当前位置:文档之家› 三组分体系等温相图

三组分体系等温相图

三组分体系等温相图
三组分体系等温相图

实验八三组分体系等温相图的绘制

【目的要求】

1. 熟悉相律,掌握用三角形坐标表示三组分体系相图。

2. 掌握用溶解度法绘制相图的基本原理。

【实验原理】

对于三组分体系,当处于恒温恒压条件时,根据相律,其自由度f*为:

f*=3-Φ

式中,Φ为体系的相数。体系最大条件自由度f*max=3-1=2,因此,浓度变量最多只有两个,可用平面图表示体系状态和组成间的关系,通常是用等边三角形坐标表示,称之为三元相图。如图2-8-1所示。

等边三角形的三个顶点分别表示纯物A、B、C,三条边AB、BC、CA分别表示A和B、B和C、C和A所组成的二组分体系的组成,三角形内任何一点都表示三组分体系的组成。图2-8-1中,P点的组成表示如下:

经P点作平行于三角形三边的直线,并交三边于a、b、c三点。若将三边均分成100等份,则P点的A、B、C组成分别为:A%=Pa=Cb,B%=Pb=Ac,C%=Pc=Ba。

苯-醋酸-水是属于具有一对共轭溶液的三液体体系,即三组分中二对液体A和B,A和C 完全互溶,而另一对液体B和C只能有限度的混溶,其相图如图2-8-2所示。

图2-8-1 等边三角形法表示三元相图图2-8-2 共轭溶液的三元相图

图2-8-2中,E、K2、K1、P、L1、L2、F点构成溶解度曲线,K1L1和K2L2是连结线。溶解度曲线内是两相区,即一层是苯在水中的饱和溶液,另一层是水在苯中的饱和溶液。曲线外是单相区。因此,利用体系在相变化时出现的清浊现象,可以判断体系中各组分间互溶度的大小。一般来说,溶液由清变浑时,肉眼较易分辨。所以本实验是用向均相的苯-醋酸体系中滴加水使之变成二相混合物的方法,确定二相间的相互溶解度。

【仪器试剂】

具塞锥形瓶(100mL,2只、25mL,4只);酸式滴定管(20mL,1支);碱式滴定管(50mL,1支);移液管(1mL,1支、2mL,1支);刻度移液管(10mL,1支、20mL,1支);锥形瓶(150mL,

2

第二篇基础实验

2只)。

冰醋酸(A.R.);苯(A.R.);NaOH (0.2000mo1·dm-3);酚酞指示剂。

【实验步骤】

1. 测定互溶度曲线

在洁净的酸式滴定管内装水。

用移液管移取10.00mL苯及4.00mL醋酸,置于干燥的100mL具塞锥形瓶中,然后在不停地摇动下慢慢地滴加水,至溶液由清变浑时,即为终点,记下水的体积。向此瓶中再加入5.00mL醋酸,使体系成为均相,继续用水滴定至终点。然后依次用同样方法加入8.00mL、8.00mL醋酸,分别再用水滴至终点,记录每次各组分的用量。最后一次加入10.00mL苯和20.00mL水,加塞摇动,并每间隔5min摇动一次,30min后用此溶液测连结线。

另取一只干燥的100mL具塞锥形瓶,用移液管移入1.00mL苯及2.00mL醋酸,用水滴至终点。之后依次加入1.00mL、1.00mL、1.00mL、1.00mL、2.00mL、10.00mL醋酸,分别用水滴定至终点,并记录每次各组分的用量。最后加入15.00mL苯和20.00mL水,加塞摇动,每隔5min摇一次,30min后用于测定另一条连结线。

2. 连结线的测定

上面所得的两份溶液,经半小时后,待二层液分清,用干燥的移液管(或滴管)分别吸取上层液约5mL,下层液约1mL于已称重的4个25mL具塞锥形瓶中,再称其质量,然后用水洗入150mL锥形瓶中,以酚酞为指示剂,用0.2000mol·dm-3标准氢氧化钠溶液滴定各层溶液中醋酸的含量。

【注意事项】

因所测体系含有水的成分,故玻璃器皿均需干燥。

在滴加水的过程中须一滴一滴地加入,且需不停地摇动锥形瓶,由于分散的“油珠”颗粒能散射光线,所以体系出现浑浊,如在2~3min内仍不消失,即到终点。当体系醋酸含量少时要特别注意慢滴,含量多时开始可快些,接近终点时仍然要逐滴加入。

在实验过程中注意防止或尽可能减少苯和醋酸的挥发,测定连结线时取样要迅速。

用水滴定如超过终点,可加入1.00mL醋酸,使体系由浑变清,再用水继续滴定。

【数据处理】

1. 从附录中查得实验温度时苯、醋酸和水的密度。

2. 溶解度曲线的绘制

根据实验数据及试剂的密度,算出各组分的质量百分含量。图2-8-2中E、F两点数据如下:

将以上组成数据在三角形坐标纸上作图,即得溶解度曲线。

2. 连结线的绘制

(1) 计算二瓶中最后醋酸、苯、水的质量百分数,标在三角形坐标纸上,即得相应的物系

实验八三组分体系等温相图的绘制 3 点Q1和Q2。

(2) 将标出的各相醋酸含量点画在溶解度曲线上,上层醋酸含量画在含苯较多的一边,下层画在含水较多的一边,即可作出K1L1和K2L2两条连结线,它们应分别通过物系点Q1和Q2。

思考题

1. 为什么根据体系由清变浑的现象即可测定相界?

2. 如连结线不通过物系点,其原因可能是什么?

3. 本实验中根据什么原理求出苯-醋酸-水体系的连结线?

【讨论】

1. 该相图的另一种测绘方法是:在两相区内以任一比例将此三种液体混合置于一定的温度下,使之平衡,然后分析互成平衡的二共轭相的组成,在三角坐标纸上标出这些点,且连成线。此法较为繁琐。

2. 含有两固体(盐)和一液体(水)的三组分体系相图的绘制常用湿渣法。原理是平衡的固、液分离后,其滤渣总带有部分液体(饱和溶液),即滤渣,但它的总组成必定是在饱和溶液和纯固相组成的连结线上。因此,在定温下配制一系列不同相对比例的过饱和溶液,然后过滤,分别分析溶液和滤渣的组成,并把它们一一连成直线,这些直线的交点即为纯固相的成分,由此亦可知该固体是纯物还是复盐。

二组分简单共熔体系相图的绘制

二组分简单共熔体系相图的绘制

————————————————————————————————作者: ————————————————————————————————日期:

