当前位置:文档之家› Measurement of high-Q^2 deep inelastic scattering cross sections with a longitudinally pola

Measurement of high-Q^2 deep inelastic scattering cross sections with a longitudinally pola

Measurement of high-Q^2 deep inelastic scattering cross sections with a longitudinally pola
Measurement of high-Q^2 deep inelastic scattering cross sections with a longitudinally pola

a r

X

i

v

:h e

p

-

e x /

6

2

2

6

v

3

2

A

p

r

2

6

DESY-06-015Measurement of high-Q 2deep inelastic scattering cross sections with a longitudinally polarised positron beam at HERA ZEUS Collaboration Abstract The cross sections for charged and neutral current deep inelastic scattering in e +p collisions with a longitudinally polarised positron beam have been measured using the ZEUS detector at HERA.The results,based on data corresponding to an integrated luminosity of 23.8pb ?1at √

The ZEUS Collaboration

S.Chekanov,M.Derrick,S.Magill,S.Miglioranzi1,B.Musgrave,D.Nicholass1,J.Repond, R.Yoshida

Argonne National Laboratory,Argonne,Illinois60439-4815,USA n

M.C.K.Mattingly

Andrews University,Berrien Springs,Michigan49104-0380,USA

N.Pavel?,A.G.Yag¨u es Molina

Institut f¨u r Physik der Humboldt-Universit¨a t zu Berlin,Berlin,Germany

S.Antonelli,P.Antonioli,G.Bari,M.Basile,L.Bellagamba,M.Bindi,D.Boscherini, A.Bruni,G.Bruni,L.Cifarelli,F.Cindolo,A.Contin,M.Corradi,S.De Pasquale, G.Iacobucci,A.Margotti,R.Nania,A.Polini,L.Rinaldi,G.Sartorelli,A.Zichichi University and INFN Bologna,Bologna,Italy e

G.Aghuzumtsyan,D.Bartsch,I.Brock,S.Goers,H.Hartmann,E.Hilger,H.-P.Jakob, M.J¨u ngst,O.M.Kind,E.Paul2,J.Rautenberg,R.Renner,U.Samson3,V.Sch¨o nberg, M.Wang,M.Wlasenko

Physikalisches Institut der Universit¨a t Bonn,Bonn,Germany b

N.H.Brook,G.P.Heath,J.D.Morris,T.Namsoo

H.H.Wills Physics Laboratory,University of Bristol,Bristol,United Kingdom m

M.Capua,S.Fazio,A.Mastroberardino,M.Schioppa,G.Susinno,E.Tassi

Calabria University,Physics Department and INFN,Cosenza,Italy e

J.Y.Kim4,K.J.Ma5

Chonnam National University,Kwangju,South Korea g

Z.A.Ibrahim,B.Kamaluddin,W.A.T.Wan Abdullah

Jabatan Fizik,Universiti Malaya,50603Kuala Lumpur,Malaysia r

Y.Ning,Z.Ren,W.B.Schmidke,F.Sciulli

Nevis Laboratories,Columbia University,Irvington on Hudson,New York10027o

J.Chwastowski,A.Eskreys,J.Figiel,A.Galas,M.Gil,K.Olkiewicz,P.Stopa,L.Zaw-iejski

The Henryk Niewodniczanski Institute of Nuclear Physics,Polish Academy of Sciences, Cracow,Poland i

L.Adamczyk,T.Bo l d,I.Grabowska-Bo l d,D.Kisielewska,J. L ukasik,M.Przybycie′n, L.Suszycki,Faculty of Physics and Applied Computer Science,AGH-University of Science and Technology,Cracow,Poland p

A.Kota′n ski6,W.S l omi′n ski

Department of Physics,Jagellonian University,Cracow,Poland

V.Adler,U.Behrens,I.Bloch,A.Bonato,K.Borras,N.Coppola,J.Fourletova,A.Geiser, D.Gladkov,P.G¨o ttlicher7,I.Gregor,O.Gutsche,T.Haas,W.Hain,C.Horn,B.Kahle, U.K¨o tz,H.Kowalski,H.Lim8,E.Lobodzinska,B.L¨o hr,R.Mankel,I.-A.Melzer-Pellmann,A.Montanari,C.N.Nguyen,D.Notz,A.E.Nuncio-Quiroz,R.Santamarta, U.Schneekloth,H.Stadie,U.St¨o sslein,D.Szuba9,J.Szuba10,T.Theedt,G.Watt, G.Wolf,K.Wrona,C.Youngman,W.Zeuner

Deutsches Elektronen-Synchrotron DESY,Hamburg,Germany

S.Schlenstedt

Deutsches Elektronen-Synchrotron DESY,Zeuthen,Germany

G.Barbagli,E.Gallo,P.G.Pelfer

University and INFN,Florence,Italy e

A.Bamberger,A.Benen,D.Dobur,F.Karstens,N.N.Vlasov11

Fakult¨a t f¨u r Physik der Universit¨a t Freiburg i.Br.,Freiburg i.Br.,Germany b

P.J.Bussey,A.T.Doyle,W.Dunne,J.Ferrando,D.H.Saxon,I.O.Skillicorn Department of Physics and Astronomy,University of Glasgow,Glasgow,United King-dom m

I.Gialas12

Department of Engineering in Management and Finance,Univ.of Aegean,Greece

T.Gosau,U.Holm,R.Klanner,E.Lohrmann,H.Salehi,P.Schleper,T.Sch¨o rner-Sadenius, J.Sztuk,K.Wichmann,K.Wick

Hamburg University,Institute of Exp.Physics,Hamburg,Germany b

C.Foudas,C.Fry,K.R.Long,A.

D.Tapper

Imperial College London,High Energy Nuclear Physics Group,London,United King-dom m

M.Kataoka13,K.Nagano,K.Tokushuku14,S.Yamada,Y.Yamazaki

Institute of Particle and Nuclear Studies,KEK,Tsukuba,Japan f

A.N.Barakbaev,E.G.Boos,A.Dossanov,N.S.Pokrovskiy,

B.O.Zhautykov

Institute of Physics and Technology of Ministry of Education and Science of Kazakhstan, Almaty,Kazakhstan

D.Son

Kyungpook National University,Center for High Energy Physics,Daegu,South Korea g

J.de Favereau,K.Piotrzkowski

Institut de Physique Nucl′e aire,Universit′e Catholique de Louvain,Louvain-la-Neuve,Bel-gium q

F.Barreiro,C.Glasman15,M.Jimenez,https://www.doczj.com/doc/27538590.html,barga,J.del Peso,E.Ron,J.Terr′o n, M.Zambrana

Departamento de F′?sica Te′o rica,Universidad Aut′o noma de Madrid,Madrid,Spain l

F.Corriveau,C.Liu,R.Walsh,C.Zhou

Department of Physics,McGill University,Montr′e al,Qu′e bec,Canada H3A2T8a

T.Tsurugai

Meiji Gakuin University,Faculty of General Education,Yokohama,Japan f

A.Antonov,

B.A.Dolgoshein,I.Rubinsky,V.Sosnovtsev,A.Stifutkin,S.Suchkov Moscow Engineering Physics Institute,Moscow,Russia j

R.K.Dementiev,P.F.Ermolov,L.K.Gladilin,I.I.Katkov,L.A.Khein,I.A.Korzhav-ina,V.A.Kuzmin,B.B.Levchenko,O.Yu.Lukina,A.S.Proskuryakov,L.M.Shcheglova, D.S.Zotkin,S.A.Zotkin

Moscow State University,Institute of Nuclear Physics,Moscow,Russia k

I.Abt,C.B¨u ttner,A.Caldwell,D.Kollar,X.Liu,J.Sutiak

Max-Planck-Institut f¨u r Physik,M¨u nchen,Germany

G.Grigorescu,A.Keramidas,E.Ko?eman,P.Kooijman,E.Maddox,H.Tiecke,M.V′a zquez16, L.Wiggers

NIKHEF and University of Amsterdam,Amsterdam,Netherlands h

N.Br¨u mmer,B.Bylsma,L.S.Durkin,A.Lee,T.Y.Ling

Physics Department,Ohio State University,Columbus,Ohio43210n

P.D.Allfrey,M.A.Bell,A.M.Cooper-Sarkar,A.Cottrell,R.C.E.Devenish,B.Foster, C.Gwenlan17,K.Korcsak-Gorzo,S.Patel,V.Roberfroid18,A.Robertson,P.B.Straub, C.Uribe-Estrada,R.Walczak

Department of Physics,University of Oxford,Oxford United Kingdom m

P.Bellan,A.Bertolin,R.Brugnera,R.Carlin,R.Ciesielski,F.Dal Corso,S.Dusini, A.Garfagnini,S.Limentani,A.Longhin,L.Stanco,M.Turcato

Dipartimento di Fisica dell’Universit`a and INFN,Padova,Italy e

B.Y.Oh,A.Raval,J.J.Whitmore

Department of Physics,Pennsylvania State University,University Park,Pennsylvania 16802o

Y.Iga

Polytechnic University,Sagamihara,Japan f

G.D’Agostini,G.Marini,A.Nigro

Dipartimento di Fisica,Universit`a’La Sapienza’and INFN,Rome,Italy e

J.E.Cole,J.C.Hart

Rutherford Appleton Laboratory,Chilton,Didcot,Oxon,United Kingdom m

H.Abramowicz19,A.Gabareen,S.Kananov,A.Levy

Raymond and Beverly Sackler Faculty of Exact Sciences,School of Physics,Tel-Aviv University,Tel-Aviv,Israel d

M.Kuze

Department of Physics,Tokyo Institute of Technology,Tokyo,Japan f

R.Hori,S.Kagawa20,S.Shimizu,T.Tawara

Department of Physics,University of Tokyo,Tokyo,Japan f

R.Hamatsu,H.Kaji,S.Kitamura21,O.Ota,Y.D.Ri

Tokyo Metropolitan University,Department of Physics,Tokyo,Japan f

M.I.Ferrero,V.Monaco,R.Sacchi,A.Solano,A.Staiano

Universit`a di Torino and INFN,Torino,Italy e

M.Arneodo,M.Ruspa

Universit`a del Piemonte Orientale,Novara,and INFN,Torino,Italy e

S.Fourletov,J.F.Martin

Department of Physics,University of Toronto,Toronto,Ontario,Canada M5S1A7a

J.M.Butterworth,R.Hall-Wilton16,T.W.Jones,J.H.Loizides,M.R.Sutton22,C.Targett-Adams,M.Wing

