当前位置:文档之家› 射频基础知识培训

射频基础知识培训

射频基础知识培训
射频基础知识培训

射频基础知识培训

1、无线通信基本概念

利用电磁波的辐射和传播,经过空间传送信息的通信方式称之为无线电通信(Wireless Communication),也称之为无线通信。利用无线通信可以传送电报、电话、传真、数据、图像以及广播和电视节目等通信业务。

目前无线通信使用的频率从超长波波段到亚毫米波段(包括亚毫米波以下),以至光波。无线通信使用的频率范围和波段见下表1-1

表1-1 无线通信使用的电磁波的频率范围和波段

由于种种原因,在一些欧、美、日等西方国家常常把部分微波波段分为L、S、C、X、Ku、K、Ka等波段(或称子波段),具体如表1 - 2所示

表1-2 无线通信使用的电磁波的频率范围和波段

无线通信中的电磁波按照其波长的不同具有不同的传播特点,下面按波长分述如下:

极长波(极低频ELF)传播

极长波是指波长为1~10万公里(频率为3~30Hz)的电磁波。理论研究表明,这一波段的电磁波沿陆地表面和海水中传播的衰耗极小。

1.2超长波(超低频SLF)传播

超长波是指波长1千公里至1万公里(频率为30~300Hz)的电磁波。这一波段的电磁波传播十分稳定,在海水中衰耗很小(频率为75Hz时衰耗系数为m)对海水穿透能力很强,可深达100m以上。

甚长波(甚低频VLF)传播

甚长波是指波长10公里~100公里(频率为3~30kHz)的电磁波。无线通信中使用的甚长波的频率为10~30kHz,该波段的电磁波可在大地与低层的电离层间形成的波导中进行传播,距离可达数千公里乃至覆盖全球。

长波(低频LF)传播

长波是指波长1公里~10公里(频率为30~300kHz)的电磁波。其可沿地表面传播(地波)和靠电离层反射传播(天波)。

中波(中频MF)传播

中波是指波长100米~1000米(频率为300~3000kHz)的电磁波。中波可沿地表面传播(地波)和靠电离层反射传播(天波)。中波沿地表面传播时,受地表面的吸收较长波严重。中波的天波传播与昼夜变化有关。

短波(高频HF)传播

短波是指波长为10米~100米(频率为3~30MHz)的电磁波。短波可沿地表面传播(地波),沿空间以直接或绕射方式传播(空间波)和靠电离层反射传播(天波)。

超短波(甚高频VHF)传播

超短波是指波长为1米~10米(频率为30~300MHz)的电磁波。超短波难以靠地波和天波传播,而主要以直射方式(即所谓的“视距”方式)传播。

微波传播

微波是指波长小于1米(频率高于300MHz)的电磁波。目前又按其波长

的不同,分为分米波(特高频UHF)、厘米波(超高频SHF)、毫米波(极

高频EHF)和亚毫米波(至高频THF)。

微波的传播类似于光波的传播,是一种视距传播。其主要在对流层内进行。

总的说来,这种传播方式比较稳定,但其传播也受到大气折射和地面反射

的影响。另外,对流层中的大气湍流气团对微波有散射作用。利用这种散

射作用可实现微波的超视距传播。

WCDMA工作频段:上行1920~1980MHz,下行2110~2170MHz,属于微

波波段,其电磁波传播方式为微波传播。

CDMA工作频段:825MHz—835MHz (上行,基站收、移动台发)

870MHz—880MHz (下行,基站发、移动台收)GSM工作频段: 905MHz—915MHz (上行,基站收、移动台发)

950MHz—960MHz (下行,基站发、移动台收)

1710MHz—1785MHz (上行,基站收、移动台发)

1805MHz—1880MHz (下行,基站发、移动台收)3G频率规划的基础上,我国为中国电信cdma2000分配的频率是1920~1935MHz(上行)/2110~2125MHz(下行),共15MHz×2;为中国联通WCDMA

分配的频率是1940~1955MHz(上行)/2130~2145MHz(下行),共15MHz×2;

为中国移动TD-SCDMA分配的频率是1800~1900MHz以及2110~

2025MHz,共35MHz。

2、射频常用计算单位

绝对功率的dB表示

射频信号的绝对功率常用dBm、dBW表示,它与mW、W的换算关系如下:

例如信号功率为x W ,利用dBm 表示时其大小为:

