当前位置:文档之家› 数学建模:运用Lindolingo软件求解线性规划

数学建模:运用Lindolingo软件求解线性规划

数学建模:运用Lindolingo软件求解线性规划
数学建模:运用Lindolingo软件求解线性规划

数学建模:运用Lindolingo软件求解线性规划

1、实验内容:

对下面是实际问题建立相应的数学模型,并用数学软件包Lindo/lingo对模型进行求解。

某厂生产甲乙两种口味的饮料,每百箱甲饮料需用原料6千克,工人10,可获利10万元;每百箱乙饮料需用原料5千克,工人20名,可获利9万元.名今工厂共有原料60千克,工人150名,又由于其他条件所限甲饮料产量不超过8百箱.问如何安排生产计划,即两种饮料各生产多少使获利最大.进一步讨论:

1)若投资0.8万元可增加原料1千克,问应否作这项投资.

2)若每百箱甲饮料获利可增加1万元,问应否改变生产计划.

数学建模论文

运用lindo/lingo软件求解线性规划

运用lindo/lingo软件求解线性规划

一、摘要

本文要解决的问题是如何安排生产计划,即两种饮料各生产多少使获利最大。

首先,对问题进行重述明确题目的中心思想,做出合理的假设,对符号做简要的说明。

然后,对问题进行分析,根据题目的要求,建立合适的数学模型。

最后,运用lindo/lingo软件求出题目的解。

【关键词】最优解 lindo/lingo软件

第二、问题的重述

某厂生产甲乙两种口味的饮料,每百箱甲饮料需用原料6千克,工人10名,可获利10万元;每百箱乙饮料需用原料5千克,工人20名,可获利9万元.今工厂共有原

料60千克,工人150名,又由于其他条件所限甲饮料产量不超过8百箱.问如何安排生产计划,即两种饮料各生产多少使获利最大.进一步讨论:

1)若投资0.8万元可增加原料1千克,问应否作这项投资。

2)若每百箱甲饮料获利可增加1万元,问应否改变生产计划。

第三、模型的基本假设

1、每一箱饮料消耗的人力、物力相同。

2、每个人的能力相等。

3、生产设备对生产没有影响。

第四、符号说明

1、x.....甲饮料

2、y.....乙饮料

3、z.....增加的原材料

第五、问题分析

根据题目要求:如何安排生产计划,即两种饮料各生产多少使获利最大,可知本题所求的是利润的最大值。我们可以先建立数学模型,然后用lindo/lingo软件包求解模型的最大值。

第六、模型的建立及求解根据题目建立如下3个模型:

模型1:

max=0.1*x+0.09*y;

0.06*x+0.05*y<=60;

0.1*x+0.2*y<=150;

x+y<=800;

结果:x=800;y=0;max=80

模型2:

max=0.1*x+0.09*y-0.8*z;

0.06*x+0.05*y-z<=60;

0.1*x+0.2*y<=150;

x+y<=800;

结果:x=800;y=0;z=0;max=80

模型3:

max=0.11*x+0.09*y;

0.06*x+0.05*y<=60;

0.1*x+0.2*y<=150;

x+y<=800;

结果:x=800;y=0;max=88

第七、结果分析

从上述结果可以看出:

1、若投资0.8万元可增加原料1千克,最大利润值仍为80万元,所以不作这项

投资;

2、若每百箱甲饮料获利可增加1万元,最大利润值为88万元,但生产x饮料仍

为800箱,y饮料0箱,所以没有改变生产计划。

第八、模型的评价及推广

模型的评价

1、模型的优点

本文模型能使企业在经营过程中对资源进行合理分配,以致使公司获得最大的利润。

2、模型的缺点

本文模型的建立与求解建立在许多假设的基础上,并由于在运输过程中会出现许多主观的、客观的因素;无论我们如何细致的计算,结果只能是一个大致的

估计。

模型的推广

本文模型可以解决资源的优化配置问题,使企业的利润达到最大值,可以运用到运输业,生产制造业等行业。

第九、参考文献

[1]线性规划.ppt

[2]Lindo使用手册.pdf

[3]Lindo软件简介.pdf

[4]论文写作规范.doc及DNA序列分类.doc

第十、附录

程序1:

max=0.1*x+0.09*y;

0.06*x+0.05*y<=60;

0.1*x+0.2*y<=150;

x+y<=800;

Global optimal solution found.

Objective value: 80.00000

Infeasibilities: 0.000000

Total solver iterations: 4

Variable Value Reduced Cost

X 800.0000 0.000000

Y 0.000000 0.1000000E-01

Row Slack or Surplus Dual Price

1 80.00000 1.000000

2 12.00000 0.000000

3 70.00000 0.000000

4 0.000000 0.1000000 程序2

max=0.1*x+0.09*y-0.8*z;

0.06*x+0.05*y-z<=60;

0.1*x+0.2*y<=150;

x+y<=800;

Global optimal solution found. Objective value: 80.00000 Infeasibilities: 0.000000

Total solver iterations: 1 Variable Value Reduced Cost

X 800.0000 0.000000

Y 0.000000 0.1000000E-01

Z 0.000000 0.8000000

Row Slack or Surplus Dual Price

1 80.00000 1.000000

2 12.00000 0.000000

3 70.00000 0.000000

4 0.000000 0.1000000 程序3

max=0.11*x+0.09*y;

0.06*x+0.05*y<=60;

0.1*x+0.2*y<=150;

x+y<=800;

Global optimal solution found. Objective value: 88.00000 Infeasibilities: 0.000000