Physics and Astronomy Department,University College London,London,United King-dom m

B.Brzozowska,J.Ciborowski23,G.Grzelak,P.Kulinski,P. L u˙z niak24,J.Malka24,R.J.Nowak, J.M.Pawlak,T.Tymieniecka,https://www.doczj.com/doc/27538590.html,leja25,https://www.doczj.com/doc/27538590.html,leja26,A.F.˙Zarnecki

Warsaw University,Institute of Experimental Physics,Warsaw,Poland

M.Adamus,P.Plucinski27

Institute for Nuclear Studies,Warsaw,Poland

Y.Eisenberg,D.Hochman,U.Karshon

Department of Particle Physics,Weizmann Institute,Rehovot,Israel c

E.Brownson,T.Danielson,A.Everett,D.K?c ira,D.D.Reeder,M.Rosin,P.Ryan, A.A.Savin,W.H.Smith,H.Wolfe

Department of Physics,University of Wisconsin,Madison,Wisconsin53706,USA n

S.Bhadra,C.D.Catterall,Y.Cui,G.Hartner,S.Menary,U.Noor,M.Soares,J.Standage, J.Whyte

Department of Physics,York University,Ontario,Canada M3J1P3a

1also a?liated with University College London,UK

2retired

3formerly U.Meyer

4supported by Chonnam National University in2005

5supported by a scholarship of the World Laboratory Bj¨o rn Wiik Research Project

6supported by the research grant no.1P03B04529(2005-2008)

7now at DESY group FEB,Hamburg,Germany

8now at Argonne National Laboratory,Argonne,IL,USA

9also at INP,Cracow,Poland

10on leave of absence from FPACS,AGH-UST,Cracow,Poland

11partly supported by Moscow State University,Russia

12also a?liated with DESY

13now at ICEPP,University of Tokyo,Japan

14also at University of Tokyo,Japan

15Ram′o n y Cajal Fellow

16now at CERN,Geneva,Switzerland

17PPARC Postdoctoral Research Fellow

18EU Marie Curie Fellow

19also at Max Planck Institute,Munich,Germany,Alexander von Humboldt Research Award

20now at KEK,Tsukuba,Japan

21Department of Radiological Science

22PPARC Advanced fellow

23also at L′o d′z University,Poland

24 L′o d′z University,Poland

25supported by the Polish Ministry for Education and Science grant no.1P03B12629 26supported by the KBN grant no.2P03B12725

27supported by the Polish Ministry for Education and Science grant no.1P03B14129?deceased

a supported by the Natural Sciences and Engineering Research Council of

Canada(NSERC)

b supported by the German Federal Ministry for Education and Research

(BMBF),under contract numbers HZ1GUA2,HZ1GUB0,HZ1PDA5, HZ1VFA5

c supporte

d in part by th

e MINERVA Gesellschaft f¨u r Forschung GmbH,the Is-

rael Science Foundation(grant no.293/02-11.2)and the U.S.-Israel Binational Science Foundation

d supported by th

e German-Israeli Foundation and the Israel Science Foundation

e supported by the Italian National Institute for Nuclear Physics(INFN)

f supported by the Japanese Ministry of Education,Culture,Sports,Science

and Technology(MEXT)and its grants for Scienti?c Research

g supported by the Korean Ministry of Education and Korea Science and Engi-

neering Foundation

h supported by the Netherlands Foundation for Research on Matter(FOM)

i supported by the Polish State Committee for Scienti?c Research,

grant no.620/E-77/SPB/DESY/P-03/DZ117/2003-2005and grant no.

1P03B07427/2004-2006

j partially supported by the German Federal Ministry for Education and Re-search(BMBF)

k supported by RF Presidential grant N1685.2003.2for the leading scienti?c schools and by the Russian Ministry of Education and Science through its grant for Scienti?c Research on High Energy Physics

l supported by the Spanish Ministry of Education and Science through funds provided by CICYT

m supported by the Particle Physics and Astronomy Research Council,UK

n supported by the US Department of Energy

o supported by the US National Science Foundation

p supported by the Polish Ministry of Scienti?c Research and Information Tech-nology,grant no.112/E-356/SPUB/DESY/P-03/DZ116/2003-2005and1 P03B06527

q supported by FNRS and its associated funds(IISN and FRIA)and by an Inter-University Attraction Poles Programme subsidised by the Belgian Federal Science Policy O?ce

r supported by the Malaysian Ministry of Science,Technology and Innova-tion/Akademi Sains Malaysia grant SAGA66-02-03-0048

1Introduction

Deep inelastic scattering(DIS)of leptons o?nucleons is an important process in the understanding of the structure of the proton and has been vital in the development of the Standard Model(SM).The HERA ep collider allows the exploration of DIS at high values of the negative four-momentum-transfer squared,https://www.doczj.com/doc/27538590.html,ing data taken in the years1994-2000the H1and ZEUS collaborations have reported measurements of the cross sections for charged current(CC)and neutral current(NC)DIS[1–10].These measurements extend the kinematic region covered by?xed-target experiments[11]to higher Q2values and probe the electroweak sector of the Standard Model.

Polarised electron-nucleon deep inelastic scattering was?rst performed in the1970s at low values of Q2.The results established parity violation attributable to the weak neutral current[12].Since2002,the upgraded HERA collider has delivered longitudinally po-larised lepton beams to the collider experiments.The luminosity was also higher than in previous years.In the kinematic range of HERA,the SM predicts that the cross sections for charged and neutral current ep DIS should exhibit speci?c dependencies on the longi-tudinal polarisation of the incoming lepton beam.The absence of right-handed charged currents leads to the prediction that the charged current cross section will be a linear func-tion of polarisation,vanishing for right-handed(left-handed)electron(positron)beams. This paper presents measurements of the cross sections for e+p CC and NC DIS at high Q2with longitudinally polarised positron beams using the ZEUS detector.The measure-ments are based on11.5pb?1of data collected between April and June2004at a mean luminosity-weighted polarisation of?0.41,and12.3pb?1collected between June and Au-gust2004at a polarisation of+0.32.During this time HERA collided protons of energy 920GeV with positrons of energy27.5GeV,yielding collisions at a centre-of-mass energy of318GeV.The measured cross sections are compared to the predictions of the SM. Similar results have recently been published by the H1Collaboration[13].

2Standard Model predictions

Inclusive deep inelastic lepton-proton scattering can be described in terms of the kinematic variables x and Q2.The variable Q2is de?ned by Q2=?q2=?(k?k′)2where k and k′are the four-momenta of the incoming and scattered lepton,respectively.Bjorken x is de?ned by x=Q2/(2P·q),where P is the four-momentum of the incoming proton. The inelasticity variable y is determined from Q2=sxy,where s is the square of the lepton-proton centre-of-mass energy(neglecting the masses of the incoming particles).

The electroweak Born level cross section for the CC reaction

e+p→ˉνe X,

with a longitudinally polarised positron beam,can be expressed at leading order in QCD as[14]

d2σCC(e+p)

4πx M2W

,

N R+N L

where N R and N L are the numbers of right1-and left-handed positrons in the beam, respectively.Similarly the cross section for the NC reaction

e+p→e+X,

can be expressed as[14]

d2σNC(e+p)

[H+0?P e H+P e],

xQ4

whereαis the QED coupling constant and H+0and H+

P e

contain the unpolarised and polarised structure functions,respectively,such that at leading order in QCD

H+0=Y+F02?Y?xF03,F02= q x(+ˉq)A0q,xF03= q x(q?ˉq)B0q, and

H+

P e

=Y+F P e2?Y?xF P e3,F P e2= q x(q+ˉq)A P e q,xF P e3= q x(q?ˉq)B P e q,

where q(x,Q2)andˉq(x,Q2)are the quark and antiquark PDFs,respectively,and the sums run over the?ve active quark?avours.The A and B coe?cients contain the quark and positron couplings to the photon and Z boson and are given by

A0q=e2q?2e q v q v eχZ+(v2q+a2q)(v2e+a2e)χ2Z,

B0q=?2e q a q a eχZ+4v q a q v e a eχ2Z,

and

A P e q=2e q v q a eχZ?2(v2q+a2q)v e a eχ2Z,

B P e q=2e q a q v eχZ?2v q a q(v2e+a2e)χ2Z,

where e f is the electric charge in units of the positron charge and a f and v f are the axial and vector couplings of the fermion f.The couplings are de?ned by a f=I f3and v f=I f3?2e f sin2θW where I f3is the third component of weak isospin andθW is the Weinberg angle.The quantityχZ is proportional to the ratio of the Z0and photon propagators:

χZ=1

M2

Z

+Q2 ,

where M Z is the mass of the Z0boson.

3Experimental apparatus

A detailed description of the ZEUS detector can be found elsewhere[15].A brief outline of the components most relevant for this analysis is given below.

Charged particles are tracked in the central tracking detector(CTD)[16],which operates in a magnetic?eld of1.43T provided by a thin superconducting solenoid.The CTD consists of72cylindrical drift chamber layers,organised in nine superlayers covering the polar-angle2region15?<θ<164?.In2001a silicon microvertex detector(MVD)[17] was installed between the beampipe and the inner radius of the CTD.The MVD is organised into a barrel with3cylindrical layers and a forward section with four planar layers perpendicular to the HERA beam direction.The barrel contains600single-sided silicon strip sensors each having512strips of width120μm;the forward section contains 112sensors each of which has480strips of width120μm.Charged-particle tracks were reconstructed using information from the CTD and MVD.