实验七二组分简单共熔体系相图的绘制 ------Cd~Bi二组分金属相图的绘制1实验目的及要求: 1)应用步冷曲线的方法绘制Cd~Bi二组分体系的相图。 2)了解纯物质和混合物步冷曲线的形状有何不同,其相变点的温度应如何确定。 2 实验原理:… 用几何图形来表示多相平衡体系中有哪些相、各相的成分如何,不同相的相对量是多少,以及它们随浓度、温度、压力等变量变化的关系图,叫相图。 绘制相图的方法很多,其中之一叫热分析法。在定压下把体系从高温逐渐冷却,作温度对时间变化曲线,即步冷曲线。体系若有相变,必然伴随有热效应,即在其步冷曲线中会出现转折点。从步冷曲线有无转折点就可以知道有无相变。测定一系列组成不同样品的步冷曲线,从步冷曲线上找出各相应体系发生相变的温度,就可绘制出被测体系的相图,如图Ⅱ一6一l所示。 纯物质的步冷曲线如①⑤所示,从高温冷却,开始降温很快,口6线的斜率决定于体系的散热程度。冷到A的熔点时,固体A开始析出,体系出现两相平衡(溶液和固体A),此时温度维持不变,步冷曲线出现bc的水平段,直到其中液相全部消失,温度才下降。 混合物步冷曲线(如②、④)与纯物质的步冷曲线(如①、⑤)不同。如②起始温度下降很快(如a′b′段),冷却到b′点的温度时,开始有固体析出,这时体系呈两相,因为液相的成分不断改变,所以其平衡温度也不断改变。由于凝固热的不断放出,其温度下降较慢,曲线的斜率较小(b′c′段)。到了低共熔点温度后,体系出现三相,温度不再改变,步冷曲线又出现水平段c′d′,直到液相完全凝固后,温度又迅速下降。 曲线⑧表示其组成恰为最低共熔混合物的步冷曲线,其图形与纯物相似,但它的水平段是三相平衡。 用步冷曲线绘制相图是以横轴表示混合物的成分,在对应的纵轴标出开始出现相变(即步冷曲线上的转折点)的温度,把这些点连接起来即得相图。 3仪器与药品: 加热电炉1只,热电偶(铜一康铜)1根,不锈纲试管8只,控温测定装置1台,计算机1台,镉(化学纯),铋(化学纯)。 4 实验步骤: 1)配制不同质量百分数的铋、镉混合物各100g(含量分别为0%,15%,25%,40%,55%,75%,90%,100%),分别放在8个不锈纲试管中。 2)用控温测定装置装置,依次测纯镉、纯铋和含镉质量百分数为90%,75%,55%,40%,25%,15%样品的步冷曲线。将样品管放在加热电炉中加热,让样品熔化,同时将热电偶的热端(连玻璃套管)插入样品管中,待样品熔化后,停止加热。用热电偶玻璃套管轻轻搅

实验2 三组分液—液相图的绘制

实验2 三组分液—液相图的绘制 实验目的 1熟悉相律,掌握由三角形坐标法表示的三组分系统相图。 2 用溶解度法作出具有一对共轭溶液的正戊醇—醋酸—水系统的相图。 基本原理 三组分系统组分数K=3, 当系统处于恒温恒压条件时,根据相律, 系统的条件自由度为: φ-=*3f 式中φ为系统的相数。系统最大条件自由度为213max =-=*f , 因此,浓度变量最多只有两 个, 可用平面图表示系统的状态和组成间的关系, 称三组分相图。通常用等边三角形坐标表示,如图1所示。等边三角形顶点分别表示纯物质A 、B 、C, AB 、BC 、CA 三条边分别表示A 和B 、B 和C 、C 和A 所组成的二系统组成, 三角形内任何一点都表示三族分系统的组成。将三角形的每一边分为100等份, 通过三角形内任何一点O 引平行各边直线, 根据几何原理,a+b+c=AB=BC=CA=100%, 因此O 点组成可用a 、b 、c 来表示。即O 点表示的三个组成的百分组成为B%=b, C%=c, A%=a 。如果已知三组分中任两个百分组成,只须作两条平行线,其交点就是被测系统的组成点。 在正戊醇—醋酸—水三组分系统中, 正戊醇和水几乎完全不互溶的,而醋酸和正戊醇及醋酸和水都是互溶的, 在正戊醇和水系统中加入醋酸则可促使正戊醇和水的互溶。由于醋酸在正戊醇层和水层中非等量分配,因此,代表两层浓度的a 、b 点的连线并不一定与底边平行(如图2) 。设加入的醋酸后系统总组成为c, 平衡共存的两相叫共轭溶液,其组成由通过c 的连线上的a 、b 两点表示 。 图中曲线以下区为两相共存区,其余部分为单相区。 图1 图2 图3 现有一个正戊醇和水的二组分系统,其组成为k 。于其中逐渐加入醋酸,则系统总组成沿kB 变化(正戊醇和水比例保持不变),在曲线以下区域内则存在互不混溶的两共轭相,将溶液振荡时则出现混浊状态。继续滴加醋酸直到曲线上的d 点, 系统将由两相区进入单相区,液体将由混浊转为清澈, 继续加醋酸至e 点,液体仍为清澈的单相。如于这一系统中滴加水,则系统总组成将沿ec 变化(醋酸和正戊醇比例保持不变) ,直到曲线上的f 点, 则由单相区进入两相区, 液体开始由清澈变为混浊, 继续滴加水至g 点仍为两相。如于此系统中再加入醋酸至h 点, 则又由两相区进入单相区,液体由混变清。如此反复进行, 可获得d 、f 、h 、j ……位于 曲线上的点, 将它们连接起来,即得单相区与两相区分界的曲线。

三组分体系等温相图的绘制.

实验八三组分体系等温相图的绘制 【目的要求】 1. 熟悉相律,掌握用三角形坐标表示三组分体系相图。 2. 掌握用溶解度法绘制相图的基本原理。 【实验原理】 对于三组分体系,当处于恒温恒压条件时,根据相律,其自由度f*为: f*=3-Φ 式中,Φ为体系的相数。体系最大条件自由度f*max=3-1=2,因此,浓度变量最多只有两个,可用平面图表示体系状态和组成间的关系,通常是用等边三角形坐标表示,称之为三元相图。如图2-8-1所示。 等边三角形的三个顶点分别表示纯物A、B、C,三条边AB、BC、CA分别表示A和B、B和C、C和A所组成的二组分体系的组成,三角形内任何一点都表示三组分体系的组成。图2-8-1中,P点的组成表示如下: 经P点作平行于三角形三边的直线,并交三边于a、b、c三点。若将三边均分成100等份,则P点的A、B、C组成分别为:A%=Pa=Cb,B%=Pb=Ac,C%=Pc=Ba。 苯-醋酸-水是属于具有一对共轭溶液的三液体体系,即三组分中二对液体A和B,A和C 完全互溶,而另一对液体B和C只能有限度的混溶,其相图如图2-8-2所示。 图2-8-1 等边三角形法表示三元相图图2-8-2 共轭溶液的三元相图 图2-8-2中,E、K2、K1、P、L1、L2、F点构成溶解度曲线,K1L1和K2L2是连结线。溶解度曲线内是两相区,即一层是苯在水中的饱和溶液,另一层是水在苯中的饱和溶液。曲线外是单相区。因此,利用体系在相变化时出现的清浊现象,可以判断体系中各组分间互溶度的大小。一般来说,溶液由清变浑时,肉眼较易分辨。所以本实验是用向均相的苯-醋酸体系中滴加水使之变成二相混合物的方法,确定二相间的相互溶解度。 【仪器试剂】 具塞锥形瓶(100mL,2只、25mL,4只);酸式滴定管(20mL,1支);碱式滴定管(50mL,1支);移液管(1mL,1支、2mL,1支);刻度移液管(10mL,1支、20mL,1支);锥形瓶(150mL,