Total solver iterations: 2 Variable Value Reduced Cost

X 800.0000 0.000000

Y 0.000000 0.2000000E-01

Row Slack or Surplus Dual Price

1 88.00000 1.000000

2 12.00000 0.000000

3 70.00000 0.000000

4 0.000000 0.1100000

高考数学线性规划专题练习

高考数学线性规划专题练习 1. “截距”型考题 在线性约束条件下,求形如(,)z ax by a b R =+∈的线性目标函数的最值问题,通常转化为求直线在y 轴上的截距的取值. 结合图形易知,目标函数的最值一般在可行域的顶点处取得.掌握此规律可以有效避免因画图太草而造成的视觉误差. 1.【20xx 年高考·广东卷 理5】已知变量满足约束条件,则 的最大值为( ) 2. (20xx 年高考·辽宁卷 理8)设变量满足,则的最大 值为 A .20 B .35 C .45 D .55 3.(20xx 年高考·全国大纲卷 理13) 若满足约束条件,则 的最小值为 。 4.【20xx 年高考·陕西卷 理14】 设函数,是由轴 和曲线及该曲线在点处的切线所围成的封闭区域,则在上的最大值为 . 5.【20xx 年高考·江西卷 理8】某农户计划种植黄瓜和韭菜,种植面积不超过50计,投入资金不超过54万元,假设种植黄瓜和韭菜的产量、成本和售价如下表 ,x y 241y x y x y ≤?? +≥??-≤? 3z x y =+()A 12()B 11()C 3()D -1,x y -100+20015x y x y y ≤?? ≤≤??≤≤? 2+3x y ,x y 1030330 x y x y x y -+≥??? +-≤??+-≥??3z x y =-ln ,0 ()21,0x x f x x x >?=?--≤?D x ()y f x =(1,0)2z x y =-D

和韭菜的种植面积(单位:亩)分别为( ) A .50,0 B .30,20 C .20,30 D .0,50 6. (20xx 年高考·四川卷 理9 ) 某公司生产甲、乙两种桶装产品. 已知生产甲产品1桶需耗原料1千克、原料2千克; 生产乙产品1桶需耗原料2千克,原料1千克. 每桶甲产品的利润是300元, 每桶乙产品的利润是400元. 公司在生产这两种产品的计划中,要求每天消耗、原料都不超过12千克. 通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是( ) A 、1800元 B 、2400元 C 、2800元 D 、 3100元 7. (20xx 年高考·安徽卷 理11) 若满足约束条件:;则的 取值范围为. 8.(20xx 年高考·山东卷 理5)的约束条件24 41x y x y +≤??-≥-?,则目标函数z=3x -y 的取值范围是 A . [32-,6] B .[3 2 -,-1] C .[-1,6] D .[-6, 3 2 ] 9.(20xx 年高考·新课标卷 理14) 设满足约束条件:; 则的取值范围为 . 2 . “距离”型考题 10.【2010年高考·福建卷 理8】 设不等式组x 1x-2y+30y x ≥?? ≥??≥?所表示的平面区域是 1Ω,平面区域是2Ω与1Ω关于直线3490x y --=对称,对于1Ω中的任意一点A 与2Ω中的任意一点B, ||AB 的最小值等于( ) A. 285 B.4 C. 12 5 D.2 11.( 20xx 年高考·北京卷 理2) 设不等式组,表示平面区域为D , 在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是 A B A B A B ,x y 02323x x y x y ≥?? +≥??+≤? x y -_____,x y ,013x y x y x y ≥?? -≥-??+≤? 2z x y =-???≤≤≤≤20, 20y x

2013—2017高考全国卷线性规划真题(含答案)

2013—2017高考全国卷线性规划真题 1.【2017全国1,文7】设x ,y 满足约束条件33,1, 0,x y x y y +≤??-≥??≥?则z =x +y 的最大值为 A .0 B .1 C .2 D .3 2.【2017全国2,文7】设,x y 满足约束条件2+330 233030x y x y y -≤??-+≥??+≥? ,则2z x y =+的最小值是 A.15- B.9- C.1 D 9 3.【2017全国3,文5】设x ,y 满足约束条件3260 0x y x y +-≤??≥??≥? ,则z x y =-的取值范围是 A .[–3,0] B .[–3,2] C .[0,2] D .[0,3] 4.(2016全国1,文16)某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5 kg ,乙材料1 kg ,用5个工时;生产一件产品B 需要甲材料0.5 kg ,乙材料0.3 kg ,用3个工时.生产一件产品A 的利润为2 100元,生产一件产品B 的利润为900元.该企业现有甲材料150 kg ,乙材料90 kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为________元. 5.(2016全国2,文14)若x ,y 满足约束条件?????x -y +1≥0,x +y -3≥0,x -3≤0, 则z =x -2y 的最小值为________. 6.(2016全国3,文13)设x ,y 满足约束条件?????2x -y +1≥0,x -2y -1≤0,x ≤1, 则z =2x +3y -5的最小值为_____. 7.(2015全国1,文15)若x ,y 满足约束条件20 210220x y x y x y +-≤??-+≤??-+≥? ,则z =3x +y 的最大值为 . 8.(2015全国2,文14)设x ,y 满足约束条件50 210210x y x y x y +-≤??--≥??-+≤?,则2 z x y =+的最大值为__________. 9.(2014全国1,文11)设x ,y 满足约束条件, 1,x y a x y +≥??-≤-?且z x a y =+的最小值为7,则a = A .-5 B.3 C.-5或3 D.5或-3

数学建模(教案)第一章--线性规划

数学建模 第一章 线性规划 §1 线性规划 在人们的生产实践中,经常会遇到如何利用现有资源来安排生产,以取得最大经济效益的问题。此类问题构成了运筹学的一个重要分支—数学规划,而线性规划(Linear Programming 简记LP)则是数学规划的一个重要分支。自从1947年G. B. Dantzig 提出求解线性规划的单纯形方法以来,线性规划在理论上趋向成熟,在实用中日益广泛与深入。特别是在计算机能处理成千上万个约束条件和决策变量的线性规划问题之后,线性规划的适用领域更为广泛了,已成为现代管理中经常采用的基本方法之一。 1.1 线性规划的实例与定义 例1 某机床厂生产甲、乙两种机床,每台销售后的利润分别为4000元与3000元。生产甲机床需用B A 、机器加工,加工时间分别为每台2小时和1小时;生产乙机床需用C B A 、、三种机器加工,加工时间为每台各一小时。若每天可用于加工的机器时数分别为A 机器10小时、B 机器8小时和C 机器7小时,问该厂应生产甲、乙机床各几台,才能使总利润最大? 上述问题的数学模型:设该厂生产1x 台甲机床和2x 乙机床时总利润最大,则21,x x 应满足 (目标函数) 2134m ax x x z += (1) s.t. ( 约 束 条 件 ) ?????? ?≥≤≤+≤+0 ,781022122 121x x x x x x x (2) 这里变量21,x x 称之为决策变量,(1)式被称为问题的目标函数,(2)中的几个不等式是问题的约束条件,记为s.t.(即subject to)。

