当前位置:文档之家› Performance measures for robot manipulators A uni ed approach

Performance measures for robot manipulators A uni ed approach

-pi 0pi -pi 0pi 0.511.52

2.5q2q3

Y

01

2

3

4

5

6

700.51 1.52 2.53

Y

d

0.60.65

0.7

0.75

0.80.85

0.9

0.95

1-pi 0pi

A

q2

0.9

-pi 0pi -pi 0pi

0.10.20.30.40.50.60.70.8q2q3

A

00.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

00.51 1.52 2.53

A d

-pi 0

pi -pi 0pi

0.5

1

1.5

q2q3

Y

2.052.1

2.15

2.2

2.25

2.3

2.35

2.400.51 1.52 2.53

Y

d

0.750.8

0.85

0.9

0.95

1-pi 0pi

A

q2

-pi 0pi -pi 0pi 0.750.80.850.90.95q2q3

A

欠驱动单杠体操机器人研究综述

Dynamical Systems and Control 动力系统与控制, 2016, 5(2), 48-60 Published Online April 2016 in Hans. https://www.doczj.com/doc/2e589541.html,/journal/dsc https://www.doczj.com/doc/2e589541.html,/10.12677/dsc.2016.52006 A Survey on Research of the Underactuated Horizontal Bar Gymnastic Robot Dasheng Liu, Guozheng Yan Institute of Medical Precision Engineering and Intelligent System, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai Received: Mar. 25th, 2016; accepted: Apr. 22nd, 2016; published: Apr. 25th, 2016 Copyright ? 2016 by authors and Hans Publishers Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). https://www.doczj.com/doc/2e589541.html,/licenses/by/4.0/ Abstract The gymnastic robot is a nonlinear, strongly coupled, multi-state underactuated system and be- longs to the natural unstable systems in the stable region. This kind of system can reflect the key problems of many control areas, and a lot of scholars have devoted themselves to the research of controlling the gymnastic robot. This paper reviews the domestic and foreign research on the ho-rizontal bar gymnastic robot. In the paper, the relevant theories and methods of the research on the dynamic modeling and motion control of the gymnastic robot are analyzed and discussed, the control on the swing up, balance, acceleration and giant-swing motion movement of the gymnastic robot is analyzed in detail, furthermore, the existing problems are discussed, and the development trend in the future is prospected. Keywords Gymnastic Robot, Underactuated, Control Strategy, Nonlinear System 欠驱动单杠体操机器人研究综述 刘大生,颜国正 上海交通大学电子信息与电气工程学院医学精密工程及智能系统研究所,上海 收稿日期:2016年3月25日;录用日期:2016年4月22日;发布日期:2016年4月25日

无缆自治水下机器人

无缆自治水下机器人(AUV)研究现状 摘要:从上世纪90年代中期以来,自主式水下航行器(AUV)在海洋科学调查以及军事领域得到越来越广泛的应用。本文主要介绍了AUV的发展现状、应用以及所涉及的基本技术。 1 前言 水下机器入主要分为两大类:一类是有缆水下机器人,习惯称为遥控潜器(Remote Operated Vehicle,简称ROY);另一类是无缆水下机器人,习惯称为自主式水下潜器(Autonomous Underwater Vehicle,简称AUV)。自治式水下机器人是新一代水下机器人,具有活动范围大、机动性好、安全、智能化等优点,成为完成各种水下任务的重要工具。例如,在民用领域,可用于铺设管线、海底考察、数据收集、钻井支援、海底施工,水下设备维护与维修等;在军用领域则可用于侦察、布雷、扫雷、援潜和救生等。由于无缆水下机器人具有活动范围不受电缆限制,隐蔽性好等优点,所以从60年代中期起,工业界和军方开始对无缆水下机器人发生兴趣。美国华盛顿大学于1973年建成两艘“SPURV”无缆水下机器人,随后又成功地建造了“UARS”无缆水下机器人;世界上第一艘潜深达到6000米的无缆水下机器人是法国人建造的“EPAULARD”;进入90年代,无缆水下机器人技术开始走向成熟. 我国的水下机器人研究也日趋成熟,我国中科院沈阳自动化研究所于1995 年研制CR—01型6000米自治水下机器人,标志着我国自治水下机器人的总体 水平跻身于世界先进行列,使我国成为世界上拥有这项技术和设备的少数国家之一。2008年3月研制的6000米自治水下机器人在某些技术指标上超过了CR— 01型,CR—02型能穿透50米厚的泥层,除了深海复杂环境下的海底矿产资源 调查,CR--02型也可以应用于失事舰船调查和深海科学考察。

