一、现状 750万吨现场锅炉房现有10t/h蒸汽锅炉4台,一般情况下有2台锅炉运行,蒸汽压力~,每天平均产生蒸汽量200t。主要用汽设备为2台湍流式热交换器、11台容积式热交换器、2台中央空调制冷机组和选矿浮选工艺用汽。容积式热交换器配有一套凝结水回收系统,为开式回收系统。 二、存在的问题 1、大量的疏水阀漏汽和闪蒸二次汽对空排放,这部分浪费约占凝结水总量的5~20%,总热量的20~60%。 2、闪蒸二次汽的排放,在冬天热雾漫天,夏季热浪逼人,即对环境造成严重的热污染,又可能烫伤人员,存在安全隐患。 3、潮湿的环境加重了金属设备的腐蚀,电气设备老化,形成间接损失。 4、回收系统设有两台水泵,但没有敷设设备房至锅炉房的凝结水回收管路,所以没有启用,高温凝结水直接排至地沟,造成水资源和热能的白白浪费。 5、开式回收系统凝结水收集至开式水箱,再次溶解空气中的氧气,二氧化碳等杂质,增加了后处理费用。 目前国内企业的凝结水回收基本采取开式水罐、水箱等,为减少闪蒸二次汽(凝结水温度高,进到开式系统压力降低,大量的显

热变成潜热,形成二次汽化)的排放。有的企业采用掺水降温,降低水质和利用价值,还有的企业专门上一台冷凝器,用循环水对闪蒸二次汽进行吸,然后再通过凉水塔将热量排放掉,为浪费这部分能源,还要上设备和花费新的能源。 三、解决方案 采用闭式回收系统,对开式回收系统进行适当改造,购置安装一套SVLN-5闭式凝结水回收装置,敷设一趟300米φ58*4无缝钢管,作为设备房至锅炉房除氧器凝结水回收管路,将凝结水回收至锅炉再利用。 四、主要设备材料清单 五、设备配置清单

蒸汽系统

第四章蒸汽系统 第一节概述 一蒸汽系统示意图 图4-1表示以蒸汽为热媒的各类用户供应 蒸汽供应分为有凝回收和无凝回收。图中给出的是有结水回收。 用户设疏水器,凝水箱,凝结水泵 凝结水尽管回收,节省热能,水资源 当可就地利用,或凝水污染,不宜回收,且经技术经济比较,才可能回收 直接、间接、减压 二蒸汽作为热媒的特点 特点:与热水相比,有如下特点:“(1)可同时满足不同用户对不同压力,程度,动力要求;(2)相变放热,单位质量携能多,流量小,管径小;(3)平均温度高,在相 同负荷下,节省散热设备面积;(4)状态变化大,有相变设计和运行管理复杂, 易出现“跑,冒,滴,漏”,(5)密度大,无水静压问题,适用于高层建筑高压; (6)热惰性小;(7)压力变化时,温度变化不大,不能质调,只能间歇调节;造 成室温波动大,供暖质量收影响,(8)易造成管道和设备表面有机灰尘的分解与 升华;(9)间歇工作管道易腐蚀;(10)管道温度高,无效热损失大。 综上所述,蒸汽供热比热水供热耗能多,管理麻烦,运行费用高,供暖效果差,主要用于工业建筑及辅助建筑,商服,特高层等。 第二节蒸汽采暖系统 一蒸汽采暖系统的类型 (1)根据供气压力分为:高压蒸汽采暖系统(P(表压)>0.07MPa) 低压蒸汽采暖系统(P(表压)<=0.07MPa) 真空蒸汽采暖系统(P(绝对压力)<0.1MPa) (2)根据立管根数分压:单管系统,易产生水击和汽水冲击噪声 双管系统:多采用垂直式 (3)根据蒸汽干管的位置分:上供式,中供式,下供式 蒸汽干管位于散热器上,中,下即为保证汽,水同向流动,防

