当前位置:文档之家› 四路光耦光电隔离转换模块带驱动静态低电平

四路光耦光电隔离转换模块带驱动静态低电平

四路光耦光电隔离转换模块带驱动静态低电平
四路光耦光电隔离转换模块带驱动静态低电平

四路光耦光电隔离转换模块产品使用手册

【简要说明】

功能描述:

此工业级板的作用是,将输入信号通过光耦和输出信号进行隔离,这样可以改变可以提高电路的抗干扰能力,同时也可以转换信号电压。电路输入信号和输出信号均有指示灯。输入信号兼容高电平和低电平,输出信号高电平,输出信号可以直接驱动24V以内小型继电器。

一、板子尺寸:长72mmX宽54mmX高12mm

二、主要器件:光耦、二极管、端子、三极管

三、工作电压:3~24V 最高工作频率1000HZ

四、板子功耗:小于200mA

五、特点:

1、具有输入及输出信号指示功能。

2、输入高电平及其低电平均可使用。

3、四路独立工作。

4、输出端高电平有效,可以直接驱动24V以内小型继电器。

5、具有4个对称的安装孔。

6、最高响应次数 1000次/秒。

7、可以和72MM卡槽板配合安装在DIN导轨上。

六、提供相关资料

【标示说明】

【接线说明】

【原理图】

【元件清单】

【PCB图】

【应用举例高电平为有效信号时接线】

【应用举例低电平为有效信号时】

【应用举例多种信号电压输入时及负载接线】

51单片机P1口输入输出实验实验报告

实验一P1口输入输出实验 一实验目的 1 掌握P1口作为I/O口时的使用方法。 2 理解读引脚和读锁存器的区别。 二实验原理 由 AT89C51 组成的单片机系统,通常情况下 P0 口分时复用作为地址、数据总线, P2 口提供 A15-A8 即高 8 位地址, P3 口用作第二功能,只有 P1 口用作 I/O 口。 P1 口是 8 位准双向口,它的每一位都可独立地定义为输入或输出。既可作为 8 位的并行 I/O 口,也可作为 8 个不同的输入输出端。 P1 口的结构如图 2.1 所示,当其工作在输入方式时,对应锁存器必须先写 1 ,才能正确地读到引脚上的信号,否则,若对应锁存器的值为 0 ,执行读引脚指令时,读到的结果永远为 0 。每个 I/O 端口都有两种读入,即读锁存器和读引脚,读引脚指令一般都是以 I/O 端口为源操作数的指令,如 MOV C , P1.3 ,而读锁存器指令一般为“读 - 修改 - 写”指令,如 ANL P1.3 , C 指令,请同学们在实验中体会。图 2 中, P1.2 作为输出口, P1.3 作为输入口。

三实验内容与要求 1.编写程序实现当P1.3为低电平时(SW1闭合),发光管亮;P1.3为高电平时发光管灭。 修改程序在执行读P1.3之前,先执行CLR P1.3,观察结果是否正确,分析在第二种情况下程序为什么不能正确执行,理解读引脚和读锁存器区别。 四实验内容 实验程序: ORG 0000H MAIN: MOV SP,#60H ; 设置堆栈指针SP为60H MOV P1,#0FFH ;当P1口用作输入时,所有位对应的锁存器必须先置1 LOOP: ;CLR P1.3 MOV C,P1.3 ;读P1.3 JC LIGHT CLR P1.2 ;LED灭 SJMP LOOP LIGHT: SETB P1.2 ;LED 亮 SJMP LOOP RET END 若在执行读P1.3之前,先执行CLR P1.3,观察结果将会不正确。 五实验结论 1、当P1口用作输入时,所有位对应的锁存器必须先置1 2、在执行读P1.3之前,先执行CLR P1.3,观察结果不正确,程序不能正确执行,因为系统读取的是锁存器的状态。 3、读引脚和读锁存器区别:第一种方式是将引脚作为输入,那是真正地从外部引脚读进输入的值,第二种方式是该引脚处于输出状态时,有时需要改变这一位的状态,则并不需要真正地读引脚状态,而只是读入锁存器的状态,然后作某种变换后再输出。

光耦隔离放大电路(二)讲解

中文摘要 本文主要通过光耦隔离放大电路,对光电耦合器4N25及放大电路和电压跟随器中的放大器件TL084的特性进行简要描述和分析。 光耦隔离放大电路主要由电压串联负反馈放大电路光电耦合器和电压跟随器三部分组成。其中光电耦合器是本次设计的关键。 光耦的工作原理包括:光的发射、光的接收及信号放大三个环节。输入的电信号驱动发光二极管(LED),使之发出一定波长的光,被光探测器接收而产生光电流,再经过进一步放大后输出。这就完成了电—光—电的转换,从而起到输入、输出、隔离的作用。由于光耦合器输入输出间互相隔离,电信号传输具有单向性等特点,因而具有良好的电绝缘能力和抗干扰能力。又由于光耦合器的输入端属于电流型工作的低阻元件,因而具有很强的共模抑制能力。所以,它在长线传输信息中作为终端隔离元件可以大大提高信噪比,光耦合器的主要优点是:信号单向传输,输入端与输出端完全实现了电气隔离隔离,输出信号对输入端无影响,抗干扰能力强,工作稳定,无触点,使用寿命长,传输效率高。在单片开关电源中,利用线性光耦合器可构成光耦反馈电路,通过调节控制端电流来改变占空比,达到精密稳压目的。 在放大电路中采用电压串联负反馈电路,对输入的信号进行比例放大输出,并且由于采用负反馈,这样就可以使电路具有较好的恒压输出特性。在整个电路的输出端与电压更随器连接,以进一步使电路达到良好稳压输出效果。 关键词隔离放大器光耦电压放大电路电压跟随器