一类多自由度欠驱动手臂机器人的控制策略_赖旭芝

一类多自由度欠驱动手臂机器人的控制策略1 赖旭芝o (中南大学自动控制系长沙410083) 摘要针对多自由度欠驱动手臂机器人提出一种模糊逻辑控制、模糊变结构控制和线性二次调节控制相结合的控制策略。首先用模糊逻辑控制实现快速平滑地摇起,然后用模糊变结构控制确保从摇起区进入平衡区,最后用线性二次调节方法平衡它。 关键词欠驱动手臂机器人,模糊控制,变结构控制 0前言 对于n自由度欠驱动手臂机器人的运动控制问题在国内外还是一个新的控制领域。文献[1]探讨了n自由度欠驱动手臂机器人基于部分反馈的运动控制问题,此控制策略理论依据不充分,同时存在在n自由度欠驱动手臂机器人的平衡区难以捕捉到该系统的实际控制问题。这样一来,n自由度欠驱动手臂机器人的摇起控制目标就很难实现。 本文依据n自由度欠驱动手臂机器人动力学方程,从摇起能量需增加的角度出发,推导仅有n-1个驱动装置的摇起控制方案。然后,设计模糊变结构控制器对欠驱动手臂机器人进行系统解耦,来实现从摇起控制到平衡控制的快速过渡控制。最后,用线性二次调节器对它进行平衡控制,以实现n 自由度欠驱动手臂机器人的控制目标。 1模糊逻辑控制器的设计 1.1动力学方程 用广义坐标描述多自由度欠驱动手臂机器人的动力学方程为[2] M(q)&q+C(q,¤q)¤q+g(q)=S(1)其中,q=[q1q2,q n]T,S=[S1S2,S n]T,C(q,¤q)I R n@n为作用在机器人连杆上的哥氏矩阵,g (q)I R n为重力,S I R n为驱动力矩,没有驱动装置的力矩为零,M(q)I R n@n为惯性矩阵。对称正定矩阵。机器人运动方程中的各部分具有下列性质: M(q)是对称正定阵; &M(q)-C(q,¤q)是反对称矩阵。 1.2摇起控制器的设计 n自由度欠驱动手臂机器人的运动控制空间分两个子区间:一个是在不稳定平衡点附近的区域叫平衡区;另一个是除平衡区以外的所有运动空间叫摇起区。 从摇起过程能量增加的角度出发,寻找摇起控制规律。其能量为 E(q,¤q)=T(q,¤q)+V(q)(2) T(q,¤q)为动能,V(q)为热能,它们分别为 T(q,¤q)= 1 2 ¤q T M(q)¤q(3) V(q)=6n i=1V i(q)=6n i=1m i gh i(q),i=1,,,n (4)其中,V i(q)和h i(q)分别为第i杆的势能和质量中心的长度。 在整个摇起区,为满足能量不断增加,能量的导数必须满足下面的条件。 ¤E(q,¤q)\0(5)根据(2)、(3)和(4)式可得 ¤E(q,¤q)=¤q T M(q)&q+1 2 ¤q T¤M(q)¤q+¤V(q)(6) (1)式可改写为 &q=M-1(q)(S-C(q,¤q)¤q-g(q))(7)从(4)式可推出 ¤V(q)=g T(q)¤q(8)把(7)和(8)代入(6)式得 ¤E(q,¤q)=¤q T S+1 2 ¤q T(¤ M(q)-2C(q,¤q))¤q(9)利用¤ M(q)-C(q,¤q)为反对称矩阵,所以有 81 1 o女,1966年生,副教授;研究方向:智能控制,机器人控制和非线性控制;联系人。 (收稿日期:2000-06-27) 国家自然科学基金和湖南省科研专项基金资助项目。