The high-resolution uranium–scintillator calorimeter(CAL)[18]consists of three parts: the forward(FCAL),the barrel(BCAL)and the rear(RCAL)calorimeter,covering99.7% of the solid angle around the nominal interaction point.Each part is subdivided trans-versely into towers and longitudinally into one electromagnetic section(EMC)and either one(in RCAL)or two(in BCAL and FCAL)hadronic sections(HAC).The smallest subdivision of the calorimeter is called a cell.The CAL relative energy resolutions,

as measured under test-beam conditions,areσ(E)/E=0.18/

E for hadrons,with E in GeV.The timing resolution of the CAL is better than1ns for energy deposits exceeding4.5GeV.The position of the interaction vertex along the beam direction can be reconstructed from the arrival time of energy deposits in FCAL.The resolution is about10cm for events with FCAL energy above 25GeV,improving to about8cm for FCAL energy above100GeV.

An iron structure that surrounds the CAL is instrumented as a backing calorimeter (BAC)[19]to measure energy leakage from the CAL.Muon chambers in the forward, barrel and rear[20]regions are used in this analysis to veto background events induced by cosmic-ray or beam-halo muons.

The luminosity was measured using the Bethe-Heitler reaction ep→eγp by the luminosity detector which consists of two independent systems.In the?rst system the photons are detected by a lead–scintillator calorimeter placed in the HERA tunnel107m from the

interaction point in the positron-beam direction.The system used in previous ZEUS publications[21]was modi?ed by the addition of active?lters in order to suppress the increased synchrotron radiation background of the upgraded HERA collider.The second system is a magnetic spectrometer arrangement[22].A small fraction(~9%)of the small-angle energetic photons from the Bethe-Heitler process convert in the exit window of the vacuum chamber.Electron-positron pairs from the converted photons were bent vertically by a dipole magnet and detected in tungsten-scintillator calorimeters located above and below the photon beam at Z=?104m.The advantage of the spectrometer system is that it does not su?er from pile-up(multiple interactions at high luminosity) and is not sensitive to direct synchrotron radiation,whereas the calorimeter system has higher acceptance.The fractional uncertainty on the measured luminosity was3.5%. The lepton beam in HERA becomes naturally transversely polarised through the Sokolov-Ternov e?ect[23].The characteristic build-up time expected for the HERA accelerator is approximately40minutes.Spin rotators on either side of the ZEUS detector change the transverse polarisation of the beam into longitudinal polarisation.The positron beam polarisation was measured using two independent polarimeters,the transverse polarimeter (TPOL)[24]and the longitudinal polarimeter(LPOL)[25].Both devices exploit the spin-dependent cross section for Compton scattering of circularly polarised photons o?positrons to measure the beam polarisation.The transverse polarimeter was upgraded in 2001to provide a fast measurement for every positron bunch,and position-sensitive silicon strip and scintillating-?bre detectors were added to investigate systematic e?ects[26].The luminosity and polarisation measurements were made over times that were much shorter than the polarisation build-up time.

4Monte Carlo simulation

Monte Carlo(MC)simulations were used to determine the e?ciency for selecting events and the accuracy of kinematic reconstruction,to estimate the ep background rate and to extrapolate the measured cross sections to the full kinematic region.A su?cient number of events were generated to ensure that uncertainties from MC statistics were small compared to other uncertainties.

Neutral and charged current DIS events including radiative e?ects were simulated using the Djangoh[27]generator.The polarisation dependence of radiative e?ects in CC DIS,neglected in Djangoh,was checked using the Grace[28]program and found to be negligible.The hadronic?nal state was simulated using the colour-dipole model of Ariadne 4.10[29]and,as a systematic check,the Meps model of Lepto 6.5[30]. Both programs use the Lund string model of Jetset7.4[31]for the hadronisation.The

photoproduction background was estimated using events simulated with Herwig5.9[32]. Di?ractive NC events were generated using the Rapgap2.08/06[33]program and mixed with the non-di?ractive MC events in order to simulate the hadronic?nal state accurately. Background to the CC signal from W production was estimated using the Epvec1.0[34] generator and background from the production of charged-lepton pairs was generated using the Grape1.1[35]program.

The vertex distribution in data is a crucial input to the MC simulation for the correct evaluation of the event-selection e?ciency.Therefore,the Z-vertex distribution used in the MC simulation was determined from a sample of NC DIS events in which the event-selection e?ciency was independent of Z.

5Kinematic Reconstruction

Charged current events are characterised by a large missing transverse momentum,P T,miss, the magnitude of which is calculated as

P2T,miss=P2x+P2y= i E i sinθi cosφi 2+ i E i sinθi sinφi 2,

where the sum runs over all calorimeter energy deposits E i,(corrected[4]for energy loss in inactive material and other e?ects in the o?ine analysis)andθi andφi are the polar and azimuthal angles of the calorimeter energy deposit as viewed from the interaction vertex.The hadronic polar angle,γh,is de?ned by cosγh=(P2T,miss?δ2)/(P2T,miss+δ2), whereδ= (E i?E i cosθi)= (E?P z)i.In the naive Quark Parton Model,γh gives the scattering angle of the struck quark in the lab frame.The total transverse energy,E T,is given by E T= E i sinθi.The kinematic variables x JB,y JB and Q2JB for charged current events were reconstructed from the measured P T,miss andδusing the Jacquet-Blondel method[36].

Neutral current events are characterised by the presence of a high-energy isolated scattered positron in the detector.It follows from longitudinal momentum conservation that for well measured NC events,δpeaks at twice the positron beam energy or55GeV.The hadronic transverse momentum,P T,h,andδh were calculated in the same way as the corresponding quantities in CC events,but excluding energy deposits associated with the scattered positron.The hadronic polar angle,γh,was calculated from P T,h,andδh in the same way as the CC case.The scattered positron energy,E′e,and polar angle,θe, were determined from the energy deposit and matched track of the scattered positron candidate,respectively.

The double-angle method[37]was used to estimate the kinematic variables x DA,y DA and Q2DA for the neutral current events using the measured values ofθe andγh.

6Event selection

ZEUS operates a three-level trigger system[15,38].Charged current events were selected using criteria based on missing transverse momentum measured by the CAL[9].Neutral current DIS events were selected using criteria based on an energy deposit in the CAL consistent with an isolated positron[10].

6.1Charged current

The following criteria were imposed to select CC events and to reject background:?missing transverse momentum:P T,miss>12GeV was required and,in addition,the missing transverse momentum,excluding the calorimeter cells adjacent to the forward beam hole,P′T,miss,was required to satisfy P′T,miss>10GeV.The P′T,miss cut strongly suppresses beam-gas events while maintaining high e?ciency for CC events;?primary vertex:events were required to satisfy|Z VTX|<50cm.The Z coordinate of the vertex,reconstructed using the tracking detectors,was required to be consistent with that of an ep interaction.For events with an hadronic angle,γh,of less than 23?,the vertex Z position was reconstructed from the measured arrival time of energy deposits in FCAL[39],and the P T,miss and P′T,miss thresholds were increased to14and 12GeV,respectively;

?rejection of photoproduction:P T,miss/E T>0.4was required for events with20< P T,miss<30GeV;P T,miss/E T>0.55was required for events with P T,miss<20GeV.

These requirements select events with an azimuthally collimated energy?ow.In ad-dition,it was required that the angle between the transverse momentum measured using the tracks and that measured by the calorimeter was less than one radian for events with P T,miss<30GeV;

?rejection of NC DIS:NC DIS events in which the scattered positron or the hadronic system is poorly measured can have signi?cant missing transverse momentum.Events withδ>30GeV and an isolated electromagnetic cluster with energy of at least4GeV measured in the calorimeter were rejected;

?rejection of non-ep background:interactions between one of the beams and the residual gas in the beam pipe or upstream accelerator components can lead to events with signi?cant missing transverse momentum.However,for such interactions,the arrival

times of energy deposits in the calorimeter are inconsistent with the bunch-crossing time and were used to reject such events.Muon-?nding algorithms based on tracking, calorimeter and muon-chamber information were used to reject events caused by cosmic rays or muons in the beam halo.In addition,the shape of hadronic showers in the calorimeter was used to reject halo-muon events depositing energy in the forward calorimeter.Further details can be found elsewhere[40,41];

?kinematic region:events were required to satisfy Q2JB>200GeV2and y JB<0.9.

These requirements restricted the event sample to a region where the resolution of the kinematic quantities was good and the background was small[9].

All events were visually inspected;12cosmic-ray and halo-muon events were removed from the negative-polarisation sample and8from the positive-polarisation sample.A total of158data events satis?ed all criteria in the negative-polarisation sample and311 in the positive-polarisation sample.

The main background remaining after the selection was photoproduction events,the cross section for which is independent of the longitudinal polarisation of the positron beam.The contamination was estimated from MC to be typically less than1%but was as high as 5%in the lowest-Q2bin of the negative-polarisation sample.

Figure1shows a comparison of data and MC distributions for the CC sample.The MC sample,which was weighted to the measured polarisations and luminosities of the data samples,gives a satisfactory description of the data.

6.2Neutral current

The following criteria were imposed to select NC events:

?positron identi?cation:an algorithm which combined information from the energy deposits in the calorimeter with tracks was used to identify scattered positrons.A ?ducial-volume cut was applied to guarantee that the experimental acceptance was well understood[10].To ensure high purity and reject background,the identi?ed positron was required to have an energy of at least10GeV and be isolated such that the energy in anη?φcone of radius0.8centred on the positron,but not associated with it,was less than5GeV.For events in which a positron was found within the acceptance of the tracking detectors,a track matched to the energy deposit in the calorimeter was required.For events with a positron at a smaller polar angle than the acceptance of the tracking detectors,the track requirement was replaced with the requirement that the transverse momentum of the positron exceed30GeV;?primary vertex:events were required to satisfy|Z VTX|<50cm.The Z coordinate of the ep interaction vertex was reconstructed using tracks;

?background rejection:the requirement 38<δ<65GeV was imposed to remove pho-toproduction and beam-gas events,and to reduce the number of events with signi?cant QED initial-state radiation.The lower threshold was increased to 44GeV for events which did not have a track matched to the positron candidate.To further reduce back-ground from photoproduction,y calculated using the electron method was required to satisfy y e <0.95.The net transverse momentum is expected to be small,so,in order to remove cosmic-ray events and beam related background events,the quantity P T,miss /

√GeV,and the quantity P T,miss /E T was required to be less than 0.7;

?QED Compton rejection:to reduce the size of the QED radiative corrections,elas-tic Compton-scattering events were rejected.The contribution from deeply-virtual Compton scattering was negligible;

?kinematic region:to avoid regions of phase space in which the MC generator was not valid,the quantity y JB (1?x DA )was required to be greater than 0.004.The ?nal event

sample was de?ned by requiring Q 2DA >200GeV 2.