止水击和噪声,上供式用的最多。 (4)根据凝结水回收动力分:重力回水,机械回水。 (5)根据凝结水系统是否通大气分为:开式,闭式 (6)根据凝结水充满管道断面的程度分为:干式回水和湿式回水 一般采用开式,分为重力和机械,可上,中,下供,用于有蒸汽源 的工业辅助建筑和厂企办公楼 1.低压蒸汽采暖系统的型式 (1)重力回水低压蒸汽采暖系统 特点:供汽压力<0.07MPa,凝结水在有坡度管道中靠重力流回热 源 工作原理:图4-2(a)为上供式(b)为下供式 干式凝水管:水平凝结水干管的最低点比∏ ∏水位还高200-250mm - 保证不被水充满。工作时该管道上部充满空气,下部凝结水。系统停止工作 时,该管内充满空气,称为干式凝水管。回水方式称干式回水 湿式凝水管:管道4的整个断面始终充满凝结水,称为湿式凝水管,回水方式称为湿式回水 水封:图(b)中水封8(详见图4-17)排除蒸汽管沿途凝水,防止主管中汽水冲击,阻止蒸汽窜入凝水管,水平蒸汽干管坡向水封,水封低部设放水丝堵排污,上设放空。优缺点:系统简单,不设凝水箱,凝结水泵,少占地,不耗电能,调节好可不设疏水器。 但锅炉要低于孔高,当作用半径大时,需高压力,图4-2中h加大,否则,水平 蒸汽干管内甚至底层散热蒸汽水,空气不能排出,蒸汽不能正常进入系统,影响 运行,适用于小型系统 (2)机械回水低压蒸汽采暖系统 特点:凝结水靠水泵动力送回热源 工作原理:图4-3中供式机械回水 优缺点:消耗电能,但热源可不低设,系统作用半径大,适用于较大型系统 2.低压蒸汽采暖系统的设计要点 与其水采暖水力计算有类似和不同,压力低,密度变化不大,不考虑密度变化与热水相

主蒸汽温度调节

主蒸汽温度调节 The Standardization Office was revised on the afternoon of December 13, 2020

主蒸汽温度调节 过热器系统按蒸汽流向可分为四级:顶棚及包墙过热器、分隔屏过热器、后屏过热器及末级过热器,其中主受热面为分隔屏过热器、后屏过热器、末级过热器。分隔屏和后屏过热器布置在炉膛的上部,主要吸收炉膛内的辐射热量;末级过热器布置在水平烟道、炉膛后墙水冷壁垂帘管之后,受热面呈逆流布置,靠对流传热吸收热量。过热器系统的汽温调节,采用水煤比粗调,两级四点喷水减温细调,并将后屏出口集箱的两根引出管进行左右交叉后连接到末过进口集箱上,以减少左右侧汽温偏差。 由于影响汽温的因素多,影响过程复杂多变,调节过程惯性也大,这就要求汽温调节应勤分析、多观察,树立起超前调节的思想。在机组负荷发生变化时,应加强对汽温的监视与调整,分析其影响因素与变化的关系,摸索出汽温调节的一些经验,来指导我们的调整操作。 主汽温度的调节分为烟气侧的调节和蒸汽侧的调节。烟气侧的调节主要通过控制烟气温度和流量的方法来对汽温进行调节,对以对流换热为主的末级过热器影响较大,但烟气侧的调节惯性大、延迟大;蒸汽侧的调节主要是通过改变水煤比、减温水量来调节,对主蒸汽温度的调节相对比较灵敏。 下面是对一些典型工况进行分析: 一、正常运行中的汽温调节 正常运行时,主要是通过两级减温器来调节主蒸汽温度。第一级喷水减温器设在分隔屏出口,用以保护后屏不超温,作为过热器

温的粗调;第二级喷水减温器设在后屏出口,作为细调,一级和二级喷水减温控制系统均系串级控制系统。一级喷水减温控制系统调节的主参数为后屏出口温度,副参数为一级减温器出口温度(作为前馈信号)。二级喷水减温控制系统的被控对象为末过出口温度,副参数为二级减温器出口温度(作为前馈信号)。由于两级减温器调门的开度与正参数不是成比例关系,因此正常运行时应保持减温器具有一定的开度。对#6炉来说,众多因素的影响使得分隔屏出口的温度存在偏差,A侧的温度明显比B侧要高,所以A侧的一级减温水调门更应该有一定的开度,以防止煤量发生变化时,主蒸汽温度上升的较快,而导致减温水调门跟踪不上.当然,这里所说的开度是相对的,对B侧来说由于温度较低,调门就可以跟得上温度的变化。 在机组正常运行时,应加强对各级减温器后温度的监视,并做到心中有数,以便在汽温异常时作为调整的参考,避免汽温大幅度波动。 二、变工况时汽温的调节。 机组变工况时气温波动大,影响因素众多,应在操作过程中分清主次因素,对症下药,及早动手,提前预防,必要时采取过调手段处理,不可贻误时机,酿成汽温事故。 变工况时汽温的变化主要是锅炉的燃烧负荷与汽轮机的机械负荷不匹配所造成的。一般情况下,当锅炉的热负荷大于汽轮机的机械负荷时,汽温为上升趋势,两者的差值越大,汽温的上升速度越