上述即为一规划问题数学模型的三个要素。由于上面的目标函数及约束条件均为线性函数,故被称为线性规划问题。 总之,线性规划问题是在一组线性约束条件的限制下,求一线性目标函数最大或最小的问题。 在解决实际问题时,把问题归结成一个线性规划数学模型是很重要的一步,但往往也是困难的一步,模型建立得是否恰当,直接影响到求解。而选取适当的决策变量,是我们建立有效模型的关键之一。 1.2 线性规划的Matlab 标准形式 线性规划的目标函数可以是求最大值,也可以是求最小值,约束条件的不等号可以是小于号也可以是大于号。为了避免这种形式多样性带来的不便,Matlab 中规定线性规划的标准形式为 b Ax x c x T ≤ that such min 其中c 和x 为n 维列向量,b 为m 维列向量,A 为n m ?矩阵。 例如线性规划 b Ax x c x T ≥ that such max 的Matlab 标准型为 b Ax x c x T -≤-- that such min 1.3 线性规划问题的解的概念 一般线性规划问题的标准型为 ∑==n j j j x c z 1min (3) ∑==≤n j i j ij m i b x a 1,,2,1 s.t.Λ (4) 可行解 满足约束条件(4)的解),,,(21n x x x x Λ=,称为线性规划问题的可行解,而使目标函数(3)达到最小值的可行解叫最优解。

高考全国卷及各省数学线性规划真题附答案.docx

2017 高考全国卷及自主招生数学高考真题 线性规划专题真题整理(附答案解析) x 3y 3, 1. ( 17 全国卷 I ,文数 )设 x ,y 满足约束条件 x y 1, 则 z=x+y 的最大值为( ) 7 y 0, A . 0 B . 1 C .2 D .3 答案: D 解析:如图,由图易知当目标函数 z x y 经过 直线 x 3 y 3 和 y 0 (即 x 轴)的交点 A(3,0) 时, z 能取到最大值,把 A(3,0) 代入 z=x+y 可得 z max 3 0 3 ,故选 D. x 2 y 1 2.(17 全国卷 I, 理数 14 题)设 x ,y 满足约束条件 2x y 1,则 z 3x 2 y 的最小值 x y 0 为 答案: 5 x 2 y 1 解析:不等式组 2x y 1 表示的平面区域如图所示。 x y 0 由 z 3x 2 y 变形得 y 3 x z 。要求 z 的最小值, 2 2 即求直线 y 3 x z 的纵截距的最大值。由右图,易知 2 2 当直线 y 3 x z 过图中点 A 时,纵截距最大。 2 2 联立方程组 2 x y 1 ,此时 z 3(1) 2 1 5 。 x 2 y 1 ,解得 A 点坐标为 ( 1,1) 故 z 3x 2 y 的最小值是 -5.

2x+3y 30 3. (17 全国卷Ⅱ,文数 7、理数 5)设 x、y 满足约束条件2x 3 y 3 0 .则z2x y的 y 30 最小值是() A.-15 C.1D9 答案: A 2x+3y 30 解析:不等式组2x 3y 30 表示的可行域如图所示, y30 易知当直线z 2x y 过到y 2 x 1与 y 3 交点 3 6 ,3 时,目标函数 z2x y 取到最小值,此时有 z min 26315 ,故所求z 最小值为15. )设,满足约束条件 3x 2 y60 的取值范围是 4. (17 全国卷Ⅲ,文数 5 x0,则 z=x-y x y y0 () A.[-3,0] B.[-3,2] C.[0,2] D.[0,3] 答案: B 解析:绘制不等式组表示的可行域,结合目标函数 的几何意义可得目标函数z x y 在直线3x 2y 60 与= - 直线 x0 (即x 轴)的交点A0,3处取得最小值, 此时 z min0 3 3。在点B2,0处取得最大值,此时 z max 2 0 2 . 故本题选择 B 选项 . 5.(17 全国卷Ⅲ,理数13)若 x,y 满足约束条件x y 0 x y 2 0 则z3x 4 y 的最小值为y 0 ________.

一般线性规划数学模型

一般线性规划问题 1. 线性规划的条件: ① 决策变量有没有---------------------必须有 ② 目标函数和约束条件是不是决策变量的线性表达式------------------必须是 ③ 决策变量非负条件是否满足-------------必须满足 ④ 目标函数是否表现出极大化或极小化------必须表现 2. 线性规划的表达式 目标函数: x c x c x c n n z Max Min +???++=2211)( 约束条件: b x a x a x a n n 112 12 1 11 )(≤≥+???++ b x a x a x a n n 222 2 21 21 )(≤≥+???++ b x a x a x a n n 332 2 31 31 )(≤≥+???++ ..............

b x a x a x a n n nn n )(2 2 1 n1 ≤≥+???++ 非负性约束: 0,,0,02 1 ≥???≥≥x x x n 问题重述 某储蓄所每天的营业时间是上午9时到下午5时。根据经验,每天不同时间段所需要的服务员数量如表17所示。储蓄所可以雇用全时和半时两类服务员。全时服务员每天报酬100元,从上午9时到下午5时工作,但中午12时到下午2时之间必须安排1h 的午餐时间。储蓄所每天可以雇用不超过3名的半时服务员,每个半小时服务员必须连续工作4h ,报酬40元。(1)问该储蓄所应如何雇用全时和半时两类服务员。(2)如果不能雇用半时服务员,每天至少增加多少费用。(3)如果雇用半时服务员的数量没有限制,每天可以减少多少费用? 表16 每天不同时间段所需要的服务员数量