A total of 20642events passed the selection criteria in the negative polarisation sample and 22395in the positive polarisation sample.The background contamination,dominated by misidenti?ed photoproduction,was typically less than 1%.Figure 2shows a comparison of data and MC distributions for the NC sample.The MC sample gives a generally good description of the data.The e?ect of the positron ?ducial-volume cuts can be seen in the positron angle (~2.4rad)and Q 2(~600GeV 2)distributions.

7Cross section determination

The measured cross section in a particular kinematic bin,for example in dσ/dQ 2,was determined from

dσBorn

N MC ·dσSM Born

The major sources of systematic uncertainty in the CC cross sections come from the uncertainties in calorimeter energy scale and the parton-shower scheme.The former was estimated using a method detailed in previous publications[7,9]for the NC data sample. The resulting shifts in the cross sections were typically less than10%,but increased to 20%in the highest Q2bin and30%in the highest x bin.

To estimate the sensitivity of the results to the details of the simulation of the hadronic ?nal state,the Lepto Meps model was used instead of the Ariadne model for calculat-ing the acceptance corrections.The largest e?ects of~5%were observed in the highest Q2and x bins.

The uncertainty in the small contribution from photoproduction was estimated by?tting a linear combination of the P T,miss/E T distributions of the signal and the background MC samples to the corresponding distribution in the data,allowing the normalisation of the photoproduction MC events to vary.No cut on P T,miss/E T was applied for this check. Varying the normalisation of the photoproduction events by the uncertainty in the?t of ±30%resulted in changes of the measured cross sections within±3%.

The systematic uncertainties of the selection cuts were estimated by varying the threshold value of each selection cut independently by around10%,which is a reasonable match to the resolution.The resulting shifts in the cross sections were typically within±5%.

A major source of systematic uncertainty in the NC cross section came from the uncer-tainty in the parton-shower scheme,which gave changes in the cross section of typically within±2%but up to4%at high Q2.Uncertainty in the electromagnetic energy scale was estimated by varying the energy scale by±1%.However,due to the use of the double-angle reconstruction,the resulting shifts in the cross section were typically<0.5%.The systematic e?ects of the selection cuts were estimated by varying the threshold value of each selection cut independently by values commensurate with the resolutions.The resulting shifts in the cross sections were typically within±1%.

The individual uncertainties were added in quadrature separately for the positive and negative deviations from the nominal cross-section values to obtain the total systematic uncertainty.The uncertainty in the measured polarisation,δP e/P e,was1.6%using the LPOL and3.5%using the TPOL.The choice of polarimeter measurement was made to maximise the available luminosity for the analysis,while minimising the uncertainty in the measured polarisation,on a run-by-run basis.

The relative uncertainty in the measured luminosity of3.5%was not included in the total uncertainty shown in the di?erential cross-section?gures.

8Results

In the following,measurements of total cross sections and di?erential cross sections in x,y and Q2for the charged current reaction are presented.In addition,cross sections di?erential in Q2were measured for the neutral current reaction.

The total cross sections for e+p CC DIS in the kinematic region Q2>200GeV2are σCC(P e=0.32±0.01)=42.8±2.4(stat.)±1.9(syst.)pb,

and

σCC(P e=?0.41±0.01)=23.3±1.9(stat.)±1.0(syst.)pb.

including the uncertainty from the measured luminosity.The total cross section is shown as a function of the longitudinal polarisation of the positron beam in Fig.3,including the unpolarised ZEUS measurement from the1999-2000data[9].The data are compared to the Standard Model prediction evaluated using the ZEUS-JETS[44]and CTEQ6D[45] PDFs.The SM prediction describes the data well.A linear?t to the data yields an extrapolated value of

σCC(P e=?1)=7.4±3.9(stat.)±1.2(syst.)pb,

withχ2=0.1,consistent within two standard deviations with the absence of right-handed charged currents in the SM.In the?t,the systematic uncertainties of the two polarised data points were considered fully correlated and the uncertainities in the measured po-larisation fully anti-correlated.The systematic uncertainty in the unpolarised data point was considered to be uncorrelated with the polarised points.

The single-di?erential cross-sections dσ/dQ2,dσ/dx and dσ/dy for charged current DIS are shown in Fig.4.A clear di?erence is observed between the measurements for positive and negative longitudinal polarisation,which is independent of the kinematic variables. The e?ects are well described by the SM evaluated using the ZEUS-JETS PDFs. Figure5shows the di?erential cross-section dσ/dQ2for NC DIS for positive and nega-tive longitudinal polarisations and the ratio of the two cross sections.Only statistical uncertainties were considered when taking the ratio of the positively and negatively po-larised cross sections.The measurements are well described by the SM evaluated using the ZEUS-JETS PDFs and are consistent with the expectations of the electroweak Stan-dard Model for polarised NC DIS.Aχ2test for the Q2>1000GeV2data points yields χ2=0.3per data point for the SM and1.5for no polarisation dependence.

9Summary

The cross sections for charged and neutral current deep inelastic scattering in e+p collisions with a longitudinally polarised positron beam have been measured.The measurements are the?rst from the ZEUS collaboration in the second phase of HERA operation and are based on data corresponding to an integrated luminosity of23.8pb?1collected in2004at a centre-of-mass energy of318GeV.The cross sections for e+p charged current deep inelas-tic scattering are di?erent for positive and negative values of the positron beam longitu-dinal polarisation.In addition,single di?erential cross sections are presented for charged and neutral current deep inelastic scattering in the kinematic region Q2>200GeV2.The measured cross sections are well described by the predictions of the Standard Model.A?t to the cross-section measurements yieldsσCC(P e=?1)=7.4±3.9(stat.)±1.2(syst.)pb, which is within two standard deviations of the prediction of the Standard Model of zero. Acknowledgements

We are grateful to the DESY directorate for their strong support and encouragement. We thank the HERA machine group whose outstanding e?orts resulted in the successful upgrade of the HERA accelerator which made this work possible.We also thank the HERA polarimeter group for providing the measurements of the lepton-beam polarisation. The design,construction and installation of the ZEUS detector has been made possible by the e?orts of many people not listed as authors.It is a pleasure to thank H.Spiesberger and T.Abe for useful discussions.

信息技术 - 第八册计算机教育学习学案及教案(全册)-四年级

信息技术-第八册计算机教案(全册) -四年级 教学计划 一、教学大纲对本年级本学科的基本要求: 掌握文件和文件夹的删除、还原方法;认识常用的图片文件格式;掌握用AcDSee软件浏览图片的操作方法;认识电子邮箱的作用;学会申请电子邮箱;学会收发电子邮件;认识电子邮件的格式;掌握在“outlookExpress”软件中设置电子邮件帐号的操作;学会用“outlookExpress”发送电子邮件;掌握在邮件中插入附件的操作方法;学会绘制简单的图形;掌握自选图形格式的设置;掌握表格的插入方法;会在表格中输入文字;掌握在表格中插入和删除行列的方法;会简单修饰表格的方法;了解分栏的方法;了解打印预览的功能;学习制作贺年片。 二、对教材体系和内容的简要分析: 本学期学习内容主要包括:学习收发电子邮件;学习用woRD制作表格;页面设置和制作贺卡。 1、文件的删除; 2、图片的浏览; 3、申请电子邮箱; 4、收发电子邮件; 5、学做邮票; 6、制作课程表; 7、表格的修改; 8、页面设置; 9、学做贺卡。 三、对本年级学生学习情况的基本分析: 四年级学生在以前学习的基础上,对计算机的功能及简单操作已经有了较全面的认识,也已经学会用woRD处理文字的简单操作,对网络有了初步的了解,知道如何上网;最重要的是学生对学习计算机这门课程兴趣浓厚,对于进一步的教学有一个良好的基础。 四、教学进度 略 第一课文件的删除

教学目标: 掌握文件和文件夹的删除和还原方法 教学重点: 文件和文件夹的删除和还原方法 教学过程: 一、删除文件 1、删除硬盘中的文件 如删除“画1”这个文件的方法是: 选定“画1”这个文件, 单击工具栏中的删除按钮, 弹出“确认删除文件”对话框; 单击“是”。 2、删除软盘上的文件 如删除软盘上图像文件“房子”的方法是: 将软盘插入软盘驱动器中, 打开“我的电脑”窗口,双击软驱图标,打开软盘窗口;右击需要删除的文件“房子”,再单击菜单中的“删除”命令; 在弹出的“确认文件删除”对话框中单击“是”。 二、回收站的操作 1、还原文件

常用计量单位换算表

国际单位制中具有专门名称的导出单位 量的名称单位名称单位符号其它表示式例频率赫[兹] Hz s-1 力、重力牛[顿] N kg?m/s2 压力、压强、应力帕[斯卡] Pa N/m2 能量、功、热焦[耳] J N?m 功率、辐射通量瓦[特] W J/s 电荷量库[仑] C A?s 电位、电压、电动势伏[特] V W/A 电容法[拉] F C/V 电阻欧[姆] S V/A 电导西[门子] Wb A/V 磁通量韦[伯] T V?s 磁通量密度、磁感应强度特[斯拉] H Wb/m2 电感亨[利] C Wb/A 摄氏温度摄氏度1m cd?sr 光通量流[明] 1x 1m/ m2 光照度勒[克斯] Bq s-1 放射性活度贝可[勒尔] Gy J/kg 吸收剂量戈[瑞] Sv J/kg 剂量当量希[沃特] 国家选定的非国际单位制单位 量的名称单位名称单位符号换算关系和说明 时间分 [小]时 天(日) min h d 1min=60s 1h=60min=3600s 1d=24h=86400s 平面角[角]秒 [角]分 度 (″) (′) (°) 1″=( π/640800)rad (π为圆周率) 1′=60″=(π/10800)rad 1°=60′=(π/180)rad 旋转速度转每分r/min 1r/min=(1/60)s-1 长度海里n mile 1n mile=1852m (只用于航行) 速度节kn 1kn=1n mile/h =(1852/3600)m/s (只用于航行) 质量吨原子质量单位t u 1t=103kg 1u≈1.6605655×10-27kg