)1log(

10)(W XW

dBW p = )11000*log(10)(mw mw

X dBm p =

例如:1W 等于30dBm ,等于0dBW 。

一般来说,我们习惯上还是用“W ”和“dBm ”来表示功率 相对功率的dB 表示

射频信号的相对功率常用dB 和dBc 两种形式表示,其区别在于:dB 是任意

两个功率的比值的对数表示形式,而dBc 是某一频点输出功率和载频输出功率的比值的对数表示形式。

一般来说,我们说放大链路的增益可以用“dB ”来表示。 对于信号的谐波和杂波来说,可以用“dBc ”来表示。

3、 射频器件简介

射频简单系统介绍

一般来说,对于如图所示射频系统来说,用到的射频器件从大的分类来说,有主动器件

和被动器件,主动器件一般来说,是需要提供电源的期间,被动器件,一般为无源器件。

就上图来说,用到的器件有滤波器、混频器、射频开关、放大电路等。其中的滤波器和混频器为被动电路,射频开关和放大电路为主动电路。

1、射频接插件

MMCX系列

MMCX1112A1MMCX1121A1MMCX6251S1

MCX系列

MCX1112MCX1181A1MCX6121A1

SMA系列

SMA1111A1SMA1112A6SMA1181A1

SMA6181A2SMA6251A1SMA6252A2

SMA6411A4SMA6511A4SMA6551E1

SMA8073A1SMA9073A1SMA6351B1 SMB系列

SMB1251B1SMB1252B1SMB1351B1

SMB6112A1SMB6121A1SMB6251B1 BNC系列

B1121A1B6251C1B6251F1

B7471A1B7771B3B9073A1

TNC系列

T1121A1T1181A1T6351B1

N系列

N1112A1N1121A1N1141A1N1181A1

N2071A1N5072A1N6421A1N6521A1

N6551A1N7471A1

另外还有,、、7/16等类型接头。

2、射频滤波器

滤波器是电子系统中关键部件,用来完成频率选择功能,在航空轰天、雷达、电子对抗、遥感遥测、微波通讯、移动通讯及广播电视等军民用电子设备中广泛运用。

射频滤波器通常按滤波器的特性及作用可分为:低通滤波器(LPF)、带通滤波器(BPF)、高通滤波器(HPF)、带阻滤波器。

射频滤波器通常按组成材料可以分为以下几种:LC滤波器、声表滤波器、晶体滤波器、腔体滤波器、介质滤波器、悬置带线滤波器、同轴管状滤波器及电调滤波器。

滤波器主要参数:

2.1.1中心频率f0:给定相对最小插入损耗值(比如-3dB)对应两个截止频率的几何平均值。

2.1.2通带带宽(x)dB:给定相对最小插入损耗值的两个截止频率的间隔,及从上限频率到下限频率的差值,常用1dB带宽和3dB带宽表示。

2.1.3插入损耗:信号通过滤波器的衰减。

2.1.4带内波动:通带内的插入损耗随频率变化最大与最小的差值。

2.1.5驻波比:衡量滤波器通带内信号是否良好匹配传输的一项重要指标。理想值为1,适配时大于1,对于实际的滤波器而言,满足驻波比小于:1的贷款一般小于-3dB带宽,其中-3dB带宽的比例与滤波器的级数和插损有关。

2.1.6回波损耗:端口信号输入功率与反射功率之比的分贝值。

2.1.7阻带抑制度:衡量滤波器选择性能好坏的重要指标,指标越高说明对带外干扰信号的抑制越好。通常要求为某一给定的带我频率f的抑制度是多少dB。

SAW滤波器:

LC滤波器

腔体滤波器

3环形器及隔离器

隔离器和环形器的突出特点是单向传输微波能量。隔离器使微波能量只能从输入端流进,从输出端流出。环形器则控制电磁波燕某一环形防线传输。这种单向传输微波能量的特性,用于微波设备的级与级、级与系统之间,就是他们各自独立工作、互相“隔离”了。

微波隔离器是种特殊的衰减器,隔离器对入射波的衰减很小,对反射波的衰减则很大,二者之比值称为“隔离比”。

使用隔离器,目的在于减小因负载阻抗变化对振荡频率带来的影响。一般是在矩形波导的横向加上固定磁场,放置在波导横向的铁氧体片恰好能与反射波产生铁磁共振,继而抑制了反射波,而入射波则不会产生这种共振吸收。但在做成器件之后,隔离器对入射波也会产生一些正向衰减,约为1db 倍)。对反射波的反向衰减则大于20db(100 倍)。

环形器具有多种用途,是一种常用的微波元器件。

主要参数有:

工作带宽

插入损耗

反向隔离

电压驻波比

5.射频放大器

4、功率放大器主要指标

工作频带

工作频带是指放大器应满足全部性能指标的连续频率范围。

硅双极型晶体管功率放大器和硅金属氧化物场效应管功率放大器的工作频率是从300MHz到4GHz,砷化镓场效应管功率放大器的工作频率是从一吉赫到几十吉赫。

输出功率

4.2.1.饱和输出功率

当功率放大器的输入功率加大到某一值后,再加大输入功率并不会改变输出功率的大小,该输出功率称为功率放大器的饱和输出功率。

4.2.2.1dB压缩点输出功率P1dB

功率放大器增益压缩1dB所对应的输出功率称为1dB压缩点输出功率,记作P1dB。

输入输出驻波比

大功率管的输入阻抗和输出阻抗都很低,BJT的输入阻抗实部只有几个欧姆,与50系统失配得比较厉害。而MESFET的输入阻抗较高,与50系统失配得也很大,失配严重时,会损坏功率管。

输入、输出驻波比变坏还会使系统的增益起伏和群迟延变坏,因此功率放大器的输入、输出驻波比应该满足一定要求。在大容量数字通信系统中,功率放大器的输入、输出驻波比取:1,而在一般系统中,功率放大器的输入、输出驻波比可以取到2:1。它也是设计微波功率放大器时必须考虑的一项技术指标。

增益及增益平坦度。

增益即放大器的功率放大能力,为放大器输出功率和输出功率的比值取对数,单位为”dB”。

增益平坦度为功率放大器增益在一定频率范围内的变化大小。

其他的射频器件还有微波开关、微波衰减器、移相器、限幅器、微波功分器、耦合器、电桥等。

混频器、频率合成器、

射频基础知识培训

射频基础知识培训 1、无线通信基本概念 利用电磁波的辐射和传播,经过空间传送信息的通信方式称之为无线电通信(Wireless Communication),也称之为无线通信。利用无线通信可以传送电报、电话、传真、数据、图像以及广播和电视节目等通信业务。 目前无线通信使用的频率从超长波波段到亚毫米波段(包括亚毫米波以下) 以至光波。无线通信使用的频率范围和波段见下表1-1

由于种种原因,在一些欧、美、日等西方国家常常把部分微波波段分为、、C、X、Ku、K、Ka 等波段(或称子波段),具体如表1 - 2所示 极长波(极低频ELF)传播 极长波是指波长为1~10万公里(频率为3~30HZ的电磁波。理论研究表明, 这一波段的电磁波沿陆地表面和海水中传播的衰耗极小。 1.2超长波(超低频SLF)传播 超长波是指波长1千公里至1万公里(频率为30~300HZ的电磁波。这一波段的电磁波传播十分稳定,在海水中衰耗很小(频率为75Hz时衰耗系数为m 对海水穿透能力很

强,可深达100 m以上。 甚长波(甚低频VLF)传播 甚长波是指波长10公里~100公里(频率为3~30kHz)的电磁波。无线通信中使用的甚长波的频率为10~30kHz该波段的电磁波可在大地与低层的电离层间形成的波导中进行传播,距离可达数千公里乃至覆盖全球。 长波(低频LF)传播 长波是指波长1公里~10公里(频率为30~300kHZ的电磁波。其可沿地表面传播(地波)和靠电离层反射传播(天波)。 中波(中频MF传播 中波是指波长100米~1000米(频率为300~3000kHZ的电磁波。中波可沿地表面传播(地波)和靠电离层反射传播(天波)。中波沿地表面传播时,受地表面的吸收较长波严重。中波的天波传播与昼夜变化有关。 短波(高频HF)传播 短波是指波长为10米~100米(频率为3~30MHZ的电磁波。短波可沿地表面传播(地波),沿空间以直接或绕射方式传播(空间波)和靠电离层反射传播 (天波)O 超短波(甚高频VHF传播 超短波是指波长为1米~10米(频率为30~300MHZ的电磁波。超短波难以靠地波和天波传播,而主要以直射方式(即所谓的“视距”方式)传播。 微波传播 微波是指波长小于1米(频率高于300MHZ的电磁波。目前又按其波长的不同,分为分米波(特高频UHF、厘米波(超高频SHF、毫米波(极高频EHF和亚毫米波(至高频THF O 微波的传播类似于光波的传播,是一种视距传播。其主要在对流层内进行。总的说 来,这种传播方式比较稳定,但其传播也受到大气折射和地面反射的影响。另外, 对流层中的大气湍流气团对微波有散射作用。利用这种散 射作用可实现微波的超视距传播。