主蒸汽温度过高或过低对汽机有什么危害

主蒸汽温度过高或过低对汽机有什么危害! 汽温、汽压异常对设备的危害 在汽轮机运行中,初终汽压、汽温、主蒸汽流量等参数都等于设计参数时,这种运行工况称为设计工况,此时的效率最高,所以又称为经济工况。运行中如果各种参数都等于额定值,则这种工况称为额定工况。目前大型汽轮机组的热力计算工况多数都取额定工况,为此机组的设计工况和额定工况成为同一个工况。在实际运行中,很难使参数严格地保持设计值,这种与设计工况不符合的运行工况,称为汽轮机的变工况。这时进入汽轮机的蒸汽参数、流量和凝结器真空的变化,将引起各级的压力、温度、焓降、效率、反动度及轴向推力等发生变化。这不仅影响汽轮机运行的经济性,还将影响汽轮机的安全性。所以在日常运行中,应该认真监督汽轮机初、终参数的变化。 1、主蒸汽压力升高 当主蒸汽温度和凝结器真空不变,而主蒸汽压力升高时,蒸汽在汽轮机内的焓降增大,末级排汽湿度增加。 主蒸汽压力升高时,即使机组调速汽阀的总开度不变,主蒸汽流量也将增加,机组负荷则增大,这对运行的经济性有利。但如果主蒸汽压力升高超出规定范围时,将会直接威胁机组的安全运行。因此在机组运行规程中有明确规定,不允许在主蒸汽压力超过极限数值时运行。主蒸汽压力过高有如下危害: (1)主蒸汽压力升高时,要维持负荷不变,需减小调速汽阀的总开度,但这只能通过关小全开的调速汽阀来实现。在关小到第一调速汽阀全开,而第二调速汽阀将要开启时,蒸汽在调节级的焓降最大,会引起调节级动叶片过负荷,甚至可能被损伤。 (2)末级叶片可能过负荷。主蒸汽压力升高后,由于蒸汽比容减小,即使调速汽阀开度不变,主蒸汽流量也要增加,再加上蒸汽的总焓降增大,将使末级叶片过负荷,所以,这时要注意控制机组负荷。 (3)主蒸汽温度不变,只是主蒸汽压力升高,将使末几级的蒸汽湿度变大,机组末几级的动叶片被水滴冲刷加重。 (4)承压部件和紧固部件的内应力会加大。主蒸汽压力升高后,主蒸汽管道、自动主汽阀及调速汽阀室、汽缸、法兰、螺栓等部件的内应力都将增加,这会缩短其使用寿命,甚至造成这些部件受到损伤。 由于主蒸汽压力升高时会带来许多危害,所以当主蒸汽压力超过允许的变化范围时,不允许在此压力下继续运行。若主蒸汽压力超过规定值,应及时联系锅炉值班员,使它尽快恢复到正常范围;当锅炉调整无效时,应利用电动主闸阀节流降压。如果采用上述降压措施后仍无效,主蒸汽压力仍继续升高,应立即打闸停机。 2、主蒸汽压力下降 当主蒸汽温度和凝结器真空不变,主蒸汽压力降低时,蒸汽在汽轮机内的焓降要减少,蒸汽比容将增大。此时,即使调速汽阀总开度不变,主蒸汽流量也要减少,机组负荷降低;若汽压降低过多时,机组带不到满负荷,运行经济性降低;这时调节级焓降仍接近于设计值,而其它各级焓降均低于设计值,所以对机组运行的安全性没有不利影响。如果主蒸汽压力降低后,机组仍要维持额定负荷不变,就要开大调速汽阀增加主蒸汽流量,这将会使汽轮机末几级特别是最末级叶片过负荷,影响机组安全运行。当主蒸汽压力下低超过允许值时,应尽快联系锅炉值班员恢复汽压;当汽压降低至最低限度时,应采用降低负荷和减少进汽量的方法来恢复汽压至正常,但要考虑满足抽汽供热汽压和除氧器用汽压力,不要使机组负荷降得过低。 3、主蒸汽温度升高 在实际运行中,主蒸汽温度变化的可能性较大,主蒸汽温度变化对机组安全性、经济性

相关主题
文本预览
相关文档 最新文档