二组分金属相图的绘制

二组分金属相图的绘制 一.实验目的 1.用热分析法(冷却曲线法)测绘Bi —Sn 二组分金属相图。 2.了解固液相图的特点,进一步学习和巩固相律等有关知识。 二.实验原理 表示多相平衡体系组成、温度、压力等变量之间关系的图形称为相图。 较为简单的二组分金属相图主要有三种:一种是液相完全互溶,凝固后,固相也能完全互溶成固熔体的系统,最典型的为Cu —Ni 系统;另一种是液相完全互溶而固相完全不互溶的系统,最典型的是Bi —Cd 系统;还有一种是液相完全互溶,而固相是部分互溶的系统,如本实验研究的Bi —Sn 系统。在低共熔温度下,Bi 在固相Sn 中最大溶解度为21%(质量百分数)。 图1冷却曲线 图2由冷却曲线绘制相图 热分析法(冷却曲线法)是绘制相图的基本方法之一。它是利用金属及合金在加热和冷却过程中发生相变时,潜热的释出或吸收及热容的突变,来得到金属或合金中相转变温度的方法。通常的做法是先将一定已知组成的金属或合金全部熔化,然后让其在一定的环境中自行冷却,画出冷却温度随时间变化的冷却曲线(见图 1)。当金属混合物加热熔化后再冷却时,开始阶段由于无相变发生,体系的温度随时间变化较大,冷却较快(ab 段)。若冷却过程中发生放热凝固,产生固相,将减小温度随时间的变化,使体系的冷却速度减慢(bc 段)。当融熔液继续冷却到某一点时,如c 点,由于此时液相的组成为低共熔物的组成。在最低共熔混 合物完全凝固以前体系温度保持不变,冷却曲线出现平台,(如图cd 段)。当融熔液完全凝固形成两种固态金属后,体系温度又继续下降(de 段)。 由此可知,对组成一定的二组分低共熔混合物系统,可以根据它的冷却曲线得出有固体析出的温度和低共熔点温度。根据一系列组成不同系统的冷却曲线的各转折点,即可画出二组分系统的相图(T - x 或T - w B 图)。不同组成熔液的冷却曲线对应的相图如图2所示。 图3可控升降温电炉前面板 1.电源开关 2.加热量调节旋钮 3、4.电压表 5.实验坩埚摆放区 6.控温传感器插孔 7.控温区电炉8.测试区电炉 9.冷风量调节

二组分固液相图

5.4二组分系统的固~液平衡 5.4.1形成低共熔物的固相不互溶系统 当所考虑平衡不涉及气相而仅涉及固相和液相时,则体系常称为"凝聚相体系"或"固液体系"。固体和液体的可压缩性甚小,一般除在高压下以外,压力对平衡性质的影响可忽略不计,故可将压力视为恒量。由相律: 因体系最少相数为Φ=1,故在恒压下二组分体系的最多自由度数f *=2,仅需用两个独立变量就足以完整地描述体系的状态。由于常用变量为温度和组成,故在二组分固液体系中最常遇到的是T~x(温度~摩尔分数)或T~ω(温度~质量分数)图。 二组分固~液体系涉及范围相当广泛,最常遇到的是合金体系、水盐体系、双盐体系和双有机物体系等。在本节中仅考虑液相中可以完全互溶的特殊情况。这类体系在液相中可以互溶,而在固相中溶解度可以有差别。故以其差异分为三类:(1)固相完全不互溶体系;(2)固相部分互溶体系和(3)固相完全互溶体系。进一步分类可归纳如下: 研究固液体系最常用实验方法为“热分析”法及“溶解度”法。本节先在“形成低共熔物的固相不互溶体系”中介绍这两种实验方法,然后再对各种类型相图作一简介。 (一)水盐体系相图与溶解度法

1.相图剖析 图5-27为根据硫酸铵在不同温度下于水中的溶解度实验数据 绘制的水盐体系相图,这类构成相图的方法称为"溶解度法"。 纵坐标为温度t(℃),横坐标为硫酸铵质量分数(以ω表 示)。图中FE线是冰与盐溶液平衡共存的曲线,它表示水 的凝固点随盐的加入而下降的规律,故又称为水的凝固点降 低曲线。ME线是硫酸铵与其饱和溶液平衡共存的曲线,它 表示出硫酸铵的溶解度随温度变化的规律(在此例中盐溶解 度随温度升高而增大),故称为硫酸铵的溶解度曲线。一般 盐的熔点甚高,大大超过其饱和溶液的沸点,所以ME不可 向上任意延伸。FE线和ME线上都满足Φ =2,f *=1,这意 味温度和溶液浓度两者之中只有一个可以自由变动。 FE线与ME线交于E点,在此点上必然出现冰、盐和盐溶液三相共存。当Φ=3 时,f *=0 ,表明体系的状态处于E点时,体系的温度和各相的组成均有固定不变的数值;在此例中,温度为 -18.3℃,相应的硫酸铵浓度为 39.8%。换句话说,不管原先盐水溶液的组成如何,温度一旦降至 -18.3℃,体系就出现有冰(Q 点表示)、盐(I点表示)和盐溶液(E点表示)的三相平衡共存,连接同处此温度的三个相点构成水平线QEI,因同时析出冰、盐共晶体,故也称共晶线。此线上各物系点(除两端点Q和I外)均保持三相共存,体系的温度及三个相的组成固定不变。倘若从此类体系中取走热量,则会结晶出更多的冰和盐,而相点为E的溶液的量将逐渐减少直到消失。溶液消失后体系中仅剩下冰和盐两固相,Φ=2,f *=1,温度可继续下降即体系将落入只存在冰和盐两个固相共存的双相区。若从上向下看E点的温度是代表冰和盐一起自溶液中析出的温度,可称为"共析点"。反之,若由上往下看E点温度是代表冰和盐能够共同熔化的最低温度,可称为"最低共熔点"。溶液E凝成的共晶机械混合物,称为"共晶体"或"简单低共熔物"。不同的水盐体系,其低共熔物的总组成以及最低共熔点各不相同,表5-7列举几种常见的水盐体系的有关数据。 表5-7 某些盐和水的最低共熔点及其组成 盐最低共熔点((℃)最低共熔物组成ω x100 NaCl NaBr NaI KCl KBr KI (NH 4) 2 SO 4 MgSO 4 Na 2SO 4 KNO 3 CaCl 2-21.1 -28.0 -31.5 -10.7 -12.6 -23.0 -18.3 -3.9 -1.1 -3.0 -5.5 23.3 40.3 39.0 19.7 31.3 52.3 39.8 16.5 3.84 11.20 29.9