强力抓取变位欠驱动拟人机器人手系统研究

2014年10月 华长春等:含有测量时延摄动的冷轧机厚控系统控制器设计 53 analysis of predictor-based controllers for discrete-time systems with time-varying actuator delay[J]. Systems & Control Letters ,2013,62(9):764-769. [19] SUN Jianliang ,PENG Yan ,LIU Hongmin. Coupled dynamic modeling of rolls model and metal model for four high mill based on strip crown control[J]. Chinese Journal of Mechanical Engineering ,2013,26(1):144-150. 作者简介:华长春(通信作者),男,1979年出生,博士,教授,博士研究生导师,德国洪堡学者。主要研究方向为非线性控制、网络化控制、遥操作和轧机控制等。 E-mail :cch@https://www.doczj.com/doc/2e589541.html, 于彩霞,女,1989年出生。主要研究方向为非线性网络化控制和轧机控制。 E-mail : yucaixia1123@https://www.doczj.com/doc/2e589541.html, 国家自然科学基金委员会机械工程学科2012/2013年度结题项目简介 强力抓取变位欠驱动拟人机器人手系统研究* 项目负责人:张文增(E-mail :dingjn@https://www.doczj.com/doc/2e589541.html,) 依托单位:清华大学 项目批准号:50905093 1.项目简介 项目旨在研究高自由度、高自适应性、高拟人性、高灵巧操作功能、高可靠性、低控制需求、低成本的欠驱动型拟人机器人手。机器人手在康复工程、极端操作场合、拟人机器人研究领域及社会服务业中都有很好的应用前景和较高的研究价值。 2.主要创新点及主要研究进展 本项目首次提出了主动变位与自适应欠驱动相结合的“变位复合欠驱动”新功能概念,给出了间接自适应手指、直接自适应手指、冗余变位欠驱动手指、间接复合欠驱动手指、直接复合欠驱动手指等的设计理论与优化方法,成功研制了8类变位复合欠驱动机器人手:LISA 手、DISA 手、GCUA-I 手、GCUA-II 手、COSA 手、CDSA 手、HAG 手、PESA 手。具有变位复合欠驱动功能的新型机器人手是优于传统自适应欠驱动手、介于欠驱动手与灵巧手之间的新类别,它们满足抓取性能优越、拟人化好、控制容易、成本低的使用要求,尤其适合在未知复杂环境中使用,或将成为未来机器人手技术的主流。 * 此项目在“第十一届设计与制造前沿国际会议(ICFDM2014)”上作为候选项目推荐参加“国家自然科学基金委员会机械工程学科2012/2013年度优 秀结题项目”的评选。

水下机器人智能控制技术

水下机器人智能控制技术 机械工程学院张杰189020008 智能水下机器人作为一个复杂的系统集成了人工智能水下目标的探测和识别、数据融蛤智能控制以及导航和通信各子系统是一个可以在复杂海洋环境中执行各种军用和民用任务的智能化无人平台。目前主要采用的智能控制方法有:模糊控制、神经网络控制、专家控制、自适应控制、PID调节器、滑模控制等。本文比较全面地查阅了水下机器人运动控制理论相关的文献,阐述了几种主要控制方法的基本原理,给出了控制器结构的设计方法,对水下机 器人运行控制方法的选取、控制器的设计具有较好的参考意义。 水下机器人的运动控制是其完成特定任务的前提和保障,是水下机器人关键技术之一。 随着水下机器人应用范围的扩大,对其自主性,运动控制的精度和稳定性的要求都随之增 加,如何提高其运动控制性能就成了研究的一个重要课题。导致AUV难于控制的主要因素包括:①水下机器人高度的非线性和时变的水动力学性能;②负载的变化引起重心和浮心的改变;③附加质量较大,运动惯性较大,不能产生急剧的运动变化;④难于获得精确的水动力系数;⑤海流的干扰。这些因素使得AUV的动力学模型难以准确,而且具有强耦合和非线性的特点。目前已被采用的控制方法有:模糊控制、神经网络控制、专家控制、PID控制、自适应控制、S面控制等。 智能控制是一个由人工智能自动控制和运筹学的交叉构成的交叉学科近年来,智能控制技术成为水下机器人发展的一个重要技术水下机器人难于控制的原因有几个方面,水下机器人在运行中收到海流等外界极不稳定环境因素的干扰,使其控制变得更加困难;水下机器人各项参数的高度的非线性的特点;水下机器人的水动力性能在不同的海洋环境下会改变较明显;海底水下机器人水动力系数难以测量,不能获得一个较为准确的数据;水下机器人体积大质量大,因此所受惯性大,运动变化难以在较短的时间内实现;水下机器人在运动过程中重心和浮心易改变会引起控制较为困难等智能控制如果能用在水下机器人,可以更好的使其适应复杂的海洋环境。 智能控制系统的类型