射频基本知识

引言 在进入射频测试前,让我们回顾一下单相交流电的基本知识。 一、单相交流电的产生 在一组线圈中,放一能旋转的磁铁。当磁铁匀速旋转时,线圈内的磁通一会儿大一会 儿小,一会儿正向一会儿反向,也就是说线圈内有呈周期性变化的磁通,从而线圈两端即感生出一个等幅的交流电压,这就是一个原理示意性交流发电机。若磁铁每秒旋转50周,则电压的变化必然也是50周。每秒的周期数称为频率f,其单位为赫芝Hz。103Hz=千赫kHz,,106Hz=兆赫MHz,109Hz=吉赫GHz。b5E2RGbCAP 在示波器上可看出电压的波形呈周期性,每一个周期对应磁铁旋转一周。即转了2π弪,每秒旋转了f个2π,称2πf为ω<常称角频率,实质为角速率)。则单相交流电的表达式可写成:p1EanqFDPw V=Vm=Vm 式中Vm(电压最大值>=Ve(有效值或Vr.m.s.>。t为时间<秒),为初相。 二、对相位的理解 1、由电压产生的角度来看 ·设想有两个相同的单相发电机用连轴器连在一起旋转,当两者转轴<磁铁的磁极)

位置完全相同时,两者发出的电压是同相的。而当两者转轴错开角度时,用双线示波器来看,两个波形在时轴上将错开一个角度;这个角度就叫相位角或初相。相位领先为正,滞后为负。DXDiTa9E3d ·假如在单相发电机上再加一组线圈,两组线圈互成90°<也即两电压之间相位差 90°),即可形成两相电机。假如用三组线圈互成120°<即三电压之间,相位各差120°)即可形成三相电机。两相电机常用于控制系统,三相电机常用于工业系统。RTCrpUDGiT 2、同频信号<电压)之间的叠加 当两个电压同相时,两者会相加;而反相时,两者会抵消。也就是说两者之间为复数运算关系。若用方位平面来表示,也就是矢量关系。矢量的模值<幅值)为标量,矢量的角度为相位。5PCzVD7HxA 虽然人们关心的是幅值,但运算却必须采用矢量。 虽然一般希望信号相加,但作匹配时,却要将反射信号抵消。 三、射频 交流电的频率为50Hz时,称为工频。20Hz到20kHz为音频,20kHz以上为超声波 ,当频率高到100 kHz以上时,交流电的辐射效应显著增强;因此100 kHz以上的频率泛称射频。有时会以3 GHz为界,以上称为微波。常用频段划分见附录。jLBHrnAILg

射频基础知识点

一、频谱分析仪部分 什么是频谱分析仪? 频谱分析仪是研究电信号频谱结构的仪器,用于信号失真度、调制度、谱纯度、频率稳定度和交调失真等信号参数的测量,可用以测量放大器和滤波器等电路系统的某些参数,是一种多用途的电子测量仪器。我们现在所用的频谱仪大部分是扫频调谐超外差频谱分析仪。 频谱仪工作原理 输入信号经衰减器以限制信号幅度,经低通输入滤波器滤除不需的频率,然后经混频器与本振(LO)信号混频将输入信号转换到中频(IF)。LO的频率由扫频发生器控制。随着LO频率的改变,混频器的输出信号(它包括两个原始信号,它们的和、差及谐波,)由分辨力带宽滤波器滤出本振比输入信号高的中频,并以对数标度放大或压缩。然后用检波器对通过IF滤波器的信号进行整流,从而得到驱动显示垂直部分的直流电压。随着扫频发生器扫过某一频率范围,屏幕上就会画出一条迹线。该迹线示出了输入信号在所显示频率范围内的频率成分。 输入衰减器 保证频谱仪在宽频范围内保持良好匹配特性,以减小失配误差;保护混频器及其它中频处理电路,防止部件损坏和产生过大的非线性失真。 混频器 完成信号的频谱搬移,将不同频率输入信号变换到相应中频。在低频段(<3G Hz)利用高混频和低通滤波器抑制镜像干扰;在高频段(>3GHz)利用带通跟踪滤波器抑制镜像干扰。 本振(LO) 它是一个压控振荡器,其频率是受扫频发生器控制的。其频率稳定度锁相于参考源。 扫频发生器 除了控制本振频率外,它也能控制水平偏转显示,锯齿波扫描使频谱仪屏幕上从左到右显示信号,然后重复这个扫描不断更新迹线。扫频宽度(Span)是从左fstart到右fstop10格的频率差,例如:Span=1MHz,则100kHz/div.