三元系相图绘制

实验三组分相图的绘制 一实验目的 绘制苯一醋酸一水体系的互溶度相图。为了绘制相图就需通过实验获得平衡时,各相间的组成及二相的连结线。即先使体系达到平衡,然后把各相分离,再用化学分析法或物理方法测定达成平衡时各相的成分。但体系达到平衡的时间,可以相差很大。对于互溶的液体,一般平衡达到的时间很快;对于溶解度较大,但不生成化合物的水盐体系,也容易达到平衡;对于一些难溶的盐,则需要相当长的时间,如几个昼夜。由于结晶过程往往要比溶解过程快得多,所以通常把样品置于较高的温度下,使其较多溶解,然后把它移放在温度较低的恒温槽中,令其结晶,加速达到平衡。另外摇动、搅拌、加大相界面也能加快各相间扩散速度,加速达到平衡。由于在不同温度时的溶解度不同,所以体系所处的温度应该保持不变。 二实验原理 水和苯的互溶度极小,而醋酸却与水和苯互溶,在水和苯组成的二相混合物中加入醋酸,能增大水和苯之间的互溶度,醋酸增多,互溶度增大。当加入醋酸到达某一定数量时,水和苯能完全互溶。这时原来二相组成的混合体系由浑变清。在温度恒定的条件下,使二相体系变成均相所需要的醋酸量,决定于原来混合物中水和苯的比例。同样,把水加到苯和醋酸组成的均相混合物中时,当水达到一定的数量,原来均相体系要分成水相和苯相的二相混合物,体系由清变浑。使体系变成二相所加水的量,由苯和醋酸混合物的起始成分决定。因此利用体系在相变化时的浑浊和清亮现象的出现,可以判断体系中各组分间互溶度的大小。一般由清变到浑,肉眼较易分辨。所以本实验采用由均相样品加人第三物质而变成二相的方法,测定二相间的相互溶解度。 当二相共存并且达到平衡时,将二相分离,测得二相的成分,然后用直线连接这二点,即得连结线。 一般用等边三角形的方法表示三元相图(图1)。等边三角形的三个顶点各代表纯组分;三角形三条边AB、BC、CA分别代表A和B、B和C、C和A所组成的二组分的组成;而三角形内任何一点表示三组分的组成。 例如图1-1中的P点,其组成可表示如下:经P点作平行于三角形三边的直线,并交三边于a、b、c三点。若将三边均分成100等分,则P点的A、B、C组成分别为: A%=Cb,B%=Ac,C%=Ba 对共轭溶液的三组分体系,即三组分中二对液体AB及AC完全互溶,而另一对BC则不溶或部分互溶的相图,如图1-2所示。图中EK1K2K3DL3L2L1F是互溶度曲线,K1L1、K2L2等是连结线。互溶度曲线下面是两相区,上面是一相区。 图1-1等边三角形法表示三元相图图1-2共轭溶液的三元相图

三组分体系相图的制备

中国石油大学化学原理(二)实验报告 实验日期:2013-10-24 成绩: 班级:石工12-11 学号:12093406 姓名:王景乐教师: 同组者:赵润达 三组分体系相图制备 一、实验目的 制备等温等压下甲苯—水—乙醇三组分体系相图 二、实验原理 三组分体系相图的组成可用等边三角形坐标表示。等边三角形三个顶点分别代表纯组分A、B和C。则AB线上各点相当于A和B组分的混合体系,BC线上各点相当于B和C的组分的混合体系,AC线上各点相当于A和C的组分的混合体系。 在甲苯—水—乙醇三组分体系中。甲苯与水是部分互溶的,二乙醇和甲苯、乙醇和水都是完全互溶的。设由一定量的甲苯与水组成一个体系,其组成为K,此体系分为两相:一相为水相,另一相为甲苯相。当在体系中加入乙醇时,体系的总组成沿AK线移至N点。此时乙醇溶于水相和甲苯相,同时乙醇促使水与甲苯互溶,故此体系由两个分别含有三个组分的液相组成。但这两个的液相的组成 不同,若分别用、表示这两个平衡的液相的组成,此两点的连线成为连系线, 这两个溶液称为共轭溶液。代表液—液平衡体系中所有共轭溶液相组成点的连线称为溶解度曲线(如图1—1)。曲线以下区域为两相共存区,其余部分均为相区。此图称为含一对部分互溶组分的三组分体系液—液平衡相图 按照相律,三组分相图要画在平面上,必须规定两个独立变量。本实验中,它们分别是温度(即室温)和压力(大气压力)。 三、实验仪器与药品 1.仪器 25ml酸式滴定管2支,5ml移液管1支,50ml带盖锥形瓶8个。 2.药品

甲苯(分析纯),无水乙醇(分析纯),蒸馏水。 四、实验步骤 1.取8个干燥的50ml带盖锥形瓶,按照记录表格中的规定体积用滴定管及移液管配制6种不同浓度的甲苯—乙醇溶液,及两种不同浓度的水—乙醇溶液。 2.用滴定管向已配制好的水—乙醇溶液中滴甲苯,至清夜变浊,记录此时甲苯的体积。用滴定管向已配制好的甲苯—乙醇溶液中滴甲苯,至清夜变浊,记录此时水的体积。滴定时必须充分震荡,同时注意动作迅速,尽量避免由于甲苯、乙醇的挥发而引入的误差。 3.读取室温 t=17.0 4.记录表格 表1—1 溶解度曲线有关数据记录表 五、数据处理 将各溶液滴定终点时的各组分的体积,根据它们在实验温度下的密度换算为质量,求出各溶液滴定终点时的质量分数或质量分数的浓度。 由附录二查得在17.0时水的密度为=0.9988g/mL 由附录三查得甲苯的密度公式为: =0.88412-0.9225**t+0.0152**-4.223**t—温度( 温度范围0—99 无水乙醇的密度公式为: =0.80625-0.8461**t+0.16**t—温度(