数学建模 线性规划模型

数学建模线性规划模型 数学建模教案,线性规划模型 一、问题的提出 在生产管理和经营活动中经常提出一类问题,即如何合理地利用有限的人力、物力、财力等资源,以便得到最好的经济效果。 例1 若需在长为4000mm的圆钢上,截出长为698mm和518mm两种毛坯,问怎样截取才能使残料最少, 初步分析可以先考虑两种“极端”的情况: (1)全部截出长为698mm的甲件,一共可截出 EQ F(4000,698) ?5件,残料长为510mm。 (2)全部截出长为518mm的乙件,一共可截出 EQ F(4000,518) ?7件,残料长为374mm。由此可以想到,若将 x个甲件和y 个乙件搭配起来下料,是否可能使残料减少,把截取条件数学化地表示出来就是: 698 x + 518y ? 4000 x ,y都是非负整数 目标是使:z = EQ F(698x + 518y,4000) (材料利用率)尽可能地接近或等于1。(尽可能地大) 该问题可用数学模型表示为: 目标函数 : max z = EQ F(698x + 518y,4000) 满足约束条件: 698 x + 518y ? 4000 , (1) x ,y都是非负整数 . (2) 例2 某工厂在计划期内要安排生产I 、II两种产品,已知生产单位产品所需的设备台数及A、B两种原料的消耗,如下表所示。

I II 设备 1 2 8台数 原材料A 4 0 16kg 原材料B 0 4 12kg 该工厂每生产一件产品I可获利 2 元,每生产一件产品II可获利 3 元,问应如何安排生产计划使工厂获利最多, 这问题可以用以下的数学模型来描述:设 x, x分别表示在计划期内产品I、II 的产量。 1 2 因为设备的有效台数为8 ,这是一个限制产量的条件,所以在确定I 、II的产量时,要考虑不超过设备的有效台数,即可用不等式表示为: x + 2x ? 8 . 1 2同理,因原材料A 、B的限量,可以得到以下不等式: 4 x ? 16 1 4 x ? 12. 2 该工厂的目标是在不超过所有资源限量的条件下,如何确定产量x、x以得到最大 1 2的利润。若用 z 表示利润,这时z = 2x + 3 x。综上所述,该计划问题可用数学模型表 1 2 示为: 目标函数 : max z = 2x + 3 x 1 2 满足约束条件: x + 2x ? 8 1 2 4 x ? 16 1 4 x ? 12. 2

数学建模:运用Lindolingo软件求解线性规划

数学建模:运用Lindolingo软件求解线性规划 1、实验内容: 对下面是实际问题建立相应的数学模型,并用数学软件包Lindo/lingo对模型进行求解。 某厂生产甲乙两种口味的饮料,每百箱甲饮料需用原料6千克,工人10,可获利10万元;每百箱乙饮料需用原料5千克,工人20名,可获利9万元.名今工厂共有原料60千克,工人150名,又由于其他条件所限甲饮料产量不超过8百箱.问如何安排生产计划,即两种饮料各生产多少使获利最大.进一步讨论: 1)若投资0.8万元可增加原料1千克,问应否作这项投资. 2)若每百箱甲饮料获利可增加1万元,问应否改变生产计划. 数学建模论文 运用lindo/lingo软件求解线性规划 运用lindo/lingo软件求解线性规划 一、摘要 本文要解决的问题是如何安排生产计划,即两种饮料各生产多少使获利最大。 首先,对问题进行重述明确题目的中心思想,做出合理的假设,对符号做简要的说明。 然后,对问题进行分析,根据题目的要求,建立合适的数学模型。 最后,运用lindo/lingo软件求出题目的解。 【关键词】最优解 lindo/lingo软件 第二、问题的重述 某厂生产甲乙两种口味的饮料,每百箱甲饮料需用原料6千克,工人10名,可获利10万元;每百箱乙饮料需用原料5千克,工人20名,可获利9万元.今工厂共有原

料60千克,工人150名,又由于其他条件所限甲饮料产量不超过8百箱.问如何安排生产计划,即两种饮料各生产多少使获利最大.进一步讨论: 1)若投资0.8万元可增加原料1千克,问应否作这项投资。 2)若每百箱甲饮料获利可增加1万元,问应否改变生产计划。 第三、模型的基本假设 1、每一箱饮料消耗的人力、物力相同。 2、每个人的能力相等。 3、生产设备对生产没有影响。 第四、符号说明 1、x.....甲饮料 2、y.....乙饮料 3、z.....增加的原材料 第五、问题分析 根据题目要求:如何安排生产计划,即两种饮料各生产多少使获利最大,可知本题所求的是利润的最大值。我们可以先建立数学模型,然后用lindo/lingo软件包求解模型的最大值。 第六、模型的建立及求解根据题目建立如下3个模型: 模型1: max=0.1*x+0.09*y; 0.06*x+0.05*y<=60; 0.1*x+0.2*y<=150; x+y<=800; 结果:x=800;y=0;max=80 模型2:

近几年全国卷高考文科数学线性规划高考题

线性规划高考题 1.[2013.全国卷 2.T3]设,x y 满足约束条件10,10,3,x y x y x -+≥??+-≥??≤? ,则23z x y =-的最小值是( ) A.7- B.6- C.5- D.3- 2.[2014.全国卷2.T9]设x ,y 满足的约束条件1010330x y x y x y +-≥??--≤??-+≥? ,则2z x y =+的最大值为( ) A.8 B.7 C.2 D.1 3.[201 4.全国卷1.T11]设1,y 满足约束条件,1, x y a x y +≥??-≤-?且z x ay =+的最小值为7,则a =( ) A .-5 B. 3 C .-5或3 D. 5或-3 4. [2012.全国卷.T5] 已知正三角形ABC 的顶点A(1,1),B(1,3),顶点C 在第一象限,若点(x ,y )在△ABC 内部,则z=-x+y 的取值范围是( ) A.(1-3,2) B.(0,2) C.(3-1,2) D.(0,1+3) 5.[2010.全国卷.T11]已知 Y ABCD 的三个顶点为A (-1,2),B (3,4),C (4,-2),点(x ,y )在 Y ABCD 的内部,则z=2x-5y 的取值范围是( ) A.(-14,16) B.(-14,20) C.(-12,18) D.(-12,20) 6. [2016.全国卷3.T13]设x ,y 满足约束条件210,210,1,x y x y x -+≥??--≤??≤? 则z =2x +3y –5的最小值为 7.[2016.全国卷2.T14]若x ,y 满足约束条件103030x y x y x -+≥??+-≥??-≤? ,则z =x -2y 的最小值为 8.[2015.全国卷2.T14]若x ,y 满足约束条件50210210x y x y x y +-≤??--≥??-+≤? ,则2z x y =+的最大值为

数学建模线性规划

线性规划 1.简介: 线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法.在经济管理、交通运输、工农业生产等经济活动中,提高经济效果是人们不可缺少的要求,而提高经济效果一般通过两种途径:一是技术方面的改进,例如改善生产工艺,使用新设备和新型原材料.二是生产组织与计划的改进,即合理安排人力物力资源. 线性规划所研究的是:在一定条件下,合理安排人力物力等资源,使经济效果达到最好.规划问题。一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性线性约束条件的解叫做可行解,由所有可行解组成的集合叫做可行域。 (x)都是线性函数,则该模型称为在优化模型中,如果目标函数f(x)和约束条件中的g i 线性规划。 2.线性规划的3个基本要素 (1)决策变量 (2)目标函数f(x) (x)≤0称为约束条件) (3)约束条件(g i 3.建立线性规划的模型 (1)找出待定的未知变量(决策变量),并用袋鼠符号表示他们。 (2)找出问题中所有的限制或者约束,写出未知变量的线性方程或线性不等式。

(3)找到模型的目标或判据,写成决策变量的线性函数,以便求出其最大值或最小值。以下题为例,来了解一下如何将线性规划用与实际的解题与生活中。 生产计划问题 某工厂生产甲乙两种产品,每单位产品消耗和获得的利润如表 试拟订生产计划,使该厂获得利润最大 解答:根据解题的三个基本步骤 (1)找出未知变量,用符号表示: 设甲乙两种产品的生产量分别为x 1与x 2 吨,利润为z万元。 (2)确定约束条件: 在这道题目当中约束条件都分别为:钢材,电力,工作日以及生产量不能为负的限制 钢材:9x 1+5 x 2 ≤360, 电力:4x 1+5 x 2 ≤200, 工作日:3x 1+10 x 2 ≤300, x 1≥0 ,x 2 ≥0, (3)确定目标函数: Z=7x 1+12 x 2

数学建模 matlab求解线性规划实验报告

实验三 线性规划 程序: linprog c=[-0.4 -0.28 -0.32 -0.72 -0.64 -0.6]; A=[0.01 0.01 0.01 0.03 0.03 0.03;0.02 0 0 0.05 0 0;0 0.02 0 0 0.05 0;0 0 0.03 0 0 0.08]; b=[850;700;100;900]; Aeq=[]; beq=[]; vlb=[0;0;0;0;0;0]; vub=[]; [x,fval]=linprog(c,A,b,Aeq,beq,vlb,vub) Exam5: function f=fun3(x); f=-x(1)-2*x(2)+(1/2)*x(1)^2+(1/2)*x(2)^2 实验目的 2、掌握用数学软件包求解线性规划问题。 1、了解线性规划的基本内容。 例1 max 6543216.064.072.032.028.04.0x x x x x x z +++++= 85003.003.003.001.001.001.0..654321≤+++++x x x x x x t s 70005.002.041≤+x x 10005.002.052≤+x x 90008.003.063≤+x x 6,2,10 =≥j x j

x0=[1;1]; A=[2 3 ;1 4]; b=[6;5]; Aeq=[];beq=[]; VLB=[0;0]; VUB=[]; [x,fval]=fmincon('fun3',x0,A,b,Aeq,beq,VLB,VUB) 书 求下列非线性规划 2221232212322 1232 12223123min 8020 ..2023,,0x x x x x x x x x s t x x x x x x x +++?-+≥?++≤??--+=??+=? ?≥? 在Matlab 2013软件中输入如下程序: (i )编写M 文件fun1.m 定义目标函数 function f=fun1(x); f=sum(x.^2)+8; (ii )编写M 文件fun2.m 定义非线性约束条件 function [g,h]=fun2(x); g=[-x(1)^2+x(2)-x(3)^2 x(1)+x(2)^2+x(3)^3-20]; %非线性不等式约束 h=[-x(1)-x(2)^2+2 x(2)+2*x(3)^2-3]; %非线性等式约束 (iii )编写主程序文件example2.m 如下: options=optimset('largescale','off'); [x,y]=fmincon('fun1',rand(3,1),[],[],[],[],zeros(3,1),[], ... 'fun2', options) 就可以求得当1230.5522 1.2033,,0.9478x x x ===时,最小值y =10.6511。 4. 选修课的策略 决策目标为选修的课程总数最少,即 921min x x x +++ 约束条件: (1) 满足课程要求:(至少2门数学课程,3门运筹学课程和2门计算机课程)