体积升L,(1) 1L=1dm3=10-3m3 能电子伏eV 1eV≈1.6021892×10-19J 级差分贝dB 线密度特[克斯] tex 1tex=1g/km 常用压力单位换算表

高中信息技术基础教案全集

教科版高中信息技术基础教案全集(必修) 1.1信息及其特征 一、教学内容分析和设计: “信息及其特征”是教育科学出版社的高一《信息技术基础》第一章第一节的内容。由于这个内容理论性较强,如果只是由教师来讲,学生可能会觉得枯燥,所以我准备在教师的引导下,举出现象,让学生进行探讨,然后归纳获得知识。有不足之处由教师或学生来补充。这样能让学生积极参与,活跃课堂气氛,既让学生学到知识,又培养了学生将学习与生活联系的习惯和自主学习的习惯。 二、教学对象分析: 知识的获取者是刚刚升入高中的学生,按照人的成长认知规律,学生对知识的获取开始由感性认识提升到理性认识。对于“信息”这一事物的认识,可以让他们从大量存在的现象中,发现并归纳出他们应该获得的知识。老师在此过程中起着引导的作用。 三、教学目标: 1、知识、技能目标:学生能够列举学习与生活中的各种信息,感受信息的丰富多彩性;举例说明信息的一般特征;培养学生分析问题、解决问题的能力。 2、过程、方法目标:培养学生从日常生活、学习中发现或归纳出新知识的能力。 3、情感态度与价值观目标:让学生理解信息技术对日常生活和学习的重要作用,激发对信息技术强烈的求知欲,养成积极主动地学习和使用信息技术、参与信息活动的态度。 四、教学重点: 1、信息特征的认识。 五、教学难点: 信息的含义。 六、教学方法 本节概念性强,实践性弱。采用讲授法,讨论法。 教学过程 谈话引入:同学们,信息技术这门课程,我们在初中阶段就已经学习。那么下面请同学们说一说,什么是信息?在我们日常生活中,你认为哪些属于信息?(举例) 生1:校园里铃声响,可以告诉我们信息:上课或下课。 生2:观看校运会,可以获得很多运动会赛场上的信息。 生3:从网上可以获得很多信息,如:学习资料、娱乐、新闻报导等。

常用国际度量衡换算表

重量换算 7. 重量换算 (一) 公 制 英 制 美 制 中国市制 英 制 港 制 公 制 中国市制 英美制 公 吨 长 吨 短 吨 担 英 担 司马担 公 斤 斤 磅 (Metric (Long (Short (Hundred Kilo- ton) ton) ton) weight) (Picul) gram) (Pound) 1 0.984 2 1.102 3 20 19.68 4 16.53 5 1,000 2,000 2,204.62 1.016 1 1.12 20.32 20 16.8 1,016.05 2,032.1 2,240 0.9072 0.8929 1 18.144 17.857 15 907.2 1,814.4 2,000 0.05 0.04921 0.0551 1 0.9842 0.8267 50 100 110.23 0.0508 0.05 0.056 1.016 1 0.8402 50.8 101.6 112 0.0605 0.05954 0.0667 1.21 1.19 1 60.48 120.96 133.33 1 2 2.2046 0.5 1 0.1023 0.4536 0.9072 1 8. 重量换算 (二) 公 制 英 美 制 常 衡 英 美 制 金 衡 或 药 衡 中 国 市 制 公 斤 克(公分) 磅 两(盎司) 磅 两 (盎司) 两 (Kilo- (pound) (Ounce) gram) (Gram) (Pound) (Ounce) (Troy or A

pothecary) (十量制) 1 1,000 2.2046 2 35.2736 2.679227 32.15072 20 0.001 1 0.0022 0.035274 0.0026792 0.03215 0.02 0.45359 453.592 1 16 1.2152777 14.5833324 9.072 0.02835 28.3495 0.0625 1 0.07595486 0.91145833 0.567 0.37324 373.2418 0.82285714 13.1657 1 12 7.465 0.031103 31.1035 0.06857143 1.0971428 0.08333 1 0.622 0.05 50 0.11023 1.76368 0.13396 1.60752 1 单位长度重量换算 9. 单位长度重量换算 公 制 英 美 制 中 国 市 制 公斤/米 磅/尺 磅/寸 斤/尺 (Kilogram/Meter) (Pound/Foot) (Pound/Inch) 1 0.67 2 0.056 0.667 1.488 1 0.083 0.992 17.858 12 1 11.905 1.5 1.088 0.084 1 ? 单位面积换算 10. 单位面积换算

信息技术基础的学案6.1.2

第六章信息集成与信息交流 6.1 信息集成(上机实践) 一、学习目标 1.通过信息集成实践更好的理解信息集成的过程的含义,体验信息集成四个阶段 2.了解常见的信息集成工具的分类及代表性的信息集成工具的工作环境 3.掌握网站制作的过程,并能熟练使用FrontPage2000进行网页制作 4.培养团队协作的能力,养成良好的思想、感情交流习惯 二、知识要点 FrontPage软件知识介绍:FrontPage是Microsoft公司制作的,很受欢迎的网页制作工具。 1.“FrontPage2000”界面主要有“标题栏”、“菜单栏”、“常用工具栏”、“格式工具栏”、“视图工具栏”、“编辑区”、“状态栏”等组成。 2. FrontPage2000 中的“编辑区”是我们制作网页的舞台。在这里,网页以三种状态显示: (1)普通视图——显示网页的编辑状态,可以设置文本、插入表格和图像、插入各种网页元素。(2)HTML视图——显示自动生成的HTML语句,此时可以用HTML语言来编辑和修改网页(3)预览视图——模拟显示编辑完的网页,供编写者查看。 3.“菜单栏”——“查看”命令——“视图栏” 视图栏提供了浏览、组织或编辑网页的几种方式: (1)“网页”视图提供编辑网页的方式 (2)“文件夹”视图提供显示和组织站点中文件和文件夹的功能 (3)“报表”视图提供了统计和分析站点中文件和超链接的功能 (4)“导航”视图显示站点中的导航结构,即网页间的链接情况 (5)“超链接”视图显示了各个网页的超链接情况 (6)“任务”视图列出站点中要完成的任务 三、网站制作知识介绍 1.网站也叫做站点,是网页等一组网络资源的集合,我们把制作的所有素材和网页集合成一个网 站,便于维护和管理。新建站点:文件——新建一个站点——只有一个网页的站点 2.利用表格布局网页:表格在网页中有定位和设置网页布局的作用,利用表格可将各块内容分类 列出,使网页清晰美观、富有条理。用表格布局时,表格边框粗细应设置为0。菜单

教科版的《信息技术基础》教案全套

1.1信息及其特征 一、教学内容分析和设计: “信息及其特征”是教育科学出版社的高一《信息技术基础》第一章第一节的内容。由于这个内容理论性较强,如果只是由教师来讲,学生可能会觉得枯燥,所以我准备在教师的引导下,举出现象,让学生进行探讨,然后归纳获得知识。有不足之处由教师或学生来补充。这样能让学生积极参与,活跃课堂气氛,既让学生学到知识,又培养了学生将学习与生活联系的习惯和自主学习的习惯。 二、教学对象分析: 知识的获取者是刚刚升入高中的学生,按照人的成长认知规律,学生对知识的获取开始由感性认识提升到理性认识。对于“信息”这一事物的认识,可以让他们从大量存在的现象中,发现并归纳出他们应该获得的知识。老师在此过程中起着引导的作用。 三、教学目标: 1、知识、技能目标:学生能够列举学习与生活中的各种信息,感受信息的丰富多彩性;举例说明信息的一般特征;培养学生分析问题、解决问题的能力。 2、过程、方法目标:培养学生从日常生活、学习中发现或归纳出新知识的能力。 3、情感态度与价值观目标:让学生理解信息技术对日常生活和学习的重要作用,激发对信息技术强烈的求知欲,养成积极主动地学习和使用信息技术、参与信息活动的态度。 四、教学重点: 1、信息特征的认识。 五、教学难点: 信息的含义。 六、教学方法 本节概念性强,实践性弱。采用讲授法,讨论法。 教学过程 谈话引入:同学们,信息技术这门课程,我们在初中阶段就已经学习。那么下面请同学们说一说,什么是信息?在我们日常生活中,你认为哪些属于信息?(举例)

生1:校园里铃声响,可以告诉我们信息:上课或下课。 生2:观看校运会,可以获得很多运动会赛场上的信息。 生3:从网上可以获得很多信息,如:学习资料、娱乐、新闻报导等。 生4:在报纸上可以了解国内外的信息。 ……师:同学们举的例子非常好。 其实信息在我们日常生活周围无时不在,无处不有,当然,信息不仅存在于我们的周围,同样可以在我们身体内部找到它的影子,如,医生通过听诊器来感知我们的身体内部的变化以确定病因,因此我们可以说信息是用文字、数字、符号、图像、图形、声音、情景、状态等方式传播的内容。 师:信息无处不在,无时不有。信息的存在多种多样,作为万物中的一种,它们同样有着其固有的特性,也就相同的本质。下面我们通过所获取到的信息,找出它们共同的特性。 师:在我们周围存在的信息中,书刊上的文字依附于纸张,颜色依附于物体的表面,老师讲课的声音依附于空气。还有很多的信息,同学们能举出其他的现象吗? 生:(讨论)我们的体重依附于身体,CD音乐依附于光盘,…… 师:有没有信息是不依附于任何载体而存在呢? 生:(讨论)找不到。 师:这说明了什么? 生:(齐)信息必须依附于载体而存在,信息依附的物体多种多样。 师:通过前面的学习知道信息是必须依附某一媒体进行传播的,所以不能独立存在;文字既可以印刷在书本上,也可以存储到电脑中;信息可以转换成不同的载体形式而被存储下来和传播出去,供更多的人分享,而“分享”的同时也说明信息可传递、可存储。 师:(课件演示) 1、载体依附性 (1)信息不能独立存在,需要依附于一定的载体; (2)同一个信息可以依附于不同的媒体。 (3)载体的依附性具有可存储、可传递、可转换特点。