目录 课程设计任务书................................................................................................错误!未定义书签。隔离放大电路的设计........................................................................................错误!未定义书签。模拟电子技术课程设计成绩评定表............................................................错误!未定义书签。中文摘要..................................................................................................................................... I 目录. (1) 1.设计任务描述 (2) 1.1 设计题目: (2) 1.2 设计要求: (2) 1.2.1 设计目的: (2) 1.2.2 基本要求: (2) 1.2.3发挥部分: (2) 2.设计思路 (3) 3.基本框架 (4) 4.模块细节及各部分电路设计及参数计算 (5) 4.1方波信号输入 (5) 4.2电源提供电流进入光耦图 (6) 4.2.1 光偶的一些参数 (6) 4.2.2分析 (9) 4.2.3放大电路的选择及计算 (9) 4.2.4 光耦简图 (11) 4.2.5 CTR的计算 (11) R的计算 (11) 4.3 4 4.4 电压跟随器的设计图 (12) 4.5 方波仿真信号输出 (12) 4.6.注意的问题 (13) 5.电路元件清单 (14) 6.主要元器件介绍 (15) 6.1光耦数据单 (15) 6.2 TLO84的数据单 (17) 7.小结 (19) 8.参考文献 (21) 9.附录 (22)

光电隔离电子电路图大全

光电隔离电子电路图全集 一.MSD1型湿敏原件空气翁度测量仪电路图 二.光电隔离器应用电路图 光电隔离器可以组成多种多样的应用电路。如组成光电隔离电路,长传输线隔离器,TTL电路驱动器,CMOS 电路驱动器,脉冲放大器等。目前,在A/D模拟转换开关,光斩波器,交流、直流固态继电器等方面也有广泛应用。光电隔离器的输入部分为红外发光二极管,可以采用TTL或CMOS数字电路驱动。 在图a,输出电压Vo受TTL电路反相器的控制,当反相器的控制输入信号为低电平时,信号反相使输出为高电平,红外发光二极管截止,光敏三极管不导通,Vo输出为高电平。反之Vo输出为低电平。从而实现TTL电路控制信号的隔离、传输和驱动作用。 图2为CMOS门电路通过光电隔离器为中间传输媒介,驱动电磁继电器的应用实例。当CMOS反相器的输出控制信号为高电平时.其输出信号为低电平,Q晶体管截止,红外发光二极管不导通,光电隔离器中的输出达林顿管截止,继电器控制绕组J处于释放状态。反之继电器的控制绕组J吸合,继电器的触点可完成规定的控制动作,从而实现CMOS门电路对电磁继电器控制电路的隔离和驱动。

选用输出部分为达林顿晶体管的光电隔离器,可以显著提高晶体管的电流放大系数,从而提高光电耦合部分的电流传输比CTR。这样,输入部分的红外发光二极管只需较小的正向导通电流If,就可以输出较大的负载电流,以驱动继电器、电机、灯泡等负载形式。 达林顿晶体管输出形式的光电隔离器,其电流传输比CTR可达5000%,即Ic=5000×If ,适用于负载较大的应用场合。在采用光电隔离器驱动电磁继电器的控制绕组时,应在控制绕组两侧反向并联二极管D,以抑制吸动时瞬恋反电动势的作用,从而保护继电器产品。 · [图文] 多敏固态控制器光电输入的电路应用原理 · [图文] 线性光藕隔离放大器电路 · [图文] 采用光隔离器的电码实验操作振荡器 · [图文] AD7414/AD7415 数字输出温度传感器 · [图文] 加外部缓冲器的远程测温电路 · [图文] 具有整形作用的光耦隔离电路 · [图文] 带PNP三极管电流放大的光耦隔离电路 · [图文] 普通光耦隔离电路 · [图文] PARCOR方式语音合成电路图 · [图文] ADM方式语音合成电路图 · [图文] 用CMOS逻辑门控制AD590电路图 · [图文] 灵敏度可调节的光电继电路图 · [图文] 光敏吸合式继电路图 · [图文] 光敏晶体管施密特电路图 · [图文] 光敏晶体管及光照吸合式继电器电路图 · [图文] 光敏晶体管光敏电桥电路图 · [图文] 光敏晶体管电感桥电路图 · [图文] 光敏吸合式继电路图 · [图文] 光控玩具汽车向前停车电路图 · [图文] 光控施密特触发电路图 · [图文] 光控升压电路图 · [图文] 光控升压电路图 · [图文] 光控换向电路图 · [图文] 光控发光二极管电路图 · [图文] 光控多功能触发器电路图 · [图文] 光控串联晶闸关开关电路图 · [图文] 光控触发脉冲形成电路图 · [图文] 光控常开式交流接触器电路图 · [图文] 光控常闭式交流接触器电路图 · [图文] 光控插座电路图 · [图文] 光控 闪光管电路图 · [图文] 光控555维电器电路图 · [图文] 光可控电路图 · [图文] 光继电路图

-单片机报告第一个实验p1口输入输出实验

电工电子实验报告 课程名称:单片机原理及接口技术 实验项目名称:P1口输入、输出实验 实验学生班级:D自集成111 实验学生姓名:吴弟 实验学生学号:233110138 同组学生姓名: 实验指导老师:曾宪阳屈波 孙来业陆红伟 实验时间:2013.4.1 实验地点:B302 工业中心