水下机器人的发展现状

水下机器人的发展现状 摘要:介绍了国内外典型水下机器人的性能特点,阐述了国内外水下机器人发展的历史及现状,总结了水下机器人发展中存在的一些关键问题,并对未来水下机器人领域的发展动向作出了展望. 0引言 机器人技术是集运动学与动力学理论、机械设计与制造技术、计算机硬件与软件技术、控制理论、电动伺服随动技术、传感器技术、人工智能理论等科学技术为一体的综合技术.它的研究与开发标志着一个国家科学技术的发展水平,而其在各种机械领域的普及应用,则显示了这个国家的经济和科技发展的实力.世界上许多国家为了推进本国的机器人开发事业,打入竞争日益激烈的国际高科技市场,不惜投入巨大的人力、财力来推动机器人技术的发展,开发出了许多类型的机器人.机器人的应用领域也逐渐从人工环境扩展到了水下和宇宙.随着人口数量的增长和科学技术水平的不断提高,人类已把海洋作为生存和发展的新领域,海洋的开发与利用已经成为决定一个国家兴衰的基本因素之一.从而使水下机器人具有更加广阔的应用前景.水下机器人设计是一项综合性的复杂工程,技术密集度高,是公认的高科技,它的研制水平体现了一个国家的综合技术力量. 水下机器人一般可以分为两大类:一类是有缆水下机器人,

习惯称为遥控潜水器(RemoteOperatedVehicle,简称ROV);另一类是无缆水下机器人,习惯称为自治潜水器(AutonomousUnderwaterVehicle,简称AUV).此外,按使用的目的分,有水下调查机器人(观测、测量、试验材料的收集等)和水下作业机器人(水下焊接、拧管子、水下建筑、水下切割等作业);按活动场所分,有海底机器人和水中机器人. 水下机器人在20世纪50年代初诞生时,由于所涉及的新技术还不够成熟,电子设备的故障率高,通信的匹配以及起吊回收等问题没有很好解决,因此发展不快,没有受到人们的重视.到了60年代,国际上开始两大开发技术,即宇宙和海洋开发,促使远距离操纵型机器人得到了很快的发展,到了80年代,由于海洋开发与军事上的需要,尤其是水下机器人本体所需的各种材料及技术已得到了较好的解决,水下机器人才得到了很大发展,开发出了一批能工作在各种不同深度,进行多种作业的机器人,可用于石油开采、海底矿藏调查、救捞作业、管道敷设和检查、电缆敷设和检查、海上养殖、江河水库的大坝检查及军事等领域.目前,水下机器人大部分是框架式和类似于潜艇的回转细长体,随着仿生科技技术的不断发展,仿生鱼形态甚至是运动方式的水下机器人将会不断发展。水下机器人工作在充满未知和挑战的海洋环境中,风、浪、流、深水压等各种复杂的海洋环境对机器人的运动和控制干扰严重,使得水下机器人的通信和导航定位十分困难,这是与陆地机器人最大的

水下机器人ROV大坝安全检测

水下机器人ROV:大坝安全隐患检测 随着科技的进步,水下机器人ROV越来越接近我们的工作和生活,水下机器人要具备工业机器人的所有特点外,还要有良好的密封和抗腐蚀性能,随着水下机器人ROV的应用,人类可以进行更多的水下资源开发,如海洋能源、陆地河流、湖泊资源等,并且水下机器人ROV可以装备各种机械手,水下工具等进行水下作业。它已广泛应用与海洋工程、海洋军事和水下工程的各个领域,本文着重讲述水下机器人在大坝安全检测中的应用。 目前,水下机器人ROV配备有先进的导航、定位、推进和控制等设备,因而可以准确的到达预定的位置,最重要的,它可以到达潜水员无法到达的深度,替代潜水员,水下的危险环境不会危及人的生命安全,操作人员只要在水面进行操作就可以了。 通过水下机器人ROV遥控操作,可实现水下全方位扫描检测,重点部位可以“驻足”观测,不仅可以快速检测到大坝的整体情况,而且可以仔细检查局部病变的细节。ROV上搭载的的水下摄像机进行大坝表面状态如破损、裂缝等检测,并用激光尺度仪对破损尺度进行评估;用高分辨率图像声呐对堤坝表面进行三维测量;用剖面声呐对大坝内部进行三维检测;ROV载体携带上述探测仪器进行思维运动,实现对大坝的全覆盖扫描检测。 设备配置 一个框架式、模块化水下遥控式机器人(ROV)作为载体; 导航仪包括:罗经、测深仪、测高测距声呐、多普勒测速仪和推进器等。 探测仪包括:水下摄像机、高分辨率图像声呐、剖面声呐、多波束声呐等,还可以 搭载磁探仪、阴极保护测量装置等。 水面控制计算机通过脐带缆对ROV实施操作控制。 主要技术指标 最大巡检速度1米/s 最大下潜工作深度150米 运动模式:四自由度(前后、上下、左右和旋转) 长基线水声定位系统可对ROV水下位置定位,定位精度优于20cm。 高分辨率图像声呐高频图像声呐用于浑水环境下表面破损的成像探测与测量。 高分辨率剖面声呐剖面声呐的作用是发射可透射到坝体内部的声波,并接受由坝体中反向散射的声信号,据此对内部的缺陷进行测量、分析和定位。 水下摄像机在清水环境下,可以很高的分辨率观测堤坝及其他水下结构物表面的破损、缺陷、裂缝和腐蚀等状况。 大力金刚机器人ROV配备的摄像机是水下专用的数字CCD彩色摄像机,光学照度0.1lux,水下工作深度一般为300米,性能稳定,操作方便,大坝检测得心应手,如有更高需求可订制。