射频基础知识

第一部分射频基本概念 第一章常用概念 一、特性阻抗 特征阻抗是微波传输线的固有特性,它等于模式电压与模式电流之比。对于TEM波传输线,特征阻抗又等于单位长度分布电抗与导纳之比。无耗传输线的特征阻抗为实数,有耗传输线的特征阻抗为复数。 在做射频PCB板设计时,一定要考虑匹配问题,考虑信号线的特征阻抗是否等于所连接前后级部件的阻抗。当不相等时则会产生反射,造成失真和功率损失。反射系数(此处指电压反射系数)可以由下式计算得出: z1 二、驻波系数 驻波系数式衡量负载匹配程度的一个指标,它在数值上等于: 由反射系数的定义我们知道,反射系数的取值范围是0~1,而驻波系数的取值范围是1~正无穷大。射频很多接口的驻波系数指标规定小于1.5。 三、信号的峰值功率 解释:很多信号从时域观测并不是恒定包络,而是如下面图形所示。峰值功率即是指以某种概率出现的尖峰的瞬态功率。通常概率取为0.1%。

四、功率的dB表示 射频信号的功率常用dBm、dBW表示,它与mW、W的换算关系如下: dBm=10logmW dBW=10logW 例如信号功率为x W,利用dBm表示时其大小为 五、噪声 噪声是指在信号处理过程中遇到的无法确切预测的干扰信号(各类点频干扰不是算噪声)。常见的噪声有来自外部的天电噪声,汽车的点火噪声,来自系统内部的热噪声,晶体管等在工作时产生的散粒噪声,信号与噪声的互调产物。 六、相位噪声

相位噪声是用来衡量本振等单音信号频谱纯度的一个指标,在时域表现为信号过零点的抖动。理想的单音信号,在频域应为一脉冲,而实际的单音总有一定的频谱宽度,如下页所示。一般的本振信号可以认为是随机过程对单音调相的过程,因此信号所具有的边带信号被称为相位噪声。相位噪声在频域的可以这样定量描述:偏离中心频率多少Hz处,单位带宽内的功率与总信号功率相比。 例如晶体的相位噪声可以这样描述: 七、噪声系数 噪声系数是用来衡量射频部件对小信号的处理能力,通常这样定义:单元输入信噪比除输出信噪比,如下图:

射频(RF)基础知识

●什么是RF? 答:RF 即Radio frequency 射频,主要包括无线收发信机。 2. 当今世界的手机频率各是多少(CDMA,GSM、市话通、小灵通、模拟手机等)? 答:EGSM RX: 925-960MHz, TX:880-915MHz; CDMA cellular(IS-95)RX: 869-894MHz, TX:824-849MHz。 3. 从事手机Rf工作没多久的新手,应怎样提高? 答:首先应该对RF系统(如功能性)有个系统的认识,然后可以选择一些芯片组,研究一个它们之间的连通性(connectivities among them)。 ● 4. RF仿真软件在手机设计调试中的作用是什么? 答:其目的是在实施设计之前,让设计者对将要设计的产品有一些认识。 5. 在设计手机的PCB时的基本原则是什么? 答:基本原则是使EMC最小化。 6. 手机的硬件构成有RF/ABB/DBB/MCU/PMU,这里的ABB、DBB和PMU等各代 表何意? 答:ABB是Analog BaseBand, DBB是Ditital Baseband,MCU往往包括在DBB芯片中。 PMU是Power Management Unit,现在有的手机PMU和ABB在一个芯片上面。将来这些芯片(RF,ABB,DBB,MCU,PMU)都会集成到一个芯片上以节省成本和体积。 7. DSP和MCU各自主要完成什么样的功能?二者有何区别? 答:其实MCU和DSP都是处理器,理论上没有太大的不同。但是在实际系统中,基于效率的考虑,一般是DSP处理各种算法,如信道编解码,加密等,而MCU处理信令和与大部分硬件外设(如LCD等)通信。 8. 刚开始从事RF前段设计的新手要注意些什么? 答:首先,可以选择一个RF专题,比如PLL,并学习一些基本理论,然后开始设计一些简单电路,只有在调试中才能获得一些经验,有助加深理解。 9. 推荐RF仿真软件及其特点? 答:Agilent ADS仿真软件作RF仿真。这种软件支持分立RF设计和完整系统设计。 详情可查看Agilent网站。 10. 哪里可以下载关于手机设计方案的相应知识,包括几大模快、各个模块的功能以 及由此对硬件的性能要求等内容? 答:可以看看https://www.doczj.com/doc/204903357.html,和https://www.doczj.com/doc/204903357.html,,或许有所帮助。关于TI的wireless solution,可以看看https://www.doczj.com/doc/204903357.html,中的wireless communications.