预习报告 实验目的: 1、学习P1口的使用方法。 2、学习延时子程序的编写和使用。 3、理解读引脚和读锁存器的区别。 主要实验仪器: 1、计算机一台 2、实验箱一台 实验原理及主要工作: 1、P1口是准双向口。它作为输出口时与一般的双向口使用方法相同。由准双向口结构可知当P1口作为输入口时,必须先对它置高电平使内部MOS管截止。因为内部上拉电阻阻值是20KΩ~40KΩ,故不会对外部输入产生影响。若不先对它置高,且原来是低电平,则MOS 管导通,读入的数据是不正确的。 2.8051延时子程序的延时计算问题,对应程序 DELAY: MOV R6,#0H MOV R7, #0H DELAYLP:

DJNZ R6,DELA YLP DJNZ R7,DELA YLP RET 查指令表可知MOV,DJNZ指令均需用两个机器周期,在6MHz晶振时,一个机器周期时间长度为12/6MHZ,所以该段程序执行时间为: (256×255+2)×2×12÷6 ≈261ms 实验电路与连线: 实验2 P1口输入输出 P1.0 ●———●LED0 K0 ●———●P1.0 P1.1 ●———●LED1 K1 ●———●P1.1 P1.2 ●———●LED2 K1 ●———●P1.1 P1.3 ●———●LED3 P1.3 ●———●L5

P1口输入输出实验

实验一P1 口输入输出 一.实验目的 (1)进一步熟悉51单片机外部引脚线路连接; (2)验证常用的51指令; (3)学习简单的编程方法; (4)掌握单片机全系统调试的过程及方法; (5)学习P1 口的有关功能作用以及使用方法。 二?实验说明 P1 口由于有内部上拉电阻,没有高阻抗输入状态,称为准双向口。作为输出口时,不需要在片外接上拉电阻,P1 口“读引脚”输入时,必须先向锁存器写1; 三?实验内容 P1 口做输出口,接八只发光二极管,编写程序,使发光二极管循环点亮。P1.0、P1.1作输入口接两个拨动开关,P1.2、P1.3作输出口,接两个发光二极管,编写程序 读取开关状态,将此状态,在发光二极管上显示出来 四?实验原理 以实验机上74LS273做输出口,接八只发光二极管,编写程序,使发光二极管循环点亮。循环时间由定时器控制。 五?实验流程 ORG 0000H ;程序入口 AJMP RIGHT ;跳向标号RIGHT处 ORG 0030H ;程序

RIGHT: MOV R0,#08H ;置移位次数

MOV A,#0FFH ;置全 1 CLR C ;将Cy 清零 RIGHT1: RRC A ;由于进位Cy=0 ,所以带进位的循环右移会出现灯的亮灭 MOV P1,A ;输出至P1 口,控制LED CALL DELAY ;调用延时子程序 DJNZ R0,RIGHT1 ;R0-1,不为0则转移到标号 RIGHT1处 AJMP RIGHT ;绝对转移至RIGHT 处 ?***************************************************************************** 5 ; /*延时子程序*/ ?***************************************************************************** DJNZ R5,DELAY1 ;R5-1,不为 0 则转移至 DELAY1,执行 2*10us RET ;退出子程序执行 END 七?硬件设计 (1) P1 口某一 I/O 口线反转输出电路 (2) P1 口输出电路 DELAY: MOV R5,#10 DELAY1: MOV R6,#50 DELAY2: MOV R7,#250 DJNZ R7,$ DJNZ R6,DELAY2 ;R6-1,不为0则转移至 DELAY2,执行2*200*10us H-5V +5V Vcc P1.0 Pl 1 EA XI PL 2 Pl .3 Pl XS Pl.5 Pl.6 Pl .7 R.ST Vss ;使用不停的跳转来实现延时, 30 P 80CS1 LED 360fi + 5V

线性光耦隔离电路

线性光耦隔离电路 线性光耦隔离电路的设计 所设计的线性光耦隔离电路是由两个光电耦合器、两个偏置输入电路和一个差分放大电路组成,框图如图1所示。 因为光电耦合器有其特有的工作线性区,偏置输入是用来调节光电耦合器(1)的输入电流,使其工作在线性区。而光电耦合器(2)和偏置输入(2)通过差分放大电路来耦合光电耦合器(1)的漂移和非线性。差分放大电路还用来得到放大的模拟信号。 光耦隔离放大电路采用TLP521-2光电耦合器、LF356普通一路放大器和LF347普通四路放大器。TLP521-2光电耦合器是集成了图1中光电耦合器(1)和(2),LF356主要用于信号输入前的信号处理,一方面保证光电耦合器工作在线性区,另一方面,对输入信号作简单的放大。LF347则组成差分放大电路。所以光耦隔离放大电路的结构图如图2所示。 线性光耦隔离电路的接线原理如图3所示。 图中,LF356为放大器(1),中间两个光电耦合器由TLP521-2构成,后面四个放大器由LF347构成。