常用计量单位换算

常用计量单位换算 国际单位制 1.1、起源鉴于国际上使用的单位制种类繁多,换算十分复杂,对经济与技术交流带 来许多困难。根据1954年国际度量衡会议的决定,自1978年1月1日起实行国际单位制,简称国际制。国际代号为SI。我国于1977年5月27日颁发《中华人民共和国计量管理条例(试约)》其中第三条规定:“我国的基本计量制度是米制逐步采用国际单位制。” 1.2、国际单位制的基本单位:在国际单位制中,规定七个基本单位,见表1-1,其 它单位均由这些基本单位和辅助单位导出。 表1-1 国际单位制的基本单位 1.3、国际单位制的辅助单位(见表1-2)有2个,平面角(弧rad)和立体角(球面 度Sr)。 1.4、表1-2 国际单位制的辅助单位

1.5、由词头和单位所构成的十进制倍数和分数单位(表1-3)

3、换算原则 3.1、换算后的量值应满足产品的使用要求。 3.2、换算误差应控制在误量值的规定换算精度值之内(表3-1) 3.3、换算后的量值应与仪器、仪表原定精度等级相一致。 4、计算值修约 4.1、计量值就修约到规定精算精度值的最左一位非零数位的前一位(例如:规定换算精度值为0。2,用β/G计算值应修约到个位数),并按国标0.5单位修约和0.2单位修约的顺序进行修约,直至换算误差小于等于规定换算精度为止. 4.2、极限的修约 不小于101.4→不小于102 不大于116.6→不大于116 4.3、例1、给定单向极限值的换算 例:将不低于2500kcal换算成以焦[耳](J)为单位的量值。 A、求计算值:

因1kcal=4.1868kj 故计算值为:2500*4.1868kj=10.467MJ B、计算规定换算精度值: 查表2-6换算精度值为计算值的1% 故规定的换算精度值为:△=10.467*1%≈0.10。 C、修约计算值: 因规定的换算精度值为0.10,故应修约到个位数。 按GB8170“进舍规则”修约:10.467→10 换算误差为:10-10.467=0.467>0.10 再按GB8170“0.5单位修约”:10.467→10.5 换算误差为: ︳10.5-10.467︳=0.038<0.10 所以:不低于2500Kcal→不低于10.5MJ 例2、给定带偏差值的换算 例1 将110±10kgf/mm2换算成以帕[斯卡](Pa)为单位的量值。a、求计算值: 因1kgf=9.080665Mpa, 故基本值换算为:110*9.80665Mpa=1087.73Mpa. 偏差值换算为:10*9.80665Mpa=98.0665Mpa. b、计算规定的换算精度值为公差值的5%,即规定的换算精度值为 [98.0665-(-98.0665)]*5%≈9.8 D、计算值的修约: 因规定的换算精度值为9.8,故应修约到十数位。 基本本值按GB8170:“进舍规则”修约:1087→1080。 其换算误差为:1080-1078.73=1.27<9.8符合要求. 偏差值按GB8170“进舍规则”修约:98.0665→100,其换算误码差为︳100-98.0665︳=1.9335<9.8,符合要求. 所以最后结果为: 110±10kgf/mm2→1080±100

单位换算表

S1单位换算表?度量衡换算表 公制单位 中 文 英 文 缩 写 与公尺之关系 互相间之关系 公 里 Kilo-meter km 103m =10公引=100公丈=1000公尺 公 引 Hectometer hm 102m =10公丈=100公尺 公 丈 Dekameter dam 101 m =10公尺 公 尺 Meter m 100m =10公寸=100公分=1000公厘 公 寸 Decimeter dm 10-1m =10公分=100公厘 公 分 Centimeter cm 10-2m =10公厘=104公忽 公 厘 Millimeter mm 10-3m =103公忽=106微毫=107埃 公 忽 Micron μ或μm 10-6 m =103 微毫=104 埃=10-3 mm 微 毫 Millimicron mμ或μμ 10-9m =10-1埃=10-3μ=10-6mm 埃 Angstrom Ao或Aμ 10-10m =10-7mm 英制单位 公英制互换 中 文 英 文 缩 写 与公尺之关系 互相间之关系 公制 1公厘(km)=0.6214哩(mile) 哩 mile 63360 in =1760码=5280呎 1公尺(m)=1.0936码(yd) 码 yard yd 36 in =3呎 ↓ 1公分(cm)=0.3937吋(in) 呎 foot ft(1') 12 in =1000英毫=1/3码 英制 1公厘(mm)=0.03937吋(in) 吋 inch in(1'') 1 in =1/36码=1/12呎 公制 1哩(mile)=1.609公厘(km) 英 分 line 10-1in =1/120呎=1/10吋 1码(yd)=0.914公尺(m) 毫吋(英毫) mil 10-3 in =10-2 英分 ↓ 1尺(ft)=30.48公分(cm) 微 吋 microinch μin 10-6in =10-3毫吋 英制 1寸(in)=25.4公厘(mm) ■对S1单位换算率表(粗线框内为S1单位) 比热 J/kg.k) kcal(kg.℃) 压力 1 2.388 89×10-4 Pa bar kgf/cm2 atm mmH 2o mmHg 4.186 05×103 1 1 1×10-5 1.019 72×105 9.869 23×10-6 1.019 72×10-17.500 23×10-3 注:1cal=4.186 05J(依日本计量法) 1×105 1 1.019 72 9.869 23×10-1 1.019 72×1047.500 23×102 9.806 65×104 9.806 65×10-1 1 9.678 41×10-1 1×104 7.355 41×102 热传达系数 1.013 25×105 1.013 25 1.033 23 1 1.033 23×1047.600 00×102 w/(m 2.k ) kval/(h.m 2.℃) 9.806 65 9.806 65×10-5 1×10-4 9.678 41×10-5 1 7.355 59×10-2 1 8.600 0×10-1 1.333 22×102 1.359 22×10-3 1.359 55×10-3 1.315 79×10-3 1.359 55×10 1 1.162 79 1 注:1Pa=1n/m 2 注:1cal=4.186 05J(依日本计量法) 功率(功率\动力)热流 kw kgf.m/s ps kcal/h 1 1.019 72×102 1.359 62 8.600 0×10-4 9.806 65×103 1 1.333 33×10-2 8.433 71 注:1w=1J/S.PS:法国马力 7.355 ×10-1 7.5 ×10 1 6.325 29×102 1PS=0.735 5kw (依日本计量施行法) 1.162 79×10-3 1.185 72×10-1 1.580 95×10-3 1 1cal=4.186 05J (依日本计量法) 应力 Pa MPaN/mm 2 kgf/mm 2 kgf/cm 2 J Kw.h Kgf.m kcal 1 1×10-6 1.019 72×10--7 1.019 72×10-5 1 2.777 78×10-7 1.019 72×10-1 2.388 89×104 1×106 1 1.019 72×10-1 1.019 72×10 3.600 ×106 1 3.670 98×105 8.600 0×102 9.806 65×106 9.806 65 1 1×10-2 9.806 65 2.724 07 ×10-6 1 2.342 70×10-3 9.806 65×104 9.806 65×10-2 1×10-2 1 4.186 05×103 1.162 79×10-3 4.268 58×102 1 注:1J=1w.s 1J=IN.M. 1cal=4.186 05J (依计量法)

信息技术基础的学案3.1

第三章信息的编程加工和智能化加工 第一节信息加工概述 制作人:马庆辉 学习目标: 1.了解信息加工的基本知识; 2.理解手工加工信息和计算机信息加工方式的异同; 3.理解计算机信息加工的三种形态的特征。 知识要点: 一、信息加工的过程和方式 1.信息加工的概念:信息加工是指通过判别、筛选、分类、排序、分析和 研究等一系列过程,使收集到的信息(原始信息)成为能够满足我们需要的信息。 2.信息加工的目的:发掘信息的价值、方便用户使用。 3.为什么要对收集到的信息(原始信息)进行加工呢? 信息加工是信息利用的基础,也是信息成为有用资源的重要条件:(1)在大量的原始信息中,不可避免的存在着一些假信息、伪信息,只有通过认真的筛选和判别,才能避免真假混杂; (2)我们收集来的信息是一种初始的、零乱的、孤立的信息,只有对这些信息进行分类和排序,才能有效的使用; (3)通过信息的加工,可以创造出新的信息,使信息具有更高的使用价值。 4.信息加工的一般过程: (1)记录信息; (2)加工信息; (3)发布信息; (4)存储信息。 5.信息加工方式的变化: (1)人工加工的方式 特点:所需工具较少,方法灵活,使用方便。 不足:有时不但繁琐、容易出错,而且费时不能满足现代生活的需要。

(2)计算机加工方式 二、计算机信息加工的过程和类型 1、计算机信息加工的一般过程 (1)根据信息类型和加工要求选择合适的计算机软件或者自编程序; (2)信息录入; (3)信息加工; (4)信息输出; (5)信息存储。 2、计算机信息加工的类型 利用计算机加工信息有三种形态 第一种是基于程序设计的自动化信息加工(信息的编程加工); 第二种是基于大众信息技术工具的人性化信息加工; 第三种是基于人工智能技术的智能化信息加工。 自我评价: 1.信息加工的一般过程:,,,。 2.计算机信息加工的一般过程:,,, ,。 3.利用计算机加工信息有三种形态:第一种, 第二种,第三种。 4.信息加工的目的:。 5.信息加工有以下几个环节:A. 加工信息、B.记录信息、C. 存储信息、D. 发布信息; 请你分析以下资料,指出各工作流程分别属于信息加工的哪一个环节。 2006年9月28日下午,我校举行了校教职工男女混合4*400接力赛,参加小组有:高一年级组、高二年级组、高三年级组。裁判员将各小组的比赛成绩记录于规定的参赛项目成绩记录表中,这是信息加工的_____环节;然后裁判员再对这些比赛成绩进行分析、排序等工作,排出名次,这又是信息加工的_____环节;裁判员将这比赛的结果抄了一份送到广播员处,广播员播出成绩,这属于信息加工的_____环节;另将各参赛小组比赛成绩的原材料整理成册送到体卫处存根,这又属于信息加工的_____环节。 6、信息加工是指通过判别、()、()、()、分析和研究等一系列过程,使收集到的信息成为能够满足我们需要的信息。 7、比较人工方式和计算机加工方式的异同。