二组分固液系统相图的测定

二组分固液系统相图的测定 一、实验目的 1、利用步冷曲线建立二组分铅---锡固液系统相图的方法。 2、介绍PID 温度控制技术和热电阻的使用。 二、实验原理 本实验的目的是通过热分析法获得的数据来构建一个相图,用于表示不同温度、组成下的固相、液相平衡。不同组成的二组分溶液在冷却过程中析出固相的温度可以通过观察温度 – 时间曲线的斜率变化进行检测。当固相析出时,冷却速率会变得比较慢,这可归因于固化过程释放的热量部分抵消了系统向低温环境辐射和传导的热量。 A B B%a b c e f B (c )%I II III I II III B T/K t (a ) (b ) 图8.1 二元简单低共熔物相图(a ) 及其步冷曲线(b ) 图8.1(a )是典型的二元简单低共熔物相图。图中A 、B 表示二个组分的名称,纵轴是物理量温度T ,横轴是组分B 的百分含量B %。在acb 线的上方,系统只有一个相(液相)存在;在ecf 线以下,系统有两个相(固相A 和固相B )存在;在ace 所包围的区域内,一个固相(固体A )和一个液相(A 在B 中的饱和熔化物)共存;在bcf 所包围的区域内,一个固相(固体B )和一个液相(B 在A 中的饱和熔化物)共存。c 点有三相(互不相溶的固

体A 和固体B ,以及A 、B 的饱和熔化物液相)共存,根据相律,在压力确定的情况下,三相共存时系统的自由度为零,即三相共存的温度为一定值,在相图上表现为一条通过c 点的水平线,处于这个平衡状态下的系统温度T c 、系统组成A 、B 和B (c )%均不可改变,T c 和B (c )%构成的这一点称为低共熔点。 热分析法是绘制相图的常用实验方法,将系统加热熔融成一个均匀的液相,然后让系统缓慢冷却,以系统温度对时间作图得到一条曲线,称为步冷曲线或冷却曲线。曲线的转折点表征了某一温度下发生相变的信息,由系统组成和相变点温度可以确定相图上的一个点,多个实验点的合理连接就形成了相图上的相线,并构成若干相区。图1(b )是与相图对应的不同组成系统的步冷曲线。 三、仪器与药品 SWKY-1型数字控温仪、KWL —09可控升降温电炉、Pt-100热电阻温度传感器、配套软件、样品管(南京桑力电子设备厂) 锡(化学纯),铅(化学纯),铋(化学纯),苯甲酸(化学纯) 本实验装置由三部分组成:SWKY-1型数字控温仪、KWL —09可控升降温电炉和数据采集计算机系统(图8.2)。 图8.2 合金相图测定实验装置图 ② ① ③ ④ ⑤

三组分体系相图绘制.doc

实验八三组分体系等温相图的绘制 一、目的要求 1. 熟悉相律,掌握用三角形坐标表示三组分体系相图。 2. 掌握用溶解度法绘制相图的基本原理。 二、实验原理 对于三组分体系,当处于恒温恒压条件时,根据相律,其自由度f*为:f*=3-Φ式中,Φ为体系的相数。体系最大条件自由度f*max=3-1=2,因此,浓度变量最多只有两个,可用平面图表示体系状态和组成间的关系,通常是用等边三角形坐标表示,称之为三元相图。如图2-8-1所示。 等边三角形的三个顶点分别表示纯物A、B、C,三条边AB、BC、CA 分别表示A和B、B和C、C和A所组成的二组分体系的组成,三角形内任何一点都表示三组分体系的组成。图2-8-1中, P点的组成表示如下:经P点作平行于三角形三边的直线,并交三边于a、b、c三点。若将三边均分成100等份,则P点的A、B、C组成分别为:A%=Pa=Cb,B%=Pb=Ac,C%=Pc=Ba。

2 苯-醋酸-水是属于具有一对共轭溶液的三液体体系,即三组分中二对液体A和B,A和C完全互溶,而另一对液体B和C只能有限度的混溶,其相图如图2-8-2所示。 图2-8-1 等边三角形法表示三元相图图2-8-2 共轭溶液的三元相图图2-8-2中,E、K2、K1、P、L1、L2、F点构成溶解度曲线,K1L1和K2L2是连结线。溶解度曲线内是两相区,即一层是苯在水中的饱和溶液,另一层是水在苯中的饱和溶液。曲线外是单相区。因此,利用体系在相变化时出现的清浊现象,可以判断体系中各组分间互溶度的大小。一般来说,溶液由清变浑时,肉眼较易分辨。所以本实验是用向均相的苯-醋酸体系中滴加水使之变成二相混合物的方法,确定二相间的相互溶解度。 三、仪器试剂 具塞锥形瓶(100mL,2只、25mL,4只);酸式滴定管(20mL,1支);碱式滴定管(50mL,1支);移液管(1mL,1支、2mL,1支);刻度移液管(10mL,1支、20mL,1支);锥形瓶(150mL,2只)。

二组分简单共熔系统相图的绘制

实验报告 课程名称: 大学化学实验(P ) 指导老师: 成绩:_______________ 实验名称: 二组分简单共熔系统相图的绘制 实验类型: 物性测试 同组学生姓名: 【实验目的】 1. 用热分析法测绘Zn-Sn 相图。 2. 熟悉热分析法的测量原理 3. 掌握热电偶的制作、标定和测温技术 【实验原理】 本实验采用热分析法中的步冷曲线方法绘制Zn-Sn 系统的固-液平衡相图。将系统加热熔融成一均匀液相,然后使其缓慢冷却,每隔一定时间记录一次温度,表示温度与时间的关系曲线,称为冷却曲线或步冷曲线。当熔融系统在均匀冷却过程中无相变化时,其温度将连续下降,得到一条光滑的冷却曲线,如在冷却过程中发生相变,则因放出相变热,使热损失有所抵偿,冷却曲线就会出现转折点或水平线段。转折点或水平线段对应的温度,即为该组成合金的相变温度。对于简单共熔合金系统,具有下列形状的冷却曲线[图a(a)],由这些冷却曲线,即可绘出合金相图[图a(b)]。 在冷却过程中,常出现过冷现象,步冷曲线在转折处出现起伏[图a(c)]。遇此情况可延长FE 交曲线BD 于点,G 点即为正常的转折点。 用热分析法测绘相图时,被测系统必须时时处于或接近相平衡状态,因此,系统的冷却速度必须足够慢,才能得到较好的结果。 图a 步冷曲线(a )、对应相图(b )及有过冷现象出现的步冷曲线(c ) 【试剂与仪器】 仪器 镍铬-镍硅热电偶1支;UJ-36电位差计1台;小保温瓶1只;盛合金的硬质玻璃管7只;高 温管式电炉2只(加热炉、冷却炉);调压器(2KW )1只; 坩埚钳1把;二元合金相图计算机测试系统1套。 试剂 锡、锌、铋(均为AR );石墨粉。 【实验步骤】 1. 热电偶的制作:取一段长约0.6m 的镍铬丝,用小瓷管穿好,再取两段各长0.5m 的镍硅丝,制作热 电偶(此步骤一般已事先做好)。 2. 配置样品:在7只硬质玻璃管中配制各种不同质量分数的金属混合物:100%Bi ;100%Sn ;100%Zn ; 45%Sn+55%Zn ;75%Sn+25%Zn ;91.2%Sn+8.8%Zn ;95%Sn+5%Zn 。为了防止金属高温氧化,表面放置石墨粉(此步骤由实验室完成)。 3. 安装:安装仪器并接好线路。 4. 加热溶化样品,制作步冷曲线:依次测100%Zn ,100%Bi ,100%Sn ,45%Sn+55%Zn ,