线性光耦隔离电路的工作原理 光电耦合器的工作特性 TLP521-2光电耦合器是由两个单独的光电耦合器组成。一般来讲,光电耦合器由一个发光二极管和一个光敏器件构成。发光二极管的发光亮度L与电流成正比,当电流增大到引起结温升高时,发光二极管呈饱和状态,不再在线性工作区。光电二极管的光电流与光照度的关系可用IL∝Eu表述。其中,E为光照度,u=1±0.05,因此,光电流基本上随照度而线性增大。但一般硅光电二极管的光电流是几十微安,对于光敏三极管,由于其放大系数与集电极电流大小有关,小电流时,放大系数小,所以光敏三极管在低照度时灵敏度低,而在照度高时,光电流又呈饱和趋势。达不到线性效果。 因为不同的光电耦合器有不同的工作线性区,所以,在试验过程中,应该首先找到光电耦合器的线性区。光电耦合器TLP521-2的电流线性区大约为1~10mA。 光电耦合器的偏置输入电路可以决定输入它的电流的范围,偏置电路设计的好,可以使得输入电流在很大范围内变化时,光电耦合器依然工作在线性区。 差分放大电路工作原理 本电路中差分放大电路采用多运放、可增益、可调零电路。图3中,两个光电耦合器的输出分别通过放大器(2)和(3)输入到放大器(4)的同相端和反相端,再差分放大到输出。放大器(5)主要是用来调零。其中,光电耦合器(2)的偏置输入电路通过放大电路来补偿光电耦合器(1)的漂移以及非线性部分。一旦补偿奏效,电路的输出就只与光电耦合器(1)的输入有关。 线性光隔离电路在程控电压源中的应用 本电路所用输入电压是由PC机给定,该电压由程序控制,并且可调节。通过D/A转换,变成模拟信号后,送到光耦合隔离放大电路的输入端,由隔离放大电路隔离放大后从放大器(5)输出。同时在输出端找一个反馈点,同样通过隔离放大电路和A/D转换返回PC机,通过反馈调整程序,使输出更精确。 本实验所要求的PC机给定电压为0-5V,输出要求达到0-12V。 光耦合隔离电路在程控电压源中应用的框图如图4所示。 由于试验的目的是为了得到不受输入影响的精确模拟信号,电路首先要凋零,即在零输入状态下保证输出为零。调试步骤如下: 1.调节放大器(1)的反相端,使输入电压为零(即接地)。 2.为保证光电耦合器(1)工作在线性区,调节放大器(1)同相端的输入电压,使输出电压达到一个线性度较好的工作区。 3.调节光电耦合器(2),使得两个耦合器的输入电流完全相同(因为其电流工作特l生),从而使得输出电流也近似相同(因为电子 元器件本身的误差,不可能完全相同)。 4.调节放大器(2)和(3)的正相输入电压,使两者相等。这样,在放大器(4)的输出端可以得到一个接近零的输出(也不能完全为零)。 R12为放大倍数调节电阻。 5.调节R17使得放大器(5)输出端电压为零,即PR17为调零电阻。 6.根据所给输入电压Vin调节放大倍数,得到所需电压Vout。 通过试验及调试,得到一组线性度很好的数据。 调试中应注意的问题 1.电路中所有+Vcc均为+12V,-Vcc均为-12V,GND为地,但光电耦合器左右两边用两套电源,以避免信号干扰。 2.对单个放大器而言,在调试时,尽量让输出电压在12V以下。 3.光电耦合器的输入电流应在2~10mA为宜(这是光电耦合器的线性区,电流太大或太小都会偏离线性区),本实验采用 6.17mA(0V输入时)。且当输入电压Vin从0~5V改变时,光电耦合器(1)的输入电流应尽量在一个较小的范围内变化,这样可以尽可能 保证输入电流在光电耦合器的线性区内变化。 4.电压放大过程实际由两部分组成,第一部分为放大器(1),第二部分为后四个放大器组成的集成运放块。 结束语 研究结果表明,上述光耦隔离放大电路可用于多种模拟信号的隔离,尤其是隔离数字信号对模拟信号的干扰。它的优点主要体现在体积小、寿命长、价格便宜、输入与输出之间绝缘、单向传输信号,且工作频率可以高达上百千赫,可以用于频率要求较宽的电路设计。 它除了具有通常光电耦合器所特有的性能外,还具有输出线性度好、光漂移影响小等特点,因此可以用来消除测控系统的外部干扰,抑

光耦隔离电路(参考提供)

光耦电路设计 目录 简介: (2) 输入电路(原边) (2) 输出电路(副边) (6) 电流传输比: (7) 延时: (9)

简介: 外部信号可能是电压、电流或开关触点,直接接入电路可能会引起瞬时高压、过压、接触点抖动等。因此在外部信号输入之前,须经过转换、保护、滤波、隔离等措施。对小功率信号处理时: 通常简单采用RC 积分滤波或再添加门电路;而在对大功率信号处理时:输入与内部电路电压或电源电压的压差较大,常常采用光电耦合器来隔离。 使用光耦设计隔离电路时,特别要注意电流传输比的降额,驱动电流关断和开通的大小,与延迟相关的负载大小及开关速率。在进行光耦输入电路设计时,是以光耦为中心的输入电路与输出电路(即原边与副边的电路),光耦的工作原理就是输入端输入信号V in ,光耦原边二极管发光使得光耦副边的光敏三极管导通,三极管导通形成回路产生相应信号(电压或者电流),这样就实现传递信号的目的。在进行光耦输出电路设计时,计算公式与输入部分相同,同时需关注电平匹配、阻抗匹配、驱动功率、负载类型和大小。以下针对光耦输入电路设计为例。 输入电路(原边): 针对于光耦原边的电路设计,如图1 , 就是设计发光二级管的驱动电路。因此须 首先要了解光耦的原边电流I F 和二极管的导通压降V F 等相关信息。根据必要的 信息来设计LED 驱动电路,和通常的数字输入电路一样,输入端需要添加限流电阻对二极管起保护作用。而这个电阻的阻值则是此处的关键,对于图1的限流电阻R 的阻值可以根据下面的公式计算: ……………………… ① 波。并且RC 电路的延迟特性也可以达到测试边沿,产生硬件死区、消除抖动等 图1 LED 驱动电路