密度表及单位换算表

密度表及单位换算表 M=密度*体积 千克千克/立方米立方米 常用金属材料的密度表 材料名称密度,克/立方厘米材料名称密度,克/立方厘米 灰口铸铁 6.6~7.4 不锈钢1Crl8NillNb、Cr23Ni18 7.9 白口铸铁7.4~7.7 2Cr13Ni4Mn9 8.5 可锻铸铁7.2~7.4 3Cr13Ni7Si2 8.0 铸钢7.8 纯铜材8.9 工业纯铁7.87 59、62、65、68黄铜8.5 普通碳素钢7.85 80、85、90黄铜8.7 优质碳素钢7.85 96黄铜8.8 碳素工具钢7.85 59-1、63-3铅黄铜8.5 易切钢7.85 74-3铅黄铜8.7 锰钢7.81 90-1锡黄铜8.8 15CrA铬钢7.74 70-1锡黄铜8.54 20Cr、30Cr、40Cr铬钢7.82 60-1和62-1锡黄铜8.5 38CrA铬钢7.80 77-2铝黄铜8.6

铬钒、铬镍、铬镍钼、铬锰、硅、铬锰硅镍、硅锰、硅铬钢7.85 67-2.5、66-6-3-2、60-1-1铝黄铜8.5 镍黄铜8.5 铬镍钨钢7.80 锰黄铜8.5 铬钼铝钢7.65 硅黄铜、镍黄铜、铁黄铜8.5 含钨9高速工具钢8.3 5-5-5铸锡青铜8.8 含钨18高速工具钢8.7 3-12-5铸锡青铜8.69 高强度合金钢` 7.82 6-6-3铸锡青铜8.82 轴承钢7.81 7-0.2、6.5-0.4、6.5-0.1、4-3锡青铜8.8 不锈钢0Cr13、1Cr13、2Cr13、3Cr13、4Cr13、Cr17Ni2、Cr18、9Cr18、Cr25、Cr28 7.75 4-0.3、4-4-4锡青铜8.9 Cr14、Cr17 7.7 4-4-2.5锡青铜8.75 0Cr18Ni9、1Cr18Ni9、1Cr18Ni9Ti、2Cr18Ni9 7.85 5铝青铜8.2 1Cr18Ni11Si4A1Ti 7.52 锻铝LD8 2.77 7铝青铜7.8 LD7、LD9、LD10 2.8 19-2铝青铜7.6 超硬铝 2.85 9-4、10-3-1.5铝青铜7.5 LT1特殊铝 2.75 10-4-4铝青铜7.46 工业纯镁 1.74

常用法定计量单位换算表

常用法定计量单位换算表 我国的法定计量单位(以下简称法定单位)包括: 1.国际单位制的基本单位; 2.国际单位制的辅助单位; 3.国际单位制中具有专门名称的导出单位; 4.国家选定的非国际单位制单位; 5.由以上单位构成的组合形式的单位; 6.由词头和以上单位所构成的十进倍数和分数单位。 国际单位制中具有专门名称的导出单位 量的名称单位名称单位符号其它表示式例频率赫[兹] Hz s-1 力、重力牛[顿] N kgm/s2 压力、压强、应力帕[斯卡] Pa N/m2 能量、功、热焦[耳] J Nm 功率、辐射通量瓦[特] W J/s 电荷量库[仑] C As 电位、电压、电动势伏[特] V W/A 电容法[拉] F C/V 电阻欧[姆] S V/A 电导西[门子] Wb A/V 磁通量韦[伯] T Vs 磁通量密度、磁感应强度特[斯拉] H Wb/m2 电感亨[利] C Wb/A 摄氏温度摄氏度1m cdsr 光通量流[明] 1x 1m/ m2 光照度勒[克斯] Bq s-1

放射性活度贝可[勒尔] Gy J/kg 吸收剂量戈[瑞] Sv J/kg 剂量当量希[沃特] 国家选定的非国际单位制单位 量 的名称单位名 称 单位符号换算关系和说明 时间分 [小] 时天 (日) min h d 1min=60s 1h=60min=3600s 1d=24h=86400s 平面角[角]秒 [角] 分度 (″) (′) (°) 1″=( π/640800)rad (π为圆周率) 1′=60″=(π/10800)rad 1°=60′= (π/180)rad 旋 转 速 度 转每分 r/min 1r/min=(1/60)s-1 长 度 海里n mile 1n mile=1852m (只用于航行) 速度节kn 1kn=1n mile/h =(1852/3600)m/s (只用于航 行) 质量吨原 子质量 单位 t u 1t=103kg1u≈×10-27kg 体 积 升L,(1) 1L=1dm3=10-3m3 能电子伏 eV 1eV≈×10-19J 级 差 分贝dB 线密度特[克 斯] tex 1tex=1g/km

国际常用度量衡换算

国 际 常 用 度 量 衡 常用度量衡有:长度、时间、质量、面积、体积、容积 长度 长度用字母表示为L。 长度的国际单位是米,字母表示为m。 有千米km、米m、分米dm、厘米cm、毫米mm、忽米cmm、丝米dmm、微米μ等。 英尺与英寸都是国际上较通用的长度计量单位,十二进位,,是讲、写英语时的用法,英尺英文foot,简写ft;英寸英文inches,简写in。 1英尺(1/3码)=12英寸,英尺与英寸和标准计量--米的换算:1英尺=0.3048米,1英寸=0.0254米 尺与寸是我国现用的市际长度计量单位的一部份,十进位,尺与寸和标准计量--米的换算:1尺=0.3333米,1寸=0.0333米 1千米(1km)=1000米(1000m) 1米(1m)=10分米(10dm) 1分米(1dm)=10厘米(10cm) 1厘米(1cm)=10毫米(10mm) 1毫米(1mm)=10忽米(10cmm) 1忽米(1cmm)=10丝米(10dmm) 1丝米=10微米(10μ) 英尺(ft)与米(m)的换算:1英尺(1ft)=0.3048米(0.3048m) 米(m)与英尺(ft)的换算:1米(1m)=3.28084英尺(3.28084ft) 毫米(mm)与英寸(in)的换算:1毫米(1mm)=0.039370英寸(0.039370in)英寸(in)与毫米(mm)的换算:1英寸(1in)=25.4毫米(mm) 1米=100厘米=1000毫米 1英尺=0.348米 1英寸=2.540005厘米 1米=3.28084英尺 1厘米=0.3937英寸 1英寸=2.5400 厘米

1英尺=12 英寸=0.3048 米 1码=3 英尺=0.9144 米 1英里=1760 码=1.6093 千米 1尺=0.33333米 1寸=0.1尺 时间 时间的标准单位是秒,字母表示为s。 有小时h、分钟min、秒s。 1h = 60min = 3600s 质量 质量用字母表示为m。 质量的国际单位是千克,字母表示为kg。有千克kg、克g等。 吨=20英担(CWT) 1英担=50.8024公斤 美制1短吨=20短担(CWT) 1短吨

信息技术基础的学案7.1

7.1信息资源管理概述 制作人:马庆辉 审核人:高峰 【学习目标】 1. 了解信息资源管理的一般过程,理解信息资源管理活动的普遍性及其重要意义 2. 依据一定的标准对信息进行分类 3. 了解信息资源管理的标准化思想 【知识框架】 管理对象:信息活动中的各种要素(包括信息、人员、设备、资金等) 管理内容:对信息资源进行组织、控制、加工、协调 管理目的:有效的满足社会的各种信息需求 管理手段:借助现代信息技术以实现信息资源的最佳配置 二、信息资源管理过程 各种信息资源管理活动都是按照一定的方法和程序进行的:从具体需要出发,对信息资源按照一定的方法分类、组织和存储,继而提供方便的信息服务,与此同时还要不断进行更新与维护。 图书馆的工作流程,一般可以分为:采-分-编-藏-用-剔等几个阶段: 1.采,就是采购。 2.分,就是分类 3.编,就是编目。 4.藏,就是图书的上架管理。 身边的信息资源管理 信息资源管理过程 信息资源的分类组织 信息资源管理中的标准化思想和意义 信 息 资源 管理 概述 【知识要点】 一、 概念介绍 信息资源: 狭义来说,把信息资源等同于知识、资料和消息,即只指信息内容,指导信息本身或信息的集合。广义来说,信息资源是人类社会信息活动中积累起来的信息、信息生产者、信息技术等信息活动要素的集合。本章所述的“信息资源”,指我们在工作学习生活中积累的有具体载体存储的信息,包括文本、图象、音频、视频、动画等多种媒体表现印刷品、计算机文件、光盘产品、或者仅仅是其中的包含有相对完整内容的某个片段而已,也可以是数据库中特定结构的广义数据。 信息资源管理(IRM ):一方面是人类在漫长的发展历程中,对文献、知识和信息管理的延伸和拓展,另一方面则是在社会经济高度发展、信息已成为重要的经济资源这个背景下所发展起来的信息管理思想和管理模式。