移动通信基础知识培训(全)

移动通信基础知识培训会议记录 一移动通信常用的专业术语 基站:即公用移动通信基站是无线电台站的一种形式,是指在一定的无线电覆盖区中,通过移动通信交换中心,与移动电话终端之间进行信息传递的无线电收发信电台。都是以主设备加基站天线的形式呈现,最直观的就是我们现实中看到的铁塔,抱杆,桅杆型的基站。 直放站:是在无线通信传输过程中起到信号增强的一种无线电发射中转设备。直放站的基本功能就是一个射频信号功率增强器。实际上基站在其覆盖范围内并不是100%的覆盖到每个角落,难免会由于某些原因而在有些地方出现信号弱,更甚者出现盲区的现象,这时候就需要直放站进行覆盖,达到消除弱信号或者盲区的目的。因此直放站就是通过各种方式将基站信号接入并进行放大,进而改善信号不良区域。 天线(Antenna)——天线是将传输线中的电磁能转化成自由空间的电磁波,或将空间电磁波转化成传输线中的电磁能的专用设备。简单的理解,天线就是负责信号中转的无源器件。 室内分布系统:室内分布系统是将基站信号引入室内,解决室内盲区覆盖;它可以有效解决信号延伸和覆盖,改善室内通信质量;它将基站信号科学地分配到室内的各个房间、通道,而又不产生相互干扰。它是基站和微蜂窝的补充和延伸,有不能被基站和直放站所代替的优势,是大都市中移动通信不可缺少的组成

部分。 盲区:在移动通信中,盲区表示信号覆盖不到的地区,在这样的地区移动信号非常微弱,甚至是没有。由于建筑物的隔墙、楼层等障碍对电磁波产生阻挡、衰减和屏蔽作用,使得大型建筑物的底层、地下商场、停车场、地铁隧道等环境下,移动通信信号弱,手机无法正常使用,形成了移动通信的盲区。 通话质量:顾名思义,就是手机通话时的语言质量即清晰程度。在移动通信中通话质量是一个很重要的网络参数,按照语言的清晰程度将通话质量分为0到7不同的8个级别,0最好,客户通话时的感知最好;7最差,通话时的感知最好,客户。一般正常的通话质量应该为0-3。 信号场强:是指信号信号的强弱。在移动通信中信号的强弱用具体的电平值表示,通过测试手机可以测得,一般-40~-90dBm为可正常通话的强度范围,也可直观的从普通手机的信号显示格数看出。 手机发射功率:手机发射功率是指,手机在寻呼基站时的功率。手机发射功率越高,说明上行越弱,客户感知为拨打电话上线慢。 切换:就是指当移动台(用户手机)在通话过程中从一个基站覆盖区移动到另一个基站覆盖区,或者由于外界干扰而造成通话质量下降时,必须改变原有的话音信道而转接到一条新的空闲话音信道上去,以继续保持通话的过程。 掉话:是指用户手机在使用过程中由于出现异常而自动挂断的现象。 单通:是指用户双方正在通话时,由于异常出现只有一方可以听见另一方的

射频开关基础知识详细讲解

射频开关基础知识详细讲解 射频和微波开关可在传输路径内高效发送信号。此类开关的功能可由四个基本电气参数加以表征。 虽然多个参数与射频和微波开关的性能相关,然而以下四个由于其相互间较强的相关性而被视为至关重要的参数:隔离度,插入损耗,开关时间,功率处理能力。 隔离度即电路输入端和输出端之间的衰减度,是衡量开关截止有效性的指标。插入损耗(也称传输损耗)为开关处于导通状态下时损耗的总功率。由于插入损耗可直接导致系统噪声系数的增大,因此对于设计者而言,插入损耗是最为关键的参数。 开关时间是指开关从“导通”状态转变为“截止”状态以及从“截止”状态转变为“导通”状态所需要的时间。该时间上可达高功率开关的数微秒级,下可至低功率高速开关的数纳秒级。开关时间的最常见定义为自输入控制电压达到其50%至最终射频输出功率达到其90%所需的时间。此外,功率处理能力定义为开关在不发生任何永久性电气性能劣化的前提下所能承受的最大射频输入功率。

图示为使用12个不同SMA母同轴连接器的单刀十二掷机电式开关一 例 射频和微波开关可分为机电式继电器开关以及固态开关两大类。这些开关可设计为多种不同构型——从单刀单掷到可将单个输入转换成16种不同输出状态的单刀十六掷,或更多掷的构型。切换开关为一种双刀双掷构型的开关。此类开关具有四个端口以及两种可能的开关状态,从而可将负载在两个源之间切换。 机电式继电器开关的插入损耗较低(《0.1dB),隔离度较高(》 85dB),且可以毫秒级的速度切换信号。此类开关的主要优点在于,其可在直流~毫米波(》50 GHz)频率范围内工作,而且对静电放电不敏感。此外,机电式继电器开关可处理较高的功率水平(达数千瓦的峰值功率)且不发生视频泄漏。