博士生课程空间机器人关键技术

博士生课程空间机器人关键技术

1空间机器人概述 2数学力学基础 3冗余自由度机器人 4柔性机械臂 5欠驱动机器人 6机器人灵巧手 (一)空间机器人的概述 1.空间机器人在空间技术中的地位 从20世纪50年代,以美国和苏联为首的空间技术大国就在空间技术领域展开了激烈的竞赛。 i 苏联 1957年8月3日,前苏联研制的第一枚洲际弹道导弹SS-6首次发射成功。不久,前苏联火箭总设计师柯罗廖夫从美国新闻界得知美国试图在1957-1958年的国际地球物理年里发射一颗人造地球卫星。于是,他立即将SS-6导弹稍加修改,将弹头换上一个结构简单的卫星,抢先将第一颗人造卫星送上了太空。 接着,在第一颗人造卫星发射后一个月,即11月3日,又用SS-6导弹作航天运输工具,将装有小狗“莱伊卡”的第二颗人造卫星送入太空的圆形地球轨道。 1959年5月,前苏联又将“月球”l号人造卫星送入了月球轨道。 ii 美国 在1958年以前,以“红石”近程导弹和“维金”探空火箭为基础,分别研制成“丘比特”C和“先锋”号等小型运载火箭,用于发射最初的几个有效载荷仅为数千克至十几千克的小卫星。 发展到今天,从地面实验室研究到人造卫星、空间站、载人飞船、航天飞机、行星表面探测器,空间技术大国都投入了大量人力、物力和财力。空间技术对于天文学、气象、通信、医学、农业以及微电子等领域都产

生了很大的效益。不仅如此,空间技术对于未来国家安全更具有重要的意义。在空间技术发展的过程中空间机器人的作用越来越明显。 20世纪60年代前苏联的移动机器人研究所(著名的俄罗斯Rover科技有限公司前身)研制了世界上第一台和第二台月球车Lunohod-1和Lunohod-2。1976年美国发射海盗一号和二号(Rover-1、Rover-2)的登陆舱相继在在火星表面登陆,通过遥操作机械臂进行火星表面土壤取样。 随着空间技术研究的日益深入,人类空间活动的日益频繁,需要进行大量的宇航员的舱外活动(EV A),这对宇航员不仅危险,而且没有大气层的防护,宇宙射线和太空的各种飞行颗粒都会对宇航员造成伤害。建造国际空间站,以及未来的月球和火星基地,工程浩大,只靠宇航员也是非力所能及的。还有空间产业、空间科学实验和探测,这些工作是危险的,但有一定重复性,各航天大国都在研究用空间机器人来代替宇航员的大部分工作。 此外许多空间飞行器长期工作在无人值守的状态,这些飞行器上面各种装置的维护和修理依靠发射飞船,把宇航员送上太空的办法既不经济,也不现实。在未来的空间活动中,许多工作仅靠宇航员的舱外作业是无法完成的,必须借助空间机器人来完成空间作业。 2空间机器人的任务和分类 1)空间建筑与装配。一些大型的安装部件,比如无线电天线,太阳能电池,各个舱段的组装等舱外活动都离不开空间机器人,机器人将承担各种搬运,各构件之间的连接紧固,有毒或危险品的处理等任务。有人预计,在不久将来空间站建造初期,一半以上的工作都将由机器人完成。 2)卫星和其他航天器的维护与修理。随着人类在太空活动的不断发展,人类在太空的资产越来越多,其中人造卫星占了绝大多数。如果这些卫星一旦发生故障,丢弃它们再发射新的卫星就很不经济,必须设法修理后使它们重新发挥作用。但是如果派宇航员去修理,又牵涉到舱外活动的问题,而且由于航天器在太空中,是处于强烈宇宙辐射的环境之下,有时人根本无法执行任务,所以只能依靠空间机器人。挑战者号和哥伦比亚号航天飞机的坠毁引起人们对空间飞行安全的关注,采用空间机械臂修复哈勃太空望远镜似乎是一件很自然的事情。安装上新的科学仪器(包括一台视野宽阔的摄象仪和一台摄谱仪)后,哈勃望远镜的观测能力可增强十倍以上。空