物理化学实验报告二组分简单共熔合金相图绘制

一、实验目的 1.掌握步冷曲线法测绘二组分金属的固液平衡相图的原理和方法。 2、了解固液平衡相图的特点,进一步学习和巩固相律等有关知识。 二、主要实验器材和药品 1、仪器:KWL-II金属相图(步冷曲线)实验装置、微电脑控制器、不锈钢套管、硬质玻璃样品管、托盘天平、坩埚钳 2、试剂:纯锡(AR)、纯铋(AR)、石墨粉、液体石蜡 三、实验原理 压力对凝聚系统影响很小,因此通常讨论其相平衡时不考虑压力的影响,故根据相律,二组分凝聚系统最多有温度和组成两个独立变量,其相图为温度组成图。 较为简单的组分金属相图主要有三种:一种是液相完全互溶,凝固后固相也能完全瓦溶成固体混合物的系统最典型的为Cu- Ni系统;另一种是液相完全互溶,而固相完全不互溶的系统,最典型的是Bi- Cd 系统;还有一种是液相完全互溶,而固相是部分互溶的系统,如Pb- Sn或Bi- Sn系统。 研究凝聚系统相平衡,绘制其相图常采用溶解度法和热分析法。溶解度法是指在确定的温度下,直接测定固液两相平衡时溶液的浓度,然后依据测得的温度和溶解度数据绘制成相图。此法适用于常温F易测定组成的系统,如水盐系统。 热分析法(步冷曲线法)则是观察被研究系统温度变化与相变化的关系,这是绘制金属相图最常用和最基本的实验方法。它是利用金属及合金在加热和冷却过程中发生相变时,潜热的释出或吸收及热容的突变,来得到金属或合金中相转变温度的方法。其原理是将系统加热熔融,然后使其缓慢而均匀地冷却,每隔定时间记录一次温度,物系在冷却过程中温度随时间的变化关系曲线称为步冷曲线(又称为冷却曲线)。根据步冷曲线可以判断体系有无相变的发生。当体系内没有相变时,步冷曲线是连续变化的;当体系内有相变发生时,步冷曲线上将会出现转折点或水平部分。这是因为相变时的热效应使温度随时间的变化率发生了变化。因此,由步冷曲线的斜率变化可以确定体系的相变点温度。测定不同组分的步冷曲线,找出对应的相变温度,即可绘制相图。 图3- 15(b)是具有简单低共熔点的A- B二元系相图,左右图中对应成分点a.b.c、d.e 的步冷曲线。下面对步冷曲线作简单分析。 在固定压力不变的条件下,相律为: f=c-φ+1 (3-6-1) 式中:c为独立组分数;为相数。 对于纯组分熔融体系,c=1,q=1。在冷却过程中若无相变化发生,其温度随时间变化关系曲线为平滑曲线。到凝固点时,固液两相平衡,=2,自由度为0,温度不变,出现水平线段。等体系全部凝固后,其冷却情况同纯熔融体系一样,呈一平滑曲线。图3- 15(a)中曲线ave 属于这种情况。 曲线C是低共培体冷却曲线,情况与a.c相似.水平线段的出现是因为当冷却到头能点温度r。时,A和B同时标出,且固相中的比例与溶液中相同,因此溶液浓度不变,从街具备

三元相图的绘制详解

三元相图的绘制 本实验是综合性实验。其综合性体现在以下几个方面: 1.实验内容以及相关知识的综合 本实验涉及到多个基本概念,例如相律、相图、溶解度曲线、连接线、等边三角形坐标等,尤其是在一般的实验中(比如分析化学实验、无机化学实验等)作图都是用的直角坐标体系,几乎没有用过三角坐标体系,因此该实验中的等边三角形作图法就具有独特的作用。这类相图的绘制不仅在相平衡的理论课中有重要意义,而且对化学实验室和化工厂中经常用到的萃取分离中具有重要的指导作用。 2.运用实验方法和操作的综合 本实验中涉及到多种基本实验操作和实验仪器(如电子天平、滴定管等)的使用。本实验中滴定终点的判断,不同于分析化学中的大多数滴定。本实验的滴定终点,是在本来可以互溶的澄清透明的单相液体体系中逐渐滴加试剂,使其互溶度逐渐减小而变成两相,即“由清变浑”来判断终点。准确地掌握滴定的终点,有助于学生掌握多种操作,例如取样的准确、滴定的准确、终点的判断准确等。 一.实验目的 1. 掌握相律,掌握用三角形坐标表示三组分体系相图。 2. 掌握用溶解度法绘制三组分相图的基本原理和实验方法。 二.实验原理 三组分体系K = 3,根据相律: f = K–φ+2 = 5–ф 式中ф为相数。恒定温度和压力时: f = 3–φ 当φ= 1,则f = 2 因此,恒温恒压下可以用平面图形来表示体系的状态与组成之间的关系,称为三元相图。一般用等边三角形的方法表示三元相图。 在萃取时,具有一对共轭溶液的三组分相图对确定合理的萃取条件极为重要。在定温定压下,三组分体系的状态和组分之间的关系通常可用等边三角形坐标表示,如图1所示:

图1 图2 等边三角形三顶点分别表示三个纯物质A,B,C。AB,BC,CA,三边表示A和B,B和C,C和A所组成的二组分体系的组成。三角形内任一点则表示三组分体系的组成。如点P 的组成为:A%=Cb B%=Ac C%=Ba 具有一对共轭溶液的三组分体系的相图如图2所示。该三液系中,A和B,及A和C 完全互溶,而B和C部分互溶。曲线DEFHIJKL为溶解度曲线。EI和DJ是连接线。溶解度曲线内(ABDEFHIJKLCA)为单相区,曲线外为两相区。物系点落在两相区内,即分为两相。 图3(A醋,B水,C氯仿)绘制溶解度曲线的方法有许多种,本实验采用的方法是:将将完全互溶的两组分(如氯仿和醋酸)按照一定的比例配制成均相溶液(图中N点),再向清亮溶液中滴加另一组分(如水),则系统点沿BN线移动,到K点时系统由清变浑。再往体系里加入醋酸,系统点则沿AK上升至N’点而变清亮。再加入水,系统点又沿BN’由N’点移至J点而再次变浑,再滴加醋酸使之变清……如此往复,最后连接K、J、I……即可得到互溶度曲线,如图3所示。 三. 实验准备 1. 仪器:具塞磨口锥形瓶,酸式滴定管,碱式滴定管,移液管,分析天平。 2. 药品:冰醋酸,氯仿,NaOH溶液(0.2mol·mol–3),酚酞指示剂。