实验一 P1口亮灯实验

实验一P1口亮灯实验 一、实验目的 (1)熟悉编程和程序调试 (2)学习P1口的使用方法; (3)学习延时子程序的编写。 二、实验内容 P1口做输出口,接八只发光二极管,编写程序,使发光二极管循环点亮。 三、实验预备知识 (1)P1口为准双向口,可定义为输入,也可定义为输出。 (2)本实验中延时子程序采用指令循环来实现,机器周期(12/6MHZ)*指令所需机器周期数*循环次数,在系统时间允许的情况下可以采用此方法。 四、程序框图 五、实验步骤 实验步骤说明: 本实验需要用到单片机最小应用系统和十六位逻辑电平显示模块。 用P1口做输出口,接十六位逻辑电平显示,程序功能使发光二极管点亮。 1.使用单片机实验箱,用扁平数据线将单片机P1口与LED灯相连。P1.0~P1.7用插针连至L1~L8。 2.用串行数据通信线连接计算机与仿真器,把仿真器插到模块的锁紧插座中,请注意仿真器的方向:缺口朝上。 3.打开Keil uVision2仿真软件,首先建立本实验的项目文件,输入源程序(实验(一)),进行编译,直到编译无误。生成hex文件。 5.打开实验板总电源,将hex文件下载到实验板内,观察发光二极管显示情况。 参考例子: (1)点亮板子上的第一个灯LED1 (2)点亮板子上的LED1、LED3、LED5、LED7灯,与LED2、LED4、LED6、LED8灯交替

闪烁

(3)流水灯:从LED1---LED8依次点亮参考程序: 1) #include void main() { P1=0xfe; } 2) #include #define uint unsigned int #define uchar unsigned char void delay(); void main() { while(1) { P1=0xaa; delay(); P1=0x55; delay(); } } void delay() { uint x,y; for(x=100;x>0;x--) for(y=600;y>0;y--) ; } 3) #include #include #define uint unsigned int #define uchar unsigned char uchar temp,num;

光电隔离RS485典型电路

光电隔离RS485典型电路 一、RS485总线介绍 RS485总线是一种常见的串行总线标准,采用平衡发送与差分接收的方式,因此具有抑制共模干扰的能力。在一些要求通信距离为几十米到上千米的时候,RS485总线是一种应用最为广泛的总线。而且在多节点的工作系统中也有着广泛的应用。 二、RS485总线典型电路介绍 RS485电路总体上可以分为隔离型与非隔离型。隔离型比非隔离型在抗干扰、系统稳定性等方面都有更出色的表现,但有一些场合也可以用非隔离型。 我们就先讲一下非隔离型的典型电路,非隔离型的电路非常简单,只需一个RS485芯片直接与MCU的串行通讯口和一个I/O控制口连接就可以。如图1所示: 图1、典型485通信电路图(非隔离型) 当然,上图并不是完整的485通信电路图,我们还需要在A线上加一个的上拉偏置电阻;在B线上加一个的下拉偏置电阻。中间的R16是匹配电阻,一般是120Ω,当然这个具体要看你传输用的线缆。(匹配电阻:485整个通讯系统中,为了系统的传输稳定性,我们一般会在第一个节点和最后一个节点加匹配电阻。所以我们一般在设计的时候,会在每个节点都设置一个可跳线的120Ω电阻,至于用还是不用,由现场人员来设定。当然,具体怎么区分

第一个节点还是最后一个节点,还得有待现场的专家们来解答呵。)TVS我们一般选用的,这个我们会在后面进一步的讲解。 RS-485标准定义信号阈值的上下限为±200mV。即当A-B>200mV时,总线状态应表示为“1”;当A-B<-200mV时,总线状态应表示为“0”。但当A-B在±200mV之间时,则总线状态为不确定,所以我们会在A、B线上面设上、下拉电阻,以尽量避免这种不确定状态。 三、隔离型RS485总线典型电路介绍 在某些工业控制领域,由于现场情况十分复杂,各个节点之间存在很高的共模电压。虽然RS-485接口采用的是差分传输方式,具有一定的抗共模干扰的能力,但当共模电压超过RS-485接收器的极限接收电压,即大于+12V或小于-7V时,接收器就再也无**常工作了,严重时甚至会烧毁芯片和仪器设备。 解决此类问题的方法是通过DC-DC将系统电源和RS-485收发器的电源隔离;通过隔离器件将信号隔离,彻底消除共模电压的影响。实现此方案的途径可分为: (1)传统方式:用光耦、带隔离的DC-DC、RS-485芯片构筑电路; (2)使用二次集成芯片,如ADM2483、ADM2587E等。 传统光电隔离的典型电路:(如图2所示) 图2、光电隔离RS485典型电路

光耦pc817应用电路

光耦pc817应用电路 pc817是常用的线性光藕,在各种要求比较精密的功能电路中常常被当作耦合器件,具有上下级电路完全隔离的作用,相互不产生影响。 <光耦pc817应用电路图> 当输入端加电信号时,发光器发出光线,照射在受光器上,受光器接受光线后导通,产生光电流从输出端输出,从而实现了“电-光-电”的转换。 普通光电耦合器只能传输数字信号(开关信号),不适合传输模拟信号。线性光电耦合器是一种新型的光电隔离器件,能够传输连续变化的模拟电压或电流信号,这样随着输入信号的强弱变化会产生相应的光信号,从而使光敏晶体管的导通程度也不同,输出的电压或电流也随之不同。 PC817光电耦合器不但可以起到反馈作用还可以起到隔离作用。