高中数学线性规划经典题型

高考线性规划归类解析 一、平面区域和约束条件对应关系。 例1、已知双曲线224x y -=的两条渐近线与直线3x =围成一个三角形区域,表示该区域的不等式组是() (A)0003x y x y x -≥??+≥??≤≤? (B)0003x y x y x -≥?? +≤??≤≤? (C) 003x y x y x -≤?? +≤??≤≤? (D) 0003x y x y x -≤?? +≥??≤≤? 解析:双曲线224x y -=的两条渐近线方程为y x =±,与直线3x =围 成一个三角形区域(如图4所示)时有0 003x y x y x -≥?? +≥??≤≤? 。 点评:本题考查双曲线的渐近线方程以及线性规划问题。验证法或排除法是最效的方法。 例2:在平面直角坐标系中,不等式组20 200x y x y y +-≤??-+≥??≥? 表示的平面区域的面积是() (A)42 (B)4 (C) 22 (D)2 解析:如图6,作出可行域,易知不等式组20 200x y x y y +-≤??-+≥??≥? 表示的平面区域是一个三角形。容 易求三角形的三个顶点坐标为A(0,2),B(2,0),C(-2,0).于是三角形的面积为: 11 ||||42 4.22 S BC AO =?=??=从而选B。 点评:有关平面区域的面积问题,首先作出可行域,探求平面区域图形的性质;其次利用面积公式整体或部分求解是关键。 二、已知线性约束条件,探求线性截距——加减的形式(非线性距离——平方的形式,斜率——商的形式)目标关系最值问题(重点) 例3、设变量x 、y 满足约束条件?? ? ??≥+-≥-≤-1122y x y x y x ,则 ①y x 32+的最大值为 。(截距) 解析:如图1,画出可行域,得在直线 2x-y=2与直线x-y=-1 的交点A(3,4)处,目标函数z 最大值为18 点评:本题主要考查线性规划问题,由线性约束条件画出可行域,然后求出目标函数的最大值.,是一道较为简单的送分题。数形结合是数学思想的重要手段之一。 ②则2 2 x y +的最小值是 . ③1y x =+的取值范围是 . 图1

高考数学线性规划题型总结

2010年高考线性规划归类解析 线性规划问题是解析几何的重点,每年高考必有一道小题。 一、已知线性约束条件,探求线性目标关系最值问题 例1、设变量x 、y 满足约束条件?? ???≥+-≥-≤-112 2y x y x y x ,则y x z 32+=的最大值为 。 解析:如图1,画出可行域,得在直线2x-y=2与直线x-y=-1 的交点A(3,4)处,目标函数z 最大值为18 点评:本题主要考查线性规划问题,由线性约束条件画出可 行域,然后求出目标函数的最大值.,是一道较为简单的送分 题。数形结合是数学思想的重要手段之一。 二、已知线性约束条件,探求非线性目标关系最值问题 例2、已知1, 10,220x x y x y ≥??-+≤??--≤?则22x y +的最小值是 . 解析:如图2,只要画出满足约束条件的可行域,而22x y +表示 可行域内一点到原点的距离的平方。由图易知A (1,2)是满足条 件的最优解。22x y +的最小值是为5。 点评:本题属非线性规划最优解问题。求解关键是在挖掘目标关 系几何意义的前提下,作出可行域,寻求最优解。 三、约束条件设计参数形式,考查目标函数最值范围问题。 例3、在约束条件00 24x y y x s y x ≥??≥?? +≤??+≤?下,当35s ≤≤时,目标函数 32z x y =+的最大值的变化范围是() A.[6,15] B. [7,15] C. [6,8] D. [7,8] 解析:画出可行域如图3所示,当34s ≤<时, 目标函数 32z x y =+在(4,24)B s s --处取得最大值, 即 max 3(4)2(24)4[7,8)z s s s =-+-=+∈;当45s ≤≤时, 目标函数 32z x y =+在点(0,4)E 处取得最大值,即max 30248z =?+?=,故[7,8]z ∈,从而选D; 点评:本题设计有新意,作出可行域,寻求最优解条件,然后转化为目标函数Z 关于S 的函数关系是求解的关键。 四、已知平面区域,逆向考查约束条件。 例4、已知双曲线224x y -=的两条渐近线与直线3x =围成一个三角形 区域,表示该区域的不等式组是() (A)0003x y x y x -≥??+≥??≤≤? (B)0003x y x y x -≥??+≤??≤≤? (C) 0 003x y x y x -≤??+≤??≤≤? (D) 0003x y x y x -≤??+≥??≤≤? 解析:双曲线224x y -=的两条渐近线方程为y x =±,与直线3x = 围 图 2 图1 C

数学建模习题——线性规划

某银行经理计划用一笔资金进行有价证券的投资,可供购进的证券以及其信用等级、到期年限、收益如下表所示.按照规定,市政证券的收益可以免税,其他证券的收益需按50%的税率纳税.此 表四 问:(1)若该经理有1000万元资金,应如何投资? (2)如果能够以2.75%的利率借到不超过100万元资金,该经理应如何操作? (3)在1000万元资金情况下,若证券A的税前收益增加为4.5%,投资应否改变?若证券C的税前收益减少为4.8%,投资应否改变? 解:设利润函数为M(x),投资A、B、C、D、E五种类型的证券资金分别为

12345,,,,x x x x x 万元,则由题设条件可知 12345123452341234512345123451234512345()0.0430.0270.0250.0220.0451000400 225 1.4()9154325(),,,,0 M x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x =++++++++≤++≥++++≤++++++++≤++++≥ 利用MATLAB 求解最优解,代码如下: c=[-0.043 -0.027 -0.025 -0.022 -0.045]; A=[1 1 1 1 1;0 -1 -1 -1 0;0.6 0.6 -0.4 -0.4 3.6;4 10 -1 -2 -3]; b=[1000;-400;0;0]; Aeq=[]; beq=[]; vlb=[0;0;0;0;0]; vub=[]; [x,fval]=linprog(c,A,b,Aeq,beq,vlb,vub) 运行结果如下:

数学建模-线性规划

-1- 第一章线性规划 §1 线性规划 在人们的生产实践中,经常会遇到如何利用现有资源来安排生产,以取得最大经济 效益的问题。此类问题构成了运筹学的一个重要分支—数学规划,而线性规划(Linear Programming 简记LP)则是数学规划的一个重要分支。自从1947 年G. B. Dantzig 提出 求解线性规划的单纯形方法以来,线性规划在理论上趋向成熟,在实用中日益广泛与深入。特别是在计算机能处理成千上万个约束条件和决策变量的线性规划问题之后,线性 规划的适用领域更为广泛了,已成为现代管理中经常采用的基本方法之一。 1.1 线性规划的实例与定义 例1 某机床厂生产甲、乙两种机床,每台销售后的利润分别为4000 元与3000 元。 生产甲机床需用A、B机器加工,加工时间分别为每台2 小时和1 小时;生产乙机床 需用A、B、C三种机器加工,加工时间为每台各一小时。若每天可用于加工的机器时 数分别为A 机器10 小时、B 机器8 小时和C 机器7 小时,问该厂应生产甲、乙机床各几台,才能使总利润最大? 上述问题的数学模型:设该厂生产1 x 台甲机床和2 x 乙机床时总利润最大,则1 2 x , x 应满足 (目标函数)1 2 max z = 4x + 3x (1) s.t.(约束条件) ?? ? ?? ? ? ≥ ≤ + ≤ + ≤ , 0 7 8 2 10 1 2 2 1 2 1 2 x x x x x x x (2) 这里变量1 2 x , x 称之为决策变量,(1)式被称为问题的目标函数,(2)中的几个不等式是问题的约束条件,记为s.t.(即subject to)。由于上面的目标函数及约束条件均为线性

2020高考:高中数学线性规划各类习题精选

线性规划 基础知识: 一、知识梳理 1. 目标函数: P =2x+y是一个含有两个变 量 x 和y 的 函数,称为目标函数. 2.可行域:约束条件所表示的平面区域称为可行域. 3. 整点:坐标为整数的点叫做整点. 4.线性规划问题:求线性目标函数在线性约束条件下的最大值或最小值的问题,通常称为线性规划问题.只含有两个变量的简单线性规划问题可用图解法来解决. 5. 整数线性规划:要求量取整数的线性规划称为整数线性规划. 二:积储知识: 一. 1.点P(x 0,y 0)在直线Ax+By+C=0上,则点P 坐标适合方程,即Ax 0+By 0+C=0 2. 点P(x 0,y 0)在直线Ax+By+C=0上方(左上或右上),则当B>0时,Ax 0+By 0+C>0;当B<0时,Ax 0+By 0+C<0 3. 点P(x 0,y 0)在直线Ax+By+C=0下方(左下或右下),当B>0时,Ax 0+By 0+C<0;当B<0时,Ax 0+By 0+C>0 注意:(1)在直线Ax+By+C=0同一侧的所有点,把它的坐标(x,y)代入Ax+By+C,所得实数的符号都相同, (2)在直线Ax+By+C=0的两侧的两点,把它的坐标代入Ax+By+C,所得到实数的符号相反, 即:1.点P(x 1,y 1)和点Q(x 2,y 2)在直线 Ax+By+C=0的同侧,则有(Ax 1+By 1+C )( Ax 2+By 2+C)>0 2.点P(x 1,y 1)和点Q(x 2,y 2)在直线 Ax+By+C=0的两侧,则有(Ax 1+By 1+C )( Ax 2+By 2+C)<0 二.二元一次不等式表示平面区域: ①二元一次不等式Ax+By+C>0(或<0)在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域. 不. 包括边界; ②二元一次不等式Ax+By+C ≥0(或≤0)在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域且包括边界; 注意:作图时,不包括边界画成虚线;包括边界画成实线. 三、判断二元一次不等式表示哪一侧平面区域的方法: 取特殊点检验; “直线定界、特殊点定域 原因:由于对在直线Ax+By+C=0的同一侧的所有点(x,y),把它的坐标(x,y)代入 Ax+By+C,所得到的实数的符号都相同,所以只需在此直线的某一侧取一个特殊点(x 0,y 0),从Ax 0+By 0+C 的正负即可判断Ax+By+C>0表示直线哪一侧的平面区域.特殊地, 当C ≠0时,常把原点作为特殊点,当C=0时,可用(0,1)或(1,0)当特殊点,若点坐标代入适合不等式则此点所在的区域为需画的区域,否则是另一侧区域为需画区域。 例题: 1. 如图1所示,已知ABC ?中的三顶点(2,4),(1,2),(1,0)A B C -,点(,)P x y 在ABC ?内部及边界运动,请你探究并讨论以下问题:若目标函数是1y z x -=或z =你知道其几何意义吗?你能否借助其几何意义求得min z 和max z ?

线性规划与数学建模简介

第十三章线性规划与数学建模简介 【授课对象】理工类专业学生 【授课时数】6学时 【授课方法】课堂讲授与提问相结合 【基本要求】1、了解数学模型的基本概念、方法、步骤; 2、了解线性规划问题及其数学模型; 3、了解线性规划问题解的性质及图解法. 【本章重点】线性规划问题. 【本章难点】线性规划问题、线性规划问题解的性质、图解法. 【授课内容】 本章简要介绍数学建模的基本概念、方法、步骤,并以几个典型线性规划问题为例,介绍构建数学模型的方法及其解的性质。 §1 数学建模概述 一、数学建模 数学建模是构造刻划客观事物原型的数学模型并用以分析、研究和解决实际问题的一种科学方法。运用这种科学方法,必须从实际问题出发,遵循从实践到认识再实践的认识规律,围绕建模的目的,运用观察力、想象力的抽象概括能力,对实际问题进行抽象、简化,反复探索,逐步完善,直到构造出一个能够用于分析、研究和解决实际问题的数学模型。因此,数学建模是一种定量解决实际问题的创新过程。 二、数学模型的概念 模型是人们对所研究的客观事物有关属性的模拟。例如在力学中描述力、 量和加速度之间关系的牛顿第二定律F=ma就是一个典型的(数学)模型。一般地,可以给数学模型下这样的定义:数学模型是磁于以部分现实世界为一定目的而做的抽象、简化的数学结构。 通俗而言,数学模型是为了一定目的对原型所作的一种抽象模拟,它用数学 式子,数学符号以及程序、图表等描述客观事物的本质特征与内在联系。 三建立数学模型的方法和步骤 建立数学模型没有固定模式。下面介绍一下建立模型的大体过程: 1.建模准备 建模准备是确立建模课题的过程。这类课题是人们在生产和科研中为了使 认识和实践过一步发展必须解决的问题。因此,我们首先要发现这类需要解决的实际问题。其次要弄清所解决问题的目的要求并着手收集数据。进行建模筹划,组织必要的人力、物力等,确立建模课题。 2.模型假设 作为建模课题的实际问题都是错综复杂的、具体的。如果不对这些实际问题进行抽象简化,人们就无法准确把握它的本质属性,而模型假设就是根据建模的目的对原型进行抽象、简化,抓住反映问题本质属性的主要因素,简化掉那些非本质的