射频基础知识点

一、频谱分析仪部分 什么是频谱分析仪? 频谱分析仪是研究电信号频谱结构的仪器,用于信号失真度、调制度、谱纯度、频率稳定度和交 调失真等信号参数的测量,可用以测量放大器和滤波器等电路系统的某些参数,是一种多用途的 电子测量仪器。我们现在所用的频谱仪大部分是扫频调谐超外差频谱分析仪。 中 频谱仪工作原理 输入信号经衰减器以限制信号幅度,经低通输入滤波器滤除不需的频率,然后经混频器与本振 (L0)信号混频将输入信号转换到中频(IF)。LO的频率由扫频发生器控制。随着LO频率的改变,混频器的输出信号(它包括两个原始信号,它们的和、差及谐波,)由分辨力带宽滤波器滤出本振 比输入信号高的中频,并以对数标度放大或压缩。然后用检波器对通过IF滤波器的信号进行整 流,从而得到驱动显示垂直部分的直流电压。随着扫频发生器扫过某一频率范围,屏幕上就会画出一条迹线。该迹线示出了输入信号在所显示频率范围内的频率成分。 输入衰减器 保证频谱仪在宽频范围内保持良好匹配特性,以减小失配误差;保护混频器及其它中频处理电路,防止部件损坏和产生过大的非线性失真。 混频器 完成信号的频谱搬移,将不同频率输入信号变换到相应中频。在低频段(<3GHz)利用高混频和低通滤波器抑制镜像干扰;在高频段(>3GHz)利用带通跟踪滤波器抑制镜像干扰。 本振(L0) 它是一个压控振荡器,其频率是受扫频发生器控制的。其频率稳定度锁相于参考源。 扫频发生器 除了控制本振频率外,它也能控制水平偏转显示,锯齿波扫描使频谱仪屏幕上从左到右显示信号, 然后重复这个扫描不断更新迹线。扫频宽度(Span)是从左fstart到右fstopIO格的频率差,例如:

移动通信基础知识培训(全)

移动通信基础知识培训

移动通信基础知识培训 一移动通信常用的专业术语 基站:即公用移动通信基站是无线电台站的一种形式,是指在一定的无线电覆盖区中,通过移动通信交换中心,与移动电话终端之间进行信息传递的无线电收发信电台。都是以主设备加基站天线的形式呈现,最直观的就是我们现实中看到的铁塔,抱杆,桅杆型的基站。 直放站:是在无线通信传输过程中起到信号增强的一种无线电发射中转设备。直放站的基本功能就是一个射频信号功率增强器。实际上基站在其覆盖范围内并不是100%的覆盖到每个角落,难免会由于某些原因而在有些地方出现信号弱,更甚者出现盲区的现象,这时候就需要直放站进行覆盖,达到消除弱信号或者盲区的目的。因此直放站就是通过各种方式将基站信号接入并进行放大,进而改善信号不良区域。 天线(Antenna)——天线是将传输线中的电磁能转化成自由空间的电磁波,或将空间电磁波转化成传输线中的电磁能的专用设备。简单的理解,天线就是负责信号中转的无源器件。 室内分布系统:室内分布系统是将基站信号引入室内,解决室内盲区覆盖;它可以有效解决信号延伸和覆盖,改善室内通信质量;它将基站信号科学地分配到室内的各个房间、通道,而又不产生相互干扰。它是基站和微蜂窝的补充和延伸,有不能被基站和直放站所代替的优势,是大都市中移动通信不可缺少的组成部分。 盲区:在移动通信中,盲区表示信号覆盖不到的地区,在这样的地区移动信号非常微弱,甚至是没有。由于建筑物的隔墙、楼层等障碍对电磁波产生阻挡、衰减和屏蔽作用,使得大型建筑物的底层、地下商场、停车场、地铁隧道等环境下,移动通信信号弱,手机无法正常使用,形成了移动通信的盲区。 通话质量(RXQUAL):顾名思义,就是手机通话时的语言质量即清晰程

射频基础知识知识讲解

第一部分 射频基础知识 目录 第一章与移动通信相关的射频知识简介 (1) 1.1 何谓射频 (1) 1.1.1长线和分布参数的概念 (1) 1.1.2射频传输线终端短路 (3) 1.1.3射频传输线终端开路 (4) 1.1.4射频传输线终端完全匹配 (4) 1.1.5射频传输线终端不完全匹配 (5) 1.1.6电压驻波分布 (5) 1.1.7射频各种馈线 (6) 1.1.8从低频的集中参数的谐振回路向射频圆柱形谐振腔过渡 (9) 1.2 无线电频段和波段命名 (9) 1.3 移动通信系统使用频段 (9) 1.4 第一代移动通信系统及其主要特点 (12) 1.5 第二代移动通信系统及其主要特点 (12) 1.6 第三代移动通信系统及其主要特点 (12) 1.7 何谓“双工”方式?何谓“多址”方式 (12) 1.8 发信功率及其单位换算 (13) 1.9 接收机的热噪声功率电平 (13) 1.10 接收机底噪及接收灵敏度 (13) 1.11 电场强度、电压及功率电平的换算 (14) 1.12 G网的全速率和半速率信道 (14) 1.13 G网设计中选用哪个信道的发射功率作为参考功率 (15) 1.14 G网的传输时延,时间提前量和最大小区半径的限制 (15)