\ \当输入端加电信号时,发光器发出光线,照射在受光器上,受光器接受光线后导通,产生光电流从输出端输出,从而实现了“电-光-电”的转换。 普通光电耦合器只能传输数字信号(开关信号),不适合传输模拟信号。线性光电耦合器是一种新型的光电隔离器件,能够传输连续变化的模拟电压或电流信号,这样随着输入信号的强弱变化会产生相应的光信号,从而使光敏晶体管的导通程度也不同,输出的电压或电流也随之不同。 PC817光电耦合器不但可以起到反馈作用还可以起到隔离作用。 光耦的测量: 用数字表测二极管的方法分别测试两边的两组引脚,其中仅且仅有一次导通的,红表笔接的为阳极,黑表笔接的为阴极(指针表相反)。且这两脚为低压端,也就是反馈信号引入端。 在正向测试低压端时,再用另一块万用表测试另外高压端两只脚,接通时,红表笔所接为C极,黑表笔接为E极。当断开低压端的表笔时,高压端的所接万用表读数应为无穷大。 同理:只要在反馈端加一定的电压,高压端就应能导通,反之,该器件应为损坏。光耦能否代用,主要看其CTR参数值是否接近。 测量的实质就是:就是分别去测发光二极管和3极管的好坏。 另外一种测量说法: 用两个万用表就可以测了。光电耦合器由发光二极管和受光三极管封装组

光耦隔离运放HCPL-7800 在电机电流采样中的应用

光耦隔离运放HCPL-7800 在电机电流采样中的应用 摘要:本文介绍了一种专门适用于电机驱动电流检测的光耦隔离运放HCPL-7800的结构和特点,并重点介绍了此隔离运放的应用。 关键词:隔离运放,电流采样 Abstract: This paper introduces the construction and the characteristics of HCPL-7800.This isolation amplifier was designed for current sensing in electronic motor drives. The key is to introduce the application of this isolation amplifier. Keywords: isolation amplifier, current sensing 1. 概述 HCPL-7800隔离运放是专门为电机驱动电流的检测设计的。电机电流通过一个外部采样 电阻得到模拟电压,进入芯片。在隔离侧的另一边得到一个微分的输出电压。这个微分的输出电压正比与电机电流,通过一个光耦放大器转换成单端信号。由于在现代开关逆变器电机驱动中电压的共模干扰一般都有几百伏每微秒,而HCPL-7800能够抗至少10kv/us的共模干扰。正是基于这一点,HCPL-7800隔离运放为在很嘈杂的环境中,电机电流的检测提供了更高的准确性和稳定性,也为各种各样的电机控制提供了平滑控制的可能。它也能被用于在严重的噪声干扰的环境中需要很高的准确性,稳定性和线性的的模拟信号的隔离。HCPL-7800的增益为+/-3%,HCPL-7800(A)适用于比较精确的场合,因为它的增益为+/-1%,它应用了先进的(Σ-Δ)的模数转换技术, 斩波放大器和全微分电路拓扑。它的具体的原理图如图1所示: 图1 HCPL-7800的结构简图 HCPL-7800(A)隔离运放广泛应用于电机的相电流检测,逆变器的电流检测,开关电源的脉冲信号的隔离,一般的电流检测和监测,一般的模拟信号的隔离等方面。跟LEM比较,它更加适用于电机电流的检测,抗共模抑制比的能力较强,同时具有很高的性价比。 2. 典型应用 图2是HCPL-7800对电机电流采样的应用电路,从图中可以看出HCPL-7800(A)的电源 一般都从功率开关器件的门极驱动电路的电源中获得。旁路电容C1,C2尽可能地靠近HCPL-7800的管腿。旁路电容是必要的因为HCPL-7800内部的高速的数字信号的特点,由于输入电路的开关电容的本质,在输入侧也要加上旁路电容C3,输入的旁路电容也形成了滤波器的一部分,用于防止高频噪声。 对于采样电阻的选择也是本电路中的最重要的部分,电流采样电阻应该具有很低的阻抗(可以达到最小限度的功率损耗),很低的电感值(最小的di/dt变化引起的电压尖峰),。对于此电阻的选择,一般是考虑最小的功率损耗和最大的准确性的折中点。小的采样电阻能够减小功率损耗,而大的采样电阻能够用上HCPL-7800的整 个输入范围从而提高电路的准确性。

实验二 P1口输入、输出实验

在开始实验二之前,先在实验一(认真分析实验一的代码)的基础上实现如下花型(0表示灯亮,1表示灯灭): 花型之二:即每次亮灯两个进行移动 0 0 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 0 0 1 1 1 1 1 0 0 1 1 1 1 1 0 0 1 1 1 1 1 0 0 1 1 1 1 1 0 0 1 1 1 1 1 0 0 1 1 1 1 1 0 0 1 1 1 1 1 1 花型之三(跑马灯):1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 1 0 0 0 0 1 1 1 1 0 0 0 1 1 1 1 1 0 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