三组分液-液系统相图的绘制

三组分液-液系统相图的绘制 一、实验目的 1. 熟悉相律,掌握用三角形坐标表示三组分体系相图。 2. 用溶解度法作出苯-乙酸-水体系的相图。 二、实验原理 对于三组分体系C=3,当处于恒温恒压条件时,根据相律,其自由度*f为: * =3 f- P 式中,P为体系的相数。体系最大条件自由度max * f=3-1=2,因此,浓度变量最多只有两个,可用平面图表示体系状态和组成间的关系,通常是用等边三角形坐标表示,称之为三元相图。如图2-6所示。等边三角形的三个顶点分别表示纯物质A、B、C,三条边AB、BC、CA分别表示A和B、B和C、C和A所组成的二组分体系的组成,三角形内任何一点都表示三组分体系的组成。图2-6中,P点的组成表示如下: 经P点作平行于三角形三边的直线,并交三边于a、b、c三点。若将三边均分成100等份,则P点的A、B、C组成分别为:A%=Pa=Cb,B%=Pb=Ac,C%=Pc=Ba。 苯-乙酸-水是属于具有一对共轭溶液的三液体体系,即三组分中二对液体A和B,A和C完全互溶,而另一对液体B和C只能有限度的混溶,其相图如图2-7所示。

图2中,E、K2、K1、P、L1、L2、F点构成溶解度曲线,K1L1和K2L2是连结线。溶解度曲线内是两相区,即一层是苯在水中的饱和溶液,另一层是水在苯中的饱和溶液。曲线外是单相区。因此,利用体系在相变化时出现的清浊现象,可以判断体系中各组分间互溶度的大小。一般来说,溶液由清变浑时,肉眼较易分辨。所以本实验是用向均相的苯-乙酸体系中滴加水使之变成二相混合物的方法,确定二相间的相互溶解度。 三、仪器药品 仪器:具塞锥形瓶(100mL)1只;酸式滴定管(20mL)1只;移液管(1mL、2mL)各1只;刻度移液管(10mL)1只。 药品:冰乙酸(AR.);苯(AR.);去离子水等。 四、实验步骤 1. 测定互溶度曲线 在洁净的酸式滴定管内装水,用移液管移取10.00mL苯及2.00mL 醋酸,置于干燥的100mL具塞锥形瓶中,然后在不停地摇动下慢慢地滴加水,至溶液由清变浑时,即为终点,记下水的体积。向此瓶中再图1 等边三角形表示三元相图2 共轭溶液的三元相图

二组分固液相图的绘制

表-1 t/min T/℃ 纯铅锡20% 锡40% 锡61.9% 锡80% 纯锡 0 395.4 395.3 397.5 398.7 399.3 394.5 1 385.3 387.0 396.8 385.3 391.3 384.9 2 374.4 378.5 396.6 375.0 383.5 375.5 3 365.3 369.8 367.3 365.1 375.0 365.7 4 355.2 363. 5 353.8 354. 6 367.8 357.9 5 346.8 356.9 345.0 346.2 359.8 350.0 6 338. 7 348. 8 335.1 336. 9 353.1 341.8 7 329.6 342.1 327.2 329.6 346.7 334.5 8 322.9 335.8 319.5 322.6 339.6 327.6 9 317.8 328.8 311.5 315.4 333.9 320.8 10 311.8 323.2 305.2 309.3 327.3 314.8 11 306.6 316.2 298.6 303.6 321.1 307.2 12 302.2 311.8 293.2 297.3 315.8 302.5 13 298.6 307.2 288.1 292.0 311.0 296.3 14 294.4 302.5 282.1 286.6 306.4 291.2 15 288.7 298.9 276.8 285.0 302.2 286.1 16 283.4 295.3 271.2 275.2 297.4 280.4 17 277.9 291.1 264.8 269.3 293.0 275.5 18 270.6 287.3 259.4 264.4 288.5 271.1 19 264.0 282.3 254.5 257.7 283.3 266.5 20 256.8 277.5 248.9 254.4 278.6 261.7 21 250.8 272.2 244.3 250.2 273.5 257.6 22 245.3 266.2 239.3 245.8 269.3 252.9 23 239.2 261.3 235.1 241.3 265.1 249.2 24 234.5 256.7 231.0 237.4 260.5 245.3 25 230.0 252.0 226.5 233.0 256.6 241.1 26 225.1 247.9 222.7 229.4 252.9 237.6 27 221.0 244.2 219.0 225.9 248.8 233.8 28 217.1 240.3 215.0 221.9 245.3 230.5 29 212.7 236.7 211.5 218.7 241.1 227.2 30 209.1 232.6 208.2 215.4 238.7 223.7 31 205.6 229.2 204.5 211.9 234.9 220.9 32 201.7 225.7 201.5 209.6 231.2 224.5 33 198.1 221.9 198.1 209.4 228.3 230.6 34 194.7 218.7 195.4 208.1 225.3 231.1 35 191.7 215.0 192.9 206.7 222.0 231.1 36 188.7 212.0 190.3 204.9 219.3 230.9

三组分体系相图的制备实验报告

中国石油大学化学原理(二)实验报告 实验日期:2012.10.17 成绩: 班级:石工11-12班学号:11021579 姓名张伟教师:王增宝 同组者:李云浩赵红帅 三组分体系相图的制备 一:实验目的 制备等温、等压下苯-水-乙醇三组分体系相图。 二、实验原理 三组分体系的组成可用等边三角坐标表示。等边三角形三个顶点分别代表纯组分A、B和C。则AB线上各点相当于A和B组分的混合体系,BC线上各点相当于B和C组分的混合体系,AC线上各点相当于A和C组分的混合体系。 在苯-水-乙醇三组分体系中,苯与水是部分互溶的,而乙醇和苯、乙醇和水都是完全互溶的。设由一定量的苯和水组成一个体系,其组成为K,此体系分为两项:一相为水相,一项为苯相。当在体系中加入乙醇时,体系的总组成沿AK 线移至N点。此时乙醇溶于水相及苯相,同时乙醇促进苯与水互溶,故此体系由两个分别含有三个组分的液相组成,但这两个液相的组成不同。若分别用b1、c1表示这两个平衡的液相的组成,此两点的连线称为连系线,这两个溶液称为共轭溶液。代表液-液平衡体系中所有共轭液相组成点的连线称为溶解度曲线(如图1-1)。曲线以下区域为两相共存区,其余部分为均相区。此图称为含一对部分互溶组分的三组分体系液-液平衡相图。 图1-1 三组分体系液-液平衡相图 按照相律,三组分相图要画在平面上,必须规定两个独立变量。本实验中,它们分别是温度(为室温)和压力(为大气压)。 三、实验仪器与药品