1.15 GPRS的基本概念 (15) 1.16 EDGE的基本概念 (16) 第二章天线 (16) 2.1天线概述 (16) 2.1.1天线 (16) 2.1.2天线的起源和发展 (17) 2.1.3天线在移动通信中的应用 (17) 2.1.4无线电波 (17) 2.1.5 无线电波的频率与波长 (17) 2.1.6偶极子 (18) 2.1.7频率范围 (19) 2.1.8天线如何控制无线辐射能量走向 (19) 2.2天线的基本特性 (21) 2.2.1增益 (21) 2.2.2波瓣宽度 (22) 2.2.3下倾角 (23) 2.2.4前后比 (24) 2.2.5阻抗 (24) 2.2.6回波损耗 (25) 2.2.7隔离度 (27) 2.2.8极化 (29) 2.2.9交调 (31) 2.2.10天线参数在无线组网中的作用 (31) 2.2.11通信方程式 (32) 2.3.网络优化中天线 (33) 2.3.1网络优化中天线的作用 (33) 2.3.2天线分集技术 (34) 2.3.3遥控电调电下倾天线 (1) 第三章电波传播 (3) 3.1 陆地移动通信中无线电波传播的主要特点 (3) 3.2 快衰落遵循什么分布规律,基本特征和克服方法 (4)

基本射频和天线基础知识

基本射频知识

培训目录 移动通信频谱划分 射频几个基本参数 无源器件基本知识

电信和广播电视的工作频带分配

移动通信频率 FDMA 30 kHz Frequency Time 1 2 3 1 TDMA 30 kHz Frequency Time 1.23 MHz Frequency Time CDMA 多址方式

当前中国2G与3G频谱分配 DCS1800 Rx 1710 –1785 DCS1800 Tx 1805 –1880 8 2 5 - 8 3 5 8 3 5 - 8 3 9 8 7 - 8 8 8 8 - 8 8 6 8 9 - 9 3 9 3 - 9 9 9 3 1 - 9 3 5 9 3 5 - 9 4 8 9 4 8 - 9 5 4 9 5 4 - 9 6 0 8 3 9 - 8 4 5 8 8 6 - 8 9 9 9 - 9 1 5 R e s e r v e d TACS-C (Rx) AMPS-A (Rx) 825-835 AMPS-B (Rx) 835-845 TACS-A (Rx) 890-897.5 TACS-B (Rx) 897.5-905 GSM (Rx) 905-915 TACS-A (Tx) 935-942.5 TACS-B (Tx) 942.5-950 GSM (Tx) 950-960 TACS-C (Tx) 924-935 联通 CDMA CT2 (空)中移动GSM 联通 GSM M O R G S M - R 中移动GSM联通 GSM AMPS-A (Tx) 870-880 AMPS-B (Tx) 880-890 M O R G S M - R 联通 CDMA r e s e r v e 保 留 中移动联通 信产部 尚未发放 美国标准中国电信 ITU标准 TDD 频谱 C M C C D C S 1 8 T D D T D - S C D M A DCS 1800 未发放联 通 D C S 1 8 DCS 1800 未发放联 通 D C S 1 8 中 移 动 D C S 1 8 SCD MA 中国 电信 CDM A WLL PCS1900 Rx 1850 -1910 PCS1900 Tx 1930 -1990 中 移 动 D C S 1 8 I T U M S S 1 9 8 - 2 1 PHS 1 8 5 - 1 8 2 1 9 - 1 9 1 1 8 5 - 1 8 6 5 1 8 6 5 - 1 8 8 1 8 8 - 1 9 1 9 4 5 - 1 9 6 1 9 6 - 1 9 8 1 7 1 - 1 7 2 5 1 7 4 5 - 1 7 5 5 1 8 4 - 1 8 5 1 7 5 5 - 1 7 8 5 1 7 8 5 - 1 8 5 2 1 - 2 2 5 1 9 8 - 2 1 1 9 1 - 1 9 2 CDMA PCS ITU IMT-2000 Rx 1920 -1980 中国 电信 CDM A WLL 2 1 1 - 2 1 7 2 3 - 2 4 ITU IMT-2000 Tx 2110 -2170 FDD 补充频段 TDD 主要 FDD 补充频段 FDD 主要频段 FDD 主要频段 TDD 主要频段 TDD 补充 信产部 3G规划

相关主题
文本预览
相关文档 最新文档