水下机器人研究现状与探索

《大学计算机基础》 课程报告 论文名称:水下机器人研究现状与探索二零一七年一月 目录 摘要 (2) 关键词 (2) 1 引言( Introduction) (3) 2水下机器人分类( The categories of underwater robot ) (4) 2.1遥控式水下机器人(remotely operated vehicles, ROV) (4) 2.2自主水下机器人(Autonomous underwater vehicles, AUV) (5) 2.3新概念水下机器人 (6) 3水下仿生机器人(bionic underwater robot) (7) 3.1水下仿生机器人主要研究和发展趋势( The (7) main research and development trends of (7) bionic underwater robot) (7) 3.2 水下仿生机器人的问题(The Problems of bionic underwater robot) (8) 3.3 驱动以及推进方式 (9) 4 仿生创新思路 (11) 4.1以乌贼为代表的海洋动物结构及运动方式 (11) 4.2 复合式水下仿生机器人 (12) 4.3 群体水下仿生机器人 (13) 5 结论 (13) 参考文献: (14)

水下机器人研究现状与探索 朱钰璇 摘要:本文总结了水下机器人的研究历史,现状与目前的发展趋势,具体分析了现代水下机器人应用的技术,指出他们的优缺点,并且针对未来的深海探索机器人的材料,结构,移动方式,动力来源,仿造乌贼等海洋软体动物提出设想,实际应用前景广阔。随着科学技术的发展, 水下仿生机器人在智能材料制成的驱动装置、游动机理方面会不断地完善, 在个体的智能化和群体的协作方面也会有很大的发展。 关键词:水下机器人;深海探索;仿生; PRESENT STATE AND FUTURE DEVELOPMENT OF UNMANNED UNDERWATER VEHICLE TECHNOLOGY RESEARCH ZHU Yuxuan Abstract: In this paper, the history, present situation and future of Unmanned underwater vehicle technology are summarized. We also further describe the mobile robot technologies concerning Unmanned underwater vehicle . In addition, point out