高考数学线性规划专项练习题

(2017·5)设x ,y 满足约束条件2330233030x y x y y +-≤?? -+≥??+≥? ,则2z x y =+的最小值是( ) A .15- B .9- C .1 D .9 (2014·9)设x ,y 满足约束条件70310350x y x y x y +-≤?? -+≤??--≥? ,则2z x y =-的最大值为( ) A .10 B .8 C .3 D .2 (2013·9)已知0a >,x ,y 满足约束条件13(3)x x y y a x ≥?? +≤??≥-? ,若2z x y =+的最小值为1,则a =( ) A . 14 B . 12 C .1 D .2 二、填空题 (2015·14)若x ,y 满足约束条件1020+220x y x y x y -+≥?? -≤??-≤? ,则z x y =+的最大值为_______. (2014·14)设x ,y 满足约束条件?????? ?≥≥≤+-≥-003 1y x y x y x ,则2z x y =-的取值范围为 . (2011·13)若变量x , y 满足约束条件32969 x y x y ≤+≤??≤-≤?,则 2z x y =+的最小值为 .

(2017·5)A 【解析】根据约束条件2330233030x y x y y +-≤?? -+≥??+≥? 画出可行域(图中阴影部分), 作直线:20l x y +=,平移 直线l ,将直线平移到点A 处Z 最小,点A 的坐标为()6,3--,将点A 的坐标代到目标函数2Z x y =+, 可得15Z =-,即min 15Z =-. 解法二:直接求法 对于封闭的可行域,我们可以直接求三条直线的交点,代入目标函数中,三个数种选其最小的 为最小值即可,点A 的坐标为()6,3--,点B 的坐标为()6,3-,点C 的坐标为()0,1,所求值分 别为15-﹑9﹑1,故min 15Z =-,max 9Z =. (2014·9)B 解析:作出x ,y 满足约束条件70 310350x y x y x y +-≤??-+≤??--≥? 所表示的平 面区域为如图阴影部分,做出目标函数l 0:y =2x ,∵y =2x -z ,∴当y =2x -z 的截距最小时,z 取最大值. 当y =2x -z 经过C 点时,z 取最大值.由310 70x y x y -+=?? +-=?得C (5,2),此时z 取最大值为2×5-2=8. (2013·9)B 解析:由题意作出1 3(3)x x y y a x ≥?? +≤??≥-? 所表示的区域如图阴影部 分所 示,当目标函数表示的直线经过点A 时,取得最小值,而点A 的坐 标为(1, -2a ),所以2-2a =1,解得1 2 a =. 故选B. 二、填空题 l 0 l 1 3x-y-5=0 y x o 1 2 x-3y+1=0 l 2 x+y-7=0 5 2 C A B A (1, -2a ) l A y = -3 2x +3y -3=0 2x -3y +3=0 x O y C B

高考数学中的线性规划问题的总结分析

线性规划问题的专题研究 新教材试验修订本中简单的线性规划是新增的内容,在线性约束条件下研究目标函数的最值问题是一类常见的问题,在近几年高考试题中均有出现,而且灵活多变。本文结合08年高考出现的几个线性规划问题,对常见的线型规划问题作以专题总结研究。 一、08年高考中的线性规划问题的总结分析 1.基本问题 (1)(08年安徽理)如果实数x y 、满足条件101010x y y x y -+≥??+≥??++≤? ,那么2x y -的最大值为( ) A .2 B .1 C .2- D .3- 解:本题为较基本的线性规划问题,解决方式应该是: 画定可行域;做目标函数对应平行线束;找到最 大值,如图所示显然是平行线过A 点时取 最大值,将A 点坐标代入有 max 1Z =,故选择B (2)(08年福建文) 已知实数x 、y 满足1,1,y y x ≤???≥-?? 则2x y +的最大值是____ 解:本题也是一个基本题型,但从给定的约束条件来看,难度加大了,解法如图所示 当平行线过点()2,1B 时,2x y + 区的最大值为4

(3)(08年山东理)某公司招收男职员x 名,女职员y 名,x 和y 须 满足约束条件?? ???≤≥+-≥-.112,932,22115x y x y x 则z =10x +10y 的最大值是 (A)80 (B) 85 (C) 90 (D)95 解:本题是一个应用性的线性规划问题,经转化实质上是一个整点问题,实际的约束条件应为 51122,239,211, ,x y x y x x N y N -≥-??+≥??≤??∈∈?,画出区域如右图 过A 点时z 值最大,但由于A 点不是整点 故不能取到,所以应该是图中过整点(5,4)的直线使z 取最大值90 整点问题是线性规划部分的一个难点,但本题由于只是求最大值,唯有涉及到取整点是什么,所以难度降低了,但鉴于它是个应用题,还是比较灵活的。 (4)(08年辽宁理)双曲线224x y -=的两条渐近线与直线3x =围成一个三角形区域,表示该区域的不等式组是 (A)0003x y x y x -≥??+≥??≤≤? (B)0003x y x y x -≥??+≤??≤≤? (C) 0003x y x y x -≤??+≤??≤≤? (D) 0003x y x y x -≤??+≥??≤≤? 解:本题是一个综合性问题,既考查了线性规划又考查了双曲线的渐近线问题,但从难度上来说不大,但从此题可以看出,线性规划题型的灵活性,此题结果如下:双曲线224x y -=的两条渐近线方程为

相关主题
文本预览
相关文档 最新文档