1、仪器 25ml酸式滴定管2支、5ml移液管1支、50ml带盖锥形瓶8个。 2、药品 苯(分析纯)、无水乙醇(分析纯)、蒸馏水。 四、实验步骤 1、取8个干燥的5毫升带盖锥形瓶,按照记录表格中的规定提及用滴定管即移液管配制六种不同浓度的苯乙醇溶液,即两种不同浓度的水乙醇溶液。 2、用滴定管向已配好的水-乙醇溶液中滴苯,至清液变浑浊,记录此时每种清液中水的体积。滴定时必须充分摇荡,同时注意动作迅速,尽量避免由于苯、乙醇的挥发而引起的误差。 3、读取室温。 4、记录表格。 五、实验数据 表1-2 溶解度曲线有关数据记录表 室温:22℃ 溶液编号 体积(ml) 苯水乙醇 1 0.10 3.50 1.50 2 0.21 2.50 2.50 3 1.00 2.73 5.00 4 1.50 1.50 4.00 5 2.50 1.04 3.50 6 3.00 0.55 2.50 7 3.50 0.37 1.50 8 4.00 0.15 1.00 六、数据处理 将各溶液滴定终点时各组分的体积,根据它们在实验温度下的密度(查附录二和附录三)换算为质量,求出各溶液滴定终点时的质量分数或质量分数的浓度。求出各溶液滴定终点时的质量分数或质量分数的浓度。将所得的点及笨与水的相互溶解的点(见附录一)绘于三角坐标纸上,并将各点连成平滑曲线。 实验数据的处理方法如下: 已知苯、水、乙醇的体积,参照附录二、附录三以及其中的公式,可求出各自的密度,再换算为质量。

二组分金属相图的绘制思考题汇总

二组分金属相图的绘制思考题汇总 1.有一失去标签的Pb-Sn合金样品,用什么方法可以确定其组成? 答: 将其熔融、冷却的同时记录温度,作出步冷曲线,根据步冷曲线上拐点或平台的温度,与温度组成图加以对照,可以粗略确定其组成。 2.总质量相同但组成不同的Pb-Sn混合物的步冷曲线,其水平段的长度有什么不同?为什么? 答: (1)混合物中含Sn越多,其步冷曲线水平段长度越长,反之,亦然。 (2)因为Pb 和Sn的熔化热分别为23.0和59.4jg-1,熔化热越大放热越多,随时间增长温度降低的越迟缓,故熔化热越大,样品的步冷曲线水平段长度越长。 3.有一失去标签的Pb-Sn合金样品,用什么方法可以确定其组成? 4.总质量相同但组成不同的Pb-Sn混合物的步冷曲线,其水平段的长度有什么不同?为什么? (查表: Pb 熔点327℃,熔化热23.0jg-1,Sn熔点232℃,熔化热59.4jg-1) 5、何谓热分析法?用热分析法绘制相图时应注意些什么? 热分析法是相图绘制工作中的一种常用的实验方法,按一定比例配制均匀的液相体系,让他们缓慢冷却,以体系温度对时间作图,则为步冷曲线。曲线的转折点表征了某一温度下发生的相变的信息。 6、为什么要控制冷却速度,不能使其迅速冷却? 答:

使温度变化均匀,接近平衡态,必须缓慢降低温度,一般每分钟降低5度。 7、如何防止样品发生氧化变质? 答: 温度不可过高,空气不能过多和样品接触。 8、用相律分析在各条步冷曲线上出现平台的原因。 答: 因为金属熔融系统冷却时,由于金属凝固放热对体系散热发生一个补偿,因而造成冷却曲线上 的斜率发生改变,出现折点。当温度达到了两种金属的最低共熔点,会出现平台。 9、为什么在不同组成融熔液的步冷曲线上,最低共熔点的水平线段长度不同?答: 不同组成,各组成的熔点差值不同,凝固放热对体系散热的补偿时间也不同。 10.样品融熔后为什么要保温一段时间再冷却? 答: 使混合液充分混融,减小测定误差。 11.对于不同成分混合物的步冷曲线,其水平段有什么不同? 答: 纯物质的步冷曲线在其熔点处出现水平段,混合物在共熔温度时出现水平段。而平台长短也不同。 12.作相图还有哪些方法?

二组分气液平衡相图的绘制

双液系气-液平衡相图的绘制 一、实验目的、要求 1. 测定常压下环己烷-乙醇二元系统的汽液平衡数据,绘制101325Pa下的沸点-组成的相图。 2. 掌握阿贝折射仪的原理和使用方法。 二、实验原理 液体混合物中各组分在同一温度下具有不同的挥发能力。因而,经过汽液见相变达到平衡后,各 组分在汽、液两相中的浓度是不相同的。根据这个特点,使二元混合物在精馏塔中进行反复蒸馏,就可分离得到各纯组分。为了得到预期的分离效果,设计精馏装置必须掌握精确的汽液平衡数据,也就是平衡时的汽、液两相的组成与温度、压力见的依赖关系。大量工业上重要的系统的平衡数据,很难由理论计算,必须由实验直接测定,即在恒压(或恒温)下测定平衡的蒸汽与液体的各 组分。其中,恒压数据应用更广,测定方法也较简便。 本实验测定的恒压下环己烷-乙醇二元汽液平衡相图。图中横坐标表示二元系的组成(以B的摩尔分数表示),纵坐标为温度。用不同组成的溶液进行测定,可得一系列数据,据此画出一张由液 相线与汽相线组成的完整相图。 分析汽液两相组成的方法很多,有化学方法和物理方法。本实验用阿贝折射仪测定溶液的折射率 以确定其组成。预先测定一定温度下一系列已知组成的溶液的折射率,得到折射率-组成对照表。以后即可根据待测溶液的折射率,由此表确定其组成。 三、使用仪器、材料 沸点仪1套,阿贝折射仪,移液管,环己烷,无水乙醇 四、实验步骤 1、测定折射率与组成的关系,绘制工作曲线 将9支小试管编号,依次移入 ml, ml, …, ml的环己烷,然后依次移入 ml, ml,…, ml 的无水乙醇,配成9份已知浓度的溶液,用阿贝折射仪测定每份溶液的折射率及纯环己烷和纯无水乙醇的折射率,以折射率对浓度作图。 2、测定环己烷-乙醇体系的沸点与组成的关系 (1) 右半部沸点-组成关系的测定取20 ml无水乙醇加入沸点仪中,然后依次加入环己烷, , , , , ml,测定溶液沸点,及气、液组分折射率n。完成后,将溶液倒入回收瓶。 (2) 左半部沸点-组成关系的测定取25 ml环己烷加入沸点仪中,然后依次加入无水乙醇, , , , , ml,测定溶液沸点,及气、液组分折射率n。完成后,将溶液倒入回收瓶。 五、实验过程原始记录(数据、图表、计算等) 标准曲线 V环己烷(ml) V乙醇(ml) xEtOH x环己烷折射率 0 1 1 0 1 0 0 1

相关主题
文本预览
相关文档 最新文档