一种欠驱动移动机器人运动模式分析

天津比利科技发展有限公司 李艳杰 ’马岩1,钟华2,吴镇炜2 ' 隋春平2 (1.沈阳理工大学机械工程学院,沈阳110168;2.中国科学院沈阳自动化研究所,沈阳110016) 摘要:介绍了一种欠驱动移动机器人的机械结构。分析了该欠驱动移动机器人在平地行进 模式的特点,提出一种越障控制模式。在该越障控制模式中加入了障碍物高度计算算法, 使得移动机器人在越障过程中的智能控制更加高效。利用VB编写控制程序人机界面,在移 动机器人实物平台上进行了实验,实验结果证明了控制方法的有效性。 关键词:AVR单片机;欠驱动移动机器人;越障模式 中图分类号:TP242文献标志码:A Analysis of a Underactuated Mobile Robot Moving Mode LI Yan-jie',MA Yan',ZHONG Hua2,WU2hen-wej2,SUI Chun-ping2 (l.School of Mechanical Engineering,Shenyang Ligong University,Shenyang110168,China;2.Robotics Lab,Shenyang Institute of Automation,Chinese Academy of Sciences,Shenyang110016,China) Abstract:The mechanical structure of a kind of underactuated mobile robot was described in this paper.The charac- teristics of the underactuated mobile robot in the plains traveling mode was analyzed and a kind of obstacle-negotia- tion control mode was proposed.Due to calculate algorithm of obstacle's height was added to the the obstacle-nego- tiation control mode,the intelligent control of obstacle-negotiation becomes more efficient.The control procedure HMI was programmed by VB and the experiment was performed on the mobile robot platform.Experiment results show the control method was effective. Key words:AVR SCM;underactuated mobile robot;obstacle-negotiation mode 欠驱动机械系统是一类特殊的非线性系统,该容错控制的作用。因此,欠驱动机器人被广泛应用系统的独立控制变量个数小于系统的自由度个数【l】o于空间机器人、水下机器人、移动机器人、并联机器 欠驱动系统结构简单,便于进行整体的动力学分析人、伺服机器人和柔性机器人等行业。 和试验。有时在设计时有意减少驱动装置以此来增本文以四驱动、八自由度的欠驱动移动机器人加整个系统的灵活性。同时,由于控制变量受限等为实验对象,通过切换驱动器的工作模式来克服系原因,欠驱动系统又足够复杂,便于研究和验证各统不完全可控造成反馈控制失效【2】的缺点。以工控 种算法的有效性。当驱动器故障时,可能使完全驱机作为上位机,通过工控机的RS232串口与AVR 葫系统成为欠驱动系统,欠驱动控制算法可以起到单片机进行无线通讯。通过对驱动器反馈数据的分 收稿日期:2013-01-22:修订日期:2013-02-19 基金项目:国家科技支撑计划项目(2013BAK03801,2013BAK03802) 作者筒介:李艳杰(1969-),女,博士,教授,研究方向为智能机器人控制及机器人学;马岩(1988-),男,硕士研究生,研究方向为嵌入式控制;钟华(1977-),男,博士,副研究员,研究方向为机器人控制及系统集成。 Automation&Instrumentation2013(9) 一种欠驱动移动机器人运动模式分析

跳跃机器人研究现状和趋势

跳跃机器人研究现状和趋势 测控一班3012202006胡凌皓 摘要:跳跃运动其着地点的离散性和发力的突发性和爆发性使跳跃运动模式的仿生机器人具备很强的越障和环境适应能力。本文结合国内外跳跃机器人的研究现状和成果,将跳跃机器人研究分为伸缩式、关节腿式、轮滚式和弹性变形式4 类,并分析各类机器人特征.结合本课题组对跳跃机器人的研究,总结了跳跃机器人研究的关键技术,最后展望了未来跳跃机器人研究发展趋势。 关键词:跳跃运动;跳跃机器人;仿生机器人 Research Status and Development Trend of Hopping Robots Abstract: Hopping locomotion has characteristics of isolated footholds, and powerful and explosive hopping force, which makes bio-inspired robots with hopping locomotion have the ability of jumping over obstacles and the environmental adaptability. IN this paper, hopping robots are divided into four categories on the basis of research results in China and overseas: telescopic robots, articulated robots, wheeled & rolling robots and flexible robots. Combining with the current research about hopping robots, the characteristics of each categories are analyzed. The related key technologies are proposed. Finally, the development trends of hopping robots in future are predicted. Keywords: hopping locomotion; hopping robot; bio-inspired robot. 1 引言 目前,移动机器人采用的主要运动模式是轮式驱动。轮式驱动是人类改造自然界、路面出现后的产物,不能适应复杂地形,越障能力差。随着机器人应用范围的日益广泛,机器人将逐步应用于人类所无法深入到的条件恶劣、地形复杂的未知非结构环境中探索和改造自然界,为人类服务.未知非结构环境要求机器人必须具有较强的地形适应能力、高效的运动模式和自主运动能力。 由于跳跃运动其着地点的离散性和发力的突发性和爆发性,自然界中的许多动物将跳跃运动作为克服大自然环境、逃避敌害和高效捕食的一种运动模式。跳跃机器人的应用需求及动物跳跃仿生灵感,给近年跳跃机器人的研究注入新的活力,无论是仿生跳跃理论研究方面还是跳跃机器人实际应用方面都取得大量的成果。 本文从仿生跳跃理论研究方面和跳跃机器人实际应用方面分析国内外有关跳跃机器人的研究成果,并从实现方式的角度进行分类和综述;在此基础上,结合本课题组对跳跃机器人的研究,分析跳跃机器人的关键技术,并对未来跳跃机

相关主题
文本预览
相关文档 最新文档