实验二P1口输入、输出实验 一.实验要求 1、P1口做输出口,接共阳七段显示器,编写程序,显示0到9中的任意一个数字。 2、P1口做输出口,接共阳七段显示器,编写程序,循环显示0到9(延时程序段可以使用实验一种的程序段)。 3、P1口做输入口,接四个开关,编写程序读取开关状态,将此状态在四个发光二极管上显示出来。 二.实验目的 1、学习P1口的使用方法。 2、学习延时子程序的编写和使用。 三.实验电路及连线(见附件) 四.实验说明 1、P1口是准双向口。它作为输出口时与一般的双向口使用方法相同。由准双向口结构可知当P1口作为输入口时,必须先对它置高电平使内部MOS管截止。因为内部上拉电阻阻值是20KΩ~40KΩ,故不会对外部输入产生影响。若不先对它置高,且原来是低电平,则MOS 管导通,读入的数据是不正确的。 2、延时子程序的延时计算问题(晶振频率为12MHz,请在实验报告中分析如何延时200ms 的)对于程序 DELAY: MOV R5,#20 ; 延时200ms D2: MOV R6,#20 D1: MOV R7,#248 DJNZ R7,$ DJNZ R6,D1 DJNZ R5,D2 RET 五.实验程序(见附件)

常见光耦电路

常见光耦电路 光电耦合器具有体积小、使用寿命长、工作温度范围宽、抗干扰性能强.无触点且输入与输出在电气上完全隔离等特点,因而在各种电子设备上得到广泛的应用.光电耦合器可用于隔离电路、负载接口及各种家用电器等电路中.下面介绍最常见的应用电路. 1.组成开关电路 图1电路中,当输入信号ui为低电平时,晶体管V1处于截止状态,光电耦合器B1中发光二极管的电流近似为零,输出端Q11、Q12间的电阻很大,相当于开关“断开”;当ui为高电平时,v1导通,B1中发光二极管发光,Q11、Q1 2间的电阻变小,相当于开关“接通”.该电路因Ui为低电平时,开关不通,故为高电平导通状态.同理,图2电路中,因无信号(Ui为低电平)时,开关导通,故为低电平导通状态. 2.组成逻辑电路

图3电路为“与门”逻辑电路。其逻辑表达式为P=A.B.图中两只光敏管串联,只有当输入逻辑电平A=1、B=1时,输出P=1.同理,还可以组成“或门”、“与非门”、“或非门”等逻辑电路. 3.组成隔离耦合电路 电路如图4所示.这是一个典型的交流耦合放大电路.适当选取发光回路限流电阻Rl,使B4的电流传输比为一常数,即可保证该电路的线性放大作用。 4.组成高压稳压电路

电路如图5所示.驱动管需采用耐压较高的晶体管(图中驱动管为3DG27)。当输出电压增大时,V55 的偏压增加,B5中发光二极管的正向电流增大,使光敏管极间电压减小,调整管be结偏压降低而内阻增大,使输出电压降低,而保持输出电压的稳定. 5.组成门厅照明灯自动控制电路 电路如图6所示。A是四组模拟电子开关(S1~S4):S1,S2,S3并联(可增加驱动功率及抗干扰能力)用于延时电路,当其接通电源后经R4,B6驱动双向可控硅VT,VT直接控制门厅照明灯H;S4与外接光敏电阻Rl等构成环境光线检测电路。当门关闭时,安装在门框上的常闭型干簧管KD受到门上磁铁作用,其触点断开,S1,S2,S3处于数据

tlp521驱动_应用电路_光耦参数

High Isolation V oltage (5.3kV RMS ,7.5kV PK ) High BV CEO ( 55Vmin ) TLP521GB, TLP521-2GB, TLP521-4GB, TLP521, TLP521-2, TLP521-4 TLP521XGB, TLP521-2XGB, TLP521-4XGB TLP521X, TLP521-2X, TLP521-4X HIGH DENSITY MOUNTING PHOTOTRANSISTOR OPTICALLY COUPLED ISOLATORS APPROVALS ● UL recognised, File No. E91231 TLP521 2.54 Dimensions in mm 'X'SPECIFICATIONAPPROVALS ● VDE 0884 in 3 available lead form : - - STD - G form 1.2 7.0 6.0 1 2 4 3 - SMD approved to CECC 00802 ● BSI approved - Certificate No. 8001 5.08 4.08 4.0 3.0 7.62 DESCRIPTION 0.5 13° Max The TLP521, TLP521-2, TLP521-4 series of optically coupled isolators consist of infrared light emitting diodes and NPN silicon photo transistors in space efficient dual in line plastic packages. 3.0 TLP521-2 0.5 2.54 3.35 0.26 1 8 2 7 FEATURES ● Options :- 7.0 6.0 3 4 6 5 10mm lead spread - add G after part no. Surface mount - add SM after part no. Tape&reel - add SMT&R after part no. ● High Current Transfer Ratio ( 50% min) ● ● ● All electrical parameters 100% tested ● Custom electrical selections available APPLICATIONS ● Computer terminals 1.2 3.0 TLP521-4 10.16 9.16 0.5 4.0 3.0 3.35 0.5 7.62 0.26 1 2 13° Max 16 15 ● Industrial systems controllers 3 14 ● Measuring instruments ● Signal transmission between systems of different potentials and impedances 2.54 7.0 4 13 5 12 6 11 OPTION SM SURFACE MOUNT OPTION G 7.62 1.2 6.0 7 8 10 9 20.32 19.32 4.0 3.0 7.62 0.6 0.1 1.25 0.75 10.46 9.86 0.26 10.16 0.5 3.35 0.5 0.26 13° Max 7/