高中《信息技术基础》必修全套教案

信息必修(一) 课题:信息及其特征《信息技术基础》第一章第一节 课时:1课时 教学分析: 1、教学内容分析:“信息及其特征”是教育科学出版社的高一《信息技术基础》第一章第一节的内容。由于这个内容理论性较强,如果只是由教师来讲,学生可能会觉得枯燥,所以我准备在教师的引导下,举出现象,让学生进行探讨,然后归纳获得知识。有不足之处由教师或学生来补充。这样能让学生积极参与,活跃课堂气氛,既让学生学到知识,又培养了学生将学习与生活联系的习惯和自主学习的习惯。 2、学情分析:知识的获取者是刚刚升入高中的学生,按照人的成长认知规律,学生对知识的获取开始由感性认识提升到理性认识。对于“信息”这一事物的认识,可以让他们从大量存在的现象中,发现并归纳出他们应该获得的知识。老师在此过程中起着引导的作用。 教学目标: 1、知识、技能:能列举身边的各种信息,感受信息的丰富性;能列举说明信息的一般特征,对信息有较全面的认识。 2、过程、方法目标:培养学生从日常生活、学习中发现或归纳出新知识的能力。 3、情感态度与价值观目标:让学生理解信息技术对日常生活和学习的重要作用,激发对信息技术强烈的求知欲,养成积极主动地学习和使用信息技术、参与信息活动的态度。 教学重点与难点:信息与人类的关系;信息特征的认识。 教学过程: 一、教学导入:亲历感官剥夺——你能坚持多久? [游戏] 请几位同学和老师做实验。等学生上来以后,让他面向墙壁静止等我的指令才能回头和说话。让其他同学保持安静并出示一张纸板,上面写着:请大家保持安静,看看他能坚持多久? [提问]:为什么有的同学只能坚持几十秒钟,而有的同学坚持的时间稍长? [学生]:因为他耐力不行 [学生]:因为被孤立,无法得到信息 [总结]:由此可见,信息是人类生存的基本条件,今天我们来学习《信息技术这门课程》 二、丰富多彩的信息 观察下图,你能获得什么信息? [学生讨论]:2008年奥运会在北京举行;运动员比赛场景;奥林匹克运动会徽标;2008年奥运会口号。 [小结]:其实信息在我们日常生活周围无时不在,无处不有的。 信息的概念:信息是事物的运动状态及其状态变化的方式

国际常用度量衡换算

国际常用度量衡 常用度量衡有:长度、时间、质量、面积、体积、容积 长度 长度用字母表示为L。 长度的国际单位是米,字母表示为m。 有千米km、米m、分米dm、厘米cm、毫米mm、忽米cmm、丝米dmm、微米μ等。 英尺与英寸都是国际上较通用的长度计量单位,十二进位,,是讲、写英语时的用法,英尺英文foot,简写ft;英寸英文inches,简写in。 1英尺(1/3码)=12英寸,英尺与英寸和标准计量--米的换算:1英尺=0.3048米,1英寸=0.0254米 尺与寸是我国现用的市际长度计量单位的一部份,十进位,尺与寸和标准计量--米的换算:1尺=0.3333米,1寸=0.0333米 1千米(1km)=1000米(1000m) 1米(1m)=10分米(10dm) 1分米(1dm)=10厘米(10cm) 1厘米(1cm)=10毫米(10mm) 1毫米(1mm)=10忽米(10cmm) 1忽米(1cmm)=10丝米(10dmm) 1丝米=10微米(10μ) 英尺(ft)与米(m)的换算:1英尺(1ft)=0.3048米(0.3048m) 米(m)与英尺(ft)的换算:1米(1m)=3.28084英尺(3.28084ft) 毫米(mm)与英寸(in)的换算:1毫米(1mm)=0.039370英寸(0.039370in) 英寸(in)与毫米(mm)的换算:1英寸(1in)=25.4毫米(mm)

1米=100厘米=1000毫米1英尺=0.348米1英寸=2.540005厘米1米=3.28084英尺1厘米=0.3937英寸1英寸=2.5400 厘米1英尺=12 英寸=0.3048 米1码=3 英尺=0.9144 米1英里=1760 码=1.6093 千米1尺=0.33333米 1寸=0.1尺 时间 时间的标准单位是秒,字母表示为s。 有小时h、分钟min、秒s。 1h = 60min = 3600s 质量 质量用字母表示为m。 质量的国际单位是千克,字母表示为kg。有千克kg、克g等。 1千克(1kg)=1000克(1000g)1斤=0.5千克 1千克=2斤

小学单位换算表

小学单位换算表 篇一:小学数学单位换算大全 小学数学单位换算大全 长度单位换算1千米=1000米1米=10分米1分米=10厘米1米=100厘米1厘米=10毫米 面积单位换算1平方千米=100公顷1公顷=10000平方米1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米体(容)积单位换算1立方米=1000立方分 1立方分米=1000立方厘米1立方分米=1升 1立方厘米=1毫升1立方米=1000升 重量单位换算1吨=1000千克1千克=1000克1千克=1公斤人民币单位换算1元=10角1角=10分1元=100分时间单位换算1世纪=100年1年=12月 大月(31天)有:1\3\5\7\8\10\12月 小月(30天)的有:4\6\9\11月平年2月28天,闰年2月29天平年全年365天,闰年全年366天 1日=24小时1时=60分1分=60秒1时=3600秒几何形体周长面积体积计算公式 三角形的面积=底×高÷2。公式s=a×h÷2 正方形的周长=边长×4c=4a

正方形的面积=边长×边长公式s=a×a 长方形的周长=(长+宽)×2c=(a+b)×2 长方形的面积=长×宽公式s=a×b 平行四边形的面积=底×高公式s=a×h 梯形的面积=(上底+下底)×高÷2公式s=(a+b)h÷2内角和:三角形的内角和=180度。 长方体的体积=长×宽×高公式:V=abh 长方体(或正方体)的体积=底面积×高公式:V=abh 正方体的体积=棱长×棱长×棱长公式:V=aaa 直径=半径×2d=2r半径=直径÷2r=d÷2 圆的周长=圆周率×直径=圆周率×半径×2c=πd=2πr 圆的面积=半径×半径×π公式:s=πr2 圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。公式:s=ch=πdh=2πrh 圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。公式:s=ch+2s=ch+2πr2 圆柱的体积:圆柱的体积等于底面积乘高。公式:V=sh圆锥的体积=1/3底面×积高。公式:V=1/3sh 分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。分数的乘法则:用分子的积做分子,用分母的积做分母。分数的除法则:除以一个数等于乘以这个数的倒数

信息技术基础全册教案(沪科版)

高息技术(必修)教案一.信息与信息的特征 一、教材分析: 高中一年级学生基本上都在小学、初中阶段上过信息技术课.由于是第一节课,教师与学生 及学生与学生间不熟悉,学生对教师的教学方法及对本课程的学法也不了解,因此这一节课的教学方式与教师对学生学习方法的引导对整本书的容学习有开启含义,教学参考给出的参考课时0.5略低。 与以往的信息技术课程相比,新课程更注重的是能力培养,注重团队合作,注重讨论学习,改变原有的教师一言堂的教学方式,把课堂还给学生。引导学生讨论为主,结合学生的生活实践,发挥学生的想象,自我构建信息的基本特征。 二、教学目标 1、知识、技能目标:学生能够列举学习与生活中的各种信息,感受信息的丰富多彩性;举例说明信息的一般特征;培养学生分析问题、解决问题的能力。 2、过程、方法目标:培养学生从日常生活、学习中发现或归纳出新知识的能力。 3、情感态度与价值观目标:让学生理解信息技术对日常生活和学习的重要作用,激发对信息技术强烈的求知欲,养成积极主动地学习和使用信息技术、参与信息活动的态度。 三、教学重点、难点 1、重点:体验信息的基本特征。 2、难点:信息的含义。 四、教学方法 本节概念性强,实践性弱。采用讲授法,讨论法。 五、教学容和过程 1、引入 问:“结绳记事”、“烽火告急”、“飞鸽传书”里都隐含着一个关键词,是什么呢?——信息 问:大家知道盲人摸象的故事吗?这个故事原来的寓意是什么?如果换一个角度思考,从正面去理解这个故事,你会怎样解释呢? 讨论交流,指导学生阅读教材相关容。 2、认识信息 任何事物都有多个侧面,信息也不例外。那么到底什么是信息?它有什么特征呢?讨论交流,阅读课本中关于信息的定义。课本:1、信息具有载体依附性(具有可存储、可传递、可转换等特点);2、信息具有价值性(信息只有被人们利用,才有价值);3、信息具有时效性(信息的时效性会随着时间的推移而变化);4、信息具有共享性(信息可以被一次、多次、同时利用,不会丢失或改变)。 3、引导学生多角度认识信息 引导学生共同分析:信息有哪些来源?信息有哪些载体形式?信息有哪些传播途径?信息有哪 些存储方式? 讨论交流,推导出信息的其他特性。如:传输性、概括性、真伪性等.

信息技术基础教案

一、教学内容分析和设计: “信息及其特征”是广东教育出版社的高一《信息技术基础》第一章第一节的内容。由于这个内容理论性较强,如果只是由教师来讲,学生可能会觉得枯燥,所以我准备在教师的引导下,举出现象,让学生进行探讨,然后归纳获得知识。有不足之处由教师或学生来补充。这样能让学生积极参与,活跃课堂气氛,既让学生学到知识,又培养了学生将学习与生活联系的习惯和自主学习的习惯。 二、教学对象分析: 知识的获取者是刚刚升入高中的学生,按照人的成长认知规律,学生对知识的获取开始由感性认识提升到理性认识。对于“信息”这一事物的认识,可以让他们从大量存在的现象中,发现并归纳出他们应该获得的知识。老师在此过程中起着引导的作用。 三、教学目标: 1、知识、技能目标:学生能够列举学习与生活中的各种信息,感受信息的丰富多彩性;举例说明信息的一般特征;培养学生分析问题、解决问题的能力。 2、过程、方法目标:培养学生从日常生活、学习中发现或归纳出新知识的能力。 3、情感态度与价值观目标:让学生理解信息技术对日常生活和学习的重要作用,激发对信息技术强烈的求知欲,养成积极主动地学习和使用信息技术、参与信息活动的态度。 四、教学重点: 1、信息特征的认识。

五、教学难点: 1、信息的含义。 六、教学方法 本节概念性强,实践性弱。采用讲授法,讨论法。 教学过程 谈话引入:同学们,信息技术这门课程,我们在初中阶段就已经学习。那么下面请同学们说一说,什么是信息?在我们日常生活中,你认为哪些属于信息?(举例) 生1:校园里铃声响,可以告诉我们信息:上课或下课。 生2:观看校运会,可以获得很多运动会赛场上的信息。 生3:从网上可以获得很多信息,如:学习资料、娱乐、新闻报导等。 生4:在报纸上可以了解国内外的信息。 ……师:同学们举的例子非常好。 其实信息在我们日常生活周围无时不在,无处不有,当然,信息不仅存在于我们的周围,同样可以在我们身体内部找到它的影子,如,医生通过听诊器来感知我们的身体内部的变化以确定病因,因此我们可以说信息是用文字、数字、符号、图像、图形、声音、情景、状态等方式传播的内容。

相关主题
文本预览
相关文档 最新文档