51单片机实验-实验二 P1口输入、输出实验

实验二 P1口输入、输出实验 一、实验目的 学习Pl口的使用方法。 学习延时子程序的编写和使用。 进一步熟悉星研Star16L仿真器系统的操作,和EL-Ⅱ型通用接口板实验电路结构,学习使用PROTEUS仿真软件实现单片机的虚拟仿真。掌握虚拟仿真与实际系统仿真的有机衔接。 二、实验仪器和设备 PC机、星研Star16L仿真器系统+仿真头PODPH51(DIP)、EL-Ⅱ型通用接口板实验电路,PROTEUS仿真软件。 三、实验内容 1)P1口做输出口,经过74LS04反相器接八只发光二极管,编写程序,使发光二极管循环点亮。 2)(选作)P1口既做输入又做输出,在P1.0~P1.3口接四个平推开关,通过开关的不同位置向P1.0~P1.3输入不同的状态,然后利用输入指令读取所设开关状态,为验证输入结果的正确与否,将它们输出到P1.4~P1.7,经过74LS04反相器驱动发光二极管。四、实验结果 1)循环点亮八只发光二极管。取P1.0口接出第一个二极管,以此类推,第八个接P1.7口。Proteus 仿真图 ①循环左移,即从第一个二极管开始点亮到第八个二极管 实验程序:

ORG 0000H START:MOV R2,#8 MOV A,#01H ;先让第一个发光二极管点亮 LOOP: MOV P1,A ;从P1口输出到发光二极管 LCALL DELAY RL A ;循环左移(从第一个发光二极管开始一直往下一个二极管)DJNZ R2,LOOP ;判断移动是否超过8位,未超过则继续循环 LJMP START ;循环发光 DELAY:MOV R5,#5 ;延时0.5秒子程序 DEL1: MOV R6,#200 DEL2: MOV R7,#126 DEL3: DJNZ R7,DEL3 DJNZ R6,DEL2 DJNZ R5,DEL1 RET END 仿真结果:发光二极管从D1开始发光,依次往下到D8,然后循环这一过程。 实验结果:发光二极管从第一个开始发光,依次往左到第八个,然后循环这一过程。 ②循环右移,即从第八个二极管开始放光,依次到第一个。 实验程序: ORG 0000H START:MOV R2,#8 MOV A,#80H ;先让第八个发光二极管点亮 LOOP: MOV P1,A ;从P1口输出到发光二极管 LCALL DELAY RR A ;循环右移(从第八个发光二极管开始一直往前一个二极管) DJNZ R2,LOOP ;判断移动是否超过8位,未超过则继续循环 LJMP START ;循环发光 DELAY:MOV R5,#5 ;延时0.5秒子程序 DEL1: MOV R6,#200 DEL2: MOV R7,#126 DEL3: DJNZ R7,DEL3 DJNZ R6,DEL2 DJNZ R5,DEL1 RET END 仿真结果:发光二极管从D8开始发光,依次往上到D1,然后循环这一过程。 实验结果:发光二极管从第八个开始发光,依次往右到第一个,然后循环这一过程。

光耦的工作原理

光耦的工作原理 耦合器以光为媒介传输电信号。它对输入、输出电信号有良好的隔离作用,所以,它在各种电路中得到广泛的应用。目前它已成为种类最多、用途最广的光电器件之一。光耦合器一般由三部分组成:光的发射、光的接收及信号放大。输入的电信号驱动发光二极管(LED),使之发出一定波长的光,被光探测器接收而产生光电流,再经过进一步放大后输出。这就完成了电—光—电的转换,从而起到输入、输出、隔离的作用。由于光耦合器输入输出间互相隔离,电信号传输具有单向性等特点,因而具有良好的电绝缘能力和抗干扰能力。又由于光耦合器的输入端属于电流型工作的低阻元件,因而具有很强的共模抑制能力。所以,它在长线传输信息中作为终端隔离元件可以大大提高信噪比。在计算机数字通信及实时控制中作为信号隔离的接口器件,可以大大增加计算机工作的可靠性。 光耦的优点 光耦合器的主要优点是:信号单向传输,输入端与输出端完全实现了电气隔离,输出信号对输入端无影响,抗干扰能力强,工作稳定,无触点,使用寿命长,传输效率高。光耦合器是70年代发展起来产新型器件,现已广泛用于电气绝缘、电平转换、级间耦合、驱动电路、开关电路、斩波器、多谐振荡器、信号隔离、级间隔离、脉冲放大电路、数字仪表、远距离信号传输、脉冲放大、固态继电器(SSR)、仪器仪表、通信设备及微机接口中。在单片开关电源中,利用线性光耦合器可构成光耦反馈电路,通过调节控制端电流来改变占空比,达到精密稳压目的。 光耦的种类 光电耦合器分为两种:一种为非线性光耦,另一种为线性光耦。 非线性光耦的电流传输特性曲线是非线性的,这类光耦适合于开关信号的传输,不适合于传输模拟量。常用的4N系列光耦属于非线性光耦。 线性光耦的电流传输特性曲线接近直线,并且小信号时性能较好,能以线性特性进行隔离控制。常用的线性光耦是PC817A—C系列。 开关电源中常用的光耦是线性光耦。如果使用非线性光耦,有可能使振荡波形变坏,严重时出现寄生振荡,使数千赫的振荡频率被数十到数百赫的低频振荡依次为号调制。由此产生的后果是对彩电,彩显,VCD,DCD等等,将在图像画面上产生干扰。同时电源带负载能力下降。在彩电,显示器等开关电源维修中如果光耦损坏,一定要用线性光耦代换。常用的4脚线性光耦有PC817A----C。PC111 TLP521等常用的六脚线性光耦有:LP632 TLP532 PC614 PC714 PS2031等。常用的4N25 4N26 4N35 4N36是不适合用于开关电源中的,因为这4种光耦均属于非线性光耦。 光耦的作用 由于光耦种类繁多,结构独特,优点突出,因而其应用十分广泛,主要应用以下场合:

相关主题
文本预览
相关文档 最新文档